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Abstract. The Critical 2D Stochastic Heat Flow (SHF) provides a natural candidate
solution to the ill-posed 2D Stochastic Heat Equation with multiplicative space-time white
noise. In this paper, we initiate the investigation of the spatial properties of the SHF. We
prove that, as a random measure on R2, it is a.s. singular w.r.t. the Lebesgue measure. This
is obtained by probing a “quasi-critical” regime and showing the asymptotic log-normality
of the mass assigned to vanishing balls, as the disorder strength is sent to zero at a suitable
rate, accompanied by similar results for critical 2D directed polymers. We also describe
the regularity of the SHF, showing that it is a.s. Hölder C´ε for any ε ą 0, implying the
absence of atoms, and we establish local convergence to zero in the long time limit.

The picture on the left is a simulation of the Critical 2D SHF and illustrates its singularity.
The picture on the right is a simulation in the quasi-critical regime, slightly below the
critical window, which is smoother and will be used to approximate the Critical 2D SHF.

1. Introduction

The Critical 2D Stochastic Heat Flow (SHF) was constructed in [CSZ23a] as a family
of measure-valued processes Z ϑ

t pdxq with disorder strength parameter ϑ P R, which give
non-trivial solutions to the ill-defined two-dimensional Stochastic Heat Equation (SHE)

Btupt, xq “
1

2
∆upt, xq ` β upt, xq ξpt, xq , t ą 0, x P R2, (SHE)
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where ξpt, xq denotes space-time white noise (more recently, an axiomatic characterisation
of the SHF as a continuous measure-valued process was given in [Tsa24]). Dimension 2 is
critical for the SHE as it is the dimension where the singularity of the noise matches the
smoothing effect of the Laplacian and thus cannot be treated perturbatively. A comprehensive
theory of singular Stochastic PDEs (SPDEs) below their critical dimension (known as
“subcritical SPDEs”) exists thanks to the breakthrough theories of regularity structure
[Hai14], paracontrolled distributions [GIP15], renormalisation group theory [Kup16, Duc22],
energy solutions [GJ14] and the huge volume of work they have inspired. The endeavour
of treating critical singular SPDEs is only now starting to emerge [CSZ24, CT24], and the
Critical 2D SHF is the first example describing a non-trivial and non-Gaussian solution to a
critical equation at its phase transition point.

The Critical 2D SHF is an interesting object with a rich structure (see the recent review
[CSZ24]). However, its fine properties have not yet been explored. The purpose of this paper
is to initiate the study of its spatial characteristics. Consider the Critical 2D SHF Z ϑ

t pdxq

started from the Lebesgue measure Z ϑ
0 pdxq “ dx. We will prove the following results: For

every ϑ P R and t ą 0, almost surely,

‚ Z ϑ
t pdxq is singular with respect to the Lebesgue measure (Theorem 1.1);

‚ Z ϑ
t pdxq barely fails to be a function in the sense that it is in the negative Hölder

spaces C´ε for every ε ą 0 (Theorem 1.5), and hence contains no atoms.

Moreover, we show that

‚ Z ϑ
t pdxq converges in law to the 0 measure as t Ñ 8, in the sense that the mass

assigned to any finite ball converges to 0 in probability (Theorem 1.4).

The almost surely singularity of Z ϑ
t pdxq is a consequence of the result that:

‚ The mass density 1
|Bpx,δq|Z

ϑ
t pBpx, δqq on a ball Bpx, δq of shrinking radius δ Ó 0

converges to a log-normal limit, if the disorder strength parameter ϑ “ ϑpδq Ñ ´8

at a suitable rate (Theorem 1.2).

This is obtained by proving an analogous result (Theorem 1.8) for the averaged partition
function of the directed polymer model in the so-called quasi-critical regime, which was
introduced in [CCR23] as an interpolation between the sub-critical and critical regimes
of the 2D directed polymer model. We remark that the directed polymer model is a very
interesting and important disordered system on its own [Com17, Zyg24], and the Critical 2D
SHF was first constructed in [CSZ23a] as the unique limit of 2D directed polymer partition
functions in the critical regime.

The proof of Theorem 1.8 constitutes the bulk of this paper and is accomplished via an
approximate multiplicative, multi-scale decomposition of the polymer partition function, see
(4.7). Similar decompositions have also been applied in the sub-critical regime [CD24, CNZ25].
The novelty of our contribution is that we push such a decomposition to the quasi-critical
regime, up to the onset of criticality, setting the foundations for understanding fine properties
of the SHF. Along the way, we derive a general hypercontractive bound on the higher moments
of the averaged polymer partition function in terms of its second moment (Theorem 1.11),
valid in all regimes up to criticality.

For the rest of the introduction, we will first recall the construction and basic properties
of the Critical 2D Stochastic Heat Flow. Our main results for the Critical 2D SHF and
the directed polymer model will then be stated in Section 1.2 and 1.3 respectively. In
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Section 1.4, we will formulate the hypercontractive moment bound mentioned above. Lastly
in Section 1.5, we explain how limiting properties of the Critical 2D SHF as the disorder
parameter ϑ Ó ´8 can always be analysed by studying the directed polymer partition
functions in the quasi-critical regime.

1.1. Briefing on the Critical 2D SHF. To make sense of the two-dimensional
stochastic heat equation (SHE), we need to first perform a regularisation on small spa-
tial scales (ultraviolet cutoff) and then take a suitable limit. The regularisation can be
accomplished in different ways. One way is to consider the mollified SHE

Btu
ε
“

1

2
∆uε ` βε ξ

ε
pt, xquε, (1.1)

where ε ą 0 is the spatial scale of regularisation, jp¨q is a smooth probability kernel on R2

and jεpxq “ ε´2jpx{εq is its scaled version, while ξε :“ jε ˚ ξ is the spatial mollification of
the white noise ξ.

Another way is to discretize space and time. Namely, the white noise ξ is replaced by a
family of i.i.d. random variables ω “ pωpn, xqq

nPN,xPZ2 with law P and expectation E, and

Erωs “ 0 , Erω2
s “ 1 , Dβ0 ą 0 : λpβq :“ logEreβωs ă 8 @β P r0, β0s . (1.2)

Replacing derivatives in (SHE) by suitable difference operators, the solution can be expressed
in terms of the (point-to-point) partition functions of the directed polymer model:

Z
βN
M,N py, xq “ E

„

e
řN´1
n“M`1tβNωpn,Snq´λpβN qu 1tSN“xu

ˇ

ˇ

ˇ

ˇ

SM “ y



, (1.3)

where E is the expectation with respect to the 2D simple symmetric random walk S “
pSnqně0. More precisely, the diffusively rescaled plane-to-point partition functions (with
Zeven :“ t2n : n P Zu and Z2

even :“ tpx, yq P Z2 : x` y P Zevenu)

upNqpt, xq :“
ÿ

yPZ2
even

Z
βN
0,Ntpy,

?
Nxq, pt, xq P

1

N
Zeven ˆ

1
?
N

Z2
even, (1.4)

is the analogue of uεpt, xq and solves a version of (SHE), discretised on spatial scale 1{
?
N

and time scale 1{N , with initial condition upNqp0, ¨q ” 1.
It was first shown in [CSZ17] that on the intermediate disorder scale

βN “ β̂

c

π

logN
,

the directed polymer partition functions upNqpt, xq undergo a phase transition (with critical
value β̂c “ 1) in two different senses:

‚ For each pt, xq P r0, 1q ˆ R2, upNqpt, xq converges to a log-normal limit if β̂ ă 1 and
converges to 0 if β̂ ě 1;

‚ The centered and rescaled field β´1
N pu

pNq
pt, xq ´ 1q converges for β̂ ă 1 to a Gaussian

limit that solves the additive SHE (or Edwards-Wilkinson equation)

Btv “
1

2
∆v `

d

β̂2

1´ β̂2 ξ,

where the noise strength diverges as β̂ Ò 1.
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The same results were also proved in [CSZ17] for the solution uε of the mollified SHE (1.1)
on the intermediate disorder scale βε “ β̂

b

2π
log 1{ε . Therefore in the subcritical regime β̂ ă 1,

the 2D SHE is essentially the Edwards-Wilkinson equation.
It is the critical regime β̂ “ 1 that leads to a non-Gaussian limit, called the Critical 2D

Stochastic Heat Flow (SHF). It turns out there is a whole critical window around β̂ “ 1,
determined by the relation

eλp2βN q´2λpβN q ´ 1 “
π

logN

´

1`
ϑ` op1q

logN

¯

for some ϑ P R. (1.5)

For a more explicit expression of βN in terms of ϑ, see [CSZ23a, (3.12)]. For the mollifed
SHE (1.1), the corresponding critical window is given by

β2
ε “

2π

log 1
ε

´

1`
%` op1q

log 1
ε

¯

, (1.6)

where % “ πϑ` C (see [CSZ19b, (1.38)] for the precise value of C).
The main result of [CSZ23a] is that:

‚ If βN is chosen to satisfy (1.5) for some ϑ P R and upNqpt, ¨q is regarded as a process of
random measures on R2, then pupNqpt, ¨qqtě0 converges in finite dimensional distribution
to a unique (in law) measure-valued process Z ϑ

t pdxq, which was named the Critical
2D Stochastic Heat Flow in [CSZ23a].

Prior to [CSZ23a], the tightness of the sequence of random measures upNqpt, ¨q follows
trivially from first moment bounds, while moment asymptotics of upNqpt, ¨q were studied in
[BC98, CSZ19b, GQT21], which determined all positive integer moments of any subsequential
weak limit of upNqpt, ¨q. However, these moments diverge too fast to uniquely determine the
limit (a lower bound of order exppck2

q for the k-th moment was given in [CSZ23b]). The
uniqueness was finally achieved in [CSZ23a] by showing that the laws of upNqpt, ¨q form a
Cauchy sequence, and hence must converge to a unique limit. The proof was based on coarse
graining, coupled with a Lindeberg replacement principle.

Recently, Tsai [Tsa24] gave an axiomatic characterization of the critical 2D SHF and
showed that there is a version that is almost surely continuous in time. This greatly facilitates
the proof of convergence to the SHF. In particular, this axiomatic characterization was used
in [Tsa24] to show that the solution uε of the mollified SHE (1.1) in the critical window
(1.6) also converges to the SHF. In Tsai’s characterisation, the SHF is the unique (in law)
continuous measure-valued process that satisfies: (i) Independent “increments” property; (ii)
An almost sure Chapman-Kolmogorov property (first defined and verified for the SHF by
Clark and Mian [CM24]); (iii) matching first four moments with the SHF. The proof was
also based on a Lindeberg replacement principle.

We also recall from [CSZ23a, Theorem 1.2] some basic properties of the Critical 2D SHF
(for simplicity, we only consider constant initial configuration Z ϑ

0 pdxq “ dx):

‚ (Scaling Covariance) For all a ą 0, we have

pZ ϑ
atpdp

?
axqqq0ďtă8

dist
“ paZ ϑ`log a

t pdxqq0ďtă8 . (1.7)

Thus zooming out diffusively (a Ò 8) increases the disorder strength ϑ, while zooming
in (a Ó 0) decreases the disorder strength (cf. the pictures on the front page, where
the picture on the right is a result of zooming into the picture on the left).
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‚ (First and Second Moments) We have

ErZ ϑ
t pdxqs “ dx ,

ErZ ϑ
t pdxqZ

ϑ
t pdyqs “ Kϑ

t px, yq dx dy ,

where Kϑ
t px, yq „ C log 1

|x´y| as |x´ y| Ñ 0. It was first computed in [BC98] before
the realisation that this lies in the critical window of a phase transition [CSZ17].

For more properties of the Critical 2D SHF, see [CSZ23a] and the lecture notes [CSZ24].

1.2. New properties of the Critical 2D SHF. In this paper we investigate the
spatial regularity of the SHF. We focus on its one-time marginal Z ϑ

t pdxq, which is a locally
finite random measure on R2 with Z ϑ

0 pdxq “ dx and ErZ ϑ
t pdxqs “ dx for all t ě 0. Our

main result is that, for each t ą 0, Z ϑ
t pdxq is almost surely singular with respect to the

Lebesgue measure, and hence not a function.
Let UBpx,δqp¨q denote the uniform density on the Euclidean ball in R2:

UBpx,δqp¨q :“
1

πδ2 1Bpx,δqp¨q where Bpx, δq :“
 

y P R2 : |y ´ x| ă δ
(

. (1.8)

We will mostly focus on the SHF Z ϑ
t pdxq averaged over balls, that is

Z ϑ
t pUBpx,δqq :“

Z ϑ
t pBpx, δqq

πδ2 . (1.9)

We can now state our first main result.

Theorem 1.1 (Singularity of SHF). Fix any t ą 0 and ϑ P R. Almost surely, the SHF
Z ϑ
t pdxq is singular with respect to Lebesgue measure on R2. In fact, the following holds:

almost surely, lim
δÓ0

Z ϑ
t

`

UBpx,δq
˘

“ 0 for Lebesgue a.e. x P R2 . (1.10)

The singularity of the SHF with respect to Lebesgue can be deduced from property (1.10)
via general arguments (see Proposition 3.2). In order to prove (1.10), we show that in the
“weak disorder limit” ϑ Ñ ´8, the SHF averaged on balls Z ϑ

t

`

UBpx,δq
˘

is asymptotically
log-normal for radius δ “ δ%ϑ Ó 0 vanishing as any power of a suitable scale δϑ.

Theorem 1.2 (Log-normality of SHF in the weak disorder limit). Let us define

δϑ :“ e
1
2
ϑ
“ e´

1
2
|ϑ|
ÝÑ 0 as ϑÑ ´8 . (1.11)

Given any t ą 0 and x P R2, the following convergence in distribution holds:

@% P p0,8q : Z ϑ
t

`

UBpx,δ%ϑq
˘ d
ÝÝÝÝÝÝÑ
ϑÑ´8

eN p0,σ
2
q´ 1

2
σ
2

with σ2
“ logp1` %q . (1.12)

Remark 1.3. We stress that the log-normality (1.12) emerges as ϑÑ ´8. For fixed ϑ P R,
the SHF averaged on balls Z ϑ

t

`

UBpx,δq
˘

vanishes as δ Ñ 0, as shown by (1.10).
On a different note, the SHF Z ϑ

t pdxq is not the exponential of a (generalised) Gaussian
field, i.e. it is not a Gaussian Multiplicative Chaos, see [CSZ23b].

In the proof of Theorem 1.1 we deduce (1.10) from (1.12) by exploiting the monotonicity
of fractional moments of Z ϑ

t pBq with respect to ϑ (see Lemma 3.1).
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Using the scaling covariance property (1.7), we also show that the SHF locally vanishes
as the time horizon tends to infinity.

Theorem 1.4 (Long-time behavior of SHF). Fix any ϑ P R. Then,

for any bounded set A Ă R2: Z ϑ
t pAq

d
ÝÝÝÝÑ
tÑ8

0 . (1.13)

We finally investigate the regularity of the SHF Z ϑ
t pdxq as a measure on R2, showing that

it has negative Hölder regularity C´ε for arbitrary small ε ą 0 (the definition of negative
Hölder spaces is recalled in Subsection 3.4). Since positive Hölder spaces Cε consist of
functions, this shows that, in a sense, the SHF Z ϑ

t pdxq barely fails to be a function.

Theorem 1.5 (Regularity of the SHF). Fix any t ą 0 and ϑ P R. Almost surely, the
SHF Z ϑ

t pdxq belongs to C0´ :“
Ş

εą0 C
´ε and, hence, contains no atoms.

The recent work of Nakashima [Nak25], Section 7, indicates that the fine regularity of
the SHF should be captured by suitably defined log-Hölder spaces, which captures the
logarithmic heights of the peaks. The interesting task of determining the precise logarithmic
regularity of the SHF would require a detailed understanding of the structure of its peaks
and it should be the subject of future works.

The results above are proved in Section 3. The proof of Theorems 1.2 and 1.5 are based
on the approximation of the SHF via partition functions of directed polymers, which was
used in the original construction of the SHF in [CSZ23a] and will be recalled next.

1.3. Results for directed polymers. To define the directed polymer model, let
S “ pSnqně0 be the simple symmetric random walk on Z2 with law P and expectation E.
We denote its transition kernel by

qnpzq :“ PpSn “ z |S0 “ 0q for n P N0 “ t0u Y N , z P Z2 . (1.14)

We define the expected replica overlap RN “ E
“
řN
n“1 1tSn“S

1
nu

‰

where S1 is an independent
copy of S with S10 “ S0 “ 0. By the local central limit theorem (2.3)

RN “
N
ÿ

n“1

ÿ

xPZ2

qnpxq
2
“

N
ÿ

n“1

q2np0q “
logN

π
`Op1q as N Ñ8 (1.15)

(see also [CSZ19a, Proposition 3.2] for a refined asymptotic behavior).
The environment (disorder) is given by a family pωpn, zqq

nPN,zPZ2 of i.i.d. random variables

satisfying the assumptions in (1.2). Note that λpβq :“ logEreβωs „ 1
2β

2 as β Ñ 0. We
introduce the quantity

σ2
β :“ Var

“

eβω´λpβq
‰

“ eλp2βq´2λpβq
´ 1 „

βÓ0
β2 . (1.16)

Given ϕ,ψ : Z2
Ñ R, polymer length N P N, and inverse temperature (or disorder

strength) β ě 0, we define the averaged directed polymer partition function as follows:

ZβN pϕ,ψq :“
ÿ

zPZ2

ϕpzqZβN pz, z
1
qψpz1q with ZβN pz, z

1
q :“ E

“

eH
β
p0,NspSq 1SN“z

1

ˇ

ˇS0 “ z
‰

,

(1.17)
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where
Hβ
I pSq :“

ÿ

nPIXZ

 

β ωpn, Snq ´ λpβq
(

for I Ă R . (1.18)

When ψ ” 1, we will simplify notation and write ZβN pϕq :“ ZβN pϕ, 1q.

Remark 1.6. To comply with the periodicity of the simple random walk, we usually consider
ϕ supported on the even sub-lattice

Z2
even :“ tpx, yq P Z2 : x` y is evenu .

As explained in Section 1.1, the Critical 2D SHF Z ϑ
t p¨q is the scaling limit of the diffusively

rescaled partition functions ZβNtN p¨
?
Nq regarded as a random measure on R2, if the disorder

strength βN is chosen to be in the following critical window:

σ2

β
crit
N
“

1

RN

ˆ

1`
ϑ

logN

˙

for some ϑ P R . (1.19)

More precisely, denoting by rrxss the point in Z2
even closest to x P R2, the following convergence

in distribution was proved in [CSZ23a, Theorem 1.1]: for any t ą 0

Z
β
crit
N
tN

`

rrx
?
N ss

˘

dx
d

ÝÝÝÝÝÑ
NÑ8

Z ϑ
t pdxq, (1.20)

which are regarded as random variables taking values in the space of locally finite measures
on R2 equipped with the vague topology, i.e., the one generated by the integrals

ş

ϕdµ for
continuous and compactly supported test functions ϕ : R2

Ñ R.
We strengthen this result to a convergence in distribution of random variables taking

values in negative Hölder spaces C´ε for any ε ą 0.

Theorem 1.7 (Improved convergence to the SHF). Fix ϑ P R and consider βcrit
N in

the critical regime (1.19). For any t ą 0, the following convergence in distribution holds:

@ε ą 0: Z
β
crit
N
tN

`

rrx
?
N ss

˘

dx
d

ÝÝÝÝÝÑ
NÑ8

Z ϑ
t pdxq in C´ε . (1.21)

This result directly implies Theorem 1.5 on the regularity of the SHF. The proof is given in
Section 3 by exploiting moment bounds from [CSZ23a] (see Proposition 3.7).

