HAIRER’S RECONSTRUCTION THEOREM
WITHOUT REGULARITY STRUCTURES

FRANCESCO CARAVENNA AND LORENZO ZAMBOTTI

ABSTRACT. This survey is devoted to Martin Hairer’s Reconstruction Theorem,
which is one of the cornerstones of his theory of Regularity Structures [Hail4]. Our
aim is to give a new self-contained and elementary proof of this Theorem and of
some applications. We present it as a general result in the theory of distributions
that can be understood without any knowledge of Regularity Structures themselves,
which we do not even need to define.

1. INTRODUCTION

Consider the following problem: if at each point € R? we are given a distribu-
tion (generalized function) F, on RY, is there a distribution f on R¢ which is well
approximated by F}, around each point z € R%?

A classical example is when f : R? — R is a smooth function and F, is the Taylor
polynomial of f based at x, of some fixed order r € N; then we know that f(y) — F,(y)
is of order |y — z|"™! for y € RY close to z. Of course, in this example F, is built
from f, which is known in advance. We are rather interested in the reverse problem
of finding f given a (suitable) family of F}’s, as in Whitney’s Extension Theorem
[Whi34]. However if we allow the local descriptions F,, to be non-smooth and even
distributions, then existence and uniqueness of such f become non-trivial.

Martin Hairer’s Reconstruction Theorem |[Haild| provides a complete and elegant
solution to this problem. We present here an enhanced version of this result which
allows to prove existence and uniqueness of f under an optimal assumption on
the family of distributions (F}),ere, that we call coherence. We also present some
applications of independent interest, including a characterization of negative Holder
spaces based on a single arbitrary test function.

The Reconstruction Theorem was originally formulated in the framework of Hairer’s
theory of reqularity structures [Haild]. In this survey we state and prove this result
without any reference to regularity structures, which we do not even define. The
original motivation for this theory was stochastic analysis, but here we present the
Reconstruction Theorem in a completely analytical and deterministic framework.
Our approach contains novel ideas and techniques which may be generalized to other
settings, e.g. to distributions on manifolds.

Although regularity structures have already attracted a lot of attention, we hope
that this survey will give the opportunity to an even larger audience to become
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familiar with some of the ideas of this theory, which may still find applications outside
the area which motivated it first.

A LOOK AT THE LITERATURE. With his theory of Rough Paths [Lyo98|, Terry
Lyons introduced the idea of a local description of the solution to a stochastic
differential equation as a generalized Taylor expansion, where classical monomials
are replaced by iterated integrals of the driving Brownian motion. This idea led
Massimiliano Gubinelli to introduce his Sewing Lemma [Gub04], which is a version
of the Reconstruction Theorem in R! (the name “Sewing Lemma” is actually due
to Feyel and de La Pradelle [FALP06], who gave the proof which is now commonly
used). With his theory of regularity structures [Hail4], Martin Hairer translated
these techniques in the context of stochastic partial differential equations (SPDESs),
whose solutions are defined on R¢ with d > 1 (see [Zam20] for a history of SPDEs).

The first proof of the Reconstruction Theorem was based on wavelets [Hail4]. Later
Otto-Weber [OW19] proposed a self-contained approach based on semigroup methods.
The core of our proof is based on elementary multiscale arguments, which allow
to characterize the regularity of a distribution via scaling of a single arbitrary test
function. The second edition of Friz-Hairer’s book [FH14|, to appear soon, contains
a proof close in spirit to the one presented here. For other proofs of versions of the
Reconstruction Theorem, see [GIP15, HL17, MWIS| [STT§].

OUTLINE OF THE PAPER. In Section 2] we set the notation used throughout this
survey and in Section [3| we recall basic facts on test functions and distributions.

In Section [4] we define the key notion of germs of distributions and the property
of coherence. This leads directly to the Reconstruction Theorem in Section [5] see
Theorem [5.I] We then show in Section [6] that the coherence condition is optimal.

The core of the paper, from Section [7] to Section [11] is devoted to the proof of the
Reconstruction Theorem (see Section for a guide).

The last sections are devoted to applications of the Reconstruction Theorem. In
Section we study negative Holder spaces, providing criteria based on a single
arbitrary test function, see Theorem [I2.4] In Section [L3] we investigate more closely
the coherence condition. In Section [14] we construct a suitable product between dis-
tributions and non smooth functions, see Theorem which is a multi-dimensional
analogue of Young integration.

ACKNOWLEDGEMENTS. We are very grateful to Massimiliano Gubinelli for many
inspiring discussions (and for suggesting the name coherence). We also thank Cyril
Labbé for his precious feedback on earlier versions of this manuscript.