We next look back at the log-normality of the SHF averaged on vanishing balls as ϑÑ ´8,
see Theorem 1.2. We obtain this result via discrete approximations, namely we deduce it
from an analogue result for directed polymer partition functions, which we state next.

In order to compare the SHF as ϑÑ ´8 with directed polymers, we need to tune the
disorder strength β in a quasi-critical regime recently investigated in [CCR23], where we
replace ϑ in (1.19) by a sequence ϑN “ ´|ϑN | Ñ ´8 at an arbitrarily slow rate:

σ2

β
quasi-crit
N

:“
1

RN

ˆ

1´
|ϑN |

logN

˙

where 1 ! |ϑN | ! logN . (1.22)

We call this regime quasi-critical because it interpolates between the critical regime (1.19),
corresponding to |ϑN | “ Op1q, and the sub-critical regime [CSZ17, CSZ20, CC22, CD24],
corresponding to |ϑN | « logN , see (1.26) below.

Let us consider directed polymer partition functions ZβN pϕq with initial conditions ϕ that
are uniformly distributed on discrete balls, denoted by UBpz,Rq (same as their continuum
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counterparts (1.8), with some abuse of notation):

UBpz,Rqp¨q :“
1
Bpz,RqXZ2

even
p¨q

ˇ

ˇBpz,Rq X Z2
even

ˇ

ˇ

. (1.23)

We can now state our log-normality result for directed polymers.

Theorem 1.8 (Quasi-critical log-normality). Consider βquasi-crit
N in the quasi-critical

regime (1.22) for a given sequence 1 ! |ϑN | ! logN . Define the scale δN by

δN :“ e´
1
2
|ϑN | ÝÑ 0 as N Ñ8 . (1.24)

For any t ą 0 and x P R2, the following convergence in distribution holds:

@% P p0,8q : Z
β
quasi-crit
N
tN

`

UBpx?N,δ%N
?
Nq

˘

d
ÝÝÝÝÑ
NÑ8

eN p0,σ
2
q´ 1

2
σ
2

with σ2
“ logp1` %q

(1.25)

and, furthermore, all positive moments converge.

Log-normality was first proved in [CSZ17, Theorem 2.8] for ZβN pxq :“ ZβN p1txuq, i.e. the
partition function started at a single point x (also called point-to-plane partition function),
when β “ βsub-crit

N is chosen in the sub-critical regime:

σ2

β
sub-crit
N

„
β̂2

RN
for some β̂ P p0, 1q p i.e.

`

βsub-crit
N

˘2
„

π β̂
2

logN q . (1.26)

Our proof of Theorem 1.8 also covers this regime and allows for averaging over balls of
arbitrary sub-diffusive polynomial radius N γ{2`op1q as N Ñ8, for any 0 ď γ ă 1. The few
changes required are described in Remarks 4.6 and 4.8 (see also Remark 2.6).

Theorem 1.9 (Sub-critical log-normality). Consider βsub-crit
N in the sub-critical regime

(1.26) for some β̂ P p0, 1q. For any t ą 0, x P R2, one has the convergence in distribution

@γ P r0, 1q : Z
β

sub-crit
N
tN

`

U
Bpx

?
N,
?
N
γ`op1q

q

˘

d
ÝÝÝÝÑ
NÑ8

eN p0,σ
2
q´ 1

2
σ
2

with σ2
“ log 1´γ β̂

2

1´β̂
2

(1.27)

and, furthermore, all positive moments converge.

Alternative proofs of the log-normality of the point-to-plane partition function in the
sub-critical regime were given in [CC22] and, more recently, in [CD24], simplifying the
original approach in [CSZ17, Theorem 2.8]. A key ingredient in all of these proofs is the
identification of suitable exponential time scales which yield an approximate factorisation of
the partition function.

Remarkably, a similar structure also emerges in the quasi-critical regime (1.22) when the
partition function is averaged on scales δ%N

?
N , for any power %, with δN as in (1.24). This

key fact is at the core of our proof of Theorem 1.8 (see Section 4 for more details).

Remark 1.10 (Quasi-critical vs. sub-critical regime). Comparing (1.25) with (1.27)
for γ “ 0, we can draw an analogy between the following two quantities:

‚ the quasi-critical partition function Zquasi-crit
N :“ Z

β
quasi-crit
N
N

`

UBp0,δ%N
?
Nq

˘

of size N ,
averaged on the ball of radius δ%N

?
N centred at 0;
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‚ the sub-critical point-to-plane partition function Zsub-crit
L :“ Z

β
sub-crit
L
L p0q of size L, with

disorder strength β̂2
“

%
1`% , that is

1

1´β̂
2 “ 1` % (to match σ2 in (1.25) and (1.27)).

More precisely, if we divide space into squares of side length δ%N
?
N and time into intervals of

size pδ%N q
2N , we can view the quasi-critical model Zquasi-crit

N as effectively a sub-critical model
Zsub-crit
L with rescaled time horizon L « 1{pδ%N q

2 and effective disorder strength β̂2
“

%
1`% .

This analogy is made quantitative by our strategy of proof for Theorem 1.8, described in
Section 4. This suggests that, at a conceptual level, other results that hold in the sub-critical
regime could be transferred to the quasi-critical regime via this correspondence.

We stress, however, that the quasi-critical regime (1.22) presents a fundamental technical
challenge: unlike in the sub-critical regime, the main contribution to the polynomial chaos
expansion of the partition function now comes from chaos of unbounded order (see the proofs
of Proposition 2.3 and Theorem 2.5). As a consequence, many fundamental tools break down
(e.g., hypercontractivity) and novel arguments are required.

1.4. Moment bounds. A key tool in our analysis are moment bounds on the partition
function ZβLpϕq, see (1.17) (we denote the system size by L in place ofN for later convenience).
Such bounds, based on a functional operator approach, have been exploited in several contexts,
see [GQT21, CSZ23a, LZ23, CCR23, CZ23, CZ24, CN25]. We provide here a universal bound
of independent interest, which applies to all regimes of β mentioned so far (sub-critical,
quasi-critical and critical) and to general initial conditions ϕp¨q supported on sub-diffusive
or diffusive scales Op

?
Lq.

We focus on initial conditions which are probability mass functions on Z2,† i.e.

ϕp¨q ě 0 ,
ÿ

xPZ2

ϕpxq “ 1 ,

with finite mean-squared displacement from its center of mass:

Drϕs :“
ÿ

zPZ2

|z ´mϕ|
2 ϕpzq ă 8 with mϕ :“

ÿ

zPZ2

z ϕpzq . (1.28)

We require two natural bounds on ϕ.

‚ Exponential localisation on at most diffusive scale: for some t̂ ą 0, c1 ă 8

Dz0 P R
2 :

ÿ

zPZ2

ϕpzq e
2 t̂

|z´z0|?
L ď c1 (1.29)

(the factor 2 in the exponent is for later convenience). This allows ϕp¨q to be localised
on a diffusive or sub-diffusive scale, as it implies

a

Drϕs “ Op
?
Lq.

‚ Local uniformity: for some c2 ă 8
›

›ϕ
›

›

2

`
2 “

ÿ

zPZ2

ϕpzq2 “ ErϕpZqs ď
c2

Drϕs
, (1.30)

where Z is a random point in Z2 with law ϕ. Since }ϕ}2
`
2 ď }ϕ}`8

ř

zPZ2 ϕpzq “ }ϕ}`8 ,
a sufficient condition is

›

›ϕ
›

›

`
8 ď

c2

Drϕs
, (1.31)

†Since ϕ ÞÑ Z
β
Lpϕq is linear, any ϕ ě 0 with

ř

xPZ2 ϕpxq ă 8 can be normalised to a probability mass
function.
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which means that the peaks of ϕ are comparable to those of a uniform distribution
(note that ϕ puts most of its mass in a ball of radius

a

Drϕs, by Chebyshev).

We do not restrict β to any particular regime, but we consider partition functions with
uniformly bounded variance: for some c3 ă 8

VarrZβLpϕqs ď c3 . (1.32)

We will show that, together with (1.29), this implies that β lies within or below the critical
regime as LÑ8, see Lemma 5.4.

We are ready to state our general moment bound.

Theorem 1.11 (General moment bound). Given h P N and t̂, c1, c2, c3 P p0,8q, there
are constants Lh,Ch ă 8 (depending also on t̂, c1, c2, c3) such that

ˇ

ˇE
“`

ZβLpϕq ´ ErZβLpϕqs
˘h‰ˇ

ˇ ď ChVarrZβLpϕqs
h
2 (1.33)

uniformly for β ě 0, L ě Lh and probability mass functions ϕ satisfying (1.29), (1.30),
(1.32). The bound (1.33) still holds if, on the LHS, we replace ZβLpϕq with its restriction to
any subset of random walk paths in its definition (1.17).

We prove Theorem 1.11 in Section 5 in a strengthened form, see Theorem 5.2, where we
relax the assumption (1.30) and we consider partition functions ZβLpϕ,ψq averaged at both
endpoints (i.e. we allow for a “final condition” ψ, besides the initial condition ϕ).

Remark 1.12 (Beyond diffusive scales). We prove Theorem 1.11 under fairly general as-
sumptions: the bounded variance condition (1.32) is necessary, as we explain in Remark 1.14,
and the local uniformity assumption (1.30) is mild (and we further relax it in Section 5).

Only the exponential localisation condition on at most diffusive scale (1.29) imposes some
real restriction. For instance, for initial conditions ϕp¨q localised at scale

?
N , one can

consider system sizes L “ εN and prove a moment bound like (1.33) uniformly in ε ą 0, see
e.g. [CCR23, Proposition 2.3] in the quasi-critical regime, but this goes beyond the scope of
Theorem 1.11 because assumption (1.29) is not satisfied uniformly in ε ą 0.

We believe that our proof of Theorem 1.11 could be extended in order to relax the localisation
condition (1.29), but we refrain from doing so in the present paper.

Remark 1.13 (Hypercontractivity). The bound (1.33) shows that, under the assump-
tions of Theorem 1.11, a form of hypercontractivity holds for the diffusively averaged
partition function: moments of order h ą 2 are controlled by the h

2 -power of the second
moment.

We point out that hypercontractivity is a general property of Wiener chaos and polynomial
chaos when the main contribution comes from chaos of bounded order [Jan97, MOO10]. This
is the case for the directed polymer partition function only in the sub-critical regime (1.26),
because in the quasi-critical and critical regimes (1.22) and (1.19) the main contribution
comes from chaos of unbounded order. The fact that the partition function still satisfies a
form of hypercontractivity in these latter regimes, by Therorem 1.11, is highly non-trivial.

Remark 1.14 (Intermittency). The bounded variance assumption (1.32) is crucial for
Theorem 1.11. In fact it is necessary for the moment bound (1.33) to hold as it is a general
fact that, for a sequence of nonnegative random variables Xn with mean 1 and diverging
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variance, we have

@h ą 2: E
“

Xh
N

‰

" E
`

X2
N

˘h{2
.

This can be seen by defining the size-biased law dP̃N :“ XN dP and using Jensen’s inequality:

E
“

Xh
N

‰

“ Ẽ
“

Xh´1
N

‰

ě Ẽ
“

XN

‰h´1
“ E

“

X2
N

‰h´1
" E

“

X2
N

‰

h
2 ,

since h ą 2 and the second moment ErX2
N s diverges as N Ñ8.

In the case XN “ Z
βN
LN
pϕN q with the support of ϕN shrinking to 0 fast enough such that

the variance diverges as N Ñ8, we actually expect a stronger intermittency of the form

@h ě 3 : E
“

Z
βN
LN
pϕN q

h‰
ě ErZβNLN pϕN q

2
s
ph2q .

Such results have been proved in the continuum setting of the Critical 2D SHF [CSZ23b, LZ24].

1.5. Extensions and related results. Theorem 1.2, which deals with the regime
ϑÑ ´8, is proved by approximating the SHF by the directed polymer partition functions
in the quasi-critical regime (1.22) (see Section 3). This strategy is actually very general and
leads us to formulate the following “meta-theorem”.

Metatheorem 1.15. Consider any “reasonable” statement about the SHF Z ϑ
t pdxq in the

regime ϑÑ ´8. Such a statement holds if one can prove the corresponding statement for
the rescaled directed polymer partition functions ZβtN prrx

?
N ssq dx with β “ βquasi-crit

N in the
quasi-critical regime (1.22), for any sequence |ϑN | Ñ 8 slowly enough.

By “reasonable” statement we mean some property of locally finite measures on R2 which
is continuous with respect to the vague topology or the topology of C´ε. Indeed, the basic idea
behind Claim 1.15 is that the convergence in distribution (1.20) or (1.21), which we know
to hold in the critical regime, can also be applied to ϑ “ ϑN Ñ ´8 slowly enough, allowing
us to effectively transfer the statement from directed polymers to the SHF. To lighten the
exposition, we refrain from formulating a more precise result: we rather refer to the proof of
Theorem 1.2 in Section 3 for a concrete application of this idea.

For example, the quasi-critical regime (1.22) was recently investigated in [CCR23] for
diffusive initial conditions, such as UBp0,δ?Nq for fixed δ ą 0. It was shown that the averaged
partition function concentrates around its mean:

Z
β
quasi-crit
N
tN

`

UBp0,δ?Nq
˘ d
ÝÝÝÝÝÑ
NÑ8

1 ” E
“

Z
β
quasi-crit
N
tN

`

UBp0,δ?Nq
˘

‰

,

its variance vanishes at rate |ϑN |
´1 [CCR23, Proposition 2.1], and Gaussian fluctuations

emerge at the corresponding scale [CCR23, Theorem 1.1]:
a

|ϑN |
 

Z
β
quasi-crit
N
tN

`

UBp0,δ?Nq
˘

´ 1
(

d
ÝÝÝÝÝÑ
NÑ8

N p0, a2
δq with 0 ă a2

δ ă 8 . (1.34)

From this one can deduce a corresponding results for the SHF in the weak disorder limit
ϑÑ ´8, see [CCR23, Theorem 1.2], in the spirit of the metatheorem just stated:

a

|ϑ|
`

Z ϑ
t pUBpx,δqq ´ 1

˘ d
ÝÝÝÝÝÝÑ
ϑÑ´8

N p0, a2
δq. (1.35)
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Remark 1.16. We expect Z ϑ
t pUBpx,δqq to have Gaussian fluctuations, as ϑÑ ´8, on all

spatial scales δ “ Op1q satisfying δ “ e´op|ϑ|q, i.e. much larger than the scales δ%ϑ on which
log-normality arises in Theorem 1.2. Similarly, we expect the averaged partition function
in (1.34) to have a Gaussian limit when averaged on spatial scales δ

?
N with δN “ Op1q

satisfying δ “ e´op|ϑN |q, i.e. much larger than the scale δ%N appearing in Theorem 1.8.
We note that in the subcritical regime (1.26), Gaussian fluctuations for spatial averages on

such mesoscopic spatial scales have been established for the solution of the 2D KPZ equation
in [Tao24] (the subcritical 2D SHE and polymer partition functions are expected to have the
same fluctuations on the mesoscopic scale).

2. Basic tools

In this section we collect some basic definitions and tools that we use in the proof. In
particular, we present some key second moment computations on the partition function in
the quasi-critical regime (1.22). For simplicity, we will abbreviate βquasi-crit

N by βN .

2.1. Partition functions. Given A ă B P 2Z and a function ϕ : Z2
even Ñ R, we

denote by ZpA,Bspϕq the directed polymer partition function on the time interval pA,Bs
with initial condition ϕ at time A:

Zβ
pA,Bspϕq :“ E

”

eH
β
pA,Bs

ˇ

ˇ

ˇ
SA „ ϕ

ı

:“
ÿ

xPZ2
even

ϕpxqEreH
β
pA,Bs |SA “ xs (2.1)

where Hβ
I is defined in (1.18). Note that EreH

β,ω
I pSq

s “ 1, and hence

ErZβ
pA,Bspϕqs “

ÿ

xPZ2
even

ϕpxq .

In the special case pA,Bs “ p0, Ls and ϕ “ 1txu, we write for short

ZβLpϕq :“ Zβ
p0,Lspϕq and ZβLpxq :“ ZβLp1txuq . (2.2)

2.2. Random walk. Recall the random walk transition kernel qnp¨q from (1.14). We
give two versions of the local central limit theorem for the simple symmetric random walk
on Z2, see [LL10, Theorems 2.3.5 and 2.3.11]: uniformly for z P Z2 and n P 2N, as nÑ8

qnpzq “
`

gn
2
pzq `O

`

1

n
2

˘

˘

2 ¨ 1Z2
even
pzq

“ gn
2
pzq e

Op 1
n
q`Op |z|

4

n
3 q 2 ¨ 1Z2

even
pzq1qnpzqą0

where gtpxq :“
e´

|x|
2

2t

2πt
, (2.3)

the factor 2 ¨ 1Z2
even
pzq is due to periodicity, while the time argument n

2 in the heat kernel

comes from the random walk covariance ErSpiqn Spjqn s “
n
21i“j for i, j P t1, 2u. In particular,

q2np0q „
1
π ¨

1
n as nÑ8. For later use, we fix 0 ă a´ ă a` ă 8 such that

a´
n
ď q2np0q ď

a`
n

@n P N . (2.4)

We generalize the expected replica overlap RL from (1.15) by defining, for z P Z2
even,

RLpzq :“
L
ÿ

n“1

q2npzq , (2.5)
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which is nothing but the random walk Green’s function (on a bounded time interval). We
also introduce the corresponding quadratic form:

RLpϕ,ϕq :“
ÿ

z,wPZ2
even

ϕpzqRLpz ´ wqϕpwq . (2.6)

By (2.4), we can bound

RLpzq ´Rt 1
2
Lupzq “

L
ÿ

n“t 1
2
Lu`1

q2npzq ď
L
ÿ

n“t 1
2
Lu`1

q2np0q ď a`

uniformly over z P Z2. Therefore,

for any probability mass function ϕ: RLpϕ,ϕq ´Rt 1
2
Lupϕ,ϕq ď a` . (2.7)

The continuum analogue of RLp¨q is the Green’s function Gpxq “ Gp|x|q given by

Gpxq :“

ż 1

0
gtpxq dt “

ż 1

0

e´
|x|

2

2t

2π t
dt “

1

2π

ż 8

|x|
2

e´
r
2

r
dr . (2.8)

The following result compares RLp¨q and Gp¨q. The proof is given in Appendix A.

Lemma 2.1 (Green’s function). Uniformly for L P N and z P Z2 we can write

RLpzq “ 2G
´

|z|`1
?
L

¯

1
zPZ2

even
`Op1q “ 1

π log
`

1` L

1`|z|
2

˘

1
zPZ2

even
`Op1q . (2.9)

Moreover, for any t P p0,8q, there is ct ą 0 such that

uniformly for L P N, z P Z2

with |z| ď t
?
L^ L :

RLpzq ě ct log
`

1` L

1`|z|
2

˘

1
zPZ2

even
. (2.10)

(The restriction |z| ď L in (2.10) ensures that RLpzq ě q2Lpzq ą 0 for z P Z2
even.)

2.3. Polynomial chaos expansion. Let us introduce random variables

ξβn,x :“
eβωpn,xq´λpβq

σβ
,

which are i.i.d. with zero mean and unit variance, thanks to the definition (1.16) of σβ . We
can represent the point-to-plane partition function ZβLpxq as a polynomial chaos expansion:

ZβLpxq “ 1`
L
ÿ

k“1

σkβ
ÿ

0“n0ăn1ă...ănkďL

x0“x, x1,...,xkPZ
2

k
ź

i“1

qni´ni´1
pxi ´ xi´1q ξ

β
ni,xi

. (2.11)

see e.g. [CSZ20, eq. (2.17)]. This follows from the definition (1.17)-(1.18) by writing

eH
β
p0,Ls “

L
ź

n“1

ź

xPZ2

etβωpn,xq´λpβqu1tSn“xu “
L
ź

n“1

ź

xPZ2

 

1` σβ ξ
β
n,x 1tSn“xu

(

and then expanding the product.
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Remark 2.2 (Switching off some disorder). We will later consider partition functions
where disorder is “switched off” in a time interval pA,Bs Ď p0, Ls, meaning that the Hamil-
tonian Hβ

p0,Ls is replaced by Hβ
p0,As`Hβ

pB,Ls, see (1.18). This amounts to setting ξn,x “ 0 for
all n P pA,Bs, which is equivalent to restricting the polynomial chaos (2.11) to sequences of
times n1, . . . , nk which avoid the interval pA,Bs.

2.4. Second moment of point-to-plane partition function. Recalling (1.16),
we define a weighted renewal function Uβp¨q by setting Uβp0q :“ 1 and for n ě 1

Uβpnq :“
ÿ

kě1

pσ2
βq
k

ÿ

0“:n0ăn1ă¨¨¨ănk“n

x0:“0, x1,...,xkPZ
2

k
ź

i“1

qni´ni´1
pxi ´ xi´1q

2

“
ÿ

kě1

pσ2
βq
k

ÿ

0“:n0ăn1ă¨¨¨ănk“n

k
ź

i“1

q2pni´ni´1q
p0q ,

(2.12)

where the last equality holds by the fact that
ř

zPZ2 qnpzq
2
“

ř

zPZ2 qnpzq qnp´zq “ q2np0q.
The quantity Uβp¨q arises in the second moment of the point-to-plane partition function:

E
“

ZβLp0q
2‰
“ UβpLq :“

L
ÿ

n“0

Uβpnq , (2.13)

which follows by the polynomial chaos expansion (2.11) noting that terms indexed by distinct
space-time sequences pn1, x1q, . . . , pnk, xkq are orthogonal in L2.

The second moment E
“

ZβLp0q
2‰ is uniformly bounded in L ď N and N P N when β “ βN

lies in the sub-critical regime (1.26) [CSZ19a]. The next result considers the quasi-critical
regime (1.22) and identifies how the second moment diverges as a function of ϑN in (1.22).
The proof, based on renewal theory, is deferred to Appendix A.

Proposition 2.3 (Second moment of point-to-plane partition function). For β “
βN in the quasi-critical regime (1.22), uniformly over L P 2N with L ď N , we have

E
“

Z
βN
L p0q2

‰

“ UβN pLq „
1

1´ RL
RN
p1´ |ϑN |

logN q
as N Ñ8 . (2.14)

2.5. Variance of averaged partition functions. We finally compute the vari-
ance of the averaged partition function ZβLpϕq “

ř

xPZ2
even

ϕpxqZβLpxq. We write

Var
“

ZβLpϕq
‰

“
ÿ

x,x
1
PZ2

even

ϕpxqϕpx1q Cov
“

ZβLpxq, Z
β
Lpx

1
q
‰

.

Plugging in the polynomial chaos expansion (2.11) and renaming n1 “ m and nk “ n, by
(2.12), we can write

Cov
“

ZβLpxq, Z
β
Lpx

1
q
‰

“
ÿ

0ămďnďL

ÿ

x1PZ
2

qmpx1 ´ xq qmpx1 ´ x
1
qσ2

β Uβpn´mq

“
ÿ

0ămďL

q2mpx´ x
1
q σ2

β UβpL´mq

“
ÿ

0ămďL

q2mpx´ x
1
q σ2

β E
“

ZβL´mp0q
2‰ ,
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where we applied (2.13). In summary, introducing the shorthand

q2mpϕ,ϕq :“
ÿ

x,x
1
PZ2

even

ϕpxqϕpx1q q2mpx´ x
1
q ,

we have thus obtained the key formula

Var
“

ZβLpϕq
‰

“
ÿ

0ămďL

q2mpϕ,ϕq σ
2
β E

“

ZβL´mp0q
2‰ . (2.15)

Since L ÞÑ E
“

ZβLp0q
2‰
“ UβpLq is increasing, recalling the definition (2.6) of RLpϕ,ϕq, we

obtain the bounds

Rt 1
2
Lupϕ,ϕq σ

2
β E

“

Zβ
t 1
2
Lu
p0q2

‰

ď Var
“

ZβLpϕq
‰

ď RLpϕ,ϕq σ
2
β E

“

ZβLp0q
2‰ . (2.16)

Remark 2.4. We can also rewrite (2.15) more explicitly as

Var
“

ZβLpϕq
‰

“
ÿ

kě1

pσ2
βq
k

ÿ

0ăn1ă¨¨¨ănkďL

q2n1
pϕ,ϕq

k
ź

i“2

q2pni´ni´1q
p0q . (2.17)

We now compute the asymptotic behavior of Var
“

ZβLpϕq
‰

for β “ βN in the quasi-critical
regime (1.22), allowing for general system size L “ LN and initial condition ϕ “ ϕN (this
will be essential for the proof of our results).

In Theorem 1.8, we consider the partition function ZβNLN pϕN q of size LN “ N and initial
conditions ϕN averaged on balls of radius δwN

?
N for w P p0,8q (recall δN from (1.24)). Our

next results computes the variance of ZβNLN pϕN q, showing that it is bounded away from zero
and infinity for general initial conditions ϕN that are “spread out” on the scale δwN

?
N and

for general system sizes LN “ N pδ2
N q

``op1q with ` ă w.

Theorem 2.5 (Variance of averaged partition functions). Let βN be in the quasi-
critical regime (1.22) for a given sequence 1 ! |ϑN | ! logN . Recall δN from (1.24).

Let us fix two exponents 0 ď ` ď w ă 8. For N P N we consider:

‚ two sequences LN P 2N (system size), WN ě 0 (scaling factor) such that, as N Ñ8,

LN “ N pδ2
N q

``op1q
“ N e´` |ϑN |`op|ϑN |q with ` ě 0 , (2.18)

WN “ N pδ2
N q

w`op1q
“ N e´w |ϑN |`op|ϑN |q with w ě ` ; (2.19)

‚ probability mass functions ϕN : Z2
even Ñ r0,8q “spread out” on scale

?
WN in the

following sense (recall (2.9)):

RLN pϕN , ϕN q “
1

π
log

LN
WN

` op|ϑN |q “
w ´ `

π
|ϑN | ` op|ϑN |q . (2.20)

Then

lim
NÑ8

Var
“

Z
βN
LN
pϕN q

‰

“
w ´ `

1` `
. (2.21)

Moreover, the convergence (2.21) holds uniformly over system sizes pLN qNPN, scaling factors
pWN qNPN and initial conditions pϕN qNPN for which (2.18), (2.19), (2.20) hold uniformly.

Remark 2.6 (Sub-critical regime). Theorem 2.5 can also be applied to the sub-critical
regime (1.26): it suffices to take |ϑN | „ p1´ β̂

2
q logN with β̂2

P p0, 1q (cf. (1.22) and (1.26)),
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but the final result (2.21) must be updated as follows:

lim
NÑ8

Var
“

Z
βN
LN
pϕN q

‰

“
pw ´ `q β̂2

1` ` β̂2 . (2.22)

The minor changes required in the proof are described in Remark A.2.

The proof of Theorem 2.5 is deferred to Appendix A. Condition (2.20) means intuitively
that, sampling two points x, y independently from ϕN , their distance |x ´ y| is roughly
order

?
WN . This is made precise by the next results, also proved in Appendix A.

Proposition 2.7 (Equivalent condition for (2.20)). Let LN , WN be as in (2.18), (2.19).
Condition (2.20) for the probability mass functions ϕN is equivalent to

ÿ

x,yPZ2
even

ϕN pxqϕN pyq log
´

1` LN
1`|x´y|

2

¯

“ log
LN
WN

` op|ϑN |q as N Ñ8 . (2.23)

Proposition 2.8 (Sufficient condition for (2.20)). Let LN , WN be as in (2.18), (2.19).
For probability mass functions ϕN to satisfy (2.20) (or, equivalently, (2.23)) it suffices that
they are “mostly supported on a ball of radius

?
WN with atoms of size Op1{WN q” in the

following sense: there exist zN P Z
2 and 0 ď tN “ opϑN q such that

ÿ

|x´zN |ď
?
WN e

tN

ϕN pxq “ 1´ op1q and sup
xPZ2

ϕN pxq ď
etN

WN
, (2.24)

In particular, by (2.24), condition (2.20) is satisfied when ϕN is the uniform distribution
on a ball or when ϕN is the random walk transition kernel, see (1.23) and (1.14):

ϕN “ U
B
`

0,
?
WN e

tN
˘ and ϕN “ q

WN e
tN with tN “ op|ϑN |q satisfy (2.20) . (2.25)

We finally compute the variance of the partition function Z
βN
Nt pϕN q when ϕN is the

uniform distribution in the ball Bp0, δ%N
?
Nq, as in Theorem 1.8.

Corollary 2.9. Let βN be in the quasi-critical regime (1.22) and recall δN from (1.24). For
any t ą 0, x P R2 we have

@% P p0,8q : lim
NÑ8

Var
“

Z
βN
Nt pUBp0,δ%N

?
Nqq

‰

“ % . (2.26)

Proof. The initial condition ϕN “ UBp0,δ%N
?
Nq fulfills (2.24) with WN :“ Nδ2%

N (recall
(1.23)). Since WN satisfies (2.19) with w “ %, while LN :“ Nt satisfies (2.18) with ` “ 0,
the assumptions of Theorem 2.5 are verified and we obtain (2.26) from (2.21). �

Remark 2.10. Since VarreN p0,σ
2
q´ 1

2
σ
2

s “ eσ
2

´ 1, relation (2.26) is consistent with (1.25).

3. Proofs for the SHF

In this section, we prove our main results for the SHF. More precisely, we prove

‚ Theorem 1.1 (singularity) in Subsection 3.1;

‚ Theorem 1.2 (log-normality) in Subsection 3.2;

‚ Theorem 1.4 (long-time behavior) in Subsection 3.3;
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‚ Theorem 1.5 (regularity) in Subsection 3.4, alongside the corresponding Theorem 1.7
for directed polymers.

We first state a basic monotonicity result. For integrable ϕ : R2
Ñ R, we will write

Z ϑ
t pϕq :“

ż

R2
ϕpxqZ ϑ

t pdxq,

which is well-defined and has mean
ş

R2 ϕpxqdx.

Lemma 3.1 (Convex monotonicity for the SHF). Fix t ą 0 and a positive integrable
function ϕ : R2

Ñ R`. The law of Z ϑ
t pϕq is increasing in ϑ w.r.t. the convex order, i.e.,

for any convex function Ψ : RÑ R, we have

E
“

Ψ
`

Z ϑ
1

t pϕq
˘‰

ď E
“

Ψ
`

Z ϑ
t pϕq

˘‰

for ϑ1 ă ϑ , (3.1)

and the reverse inequality holds for concave Ψ.
In particular, fractional moments of the SHF are decreasing in ϑ:

@α P p0, 1q : E
“

Z ϑ
1

t pϕq
α‰
ě E

“

Z ϑ
t pϕq

α‰ for ϑ1 ă ϑ . (3.2)

Proof. It is enough to prove (3.1) when Ψpxq “ Opxq grows at most linearly as x Ñ 8,
since the general case follows by monotone convergence. We may also assume that ϕ is
continuous and compactly supported, because such functions are dense in L1.

By the weak convergence (1.20), it is enough to prove (3.1) when the SHF Z ϑ
t is replaced

by the rescaled directed polymer partition function Z
β
crit
N
tN , because the limit N Ñ 8 is

justified by uniform integrability (via boundedness in L2). More generally, we claim that

E
“

Ψ
`

Zβ
1

N pϕq
˘‰

ď E
“

Ψ
`

ZβN pϕq
˘‰

for β1 ă β , (3.3)

for any N P N and for any positive integrable ϕ : Z2
even Ñ R`.

Relation (3.3) is known to hold by the FKG inequality, see e.g. the proofs of [Com17,
Proposition 3.1] or [CSZ17, Theorem 2.8] where the arguments are carried out for fractional
moments, but they hold in general. �

3.1. Singularity of the SHF. We now prove Theorem 1.1 on the singularity of the
SHF. Let us first recall some general facts about measures on the Euclidean space.

By the Lebesgue Decomposition Theorem [Fol99, Theorem 3.8], any σ-finite measure ν
on R2 is the sum ν “ νac

` νsing of an absolutely continuous part νac
pdxq “ fpxqdx and a

singular part νsing
pdxq K dx which assigns all its mass to a set of zero Lebesgue measure.

If furthermore ν is locally finite, then the density fpxq of νac can be computed as follows:
denoting by Bpx, δq :“ ty P R2 : |y ´ x| ă δu the Euclidean ball in R2, we have

fpxq “ lim
δÓ0

νpBpx, δqq

π δ2 for Lebesgue a.e. x P R2 , (3.4)

see [Fol99, Theorem 3.22] (any locally finite measure is regular by [Fol99, Theorem 7.8]).
In particular, we summarise the following general result.

Proposition 3.2 (Singularity of measures). Given a locally finite measure ν on R2, the
limit in (3.4) exists for Lebesgue a.e. x P R2 and recovers the density fpxq of the absolutely
continuous part of ν. In particular, ν is singular with respect to the Lebesgue measure if and
only if the limit in (3.4) vanishes for Lebesgue a.e. x P R2.
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Proof of Theorem 1.1. Applying Proposition 3.2 to the SHF νpdxq “ Z ϑ
t pdxq, we see

that if (1.10) holds, then almost surely the SHF is singular with respect to Lebesgue.
It remains to prove (1.10), which we deduce from (1.12). We denote by pΩ,A,Pq the

probability space on which the SHF is defined and we indicate explicitly the dependence on
ω P Ω by Z ϑ,ω

t pdxq. Recalling (1.9), we rephrase (1.10) as

for a.e. ω P Ω: Lpω, xq :“ lim inf
nÑ8

Z ϑ,ω
t

`

UBpx,δnq
˘

“ 0 for Lebesgue a.e. x P R2 , (3.5)

where we have fixed (arbitrarily) δn :“ 1
n and we have replaced lim by lim inf, in order to

obtain a measurable function Lpω, xq P r0,8s defined for all ω P Ω and x P R2. We stress
that the limit in (1.10) exists as δ Ó 0 for Lebesgue a.e. x P R2, see Proposition 3.2, hence it
must coincide with Lpω, xq for a.e. ω P Ω and for Lebesgue a.e. x P R2.

To complete the proof, we need to show that, for a.e. ω P Ω, we have Lpω, xq “ 0 for
Lebesgue a.e. x P R2, or equivalently Er

ş

R2 Lpω, xqα dxs “ 0 for any fixed α P p0, 1q (recall
that Lpω, xq ě 0). By Fubini’s theorem, it is enough to show that for all x P R2 we have
ErLpω, xqαs “ 0. By Fatou’s Lemma

ErLpω, xqαs ď lim inf
nÑ8

E
“

Z ϑ,ω
t

`

UBpx,δnq
˘α‰ (3.6)

and it remains to estimate the RHS. To this end, we exploit the monotonicity of fractional
moments (3.2) by replacing ϑ with ϑ1δ Ó ´8 and applying the log-normality (1.12). Let us
fix a parameter % P p0,8q.

‚ We rewrite the log-normality (1.12) by renaming δ%ϑ “ e
1
2
% ϑ as δ, i.e. expressing

ϑ “ ´1
% log 1

δ
2 as a function of δ, so that (1.12) becomes

Z
´ 1
%

log 1

δ
2

t

`

UBpx,δq
˘ d
ÝÝÝÑ
δÓ0

eN p0,σ
2
q´ 1

2
σ
2

with σ2
“ logp1` %q . (3.7)

We note that this weak convergence also implies convergence of fractional moments,
because the LHS of (3.7) is bounded in L1 (recall that ErZ ϑ

t pdxqs “ dx).

‚ If we set ϑ1δ :“ ´1
% log 1

δ
2 Ñ ´8 as δ Ó 0, then we can apply the monotonicity of

fractional moments (3.2) with ϕ “ UBpx,δq to estimate the RHS of (3.6).

Overall, we obtain for any fixed α P p0, 1q

@% P p0,8q : ErLpω, xqαs ď E
”

`

eN p0,σ
2
q´ 1

2
σ
2˘
α
ı

“ e
1
2
pα

2
´αqσ

2

“
1

p1` %q
αp1´αq

2

,

where in the last equality we plugged in the value of σ “ logp1 ` %q from (3.7). Since
αp1´ αq ą 0 for α P p0, 1q, letting %Ñ8 we finally obtain ErLpω, xqαs “ 0. �

3.2. Log-normality of the SHF. We prove Theorem 1.2 on the log-normality of
the SHF. More precisely we deduce it from the corresponding result for directed polymers,
see Theorem 1.8 (which we prove in Section 4).

To this end, recalling the uniform distribution on continuum and discrete balls, see (1.8)
and (1.23), from the convergence in distribution (1.20), we obtain

@x P R2, δ ą 0: Z
β
crit
N
tN

`

UBpx?N,δ?Nq
˘

d
ÝÝÝÝÝÑ
NÑ8

Z ϑ
t

`

UBpx,δq
˘

. (3.8)

Strictly speaking we cannot plug UBpx,δqp¨q as a test function into (1.20), because it is not
continuous. However, for any ε ą 0, we can approximate ϕεp¨q ď UBpx,δqp¨q ď ψεp¨q with
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continuos functions ϕε, ψε such that 0 ď ψεp¨q´ϕεp¨q ď 1Aεp¨q, where we define the annulus
Aε :“ Bpx, δ ` εqzBpx, δ ´ εq. Replacing UBpx,δqp¨q by ϕε or ψε in (1.20), we commit an
error in L1 which is Opεq, i.e. the Lebesgue measure of Aε. This justifies (3.8).

Proof of Theorem 1.2. We fix t ą 0, x P R2, % P p0,8q and define δϑ :“ e
1
2
ϑ as in (1.11).