2. NOTATION

We work on the domain R¢, equipped with the Euclidean norm |- |. We denote
by B(xz,r) = {z € R?: |z — x| < 1} the closed ball centered at x of radius r. The
R-enlargement of a set K < R? is denoted by

Kr:=K+B(0,R)={2eR?: |z— 2| < R for some z € K}. (2.1)
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Partial derivatives of a differentiable function ¢ : R — R are denoted by
Fo=00- 8’;390 for a multi-index k = (ky,..., kq) € NZ,
where No = {0,1,2,...} and we set |k| := ki + ... + kq. If k; = 0 then 0% := .
For functions ¢ : R — R we use the standard notation

[lleo := sup [()].

zeR4

We denote by C”, for r € Ny U {0}, the space of functions ¢ : RY — R which admit
continuous derivatives 0¥ for every multi-index k with |k| < r. We set
leller := max 0" o] - (2.2)
|k|<r
We denote by C%, for o > 0, the space of locally a-Hélder functions ¢ : R¢ — R.
More explicitly, ¢ € C* means that:

(1) ¢ is of class C", where r = r(«) := max{n € Ny : n < a};

(2) uniformly for z,y in compact sets we have

lo(y) — Fe(y)| < ly — =[* (2.3)
where F, () is the Taylor polynomial of ¢ of order r based at z, namely

Fily) = Y o* () =2t 3:3 (2.4)

=\Y) - ¥ A ) : :
k| <«

Remark 2.1. The meaning of < in (2.3)) is that for any compact set K < R¢ there

is a constant C' = Cx < o0 such that |p(y) — Fi(y)| < Cly —z|* for all z,y € K. This

notation will be used extensively throughout the paper.

Remark 2.2. Forr e Nand a < r < o we have the (strict) inclusions C* < C" < C*.
We stress that for r € N the space C" is strictly larger than C" (for instance, C! is
the space of locally Lipschitz functions, and similarly C" is the space of functions in
C"™1 whose derivatives of order r — 1 are locally Lipschitz). Incidentally, we note
that other definitions of the space C" for r € N are possible, see e.g. [HL17|. The one
that we give here is convenient for our goals.

Remark 2.3. We will later extend the definition of C* to negative exponents a < 0:

this will no longer be a space of functions, but rather of distributions.

3. TEST FUNCTIONS, DISTRIBUTIONS, AND SCALING
We introduce the fundamental notions of test functions and distributions on R¢.

Definition 3.1 (Test functions). We denote by D := D(R?) the space of C*

functions ¢ : RY — R with compact support, called test functions. We denote by
D(K) the subspace of functions in D supported on a set K < RY,
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Definition 3.2 (Distributions). A linear functional T : D(R?) — R is called a
distribution on R (or simply a distribution, or generalized function), if for every
compact set K < R there exist r = rg € Ny and C = Cx < o such that

IT(p)| < Cleler,  YeeDK). (3.1)

The space of distributions on R? is denoted by D' := D'(R?).
Given K < R, any linear functional T : D(K) — R which satisfies (3.1]) for
some r € N, C' < o is called a distribution on K. Their space is denoted by D'(K).

Remark 3.3. When relation (3.1)) holds, we say that T is a distribution of order r
on the set K. If one can choose r independently of K, we say that T is a distribution
of finite order r on R¢ (the constant C' in (3.1)) is allowed to depend on K).

Remark 3.4. Here are some basic examples of distributions.

e Any locally integrable function f € L _ (hence any continuous function) can
be canonically identified with the distribution f(¢) := (f,¢) := { f(2) ¢(z) dz.

e More generally, any Borel measure p on R? which is finite on compact sets can
be identified with the distribution u(p) := §pdu.

Both f(¢) and pu(p) are distributions of finite order r = 0 on R?.

SCALING. We next introduce the key notion of scaling. Given a function ¢ : R? — R,
we denote by ¢} : R? — R the scaled version of ¢ that is centered at x and localised
at scale A > 0, defined as follows:

py(2) = A"\ (2 — 2)) . (3.2)
When z = 0 we write p* = @), when A = 1 we write ¢, = ¢..
Note that if ¢ is supported in B(0,1), then ¢ is supported in B(x, \). The scaling
factor A=? in is chosen to preserve the integral:

f A2 dz = f o()dz, o = lelo

We will use scaled functions ¢} extensively. The basic intuition is that given
a distribution T"€ D’ and a test function o € D, the map A — T'(¢?) for small A > 0
tells us something useful about the behavior of T close to = € R%.

Remark 3.5. We can bound the C" norm of a scaled test function ¢ as follows:
lezlor <A™ [eler, (3:3)
simply because ||0%¢)| ., = A7FI=2| o], see ([2.2) and (3.2)).