It suffices to prove the convergence in distribution (1.12) when ϑ ranges in an arbitrary
negative sequence ϑk “ ´|ϑk| Ñ ´8, which we fix henceforth. Introducing the shorthands

Yk :“ Z ϑk
t

`

UBpx,δ%ϑk q
˘

, Y :“ eN p0,σ
2
q´ 1

2
σ
2

with σ2
“ logp1` %q ,

we need to show that Yk Ñ Y in distribution. It suffices to fix any bounded and continuous
function Φ : RÑ R and to prove that

lim
kÑ8

ErΦpYkqs “ ErΦpY qs . (3.9)

The idea is to approximate the SHF with the directed polymer partition function. Recalling
the convergence in distribution (3.8) in the critical regime (1.19), we abbreviate

WN,k :“ Z
β
crit
N pkq
tN

`

UBpx?N,δ%ϑk
?
Nq

˘

where σ2

β
crit
N pkq

“
1

RN

ˆ

1`
ϑk

logN

˙

. (3.10)

For fixed k P N, we have WN,k Ñ Yk in distribution as N Ñ 8. Therefore we can choose
N “ Nk large enough so that ErΦpWNk,k

qs is close to ErΦpYkqs. Let us define

N1 :“ min
 

N P N : |ErΦpWN,1qs ´ ErΦpY1qs| ď 1
(

,

Nk :“ min
 

N ą Nk´1 : N ě ek|ϑk| and |ErΦpWN,kqs ´ ErΦpYkqs| ď 1
k

(

,

so that we have by construction N1 ă N2 ă . . . and, for every k P N,

Nk ě ek|ϑk| , |ErΦpWNk,k
qs ´ ErΦpYkqs| ď 1

k . (3.11)

By the triangle inequality, our goal (3.9) holds if we show that

lim
kÑ8

ErΦpWNk,k
qs “ ErΦpY qs . (3.12)

We claim that this holds by (1.25), because the directed polymer partition functions WNk,k

from (3.10) satisfy the assumptions of Theorem 1.8. Note indeed that:

‚ the sequence βcrit
N pkq for N “ Nk is in the quasi-critical regime (1.22), since by (3.10)

σ2

β
crit
Nk
pkq
“

1

RNk

ˆ

1`
ϑk

logNk

˙

“
1

RNk

ˆ

1´
|ϑk|

logNk

˙

with 1 ! |ϑk| ! logNk ,

where |ϑk| ! logNk holds by the first inequality in (3.11);

‚ the initial condition UBpx?N,δ%ϑk
?
Nq for N “ Nk satisfies the requirement that δϑk Ó 0

at rate (1.24), because by definition δϑk :“ e
1
2
% ϑk “ e´

1
2
% |ϑk| as in (1.11).

We can thus apply Theorem 1.8 to pWNk,k
qkPN: relation (1.25) along the subsequence N “ Nk

yields directly (3.12) and completes the proof. �

Remark 3.3. The strategy in the proof of Theorem 1.2 is very general and it shows that
the convergence in distribution (1.20) or (1.21), which are proved for each ϑ in the critical
regime (1.19), can effectively be transferred to the quasi critical regime (1.22), provided we
take ϑN Ñ ´8 slow enough. This naturally leads to Metatheorem 1.15.
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3.3. Long-time behaviour of the SHF. We prove Theorem 1.4 on the long-time
behaviour of the SHF. This is a corollary of Theorem 1.1 on the singularity of the SHF,
together with the following scale-covariance property, proved in [CSZ23a, Theorem 1.2]:

@a ą 0: Z ϑ
at

`

UBp0,?aRq

˘ d
“ Z ϑ`log a

t

`

UBp0,Rq
˘

, (3.13)

which holds for any t, R P p0,8q and ϑ P R.

Proof of Theorem 1.4. To prove (1.13), it suffices to show that

@R ă 8 : Z ϑ
t

`

UBp0,Rq
˘ d
ÝÝÝÝÑ
tÑ8

0 , (3.14)

which follows if we show that for some fixed α P p0, 1q the fractional moment vanishes:

@R ă 8 : lim
tÑ8

E
“

Z ϑ
t

`

UBp0,Rq
˘α‰

“ 0 . (3.15)

Exploiting first the scaling relation (3.13) with ϑ replaced by ϑ´ log a and a “ t´1, and
then the monotonicity of fractional moments (3.2), we obtain for all t ě 1

E
“

Z ϑ
t

`

UBp0,Rq
˘α‰

“ E
“

Z ϑ`log t
1

`

UBp0,R{?tq
˘α‰

ď E
“

Z ϑ
1

`

UBp0,R{?tq
˘α‰

.

Applying (1.10) with δ “ R?
t
, we see that At :“ Z ϑ

1

`

UBp0,R{?tq
˘

Ñ 0 in distribution as

t Ñ 8. The random variables pAtqtě1 are bounded in L1, because ErAts “ 1, hence by
uniform integrability we obtain ErAαt s Ñ 0 for any α P p0, 1q, which completes the proof. �

3.4. Improved convergence and regularity of the SHF. Theorem 1.7
entails that, almost surely, Z ϑ

t P C´ε for every ε ą 0, hence Theorem 1.5 follows (delta
measures δx in Rd are in Cγ only for γ ď ´d, hence Z ϑ

t is non-atomic).
The rest of this subsection is devoted to the proof of Theorem 1.7. We first recall the

definition of negative Hölder spaces (see [FM17, Section 2] or [CZ20, Section 12] for more
details). Let us introduce some notation in any dimension d P N.

‚ Let C8c denote the family of smooth and compactly supported functions ϕ : Rd Ñ R.
‚ For r P N0 “ t0, 1, 2, . . .u, let C

r
c denote the family of compactly supported functions

of class Cr, for which we define

}ϕ}Cr :“ max
r1,...,rdPN0 : r1`...`rdďr

}B
r1
1 ¨ ¨ ¨ B

rd
d ϕ}8 .

‚ Let Br denote the family of functions ϕ P C8c supported on Bp0, 1q with }ϕ}Cr ď 1.

‚ Given a function ϕ : Rd Ñ R, we denote by ϕλx its λ-scaled version centred at x:

ϕλxp¨q :“ λ´d ϕ
`

λ´1
p ¨ ´ xq

˘

for x P Rd, λ ą 0 .

Definition 3.4 (Negative Hölder spaces). Given γ ă 0, the negative Hölder space Cγ
is the family of linear functionals T : C8c Ñ R with the following property: for any K P N,
there is a constant cK ă 8 such that

|T pϕλxq| ď cK λ
γ

@x P Bp0,Kq, λ P p0, 1s, ϕ P Br, (3.16)

where r “ rpγq :“ t´γ ` 1u (any integer r ą ´γ would yield an equivalent definition).
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Any distribution T P Cγ can be canonically extended (by continuity) from C8c to Crc , for
any integer r ą ´γ, hence we can consider T pϕq for ϕ P Crc . In order to prove that T P Cγ ,
it turns out that it is enough to check property (3.16) for a finite family of 2d well-chosen
test functions ϕ P Crc : a so-called wavelet basis [FM17, Section 2], which we denote by

φ and
 

ψpiq
(

1ďiă2
d (which satisfy

ş

Rd ψ
piq
pxqdx “ 0) . (3.17)

(The details of such functions are immaterial for our goals.)
This yields a convenient criterion for a sequence pT ω

N qNPN of random distributions to be
tight in the Hölder space Cγ with γ ă 0 (in the spirit of the classical Kolmogorov moment
criterion for γ ą 0). The following is a special case of [FM17, Theorem 2.30].

Theorem 3.5 (Tightness criterion for negative Hölder spaces). Fix γ ă 0 and an
integer r ą ´γ. Let tφ, ψpiq : 1 ď i ă 2du be a Crc wavelet basis in Rd, see (3.17).

Let pT ω
N qNPN be a sequence of random linear forms on Crc , that is, for every ω in a

probability space pΩ,A,Pq and every N P N, we have a linear functional T ω
N : Crc Ñ R, such

that ω ÞÑ T ω
N pϕq is a random variable for every ϕ P Crc .

Assume that for some p P r1,8q and C ă 8 the following bounds hold:

@N P N, x P Rd :

$

&

%

E
“

ˇ

ˇT ω
N pφp ¨ ´ xqq

ˇ

ˇ

p
‰1{p

ď C ,

E
“ˇ

ˇT ω
N

`

pψpiqqλx
˘

ˇ

ˇ

p‰1{p
ď C λγ @λ P p0, 1s, 1 ď i ă 2d .

(3.18)

Then pT ω
N qNPN is a tight sequence of random variables taking values in the space Cγ

1

for any
γ1 ă γ ´ d

p .

Remark 3.6 (Topology of Hölder spaces). Given γ ă 0 and any distribution T P Cγ,
let us denote rrT ssK,γ “ cK the best constant in the inequality (3.16). Defining the distance

dCγ pT, T
1
q :“

ÿ

KPN
2´K

rrT ´ T 1ssK,γ

1` rrT ´ T 1ssK,γ
,

we have that Cγ is a complete metric space, but it is not separable, see [FM17].
To ensure separability, one can define Cγ0 as the closure of smooth compactly supported

functions C8c under the distance dCγ . One has the strict inclusion Cγ0 Ă Cγ, however for any
γ̃ ą γ one can sandwich Cγ̃ Ă Cγ0 Ă Cγ (so the difference is “small” in a sense).

The results in [FM17] are formulated for the separable spaces Cγ0 (called Cγ in that paper).
However, the tightness criterion in Theorem 3.5 applies also to the usual spaces Cγ, because
Cγ0 is a closed subset of Cγ, hence compact sets in Cγ0 are also compact in Cγ.

We now turn to the proof of Theorem 1.7, which is based on the following moment bounds.
Recall the initial conditions UBpz,Rqp¨q from (1.23) and the convergence in distribution (3.8).

Proposition 3.7 (Moment bounds). Fix t ą 0 and ϑ P R. Let βcrit
N be in the critical

regime (1.19). For any h P 2N, ε ą 0, δ0 ă 8, there is a constant C “ C
t,ϑ
p,ε,δ0

ă 8 such that

sup
NPN

E
“

Z
β
crit
N
tN

`

UBpx?N,δ?Nq
˘h‰1{h

ď C δ´ε @x P R2, δ P p0, δ0q , (3.19)

and hence
E
“

Z ϑ
t

`

UBpx,δq
˘h
‰1{h

ď C δ´ε @x P R2, δ P p0, δ0q . (3.20)
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Proof. In view of (3.8), the bound (3.20) follows by (3.19) and Fatou’s Lemma.
To prove the bound (3.19), we apply equation (6.1) in [CSZ23a, Theorem 6.1] for ψ ” 1

(we just exchange N, Ñ): given h P N and 1 ă p ă 8, there is a constant C1 “ C1pϑ, h, pq ă 8

such that, uniformly in large N, Ñ P N and integrable ϕ : R2
Ñ R, we have

E
“`

Z
β
crit
N

Ñ

`

ϕ
˘

´ 1
˘h‰ 1

h ď

ˆ

C1

logp1`N{Ñq

˙
1
h
›

›

›

›

ϕ

w

›

›

›

›

p

›

›w
›

›

q
,

where q is the dual of p (i.e. 1
p `

1
q “ 1) and wp¨q :“ e´|¨| is a weight function. In particular,

for Ñ “ tN and ϕp¨q :“ 1

πδ
21Bpx,δqp¨q, we obtain

E
“`

Z
β
crit
N
tN

`

UBpx?N,δ?Nq
˘

´ 1
˘h‰ 1

h ď

ˆ

C1

logp1` 1
t q

˙
1
h
ˆ

ż

Bpx,δq

ep|y|

pπδ2
q
p dy

˙
1
p
ˆ
ż

R2

e´q|y| dy

˙
1
q

.

The first integral is bounded by eδ0 pπδ2
q
1
p
´1 while the second integral equals p2π q´2

q
1{q

which is uniformly bounded for 1 ă q ă 8. For a suitable constant C2, we then obtain

E
“`

Z
β
crit
N
tN

`

UBpx?N,δ?Nq
˘

´ 1
˘h‰ 1

h ď C2 δ´2p1´ 1
p
q
,

and taking p ą 1 sufficiently close to 1 we have 2p1´ 1
pq ď ε. The bound (3.19) then follows

because }Z}h ď 1` }Z ´ 1}h by the triangle inequality. �

Proof of Theorem 1.7. Fix t ą 0 and ϑ P R. Our goal is to prove (1.21). We also fix
ε ą 0 and some integer r ą ε. For N P N, we define the random linear form

T ω
N pϕq :“

ż

R2
ϕpyqZ

β
crit
N ,ω
tN

`

rr
?
Nyss

˘

dy “

ż

R2

1
N ϕ

`

z?
N

˘

Z
β
crit
N ,ω
tN

`

rrzss
˘

dz ,

where rrxss is the point in Z2
even closest to x P R2. If ϕ is supported on the ball Bp0, Rq,

then 1
N ϕλxp

¨?
N
q “ 1

λ
2
N
ϕp ¨ ´x

?
N

λ
?
N
q is supported in Bpx

?
N,Rλ

?
Nq. Recalling (1.23), we

can then bound

|T ω
N pϕ

λ
xq| ď }ϕ}8

T ω
N pBpx

?
N,Rλ

?
Nqq

λ2N
ď c }ϕ}8R

2 Z
β
crit
N ,ω
tN

`

UBpx?N,Rλ?Nq
˘

,

where the constant c accounts for the discrepancy between the cardinality
ˇ

ˇBpz,Rq X Z2
even

ˇ

ˇ

and the area πR2. Applying the bound (3.19) for δ “ Rλ and h “ p P 2N, we obtain

@x P R2, λ P p0, 1s : sup
NPN

E
“

ˇ

ˇT ω
N pϕ

λ
xq
ˇ

ˇ

p
‰

1{p
ď C λ´ε with C :“ C c }ϕ}8R

2´ε .

In particular, choosing ϕ “ φ or ϕ “ ψpiq, 1 ď i ă 2d, we see that both bounds in (3.18)
are satisfied for γ “ ´ε, hence pT ω

N qNPN is tight in Cγ
1

for all γ1 ă ´ε´ 2
p . Since ε ą 0 and

p P 2N are arbitrary, we conclude that pT ω
N qNPN is tight in C´ε for any ε ą 0.

By the direct half of Prohorov’s theorem [Bil99, Theorem 5.1] (which holds for metric
spaces), tightness implies relative compactness. It remains to show that, for any weakly
converging subsequence T ω

Nk
Ñ T ω, the limit T ω has the same law as the SHF Z ϑ,ω

t .
The law of any random element T ω of Cγ is determined by the laws of the random vectors

pT ω
pϕ1q, . . . ,T

ω
pϕkqq for k P N and ϕ1, . . . , ϕk P C

8
c . By the linearity of ϕ ÞÑ T ω

pϕq and
the Cramer-Wold device, it is enough to focus on the law of T ω

pϕq for a given ϕ P C8c . It only
remains to show that T ω

pϕq has the same distribution as Z ϑ,ω
t pϕq: but this follows from the
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convergence in distribution (1.20) in the vague topology, which yields T ω
Nk
pϕq Ñ Z ϑ,ω

t pϕq

in distribution for any ϕ P C8c Ď C0
c . The proof is completed. �

4. Proof of Theorem 1.8

In this section we prove (1.25). By translation invariance, we only consider the case x “ 0.
We also set for simplicity t “ 1 (the proof extends to any t ą 0 with almost no change).
Throughout this section, we fix % P p0,8q and, to lighten notation, we abbreviate

Zav
N :“ Z

βN
N

`

Uδ%N
?
N

˘

where Uδ%N
?
N :“ UBp0,δ%N

?
Nq . (4.1)

where we recall that βN “ βquasi-crit
N is in the quasi-critical regime (1.22) for a given sequence

1 ! |ϑN | ! logN , and δN is defined in (1.24). We then rephrase our goal (1.25) as follows:

Zav
N

d
ÝÝÝÝÑ
NÑ8

eN p0,σ
2
q´ 1

2
σ
2

with σ2
“ logp1` %q . (4.2)

Once (4.2) is proved, we have the convergence of positive moments: for all p ě 0

lim
NÑ8

E
“`

Zav
N

˘p
s “ E

“`

eN p0,σ
2
q´ 1

2
σ
2
˘p‰

“ e
ppp´1q

2
σ
2

“ p1` %q
ppp´1q

2 .

This follows by the weak convergence (4.2) once we show that positive moments are uniformly
bounded, say supNPN ErpZav

N q
2h
s ă 8 for all h P N (so that pZav

N q
p is uniformly integrable).

We already know from Corollary 2.9 that VarrZav
N s is bounded, hence any moment ErpZav

N q
2h
s

is bounded too by Theorem 1.11 (the assumptions (1.29), (1.31) and (1.32) of Theorem 1.11
are satisfied by ϕ “ U

p0,δ
%
N

?
Nq with Drϕs „ pδ%N q

2N).

Remark 4.1. The log-normality (4.2) is reminiscent of the corresponding result for the
point-to-plane partition function ZβLp0q in the sub-critical regime β “ βsub-crit

L , see (1.26)
with β̂ P p0, 1q, that we proved in [CSZ17, Theorem 2.8]. As we described in Remark 1.10,
the heuristic behind (4.2) is that, after coarse-graining space on the scale δ%N

?
N and

time on the scale δ2%
N N , the averaged partition function Zav

N in the quasi-critical regime
becomes comparable to a sub-critical point-to-plane partition function with disorder parameter
β̂2
“

%
1`% and effective time horizon L “ 1{δ2%

N .

The key to the analysis of Zβ
sub-crit
L
L p0q in the sub-critical regime in [CSZ17] was a multiscale

structure with time scales Lα for α P p0, 1q. We will see that the same multiscale structure
emerges in our analysis of Zav

N with corresponding time scales pδ2%
N NqL

α with L “ 1{δ2%
N

and α P p0, 1q, see (4.5). This justifies the heuristic comparison just described.

We divide the proof of (4.2) into several steps.

Overall strategy. Let us fix a (large) integer M P N, which will be the number of
time scales. For technical reasons, we will first approximate the original partition function
Zav
N by switching off the disorder in suitable time strips, which defines Zoff

N in (4.15) and
provides some smoothing between consecutive time scales; we will then introduce almost
diffusive restrictions on the polymer paths, which defines Zdiff

N in (4.24). We will show that
Zoff
N and Zdiff

N (which also depend on M) are good approximations in the following sense:

@M P N : Zav
N ´ Zoff

N
L
2

ÝÝÝÝÑ
NÑ8

0 , Zoff
N ´ Zdiff

N
L
1

ÝÝÝÝÑ
NÑ8

0 . (4.3)
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Therefore to prove our goal (4.2), we can just replace Zav
N with Zdiff

N .

Remark 4.2. A similar idea of switching-off the noise in suitably chosen strips to obtain a
smoothing approximation was also used by Dunlap-Gu [DG22] in their treatment of nonlinear
SHE in a subcritical regime.

We introduce explicit time scales

0 “: N0 ă Ñ1 ! N1 ! Ñ2 ! N2 ! . . . ! ÑM ! NM “ N . (4.4)

We define Zoff
N by switching off the noise in the time strips pÑi, Nis, see (4.15), then we

define Zdiff
N by restricting polymer paths at times Ñi and Ni to an almost diffusive ball, see

(4.23) and (4.24). The scales Ni are defined as follows:

N0 :“ 0 , Ni :“
q
pNδ2%

N q p
1

δ
2%
N

q
i
M

y
“

q
N pδ2%

N q
1´ i

M

y
for i “ 1, . . . ,M , (4.5)

where JaK :“ 2 ta{2u is an even proxy for a P R. Note that Ni`1 « Ni p
1

δ
2%
N

q
1
M for i ě 1. The

intermediate scales Ñi are then defined by

Ñi :“

s
Ni

plog 1

δ
2%
N

q
3

{
for i “ 1, 2, . . . ,M . (4.6)

By restricting random walk paths in the definition of Zdiff
N to the time interval r0, Nis, we

obtain a sequence of quantities Zdiff
N,i for i “ 1, . . . ,M with Zdiff

N,M “ Zdiff
N , see (4.24). Then,

by a telescopic product, we can write

Zdiff
N “

M
ź

i“1

Zdiff
N,i

Zdiff
N,i´1

(with Zdiff
N,0 :“ 1) . (4.7)

The choice of the scales Ni is made so that the the ratios in the RHS have variance of
the same order 1

M , albeit with a varying prefactor (see Theorem 4.5). The fact that these
scales are well separated, see (4.4), ensures that the ratios in the RHS are approximately
independent.

Remark 4.3 (Exponential time scales). The choice of the scales (4.5), which leads to
the decomposition (4.7) into approximately independent factors, resembles what is observed
in the sub-critical regime (1.26) in [CSZ17] and in the more recent papers [CC22, CD24].

Denoting by FL :“ σtωpn, zq : n ď L, z P Z2
u the σ-algebra generated by disorder

variables up to time L, we introduce the conditional expectation

mN,i :“ E
„

Zdiff
N,i

Zdiff
N,i´1

ˇ

ˇ

ˇ

ˇ

FNi´1



for i “ 1, . . . ,M , (4.8)

which turns out to be close to 1 with high probability (see (4.30)). We define ∆N,i as the
normalised and centred version of the ratios in the RHS of (4.7):

∆N,i :“
1

mN,i

Zdiff
N,i

Zdiff
N,i´1

´ 1 . (4.9)
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This leads to the identity

logZdiff
N “

M
ÿ

i“1

log
Zdiff
N,i

Zdiff
N,i´1

“

M
ÿ

i“1

 

log
`

1`∆N,i

˘

` logmN,i

(

“

M
ÿ

i“1

 

∆N,i ´
1
2∆2

N,i ` rp∆N,iq ` logmN,i

(

,

(4.10)

where rp¨q is the remainder in the second order Taylor expansion of the logarithm:

rpxq :“ logp1` xq ´
`

x´ x
2

2

˘

. (4.11)

To complete the proof of our goal (4.2), we are going to show that, for M “MN Ñ 8

slowly enough, the following three convergences in distribution hold:

MN
ÿ

i“1

∆N,i
d

ÝÝÝÝÑ
NÑ8

N p0, σ2
q , (4.12)

MN
ÿ

i“1

∆2
N,i

d
ÝÝÝÝÑ
NÑ8

σ2 , (4.13)

MN
ÿ

i“1

´

rp∆N,iq ` logmN,i

¯

d
ÝÝÝÝÑ
NÑ8

0 , (4.14)

with σ2 as in (4.2). Intuitively, these relations hold because the random variables ∆N,i are
approximately independent, due to the separation of time scales (4.5). The proof of (4.2)
then follows by first choosing M “MN Ñ8 slowly enough such that (4.3) still holds, and
then applying the identity (4.10).

The rest of the proof is divided into the following steps:

‚ in Steps 1 and 2 we define Zoff
N and Zdiff

N and prove the two limits in (4.3);

‚ in Step 3 we give a convenient representation for the ratio Zdiff
N,i {Z

diff
N,i´1 as a partition

function on the time interval pNi´1, Nis with initial condition given by a polymer
distribution at time Ni´1, and we show that the latter is close to the free random walk
thanks to the fact that noise has been turned off in the time interval pÑi, Nis.

‚ in Steps 4 and 5 we compute the variance of ∆N,i and bound its higher moments;

‚ in Step 6 we prove (4.12) through the martingale CLT ;

‚ in Step 7 we prove relations (4.13) and (4.14) by variance bounds.

4.1. Step 1: switching off the noise. The first approximation Zoff
N of the partition

function Zav
N , recall (4.1), is obtained by “switching off the noise” in the time strips pÑi, Nis

for 1 ď i ď M , see (4.5) and (4.6): this will ensure that the endpoint distribution of the
polymer at time Ni is comparable to the random walk transition kernel. Recalling (2.1) and
(1.18), we thus define

Zoff
N :“ E

”

e
HβN

p0,Nsz
ŤM
j“1pÑj ,Nj s

ˇ

ˇ

ˇ
S0 „ Uδ%N

?
N

ı

. (4.15)
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In this step, we prove the first relation in (4.3):

@M P N : lim
NÑ8

E
“`

Zav
N ´ Zoff

N

˘2‰
“ 0 . (4.16)

Let G be the σ-algebra generated by the disorder variables that have not been swithced
off, namely G :“ σ

`

ωpn, zq : n P
ŤM
i“1pNi´1, Ñis, z P Z

2˘, then we can write

Zoff
N “ E

“

Zav
N

ˇ

ˇG
‰

,

that is Zoff
N is the orthogonal projection of Zav

N onto the linear subspace of L2 generated by
G-measurable random variables. It follows that

E
“`

Zav
N ´ Zoff

N

˘2‰
“ E

“

pZav
N q

2‰
´ E

“

pZoff
N q

2‰ ,

hence to prove (4.16) we need to show that

@M P N : lim
NÑ8

!

E
“

pZav
N q

2‰
´ E

“

pZoff
N q

2‰
)

“ 0 . (4.17)

Proof of (4.17). Let us define a variant Z̃off
N,j of (4.15) where we only switch off disorder in

a given interval pÑj , Njs, namely

for j “ 1, . . . ,M : Z̃off
N,j :“ E

”

e
HβN
p0,NszpÑj ,Nj s

ˇ

ˇ

ˇ
S0 „ Uδ%N

?
N

ı

. (4.18)

We claim that we can bound the difference in (4.17) by

E
“

pZav
N q

2‰
´ E

“

pZoff
N q

2‰
“ Var

“

Zav
N

‰

´ Var
“

Zoff
N

‰

ď

M
ÿ

j“1

 

Var
“

Zav
N

‰

´ Var
“

Z̃off
N,j

‰

(

. (4.19)

It then suffices to estimate separately each term in this sum.
In order to prove (4.19), recall the polynomial chaos expansion (2.11) for the point-to-

plane partition function ZβN pxq, which yields a corresponding polynomial chaos expansion
for the averaged partition function ZβN pϕq “

ř

xPZ2
even

ϕpxqZβN pxq. The polynomial chaos

expansion for Zoff
N from (4.15) is a subset of the polynomial chaos expansion for Zav

N : it is
obtained by restricting the sum to times n1, . . . , nk which avoid all intervals pÑj , Njs for
j “ 1, . . . ,M (see Remark 2.2), hence its variance admits a formula like (2.17) with the
same restriction on the sum. Then the difference Var

“

Zav
N

‰

´ Var
“

Zoff
N

‰

is given again by
formula (2.17) where the sequence of times n1, . . . , nk is now required to intersect at least
one of the intervals pÑj , Njs for j “ 1, . . . ,M . By a union bound, we obtain precisely (4.19).

Let us finally focus on a given term in the RHS of (4.19). Since Var
“

Zav
N

‰

Ñ % as N Ñ8,
see (2.26), it is enough to show that

@j P t1, . . . ,Mu : lim
NÑ8

Var
“

Z̃off
N,j

‰

“ % . (4.20)

We recall that Z̃off
N,j corresponds to switching off disorder between AN “ Ñj and BN “ Nj .

It is instructive (and more transparent) to fix 0 ă a ď b ă 1 and consider general times

AN “ N pδ2%
N q

1´a`op1q
“ N e´p1´aq % |ϑN |`op|ϑN |q ,

BN “ N pδ2%
N q

1´b`op1q
“ N e´p1´bq % |ϑN |`op|ϑN |q .

Later we will specialize to b “ a “ j´1
M due to the choice of Nj and Ñj in (4.5) and (4.6).
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We compute Var
“

Z̃off
N,j

‰

by formula (2.17) where the sum is restricted to times n1, . . . , nk
that do not intersect the interval pAN , BN s. We split Var

“

Z̃off
N,j

‰

“ I1 ` I2 ` I3 as follows:

‚ part I1: all times ni take place before AN ;

‚ part I2: all times ni take place after BN ;

‚ part I3: the first time n1 takes place before AN , the last time nk takes place after BN .

The first contribution I1 is nothing but the variance of the averaged partition function of
polymer length AN , that is (recall (4.1))

I1 “ Var
“

Z
βN
AN
pUδ%N

?
N q

‰

„
a%

1` p1´ aq%
, (4.21)

where we applied (2.21) with LN “ AN for which ` “ p1´ aq%, see (2.18), and WN “ Nδ2%
N

for which w “ %, see (2.19) (and recall (2.25)).
The second contribution I2, when all times ni are after BN , corresponds to switching off

the noise in the whole interval r0, BN s, hence we have a partition function on the interval
pBN , N s (whose length is LN “ N ´BN „ N since b ă 1, that is (2.18) holds with ` “ 0)
with initial condition at time BN given by Uδ%N

?
N ˚ qBN , i.e., the distribution of the random

walk at time BN with initial condition Uδ%N
?
N (which satisfies assumption (2.24) with

WN “ BN , hence (2.19) holds with w “ p1´ bq%). We thus obtain by (2.21)

I2 „ p1´ bq% .

We finally consider the third contribution I3, when there are times ni both before AN
and after BN : recalling (2.17), we can write

I3 “
ÿ

0ămďgďAN
BNădďnďN

q2m

`

Uδ%N
?
N , Uδ%N

?
N

˘

σ2
βN
UβN pg ´mqσ

2
βN
q2pd´gqp0qUβN pn´ dq ,

where we recall that UβN p¨q was defined in (2.12). Summing over n we obtain UβN pN ´ dq,
see (2.13), and restricting the sum to d ď 1

2N we can bound UβN pN ´ dq ě UβN p
1
2Nq.

Summing q2pd´gqp0q over BN ă d ď 1
2N then gives, recalling (1.15),

ÿ

BNădď
1
2
N

q2pd´gqp0q “ R 1
2
N´g ´RBN´g „

1

π
log

1
2N ´ g

BN ´ g
ě

1

π
log

1
2N

BN

because the minimum is attained at g “ 0. Recalling that σ2
βN
„ π

logN , we then obtain

I3 ě

#

ÿ

0ămďgďAN

q2m

`

Uδ%N
?
N , Uδ%N

?
N

˘

σ2
βN
UβN pg ´mq

+

log
1
2
N

BN

logN
UβN p

1
2Nq

“ E
“

Z
βN
AN
pUδ%N

?
N q

2‰
log

1
2
N

BN

logN
UβN p

1
2Nq ,

where the equality follows by (2.13) and (2.15). Applying (2.14) we see that UβN p
1
2Nq „

logN
|ϑN |

,

while log
1
2
N

BN
„ p1´ bq log 1

δ
2%
N

„ p1´ bq% |ϑN |, see (1.24). Recalling (4.21) we then obtain

I3 ě p1` op1qq I1 ¨
p1´ bq% |ϑN |

logN
¨

logN

|ϑN |
„ I1 p1´ bq% .
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Overall, summing the three parts I1, I2 and I3, we have shown that

Var
“

Z̃off
N,j

‰

“ I1 ` I2 ` I3 ě I1 p1` p1´ bq%q ` I2 ` op1q „
1` p1´ bq%

1` p1´ aq%
a%` p1´ bq%

“ % ´ pb´ aq
% p1` %q

1` p1´ aq%
“ % ´ Opb´ aq .

This last expression vanishes for a “ b, which completes the proof of (4.20). �

4.2. Step 2: almost diffusive approximation. In this step, we prove the second
relation in (4.3):

@M P N : lim
NÑ8

E
“

|Zoff
N ´ Zdiff

N |
‰

“ 0 , (4.22)

Let Dm be the event that the random walk is “almost diffusive” at time m, in the following
sense:

Dm :“
!

|Sm| ď
b

m log 1

δ
2
N

)

. (4.23)

We define Zdiff
N by restricting Zoff

N in (4.15) to the event
ŞM
j“0 DÑj

X DNj
. It is actually

useful to define Zdiff
N,i for each scale Ni, see (4.5) (note that Ni “ N for i “M):

for i “ 1, . . . ,M : Zdiff
N,i :“ E

„ i
ź

j“1

e
HβN
pNj´1,Ñj s 1DÑjXDNj

ˇ

ˇ

ˇ

ˇ

S0 „ Uδ%N
?
N



and we set Zdiff
N :“ Zdiff

N,M .

(4.24)

Let us prove (4.22). Since |Zoff
N ´ Zdiff

N | “ Zoff
N ´ Zdiff

N and EreHpa,bss “ 1, we have

E
“

|Zoff
N ´ Zdiff

N |
‰

“ 1´ P

ˆ M
č

j“1

DÑj
XDNj

ˇ

ˇ

ˇ

ˇ

S0 „ UδN
?
N

˙

ď
ÿ

mPtÑ1, N1, ..., ÑM , NM u

P
´

|Sm| ą
b

m log 1

δ
2
N

ˇ

ˇ

ˇ
S0 „ Uδ%N

?
N

¯

.

We recall that under Pp ¨ |S0 „ Uδ%N
?
N q we have |S0| ď δ%N

?
N . Since Ñ1 " Nδ2%

N , see (4.5)
and (4.6), for m ě Ñ1 we can bound δ%N

?
N ď

?
m, hence

b

m log 1

δ
2
N

´ δ%N
?
N ě

?
m
´

b

log 1

δ
2
N

´ 1
¯

ě
1

2

?
m
b

log 1

δ
2
N

for large N .

Then (4.22) holds because for any m P tÑ1, N1, . . . , ÑM , NMu, we can use Gaussian tail
estimates for the simple symmetric random walk to bound

P
´

|Sm| ą
b

m log 1

δ
2
N

ˇ

ˇ

ˇ
S0 „ Uδ%N

?
N

¯

ď P
´

|Sm ´ S0| ą
1
2

?
m
b

log 1

δ
2
N

¯

ď C exp
`

´
1

C

ˇ

ˇ

b

log 1

δ
2
N

ˇ

ˇ

2˘
“ C pδ2

N q
1
C

NÑ8
ÝÝÝÝÑ 0 .

(4.25)

This concludes the proof of (4.22).
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4.3. Step 3: polymer distribution. In this step we give a convenient representation
for the ratio Zdiff

N,i {Z
diff
N,i´1 in terms of a directed polymer. This will be exploited to estimate

the moments of ∆N,i, see (4.9).
Let us introduce the polymer endpoint distribution µN,ip¨q at time Ni, corresponding to

the partition function Zdiff
N,i in (4.24):

for i “ 1, . . . ,M and x P Z2
even : µN,ipxq :“

Zdiff
N,i

`

Uδ%N
?
N , x

˘

Zdiff
N,i

. (4.26)

where we define Zdiff
N,i

`

Uδ%N
?
N , x

˘

by restricting paths in the definition of Zdiff
N,i to SNi “ x,

that is

Zdiff
N,i

`

Uδ%N
?
N , x

˘

:“ E

„ˆ i
ź

j“1

e
HβN
pNj´1,Ñj s 1DÑjXDNj

˙

1tSNi“xu

ˇ

ˇ

ˇ

ˇ

S0 „ Uδ%N
?
N



. (4.27)

By the Markov property, the following representation holds for i “ 2, . . . ,M :

Zdiff
N,i

Zdiff
N,i´1

“ E
”

e
HβN
pNi´1,Ñis 1DÑiXDNi

ˇ

ˇ

ˇ
SNi´1

„ µN,i´1

ı

“
ÿ

xPZ2
even

µN,i´1pxqE
”

e
HβN
pNi´1,Ñis 1DÑiXDNi

ˇ

ˇ

ˇ
SNi´1

“ x
ı

.

(4.28)

The same formula holds also for i “ 1 provided we define

µN,0pxq :“ Uδ%N
?
N pxq .

Remark 4.4. The switching off of the noise ensures that the “initial distribution” µN,i´1

in (4.28) is sufficiently smooth, as we show below. This will be needed in the next steps to
compute the variance and to estimate the moments of ∆N,i from (4.9).

Representation (4.28) is very useful. For instance, recalling (4.8), we can compute

mN,i´1 “ P
`

DÑi
XDNi

ˇ

ˇSNi´1
„ µN,i´1

˘

. (4.29)

Note that for SNi´1
„ µN,i´1, we have |SNi´1

| ď
b

Ni´1 log 1

δ
2
N

due to the restriction to the

event DNi´1
, see (4.27) and (4.23). Therefore for any i “ 1, . . . ,M , we can bound

mN,i´1 ě 1´ P
´

|SÑi ´ SNi´1
| ą p

b

Ñi ´
a

Ni´1q
b

log 1

δ
2
N

¯

´ P
´

|SNi ´ SNi´1
| ą p

a

Ni ´
a

Ni´1q
b

log 1

δ
2
N

¯

.

Since Ni´1 ! Ñi ! Ni, see (4.5) and (4.6), arguing as in (4.25), we have: for some C ă 8,

for i “ 1, . . . ,M : 1´ C pδ2
N q

1
C ď mN,i´1 ď 1 . (4.30)

We conclude this step by showing that the polymer distribution µN,ipxq is close to the
random walk transition kernel qNi´Ñipxq, see (1.14). Intuitively, this holds because:

‚ we switched off disorder between times Ñi and Ni, see (4.27), therefore the polymer
evolves between these times as simple random walk;



30 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

‚ we know that |SÑi | ď
b

Ñi log 1

δ
2
N

(due to the event DÑi
), therefore |SÑi | !

?
Ni by

the choice of Ñi in (4.6). To compute SNi , we can therefore pretend that SÑi » 0,
namely we can approximate SNi ´ SÑi » SNi´Ñi , which is distributed as qNi´Ñip¨q.

Let us now be precise: we set for short

εN :“
`

log 1

δ
2
N

˘´1{3
ÝÝÝÝÑ
NÑ8

0 , (4.31)

and we prove that for any M P N and i “ 1, . . . ,M , we have

µN,i PMN,i :“

"

ϕp¨q ě 0 supported in
!

| ¨ | ď
b

Ni log 1

δ
2
N

)

with
ÿ

x

ϕpxq “ 1 and ϕp¨q ď p1` εN q
2 qNi´Ñip¨q

*

.

(4.32)

(This relation requires i ě 1, but we will not need it for i “ 0.)

Proof of (4.32). We only need to prove that µN,ip¨q ď p1 ` εN q
2 qNi´Ñip¨q. We express

µN,ipxq by summing over the polymer position at time Ñi ă Ni: denoting by φÑipzq

the corresponding distribution (defined as in (4.27)-(4.26) with tSNi “ xu replaced by
tSÑi “ zu), and recalling the random walk transition kernel from (1.14), for x P Z2

even with

|x| ď
b

Ni log 1

δ
2
N

, we get

µN,ipxq “

ÿ

|z|ď
c

Ñi log 1

δ
2
N

φÑipzq qNi´Ñipx´ zq

ÿ

|z|ď
c

Ñi log 1

δ
2
N

φÑipzq

"

ÿ

|x
1
|ď

c

Ni log 1

δ
2
N

qNi´Ñipx
1
´ zq

* . (4.33)

To obtain µN,ip¨q ď p1 ` εN q
2 qNi´Ñip¨q, it suffices to prove the following bounds on the

numerator and denominator in (4.33): for anyM P N and i “ 1, . . . ,M , we have, for large N ,

qNi´Ñipx´ zq ď p1` εN q qNi´Ñipxq , (4.34)
ÿ

|x
1
|ď

c

Ni log 1

δ
2
N

qNi´Ñipx
1
´ zq ě p1` εN q

´1 , (4.35)

uniformly over z, x P Z2
even that satisfy (recall (4.5) and (4.6))

|z| ď

c

Ñi log 1

δ
2
N

“

c

Ni

`

log 1

δ
2
N

˘´2
, |x| ď

b

Ni log 1

δ
2
N

. (4.36)

We first prove (4.34). We fix M P N and i P t1, . . . ,Mu. By the local limit theorem (2.3),
uniformly over for x, z P Z2

even, we can write

qNi´Ñipx´ zq

qNi´Ñipxq
“ e

|x|
2
´|x´z|

2

Ni´Ñi
`O

ˆ

|x|
4
`|x´z|

4

pNi´Ñiq
3

˙

`op1q
.
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For large N , we have Ni ´ Ñi ě
1
2Ni and Ni ě pδ

2
N q
´ 1
M ě plog 1

δ
2
N

q
3, see (4.5) and (4.6).

Therefore by (4.36), we can bound

|x|4 ` |x´ z|4

pNi ´ Ñiq
3 ď C

plog 1

δ
2
N

q
2

Ni
ď

C

log 1

δ
2
N

,

ˇ

ˇ

ˇ

ˇ

|x|2 ´ |x´ z|2

Ni ´ Ñi

ˇ

ˇ

ˇ

ˇ

“

ˇ

ˇ

ˇ

ˇ

2xz, xy ´ |z|2

Ni ´ Ñi

ˇ

ˇ

ˇ

ˇ

ď 2
2|z|p|x| ` |z|q

Ni
ď

C
b

log 1

δ
2
N

.

Both estimates are opεN q as N Ñ 8, see (4.31), hence (4.34) follows. Finally, to prove
(4.35), we note that the LHS equals

P
´

|z ` SNi´Ñi | ď
b

Ni log 1

δ
2
N

¯

ě P
´

|SNi | ď
1
2

b

Ni log 1

δ
2
N

¯

ě 1´ C exp
`

´ 1
C

ˇ

ˇ

b

log 1

δ
2
N

ˇ

ˇ

2˘

“ 1´ C pδ2
N q

C
ď p1` εN q

´1 ,

where the last inequality holds for N large enough, see (4.31). �

4.4. Step 4: variance computation. In this step, we compute the asymptotic
variance of ∆Ni

from (4.9), which is needed to prove (4.12) and (4.13). We work under the
conditional probability Pp ¨ |FNi´1

q and note from (4.8) and (4.9) that

Er∆Ni
|FNi´1

s “ 0 . (4.37)

Therefore we focus on the second moment. In the next result, we exploit the control on the
polymer distribution µN,i´1 that we obtained in (4.32) in the previous step.

Theorem 4.5 (Second moment asymptotics). For any M P N and i “ 1, . . . ,M , we
have the a.s. convergence (uniformly over FNi´1

)

lim
NÑ8

Erp∆N,iq
2
|FNi´1

s “
1

M

%

1` p1´ i
M q %

. (4.38)

Proof. Recalling the definition (4.9) of ∆N,i and the representation (4.28), we can write

∆N,i “
1

mN,i

ÿ

xPZ2
even

µN,i´1pxqE
”´

e
HβN
pNi´1,Ñis ´ 1

¯

1DÑiXDNi

ˇ

ˇ

ˇ
SNi´1

“ x
ı

. (4.39)

Removing the constraint 1DÑiXDNi
, the RHS of (4.39) would simply become

∆̃N,i :“
1

mN,i

`

Z
βN
LN
pϕN q ´ 1

˘

with LN “ Ñi ´Ni´1 , ϕN “ µN,i´1 . (4.40)

We can now apply Theorem 2.5, because LN “ Ñi´Ni´1 satisfies (2.18) with ` “ p1´ i
M q %,

(cf. (4.5) and (4.6)), while ϕN “ µN,i´1 satisfies (2.20) with WN “ Ni´1 ´ Ñi´1 thanks to
(4.32), (2.24), and (2.25), and (2.19) holds with w “ p1´ i´1

M q %. Recalling from (4.30) that
mN,i “ 1´ op1q, relation (2.21) then yields

lim
NÑ8

E
“

p∆̃N,iq
2ˇ
ˇFNi´1

‰

“ lim
NÑ8

Var
“

Z
βN
LN
pϕN q

‰

“
w ´ `

1` `
“

%{M

1` p1´ i
M q %

, (4.41)
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which matches our goal (4.38). It remains to show that removing the constraint 1DÑiXDNi
from (4.39) is immaterial, that is, almost surely we have E

“

p∆N,i ´ ∆̃N,iq
2 ˇ
ˇFNi´1

‰

Ñ 0. To
this end, we note that

∆̃N,i ´∆N,i “
1

mN,i

ÿ

xPZ2
even

µN,i´1pxqE
”´

e
HβN
pNi´1,Ñis ´ 1

¯

1DcÑiYD
c
Ni

ˇ

ˇ

ˇ
SNi´1

“ x
ı

.

Since in the expectation above, disorder is restricted to the time interval pNi´1, Ñis with
Ni´1 ! Ñi ! Ni, we can show that the contribution from the event DÑi

X Dc
Ni
, which

implies |SNi | ą
b

Ni log 1

δ
2
N

, is negligible via an analysis similar to that performed in the

proof of (4.32), which uses the fact that the simple symmetric random walk has a negligible
probability of having super-diffusive displacement on the time interval rÑi, Nis.

So we will focus on showing that, conditional on FN,i, the L
2 norm of

1

mN,i

ÿ

xPZ2
even

µN,i´1pxqE
”´

e
HβN
pNi´1,Ñis ´ 1

¯

1DcÑi

ˇ

ˇ

ˇ
SNi´1

“ x
ı

(4.42)

is negligible. First, recalling (4.30) we have that mN,i´1 ě 1´C pδ2
N q

1
C and so we can neglect

this term. Secondly, by (4.32), we can bound µN,i´1pxq ď CqNi´1´Ñi´1
pxq. Using the chaos

expansion (2.11), the L2 norm of the sum in (4.42) can be bounded by a multiple of
ÿ

x,x
1
,z,z

1
PZ2

even

|y|,|y
1
|ąpÑi log δ

´2
N q

1{2

ÿ

Ni´1ďaăbďÑi

qNi´1´Ñi´1
pxqqNi´1´Ñi´1

px1q qa´Ni´1
pz ´ xqqa´Ni´ipz ´ x

1
q

ˆ σ2
βN
UβN pb´ a, z

1
´ zq qÑi´bpy ´ z

1
qqÑi´bpy

1
´ z1q

“
ÿ

z,z
1
PZ2

even

|y|,|y
1
|ąpÑi log δ

´2
N q

1{2

ÿ

Ni´1ďaăbďÑi

qa´Ñi´1
pzq2 σ2

βN
UβN pb´ a, z

1
´ zq qÑi´bpy ´ z

1
qqÑi´bpy

1
´ z1q,

(4.43)

where we used the Chapman-Kolmogorov equation to go from the first line to the second
and we used the notation

Uβpn, zq :“
ÿ

kě1

pσ2
βq
k

ÿ

0“:n0ăn1ă¨¨¨ănk“n

x0:“0, x1,...,xk´1PZ
2
,xk“z

k
ź

i“1

qni´ni´1
pxi ´ xi´1q

2, (4.44)

that is, the renewal function from (2.12) with the end point pinned at z. To bound (4.43),
we distinguish between two cases: either |z1| ď 1

2pÑi log δ´2
N q

1{2, or z1 satisfies the opposite
inequality. In the first case, the decay from the random walk kernels will make the contribution
to (4.43) negligible since |y ´ z|, |y1 ´ z| ą 1

2pÑi log δ´2
N q

1{2. In the second case, we can drop
the constraints on y, y1 in the sum to obtain that, the corresponding contribution to (4.43)
is bounded (up to constants) by

ÿ

zPZ2
even

|z
1
|ą 1

2
pÑi log δ

´2
N q

1{2

ÿ

Ni´1ďaăbďÑi

qa´Ñi´1
pzq2 σ2

βN
UβN pb´ a, z

1
´ zq. (4.45)
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In the sum above, we can identify pa, zq with pn1, x1q in (4.44) and use (4.44) to rewrite
(4.45) and bound it by

ÿ

0ăb
1
ďÑi´Ñi´1

|z
1
|ą 1

2
pÑi log δ

´2
N q

1{2

UβN pb
1, z1q ď

ÿ

0ăb
1
ďÑi

|z
1
|ą 1

2
pÑi log δ

´2
N q

1{2

UβN pb
1, z1q, (4.46)

where in the inequality, we enlarged the range of summation for b1. We can then use the
next bound, which can be proved by following the same steps as in [CSZ23a, Lemma 3.5]:

ÿ

xPZ2

UβN pn, xqe
λ|x|

ď cecλ
2
nUβN pnq.

From this bound, the negligibility of (4.46) as N Ñ 8 follows easily by a Markov type
inequality with appropriate choices λ. �

Remark 4.6 (Sub-critical regime). In the sub-critical regime (1.26), we need to modify
(4.38) to:

lim
NÑ8

Erp∆N,iq
2
|FNi´1

s “
1

M

% β̂2

1` p1´ i
M q % β̂

2 . (4.47)

The proof is the same, except that in (4.41) we need to apply (2.22) in place of (2.21), see
Remark 2.6.

Step 5. (Higher moment bounds). In this step, we control higher moments of ∆N,i

defined in (4.9), proving the following bound (recall the second moment computation (4.38)).

Proposition 4.7 (High moment bounds). For any h P N, there is a constant Ch ă 8
such that, for any M P N and i “ 1, . . . ,M , we have the a.s. bound (uniformly over FNi´1

):

lim sup
NÑ8

ˇ

ˇErp∆N,iq
h
|FNi´1

s
ˇ

ˇ ď Ch

ˆ

1

M

%

1` p1´ i
M q%

˙
h
2

. (4.48)

Note that the case h “ 1 is trivial by (4.37), while the case h “ 2 holds by (4.38), and
hence we focus on h ě 3, in which case the bound is a direct consequence of Theorem 1.11.

Proof. As in the proof Theorem 4.5, see (4.39), conditioned on FNi´1
, ∆N,i can be written

as a modified partition function where the random walk is restricted to DÑi
XDNi

. In (4.39),
we can ignore the mean mN,i “ 1 ´ op1q (see (4.30)). Thanks to Theorem 1.11 (whose
assumptions we check in a moment), we can obtain a moment upper bound by removing
the random walk restriction and applying (1.33) to get

ˇ

ˇErp∆N,iq
h
|FNi´1

s
ˇ

ˇ ď ChVar
“

Z
βN
LN
pϕN q

ˇ

ˇFNi´1

‰
h
2 .

Our goal (4.48) then follows from (4.38), since, as we showed in the proof of Theorem 4.5,

lim
NÑ8

Var
“

Z
βN
LN
pϕN q

ˇ

ˇFNi´1

‰

“ lim
NÑ8

Erp∆N,iq
2
|FNi´1

s “
1

M

%

1` p1´ i
M q%

. (4.49)

It only remains to check the assumptions of Theorem 1.11, namely that βN from (1.22)
and LN “ Ñi ´Ni´1, ϕN “ µN,i´1 from (4.40) fullfill conditions (1.29), (1.30) and (1.32).

‚ The bounded variance condition (1.32) clearly holds by (4.49).
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‚ By (4.32), we have ϕN “ µN,i´1 ď p1 ` εN q
2 qNi´1´Ñi´1

ď 2 qNi´1´Ñi´1
, so ϕN is

exponentially concentrated on the scale
b

Ni´1 ´ Ñi´1 „
a

Ni´1 much smaller than
b

Ñi „
?
LN , thus condition (1.29) holds by the local limit theorem (2.3).

‚ Again, ϕN ď 2 qNi´1´Ñi´1
yields }ϕN}`8 „

C
Ni´1´Ñi´1

„ C
1

DrϕN s
, see (1.28) and (2.3),

hence condition (1.30) is fullfilled.

The proof is complete. �

Remark 4.8 (Sub-critical regime). In the sub-critical regime (1.26), we need to modify
(4.48) to:

lim sup
NÑ8

ˇ

ˇErp∆N,iq
h
|FNi´1

s
ˇ

ˇ ď Ch

ˆ

1

M

% β̂2

1` p1´ i
M q% β̂

2

˙
h
2

, (4.50)

in agreement with the variance (4.47).

Step 6. Proof of (4.13) and (4.12). We will apply the Central Limit Theorem for
arrays of martingale differences. In particular, we will make use of the following special
version of [HH80, Theorem 3.5].

Theorem 4.9. For each n ě 1, let pSn,iq1ďiďMn
be a mean zero square integrable martingale

adapted to the filtration pFn,iq1ďiďMn
. Let ∆n,i :“ Sn,i ´ Sn,i´1 be the associated martingale

differences. Denote

V 2
n,i :“

i
ÿ

j“1

E
“

∆2
n,j |Fn,j´1

‰

and U2
n,i :“

i
ÿ

j“1

∆2
n,j .

Assume that

E
“ˇ

ˇV 2
n,Mn

´ σ2ˇ
ˇ

‰

ÝÝÝÑ
nÑ8

0, and max
iďMn

E
“

∆2
n,i

ˇ

ˇFn,i´1

‰ P
ÝÝÝÑ
nÑ8

0. (4.51)

Then the following three statements are equivalent:

(i)
ÿ

iďMn

E
“

∆2
n,i 1|∆n,i|ąε

‰

ÝÝÝÑ
nÑ8

0, (4.52)

(ii) E
“
ˇ

ˇU2
n,Mn

´ σ2ˇ
ˇ

‰

ÝÝÝÑ
nÑ8

0, (4.53)

(iii) Sn :“

Mn
ÿ

i“1

∆n,i
d

ÝÝÝÑ
nÑ8

N p0, σ2
q. (4.54)

In our setting, the first condition in (4.51) follows from Theorem 4.5 (note the uniformity
over FNi in the convergence therein) by choosing MN Ñ8 slowly enough and then applying
a Riemann sum approximation that shows σ2

“
ş%
0

dt
1`t “ logp1` %q.
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The second condition in (4.51) follows from the higher moment estimate (4.48) and a
union bound as follows:

P
´

max
iďMN

E
“

∆2
N,i

ˇ

ˇFN,i´1

‰

ą ε
¯

ď

MN
ÿ

i“1

P
´

E
“

∆2
N,i

ˇ

ˇFN,i´1

‰

ą ε
¯

ď
1

ε2

MN
ÿ

i“1

E
“

∆4
N,i

‰

“ O
´ 1

MN

¯

,

where the last equality is justified by choosing MN Ñ8 slowly enough. Indeed, by (4.48),
for any fixed M ă 8, there is N “ NM large enough such that

@N ě NM , @1 ď i ďM : Erp∆N,iq
4
|FNi´1

s ď C4

ˆ

2%

M

˙2

.

We can assume that limMÑ8NM “ 8. Hence we can choose a sequence pMN qNÑ8 with
MN Ñ8 slowly enough such that N ě NMN

, and hence

MN
ÿ

i“1

Erp∆N,iq
4
|FNi´1

s ď C4MN

ˆ

2%

MN

˙2

“ O
´ 1

MN

¯

.

Condition (4.52) follows in the same way via Chebyshev’s inequality and the higher
moment estimate (4.48). In turn, this implies (4.53) and (4.54), which are respectively our
desired relation (4.13) and (4.12).

Step 7. Proof of (4.14). To show the negligibility of the second term in (4.14), i.e.,
řMN
i“1 logmN,i, we apply (4.30) to obtain

0 ď ´

MN
ÿ

i“1

logmN,i ď ´

MN
ÿ

i“1

logp1´ Cpδ2
N q

1
C q ď C 1MN pδN q

1
C ,

which goes to 0 if MN Ñ8 slowly enough such that MN ! pδN q
´ 1
C .

For the first term in (4.14), recall that rpxq “ logp1`xq´
`

x´ x
2

2

˘

. Using the elementary
estimate |rpxq| ď C|x|3 ^ x2, we obtain

ˇ

ˇ

ˇ

MN
ÿ

i“1

E
“

rp∆N,iq
‰

ˇ

ˇ

ˇ
ď C

MN
ÿ

i“1

´

E
“

|∆N,i|
2
1|∆N,i|ąε

‰

` E
“

|∆N,i|
3
1|∆N,i|ďε

‰

¯

ď C

MN
ÿ

i“1

´

E
“

∆2
N,i 1|∆N,i|ąε

‰

` εE
“

∆2
N,i

‰

¯

,

which converges to 0 by (4.52) and (4.53) and by letting ε be arbitrarily small.
The proof of (4.2) is now complete. �

5. Higher moment bounds

We prove a strengthened version of the general moment bound in Theorem 1.11. We
consider the averaged point-to-point partition function ZLpϕ,ψq defined in (1.17): for ϕ,ψ :
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Z2
Ñ R and L P N,

ZβLpϕ,ψq :“
ÿ

z,wPZ2

ϕpzqZβLpz, wqψpwq with ZβLpz, wq :“ E
“

eH
β,ω
p0,LqpSq 1tSL“wu

ˇ

ˇS0 “ z
‰

.

(5.1)
Let ϕ be a probability mass function on Z2 satisfying the localization condition (1.29),

which we recall here for convenience: for some t̂ ą 0, c1 ă 8

Dz0 P R
2 :

ÿ

zPZ2

ϕpzq e
2 t̂

|z´z0|?
L ď c1 . (5.2)

Instead of (1.30), we impose the weaker condition that, for some c12 ă 8,

log
`

L }ϕ}2
`
2

˘

RLpϕ,ϕq
ď c12 , (5.3)

where RLpϕ,ϕq is defined in (2.6). The fact that (5.3) is indeed implied by (1.30) (when
(5.2) holds) is shown in the next result, proved in Appendix B.1.

Lemma 5.1. If a probability mass function ϕ fullfills (5.2), there exists c “ cp t̂ , c1q ą 0
such that

RLpϕ,ϕq ě RL{2pϕ,ϕq ě c log
`

1` L{2
1`4Drϕs

˘

, (5.4)

and hence condition (1.30) implies condition (5.3).

We also require condition (1.32), that is boundedness of the variance of the point-to-plane
partition function ZβLpϕq “ ZβLpϕ, 1q, which we recall here for convenience:

VarrZβLpϕqs ď c3 . (5.5)

We stress that we impose no assumption on ψ in ZβLpϕ,ψq.
We can now state our strengthened moment bound, which generalises Theorem 1.11.

Theorem 5.2 (Strengthened general moment bound). Given h P N and t̂ , c1, c
1
2,

c3 P p0,8q, there exist constants Lh,Ch ă 8 (depending also on t̂ , c1, c
1
2, c3) such that

ˇ

ˇE
“`

ZβLpϕ,ψq ´ ErZβLpϕ,ψqs
˘h‰ˇ

ˇ ď ChVarrZβLpϕqs
h
2

›

›

›

›

ψp¨q e
´ t̂

2

| ¨ ´z0|?
L

›

›

›

›

h

`
8

(5.6)

uniformly for β P r0, β0s, L ě Lh, for probability mass functions ϕ and z0 P Z2 satisfying
(5.2), (5.3) and (5.5), and for arbitrary function ψ. Furthermore:

‚ z0 in (5.6) (from (5.2)) can be replaced by the mean mϕ of ϕ (see (1.28));

‚ the bound (5.6) still holds if, on the LHS, we replace ZβLpϕ,ψq by its restriction to
any subset of random walk paths in its definition (5.1).

The rest of this section is devoted to proving Theorem 5.2.

5.1. Preliminary lemmas. We collect here some technical lemmas that will be useful
in the proof. We first show that, for any probability mass function ϕ satisfying condition
(5.2), we have a uniform lower bound on RL{2pϕ,ϕq. The proof is given in Appendix B.2.
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Lemma 5.3. Given t̂, c1 P p0,8q, there exists η ą 0 (depending on t̂, c1) such that, for any
probability mass function ϕ satisfying (5.2) with constants t̂ and c1, we have

RL{2pϕ,ϕq ě η . (5.7)

We next show that the assumptions of Theorem 5.2 force β to be at most critical. To this
purpose, recalling (1.15) and (1.19), we have the equivalence for any ϑ P R, as LÑ8,

σ2
β “

1

RL ´ ϑ` op1q
ðñ σ2

β “
1

RL

ˆ

1`
π ϑ` op1q

logL

˙

. (5.8)

The next result is proved in Appendix B.3.

Lemma 5.4. Given t̂, c1, c3 P p0,8q, there exists ϑ̄ P r0,8q (depending on t̂, c1, c3) such
that, for any β ě 0, L P N and any probability mass function ϕ satisfying (5.2) and (5.5)
with constants t̂, c1 and c3, we have (recall σ2

β from (1.16))

σ2
β ď

1

RL ´ ϑ̄
. (5.9)

We finally define an exponentially dampened version of RL from (2.5):

R
pλ̂q
L :“

L
ÿ

n“1

e´λ̂
n
L q2np0q for λ̂ ě 0 , (5.10)

We will use this quantity to give a proxy for the second moment E
“

ZβL{2p0q
2‰, as shown in

the next result, proved in Appendix B.4.

Lemma 5.5. Recall the constant a` from (2.4). If β ě 0, L P N and λ̂ ě 0 satisfy

σ2
β ď

1

R
pλ̂q
L ` 4 a`

, (5.11)

then

E
“

ZβL{2p0q
2‰
ě

1

2

1

1´ σ2
β R

pλ̂q
L

. (5.12)

In order to achieve condition (5.11), starting from (5.9), it is enough to take λ̂ ě 0 large
enough, as we show in the next elementary result, proved in Appendix B.5.

Lemma 5.6. Recall the constant a´ from (2.4). For any 0 ď λ̂ ď L, we have

R
pλ̂q
L ď RL ´ a´ log λ̂

2 . (5.13)

We are now ready to describe the strategy of the proof of Theorem 5.2.

5.2. A general estimate. We bound the moments of the partition function exploiting
the functional operator approach developed in [CSZ23a, LZ23, CCR23]. The following general
estimate is extracted from [CCR23, Section 4] (see Appendix B for the details). A comparison
with the original bound from [CSZ23a] is discussed in Remark 5.10.

Theorem 5.7 ([CCR23]). Fix any exponent h P N, h ě 3, system size L P N and coupling
constant β ą 0 small enough, say β ď β0 for a suitable β0 “ β0phq ą 0. Given t̂ ą 0 and
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λ̂ ě 0, there are constants Kpt̂qh , C
pt̂,λ̂q
h ă 8 such that, assuming σ2

β R
pλ̂q
L ă 1 and defining

Γ “ Γ
pt̂,λ̂q
h,β,L :“ K

pt̂q
h

σ2
β

1´ σ2
β R

pλ̂q
L

, (5.14)

the following bound holds for any 1 ă p, q ă 8 with 1
p `

1
q “ 1 and any functions ϕ,ψ on Z2:

ˇ

ˇE
“`

ZβLpϕ,ψq ´ ErZβLpϕ,ψqs
˘h‰ˇ

ˇ ď Cpt̂,λ̂qh

8
ÿ

r“1

`

p q Γ
˘maxtr,h

2
u

ˆ
›

›ϕp¨q e
t̂?
L
|¨|
›

›

`
1

›

›ϕp¨q e
t̂?
L
|¨|
›

›

h´1

`
p

ˆ
›

›ψp¨q e
´ t̂?

L
|¨|
›

›

`
8

›

›ψp¨q e
´ t̂?

L
|¨|
›

›

h´1

`
q .

(5.15)

The series converges iff p q Γ ă 1, in which case we can bound it by

8
ÿ

r“1

`

p q Γ
˘maxtr,h

2
u
ď eh

`

p q Γ
˘
h
2

1´ p q Γ
if 0 ă p q Γ ă 1 . (5.16)

We will deduce our goal (5.6) from (5.15). We first need to have a suitable control on the
second and third lines of (5.15) in order to fit our assumption on ϕ, see in particular (5.2)
and (5.3). Since we will be interested in taking q large, we may assume

q P r4,8q . (5.17)

We will need the following basic interpolation result.

Lemma 5.8. Fix p P p1, 2q and q P p2,8q with 1
p `

1
q “ 1. For any f, g on Z2,

}f g}`p ď
›

›f g
q
q´2

›

›

1´ 2
q

`
1 }f}

2
q

`
2 . (5.18)

Proof. We write fp “ f1´α f2α, with α “ p´ 1 “ p
q P p0,

1
2q, and apply Hölder to get

›

›f g
›

›

p

`
p “

ÿ

zPZ2

|fpzq|p |gpzq|p ď

ˆ

ÿ

zPZ2

|fpzq| |gpzq|
p

1´α

˙1´αˆ
ÿ

zPZ2

fpzq2
˙α

which coincides with (5.19) since 1´α
p “ 1´ 2

q and α
p “

1
q . �

Let us look back at the second and third lines of (5.15). We apply (5.18) with f “ ϕ and

gp¨q “ e
t̂?
L
|¨|: for q ě 4 we have q

q´2 ď 2, hence
›

›ϕp¨q e
t̂?
L
|¨|
›

›

`
p ď

›

›ϕp¨q e
2t̂?
L
|¨|
›

›

1´ 2
q

`
1

›

›ϕ
›

›

2
q

`
2 ď

›

›ϕp¨q e
2t̂?
L
|¨|
›

›

`
1

›

›ϕ
›

›

2
q

`
2 . (5.19)

We next make the simple estimate that, for some c ă 8,

›

›ψp¨q e
´ t̂?

L
|¨|
›

›

`
q ď

›

›ψp¨q e
´ t̂

2
?
L
|¨|
›

›

`
8

˜

ÿ

zPZ2

e
´ t̂

2
?
L
q|z|

¸
1
q

ď
›

›ψp¨q e
´ t̂

2
?
L
|¨|
›

›

`
8

ˆ

cL

t̂2

˙
1
q

(5.20)

because
ř

zPZ2 e´
s
2
q|z|
ď

ř

zPZ2 e´
s
2
|z|
ď c

s
2 . Plugging these estimates into (5.15), as well as

the bound (5.16) with p ď 2, we obtain the following corollary of Theorem 5.7.
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Proposition 5.9. For any h P N, h ě 3, there is β0 “ β0phq ą 0 such that for any
β P r0, β0s and L P N the following holds. Given t̂ ą 0 and λ̂ ě 0, there are constants
K
pt̂q
h , C

pt̂,λ̂q
h ă 8 such that, recalling Γ from (5.14), for any

q ě 4 such that 0 ă 2q Γ ă 1 , (5.21)

we can bound, for any functions ϕ,ψ on Z2,

ˇ

ˇE
“`

ZβLpϕ,ψq ´ ErZβLpϕ,ψqs
˘h‰ˇ

ˇ ď Cpt̂,λ̂qh

p2q Γq
h
2

1´ 2q Γ

`

L }ϕ}2
`
2

˘
h´1
q

ˆ
›

›ϕp¨q e
2t̂?
L
| ¨ ´z0|

›

›

h

`
1

›

›ψp¨q e
´ t̂

2
?
L
| ¨ ´z0|

›

›

h

`
8 .

(5.22)

In the next subsection we will show that our goal (5.6) follows by (5.22).

Remark 5.10 (Comparison with [CSZ23a]). From the proof of [CSZ23a, Theorem 6.1]
one can extract a bound similar to (5.15), but with a different dependence on the boundary
conditions ϕ,ψ, namely the second and third lines of (5.15) are replaced by†

L
1
q

›

›ϕp¨q e
t̂?
L
|¨|
›

›

h

`
p ˆ

L
1
p

L
}ψ}h8

›

›e
´ t̂?

L
|¨|
›

›

h

`
q “

›

›ϕp¨q e
t̂?
L
|¨|
›

›

h

`
p }ψ}

h
8

›

›e
´ t̂?

L
|¨|
›

›

h

`
q . (5.23)

The bound (5.15) is better for two reasons:

‚ the quantity
›

›ψp¨q e
´ t̂?

L
|¨|
›

›

`
q is smaller than }ψ}8

›

›e
´ t̂?

L
|¨|
›

›

`
q and it allows for un-

bounded functions ψ;

‚ the power h´ 1 in (5.15) is better than h in (5.23) in case D “ Drϕs ! L, see (1.28):
for instance, if ϕ is a probability mass function supported on a ball of radius

?
D with

}ϕ}8 “ Op 1
D q and ψ ” 1 is constant (for simplicity), we have for some c ą 0

›

›ϕp¨q e
t̂?
L
|¨|
›

›

`
p ě c

D
1
p

D
“ cD

´ 1
q ,

›

›ψp¨q e
´ t̂?

L
|¨|
›

›

`
q ě cL

1
q ,

hence (5.23) is larger than (5.15) by a factor ě c2
p LD q

1
q " 1.

5.3. Proof of Theorem 5.2. Given h P N and constants t̂, c1, c
1
2, c3 P p0,8q, we

need to prove the bound (5.6) for all β ě 0 and L large enough, uniformly over probability
mass functions ϕ satisfying (5.2), (5.3), (5.5) and over arbitrary functions ψ on Z2. For
simplicity, we assume z0 “ 0 (it suffices to replace ϕ by ϕp ¨ ` z0q and likewise for ψ).

We will deduce (5.6) from (5.22). To apply Proposition 5.9, we note that β ď β0phq is
guaranteed by (5.9) if we take L ě Lh for Lh large enough (depending on h and ϑ̄ in (5.9),
hence on t̂, c1, c3). We show below that condition (5.21) can be satisfied as follows:

(a) we first fix λ̂ ě 0 such that Γ P p0, 1
16 s;

(b) then we pick q ě 4 with 2q Γ ď 1
2 (to discard the denominator 1´ 2q Γ ě 1

2 in (5.22)).

We can now apply the bound (5.15). We show below that

†The factors L
1
q , L

1
p in (5.23) arise from operator norms, see [CSZ23a, Proposition 6.6], while 1

L
is due

to an averaging on the system size from L to 2L which is performed in the proof.
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(c) for suitable constants C,C 1 ă 8 (depending on h, t̂, c1, c
1
2, c3),

2q Γ ď C VarrZβLpϕqs ,
`

L }ϕ}2
`
2

˘
1
q ď C 1 . (5.24)

Plugging these bounds into (5.22), in view of (5.2), we see that the RHS of (5.15) gives
precisely (5.6) with the constant

Ch “ 2 Cpt̂,λ̂qh C
h
2 pC 1qh´1 ch1 (5.25)

We complete the proof of Theorem 5.2 proving the steps (a), (b) and (c).

Step (a). To find the desired λ̂ ě 0, we note that by (5.14) we have the equivalence

0 ă Γ ď 1
16 ðñ σ2

β ď
1

R
pλ̂q
L ` 16 K

pt̂q
h

. (5.26)

We will later need the similar condition (5.11). Both conditions hold if we take λ̂ large
enough, thanks to Lemmas 5.4 and 5.6: more explicitly, by (5.9) and (5.13), we can fix

λ̂ :“ 2 e
2π

´

ϑ̄`max
!

16 K
pt̂q
h ,4 a`

)¯

. (5.27)

Step (b). We will see below that it would be convenient to take q « RL{2pϕ,ϕq. To ensure
that q ě 4 and also 2q Γ ď 1

2 i.e. q ď 1
4 Γ , since RL{2pϕ,ϕq ě η by (5.7), we define

q :“ min

"

4
RL{2pϕ,ϕq

η
,

1

4 Γ

*

. (5.28)

In particular, we have by definition

q Γ ď
4

η
RL{2pϕ,ϕqΓ . (5.29)

Step (c). Let us prove the first relation in (5.24). By definition of Γ, see (5.14), and by
Lemma 5.5 (note that condition (5.11) is ensured by our choice of λ̂), we can bound

RL{2pϕ,ϕqΓ ď K
pt̂q
h RL{2pϕ,ϕq

σ2
β

1´ σ2
β R

pλ̂q
L

ď 2 K
pt̂q
h RL{2pϕ,ϕqσ

2
β E

“

ZβL{2p0q
2‰ .

Applying the first bound in (2.16) we then obtain

RL{2pϕ,ϕqΓ ď 2 K
pt̂q
h VarrZβLpϕqs , (5.30)

hence, recalling (5.29), the first relation in (5.24) holds with C :“
16 K

pt̂q
h
η .

Let us finally prove the second relation in (5.24). By assumption (5.3) we can bound
`

L }ϕ}2
`
2

˘
1
q “ e

1
q

logpL }ϕ}
2

`
2 q
ď e

1
q
c
1
2RLpϕ,ϕq .

It remains to show that, for some constant c ą 0 (depending on h, t̂, c1, c
1
2, c3),

q ě cRLpϕ,ϕq , (5.31)

so that the second relation in (5.24) holds with C 1 “ e
1
c
c
1
2 .

Let us finally prove (5.31). It follows by (5.30) and assumption (5.5) that
1

Γ
ě

1

2 K
pt̂q
h c3

RL{2pϕ,ϕq ,
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hence, recalling (5.28), we can bound

q ě aRL{2pϕ,ϕq with a :“ 4
η ^

1

8 K
pt̂q
h c3

. (5.32)

At last, by (2.7) and (5.7), for any probability mass function ϕ we can write

RLpϕ,ϕq

RL{2pϕ,ϕq
ď 1`

RLpϕ,ϕq ´RL{2pϕ,ϕq

RL{2pϕ,ϕq
ď 1`

a`
η
. (5.33)

Combining (5.33) with (5.32) then gives (5.31) with c :“ a{p1` a`{ηq. �

Appendix A. Second moment computations

We first prove Lemma 2.1 about Green’s functions. Then we prove Proposition 2.3 on the
second moment of the point-to-plane partition function. Finally, we prove Theorem 2.5 on
the variance of the averaged partition function, together with Propositions 2.7 and 2.8.

Proof of Lemma 2.1. From (2.8), we see that Gpaq “ 1
2π logp1` a´2

q ` Op1q uniformly
over a ą 0. This already proves the second equality in (2.9). To prove the first equality, we
plug the first line of (2.3) into (2.5) to get

RLpzq “

" L
ÿ

n“1

gnpzq

*

2 ¨ 1Z2
even
pzq ` Op1q . (A.1)

We can replace gnpzq “ gnp|z|q by gnp|z| ` 1q, because their difference is Opn´3{2
q and can

be absorbed in the Op1q term. We next write

L
ÿ

n“1

gnp|z| ` 1q “
1

L

L
ÿ

n“1

g n
L

´

|z|`1
?
L

¯

“ G
´

|z|`1
?
L

¯

`∆L

´

|z|`1
?
L

¯

where we set

∆Lpxq :“
L
ÿ

n“1

ż n
L

n´1
L

 

g n
L
pxq ´ gtpxq

(

dt .

It remains to show that ∆Lpxq “ Op1q is uniformly bounded for |x| “ |z|`1
?
L
ě 1?

L
.

By direct computation we see that |Bugupxq| ď c

u
2 e´

|x|
2

cu for some c ă 8. Then, uniformly
for |x| ě 1?

L
, we can bound the term n “ 1 in ∆Lpxq by an absolute constant C ă 8:

ż 1
L

0

ˆ
ż 1
L

t

c

u2 e´
1
cLu du

˙

dt “

ż 1
L

0

c

u
e´

1
cLu du “

ż 1

0

c

v
e´

1
cv dv “: C ă 8 .

For the terms n ě 2 in ∆Lpxq, we simply use |Bugupxq| ď c

u
2 to bound |g n

L
pxq´ gtpxq| ď

c

t
2

1
L

(because n
L ´ t ď

1
L) and we obtain, uniformly over x P R2,

L
ÿ

n“2

ż n
L

n´1
L

ˇ

ˇg n
L
pxq ´ gtpxq

ˇ

ˇ dt ď
c

L

L
ÿ

n“2

ż n
L

n´1
L

1

t2
dt “

c

L

ż 1

1
L

1

t2
dt ď c ă 8 .

This completes the proof that |∆Lpxq| ď C ` c uniformly for L P N and |x| ě 1?
L
.
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We finally prove (2.10), for which we may assume that z ‰ 0 and L is large enough. By
the second line of (2.3), uniformly over |z|2 ď 2p1` t2qn we can write, for a suitable c ą 0,

q2npzq “ gnpzq eOp
p1`t

2
q
2

n
q 21Z2

even
pzq ě

c e´
t
4

c

n
1Z2

even
pzq ,

hence, restricting the sum in (2.5) to n ě n̄pzq :“ r1
2p

|z|
2

1`t
2 ` 1qs, we get

RLpzq ě
L
ÿ

n“n̄pzq

c e´
t
4

c

n
ě

ż L`1

n̄pzq

c e´
t
4

c

u
du “ c e´

t
4

c log
L` 1

n̄pzq
.

For |z| ď t
?
L we have n̄pzq ď 1

2pL`1q, equivalently L`1
n̄pzq ě 1` L`1

2n̄pzq , and since n̄pzq ď |z|
2
`1

2

we finally obtain log L`1
n̄pzq ě logp1` L`1

1`|z|
2 q, hence (2.10) holds with ct “ c e´

t
4

c . �

The key tool for the proof of Proposition 2.3 is the following renewal representation of
the second moment of the partition function developed in [CSZ19a].

Remark A.1 (Renewal interpretation). Given N P N, we define the integer valued
renewal process

τ
pNq
k “ T

pNq
1 ` . . .` T

pNq
k

with τ pNq0 :“ 0 and i.i.d. increments pT pNqi qiPN with distribution (recall (1.14) and (1.15))

P
`

T
pNq
i “ n

˘

“
1

RN
q2np0q, 1 ď i ď N. (A.2)

For β “ βN in the quasi-critical regime (1.22), we can then write (2.12) as follows: for every
n P N0,

UβN pnq “
ÿ

kě0

`

1´ |ϑN |
logN

˘

k P
`

τ
pNq
k “ n

˘

“
logN

|ϑN |
P
`

τ
pNq
KN “ n

˘

, (A.3)

where KN is an independent Geometric random variable with mean logN
|ϑN |

.

Proof of Proposition 2.3. Note that (recall (A.2) and (1.15))

P
`

τ
pNq
k ď L

˘

ď P
`

T
pNq
i ď L @i “ 1, . . . , L

˘

“ P
`

T
pNq
1 ď L

˘k
“

´RL
RN

¯k
.

Then it follows by (2.12) and (2.13) that

E
“

Z
βN
L p0q2

‰

“ UβN pLq “
ÿ

kě0

`

1´ |ϑN |
logN

˘

k P
`

τ
pNq
k ď L

˘

ď
ÿ

kě0

`

1´ |ϑN |
logN

˘

k
`

RL
RN

˘

k ,

which yields the RHS of (2.14) as an upper bound.
To get a lower bound, note that we can write P

`

τ
pNq
k ď L

˘

“ p
RL
RN
q
k P

`

τ
pLq
k ď L

˘

because

the law of T pNqi conditionally on T pNqi ď L is just the law of T pLqi , see (A.2). By Markov’s
inequality, we have P

`

τ
pLq
k ď L

˘

ě 1´ 1
LErτ

pLq
k s, where

Erτ
pLq
k s “ kErτ

pLq
1 s “

k

RL

L
ÿ

n“1

n q2np0q ď c
k

RL
L for some c ă 8.
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Using
ř8

k“0 k x
k
“ x

p1´xq
2 , we obtain

E
“

Z
βN
L p0q2

‰

ě
ÿ

kě0

`

1´ |ϑN |
logN

˘

k
`

RL
RN

˘

k
`

1´ c k
RL

˘

“
1

1´ RL
RN
p1´ |ϑN |

logN q

ˆ

1´
c

RL

RL
RN
p1´ |ϑN |

logN q

1´ RL
RN
p1´ |ϑN |

logN q

˙

ě
1

1´ RL
RN
p1´ |ϑN |

logN q

ˆ

1´
c1

|ϑN |

˙

,

where the last inequality is obtained using p1´ |ϑN |
logN q ď 1 in the numerator, RL

RN
ď 1 in the

denominator, and RN „
logN
π by (1.15). This completes the proof of (2.14). �

Proof of Theorem 2.5. We are going to exploit the upper and lower bounds in (2.16).
We recall from (1.24) that log 1

δ
2
N

“ |ϑN |, hence by (1.15),

RLN
RN

“

logN ´ ` log 1

δ
2
N

`Op1q

logN `Op1q
“ 1´ `

|ϑN | `Op1q

logN
.

Applying (2.14) then gives

E
“

Z
βN
LN
p0q2

‰

„
1

1´
RLN
RN

p1´ |ϑN |
logN q

„
1

1` `

logN

|ϑN |
, (A.4)

and the same holds for E
“

Z
βN
1
2
LN
p0q2

‰

since 1
2LN “ N pδ2

N q
``op1q, just as LN .

The difference RLpϕ,ϕq ´R 1
2
Lpϕ,ϕq is uniformly bounded by a constant, see (2.7). Then

assumption (2.20) on ϕN implies, since |ϑN | Ñ 8,

R 1
2
LN
pϕN , ϕN q “ RLN pϕN , ϕN q `Op1q “

1

π
pw ´ `q |ϑN | ` op|ϑN |q . (A.5)

Since σ2
βN
„ 1

RN
„ π

logN , see (1.22) and (1.15), the bounds in (2.16) yield (2.21). �

Remark A.2 (Sub-critical regime). The proof of Theorem 2.5 also applies to the sub-
critical regime (1.26) if we take ϑN „ ´p1 ´ β̂2

q logN with β̂2
P p0, 1q. In this case

|ϑN |
logN Ñ p1´ β̂2

q ą 0 and we must take into account second order terms in (A.4), namely

E
“

Z
βN
LN
p0q2

‰

„
1

1´ p1´ ` p1´ β̂2
qq p1´ p1´ β̂2

qq
„

1

p1` ` β̂2
q p1´ β̂2

q
. (A.6)

Since σ2
βN
„

β̂
2

RN
„

π β̂
2

logN , the bounds in (2.16) yield (2.22).

Proof of Proposition 2.7. Recalling (2.6), we rewrite condition (2.20) as
ÿ

x,yPZ2
even

ϕN pxqϕN pyqRLN px´ yq “
1

π
log

LN
WN

` op|ϑN |q . (A.7)

To obtain our goal (2.23), we simply replace RLN px´ yq in this sum by 1
π logp1` LN

1`|x´y|
2 q

because their difference is uniformly bounded, see (2.9), and hence their contributions to
the sum differ by Op1q “ op|ϑN |q, which is negligible for the RHS of (A.7). �
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Proof of Proposition 2.8. We need to show that condition (2.24) implies (2.23).
We assume for simplicity of notation that zN “ 0. We then rewrite (2.24) as follows:

ÿ

|x|ď

b

W
`
N

ϕN pxq “ 1´ op1q , sup
xPZ2

ϕN pxq ď
1

W´
N

, with W˘
N :“WN e˘tN , (A.8)

where we recall that 0 ď tN “ op|ϑN |q. Henceforth
If ϕN satisfies (A.8), then we can get a lower bound on the sum in (2.23) by restricting

to the ranges |x|, |y| ď
b

W`
N , which have probability 1´ op1q by the first relation in (A.8).

For such values of x, y we have |x´ y| ď 2
b

W`
N , so the logarithm in the LHS of (2.23) is

bounded from below by

log
´

1` LN
1`4W

`
N

¯

ě log LN
5W

`
N

“ log LN
WN

´ tN ´ log 5 “ log LN
WN

´ op|ϑN |q , (A.9)

where the first inequality holds for large N because W`
N ěWN Ñ8, see (2.19). This yields

the RHS of (2.23).
To get an upper bound, we fix ξN Ñ 8 with ξN “ op|ϑN |q and we define the scale

VN :“ W´
N e´ξN “ WN e´tN´ξN which is smaller than W´

N . For |x ´ y| ě
?
VN , we can

bound from above the logarithm in (2.23) by logp1` LN
1`VN

q ď logp1` LN
VN
q. In case LN

VN
ď 1

this is at most log 2 “ op|ϑN |q, while in case LN
VN
ą 1 we obtain the upper bound

log
´

2 LN
VN

¯

“ log LN
WN

` tN ` ξN ` log 2 “ log LN
WN

` op|ϑN |q ,

which agrees with the RHS of (2.23). We are left with showing that the range |x´y| ă
?
VN

gives a negligible contribution of order op|ϑN |q to the sum in (2.23).
For fixed y, we apply the second relation in (A.8) to estimate the sum over x in (2.23):

ÿ

xPBpy,
?
VN q

ϕN pxq log
´

1` LN
1`|x´y|

2

¯

ď
1

W´
N

ÿ

xPBpy,
?
VN q

log
´

1` LN
1`|x´y|

2

¯

ď C
VN

W´
N

ż

|z|ď1
log

´

1` LN
VN

1

|z|
2

¯

dz

for some C ă 8, by Riemann sum approximation. Since VN
W
´
N

“ e´ξN “ op1q by definition of

VN , it remains to show that the integral is Op|ϑN |q. If
LN
VN
ď 1 then the integral is at most

ż

|z|ď1
log

´

1` 1

|z|
2

¯

dz “ Op1q “ op|ϑN |q ,

while if LNVN ą 1 then, recalling that VN “WN e´op|ϑN |q, we can bound the integral by
ż

|z|ď1
log

´

LN
VN

2

|z|
2

¯

dz “ log LN
VN
`Op1q “ log LN

WN
` op|ϑN |q “ Op|ϑN |q ,

where the last equality holds by (2.18) and (2.19). The proof is completed. �

Appendix B. Auxiliary proofs for high moments bounds

In this appendix, we collect the proofs of some results from Section 5.
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B.1. Proof of Lemma 5.1. We can rewrite Drϕs, see (1.28), as follows:

Drf s “
1

2

ÿ

z,wPZ2

|z ´ w|2 fpzq fpwq . (B.1)

To prove (5.4), we first estimate

pą :“
ÿ

|z´z0|ąs
?
L{2

ϕpzq ď e´
?

2 t̂ s
ÿ

zPZ2

ϕpzq e
2 t̂

|z´z0|?
L ď c1 e´

?
2 t̂ s

ď
1

4
for s :“ logp4c1q?

2 t̂
,

therefore pď :“ 1´pą “
ř

|z´z0|ďs
?
L{2

ϕpzq ě 3
4 . We now restrict the sums in the definition

(2.6) of RLpϕ,ϕq to |z ´ z0| ď s
a

L{2, |w ´ z0| ď s
a

L{2: defining the probability mass
function ϕ̃pzq :“ p´1

ď ϕpzq1
|z´z0|ďs

?
L{2

and recalling (2.10), we can write

RLpϕ,ϕq ě RL{2pϕ,ϕq ě p2
ďRL{2pϕ̃, ϕ̃q ě p2

ď cs log
`

1` L{2
1`2Drϕ̃s

˘

,

where we applied (B.1) and Jensen’s inequality, since x ÞÑ logp1` L
x q is convex for x ą 0.

Since Drϕ̃s ď p´2
ď Drϕs ď 2Drϕs, the proof of (5.4) is complete.

In order to prove that (1.30) implies (5.3), we first observe that

}ϕ}2
`
2 “

ÿ

zPZ2

ϕpzq2 ď }ϕ}`8
ÿ

zPZ2

ϕpzq “ }ϕ}`8 , (B.2)

since ϕ is a probability mass function. We next apply (5.4), that we rewrite for convenience:

RLpϕ,ϕq ě c log
`

1` L{2
1`4Drϕs

˘

. (B.3)

We now assume that (1.30) holds and we distinguish two cases:

‚ if Drϕs ď 1 then RLpϕ,ϕq ě c log L
10 by (B.3), while logpL }ϕ}2

`
2q ď logpLq by (B.2)

and }ϕ}`8 ď 1, hence (5.3) is satisfied;

‚ if Drϕs ą 1, then RLpϕ,ϕq ě c logp 1
10

L
Drϕsq by (B.3) and logpL }ϕ}2

`
2q ď logpc1c2

L
Drϕsq

by (B.2) and (1.30), so (5.3) holds again.

The proof is completed. �

B.2. Proof of Lemma 5.3. Recalling (B.1), by the (squared) triangle inequality
|z ´ w|2 ď 2p|z ´ z0|

2
` |w ´ z0|

2
q and x2

ď ex for x ě 0, we can bound

Drϕs ď
ÿ

zPZ2

|z ´ z0|
2 ϕpzq ď

L

2 t̂

ÿ

zPZ2

e
2 t̂
L
|z´z0|

2

ϕpzq ď
c1

2 t̂
L .

It then suffices to apply (5.4) to prove (5.7) with η “ c log
`

1` t̂
2p t̂`2c1q

˘

. �

B.3. Proof of Lemma 5.4. We fix β ě 0, L P N and a probability mass function ϕ
satisfying (5.2) and (5.5). By the first inequality in (2.16), in view of (5.7) and (1.32), we
obtain

σ2
β E

“

ZβL{2p0q
2‰
ď

c3

η
. (B.4)

We are going to obtain a lower bound on E
“

ZβL{2p0q
2‰ which will yield our goal (5.9).
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If σ2
βRL ă 1 then (5.9) holds with ϑ̄ “ 0. We then assume σ2

βRL ě 1, which lets us write

σ2
β RL “

1

1´ ϑ
RL

for a suitable 0 ď ϑ “ ϑpβ, Lq ă RL . (B.5)

Our goal (5.9) is to show that ϑ ď ϑ̄ for some ϑ̄ “ ϑ̄p t̂ , c1, c3q P r0,8q.
Let τ pLqk be the random walk with Ppτ

pLq
1 “ nq “ 1

RL
q2np0q1t1ďnďLu. We can write

E
“

ZβL{2p0q
2‰
“ 1`

8
ÿ

k“1

pσ2
βq
k

ÿ

0ăn1ă...ănkďL{2

k
ź

i“1

q2pni´ni´1q
p0q

“ 1`
8
ÿ

k“1

pσ2
βRLq

k Ppτ
pLq
k ď L{2q ě 1`

8
ÿ

k“1

pσ2
βRLq

k

ˆ

1´
Erτ

pLq
k s

L{2

˙

.

Note that Erτ
pLq
k s “ kErτ

pLq
1 s “ k

RL

řL
n“1 n q2np0q ď

k
RL

a` L by (2.4). Restricting to

k ď r 1
4a`

RLs we then have Erτ
pLq
k s ď L{4. Since σ2

βRL ě e
ϑ
RL by (B.5) and 1

1´x ě ex for
0 ď x ď 1, we get

E
“

ZβL{2p0q
2‰
ě

1

2

K
ÿ

k“1

pσ2
βRLq

k
ě

1

2

K
ÿ

k“1

e
ϑ
RM

k with K :“ r 1
4a`

RLs .

Applying Jensen we then obtain

E
“

ZβL{2p0q
2‰
ě
K

2
e
ϑ
RL

1
K

řK
k“1 k ě

K

2
e
ϑ
RL

K
2 ě

RL
8a`

e
ϑ

8a` ě
1

σ2
β

1

8a`
e

ϑ
8a` ,

where in the last inequality we used σ2
β RL ě 1. Recalling (B.4), we finally obtain

e
ϑ

8a` ď 8a`
c3

η
, hence ϑ ď ϑ̄ :“ 8a` log`

8a` c3

η
,

which completes the proof of (5.9). �

B.4. Proof of Lemma 5.5. Recalling (5.10), we denote by τ pL,λ̂qk the random walk

with step distribution Ppτ
pL,λ̂q
1 “ nq “ 1

R
pλ̂q
L

e´
λ̂
L
n q2np0q1t1,...,Lupnq. Then we can write

E
“

ZβL{2p0q
2‰
“ 1`

8
ÿ

k“1

pσ2
βq
k

ÿ

0ăn1ă...ănkďL{2

k
ź

i“1

q2pni´ni´1q
p0q

ě 1`
8
ÿ

k“1

pσ2
βq
k

ÿ

0ăn1ă...ănkďL{2

k
ź

i“1

e´
λ̂
L
pni´ni´1q q2pni´ni´1q

p0q

“ 1`
8
ÿ

k“1

pσ2
βR

pλ̂q
L q

k Ppτ
pL,λ̂q
k ď L{2q ě 1`

8
ÿ

k“1

pσ2
βR

pλ̂q
L q

k

ˆ

1´
Erτ

pL,λ̂q
k s

L{2

˙
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and note that Erτ
pL,λ̂q
k s “ kErτ

pL,λ̂q
1 s “ k

R
pλ̂q
L

řL
n“1 n e´

λ̂
L
n q2np0q ď

k

R
pλ̂q
L

a` L by (2.4). Note

that assumption (5.11) ensures that σ2
βR

pλ̂q
L ă 1. By

ř8

k“1 k x
k
“ x

p1´xq
2 we then obtain

E
“

ZβL{2p0q
2‰
ě

1

1´ σ2
βR

pλ̂q
L

´
2a`

R
pλ̂q
L

σ2
βR

pλ̂q
L

p1´ σ2
βR

pλ̂q
L q

2
“

1

1´ σ2
βR

pλ̂q
L

ˆ

1´
2a` σ

2
β

1´ σ2
βR

pλ̂q
L

˙

.

Note that assumption (5.11) is equivalent to 2a` σ
2
β

1´σ
2
βR

pλ̂q
L

ď 1
2 , which proves (5.12). �

B.5. Proof of Lemma 5.6. Since 1´ e´x ě 1
2 for x ě 1, recalling (2.4) and bounding

řb
n“a

1
n ě log b

a , for λ̂ ě 1 we can write

R
pλ̂q
L :“ RL ´

L
ÿ

n“1

p1´ e´λ̂
n
L q q2np0q ď RL ´

1

2

L
ÿ

n“rλ̂
´1
Ls

q2np0q ď RL ´
a´
2

log
L

rλ̂´1Ls
.

We finally note that

L

rλ̂´1Ls
ě

L

λ̂´1L` 1
“ λ̂

L

L` λ̂
ě
λ̂

2
for L ě λ̂ ,

which completes the proof of (5.13). �

B.6. Proof of Theorem 5.7. For the final relation (5.16), we simply note that

@0 ď x ă 1 , h ě 2:
8
ÿ

r“1

xmaxtr,h
2
u
ď

ˆ

h

2
`

1

1´ x

˙

x
h
2 ď eh

x
h
2

1´ x
.

It remains to show that (5.15) holds. This bound is already proved in [CCR23], though it
is not stated in this form. For this reason, in the next lines we state the needed results from
[CCR23, Section 4] and we put them together to deduce (5.15). The purpose is to provide a
roadmap for an interested reader to check that (5.15) is a direct consequence of the results
in [CCR23]. We refrain from introducing the notation involved, see [CCR23] for details.

We start from [CCR23, Theorems 4.8 and 4.11]: by equations (4.18)-(4.19) and (4.24)-
(4.25) with λ “ λ̂{L, the following inequality holds:

ˇ

ˇE
“`

ZβLpϕ,ψq ´ ErZβLpϕ,ψqs
˘h‰ˇ

ˇ ď

´

max
I‰˚

›

›

pq
|ϕ|,I
L

1
W
›

›

`
p

¯´

max
J‰˚

›

›W sq
|ψ|,J
L

›

›

`
q

¯

eλ̂
8
ÿ

r“1

Ξbulk
prq

(B.6)

where

Ξbulk
prq :“

ÿ

I1,...,Ir$t1,...,hu
with full support

and Ii‰Ii´1, Ii‰˚ @i

" r
ź

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ

*

`

}pQL}
W
`
q
Ñ`

q

˘r´1 `
}|pU|L,λ̂,β}

W
`
q
Ñ`

q

˘r
. (B.7)

The terms in these expressions are defined in [CCR23, Section 4]. In a nutshell, W is a
weight function† and pq

|ϕ|,I
L , sq|ϕ|,IL denote suitable averages of the boundary conditions ϕ, ψ

with respect to the random walk kernel, while pQ and pU denote linear operators acting on

†We choose W “Wt with t “ t̂{
?
L as in [CCR23, Remark 4.12].
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functions on pZ2
q
h. We will next state estimates on each term in (B.6)-(B.7), taken verbatim

from [CCR23], which combined together will lead to (5.15).
We denote by Ct̂, Ct̂, pCt̂, qCt̂ suitable constants. Let us first bound the terms in (B.6):

‚ by [CCR23, Proposition 4.19], equation (4.44) with r “ 1 gives
´

max
I‰˚

›

›

pq
|ϕ|,I
L

1
W
›

›

`
p

¯

ď 4 C h
t̂ q

›

›ϕp¨q e
t̂?
L
|¨|
›

›

`
1

›

›ϕp¨q e
t̂?
L
|¨|
›

›

h´1

`
p ; (B.8)

‚ by [CCR23, Proposition 4.21], equation (4.49) with wtp¨q “ e
´ t̂?

L
|¨| gives

´

max
J‰˚

›

›W sq
|ψ|,J
L

›

›

`
q

¯

ď Ct̂
h
p
›

›ψp¨q e
´ t̂?

L
|¨|
›

›

`
8

›

›ψp¨q e
´ t̂?

L
|¨|
›

›

h´1

`
q . (B.9)

Plugging these bounds into (B.6), we obtain the second and third line in (5.15).
We next attach the factors p and q from (B.8) and (B.9) to Ξbulk

prq. To complete the
proof of (5.15), recalling (5.14), it suffices to show that for a suitable constant Kpt̂qh ă 8

pp qqΞbulk
prq ď

`

p q Γ
˘maxtr,h

2
u with Γ “ K

pt̂q
h

σ2
β

1´ σ2
β R

pλ̂q
L

. (B.10)

We bound the terms in (B.7) as follows:†

‚ by [CCR23, Proposition 4.23], equation (4.45) gives

}pQL}
W
`
q
Ñ`

q ď h! pC h
t̂ p q ;

‚ by [CCR23, Proposition 4.24], equation (4.58) gives

}|pU|L,λ̂,β}
W
`
q
Ñ`

q ď 1` qC h
t̂

σ2
βR

pλ̂q
L

1´ σ2
βR

pλ̂q
L

ď
qC h
t̂

1´ σ2
βR

pλ̂q
L

;

‚ by [CCR23, Proposition 4.13], there is Cphq ă 8 such that

@I1, . . . , Ir $ t1, . . . , hu with full support :
r
ź

i“1

ˇ

ˇErξIiβ s
ˇ

ˇ ď Cphqr
`

σ2
β

˘maxtr,h
2
u
.

Overall, applying (B.7) we can bound

pp qqΞbulk
prq ď pp qqr

`

h! pC h
t̂

˘r´1
ˆ

qC h
t̂

1´ σ2
βR

pλ̂q
L

˙r

Cphqr
`

σ2
β

˘maxtr,h
2
u
.

We increase the RHS replacing r by maxtr, h2 u, which shows that (B.10) holds with

K
pt̂q
h :“ h! pC h

t̂
qC h
t̂ Cphq . (B.11)

This completes the proof. �
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