As a consequence, given a distribution 7" € D', a compact set K < R? and a test
function ¢ € D, we have the following bound, for a suitable r € N:

T s A7, (3.4)
uniformly for z € K and A € (0, 1]. Indeed, it suffices to take r = rg in (3.1) for the
compact set K (the l-enlargement of K, see (2.1)) and to apply (3.3]).
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In some cases it can be useful to consider non-Euclidean scalings (like in the theory of
regularity structures for applications to parabolic SPDEs, see [Hail4l Section 2|). Our
approach could be easily adapted to such scalings, but for simplicity of presentation
we refrain from doing so in this survey.

4. (GERMS OF DISTRIBUTIONS AND COHERENCE

The following definition is crucial to our approach.

Definition 4.1 (Germs). We call germ a family F = (F,),erae of distributions
F, € D'(RY) indezed by x € RY, or equivalently a map F : R — D'(R?), such that
for all ¢ € D the map x — F,(v) is measurable.

We think of a germ F' = (F}),era as a collection of candidate local approximations
for an unknown distribution. More precisely, the problem is to find a distribution
f € D'(R?) which in the proximity of any point = € R? is well-approximated by F,
in the sense that “f — F}, is small close to 2”. This can be made precise by requiring
that for some given test function ¢ € D with {¢ # 0 we have

1/3{18 I(f — F.)(¢})] = 0 uniformly for = in compact sets . (4.1)

Remarkably, this property is enough to guarantee uniqueness. The simple proof of
the next result is given in Section [7| below.

Lemma 4.2 (Uniqueness). Given any germ F = (F}),era and any test function
© € D with { ¢ # 0, there is at most one distribution f € D' which satisfies (4.1]).

More precisely, given a compact set K < R? and two distributions fi, fo € D'
such that limy)o [(f; — Fy)(¢))| = 0 uniformly for x € K, then fi and fy must
“coincide on K7, in the sense that f1(v) = fo(y)) for any ¢ € D(K).

COHERENCE. Given a germ F' = (F,),cre, we now investigate the ezistence of a
distribution f € D’ which satisfies (4.1). The key to solving this problem is the
following condition, that we call coherence.

Definition 4.3 (Coherent germ). Fizy e R. A germ F = (F,),cga is called
y-coherent if there is a test function ¢ € D with § ¢ # 0 with the following property:

for any compact set K < R? there is a real number ax < min{0,~} such that
|(Fz_Fy)(SOZ)| S e (|2 —y| +e)7x (4.2)
uniformly for z,y € K and for ¢ € (0,1]. ‘

If a = (ag) is the family of exponents in (4.2)), we say that F is (a,~y)-coherent.
If ax = « for every K, we say that F is («,~)-coherent.

We can already state a preliminary version of the Reconstruction Theorem.
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Theorem 4.4 (Reconstruction Theorem, preliminary version). Letye R
and F = (F,),ere a y-coherent germ as in Definition . Then there exists a
distribution f = RF € D'(R?) such that, for any given test function & € D, we have

- \ A7 ify#0

uniformly for x in compact sets and X € (0,1].

If v > 0, the distribution f is unique and we call it the reconstruction of F'.

The Reconstruction Theorem will be stated in full in Section [5] below, with a
strengthened version of relation (4.3)) which holds uniformly over a suitable class of
test functions £. We first need to investigate the notion of coherence.

Remark 4.5. The coherence condition (4.2) is a strong constraint on the germ.
Indeed, we can equivalently rewrite this condition as follows

g7 if 0<|z—y|<e
F,—F,)(¢)] <
In particular, as |z — y| decreases from 1 to ¢, the right hand side improves from
£¥K to €7, since ax < 7. In the case ag < 0 < 7 this improvement is particularly
dramatic, since, as € | 0, e*¥ diverges while €7 vanishes.

Remark 4.6 (Monotonicity of ax). Without any real loss of generality, we will
always assume that the family of exponents av = () in (4.2)) is monotone:

VK < K': O = 0K . (4.4)

This is natural, because the right hand side of (4.2)) is non-increasing in ay. Indeed,
starting from an arbitrary family e = (g ) for which (4.2]) holds, we can easily build
a monotone family & = (&) for which (4.2)) still holds, e.g. as follows:

e for balls B(0,n) of radius n € N we define ap( ) := min{ape, : i =1,...,n};

e for general compact sets K we first define ng := min{fn e N: K < B(0,n)}
and then &g := apOn)-

Remark 4.7 (Vector space). We stress that the coherence condition is
required to hold for a single arbitrary test function ¢ € D with § ¢ # 0. We will show
in Proposition the non obvious fact that ¢ in can be replaced by any test
function £ € D, provided we also replace ax by o = ag,, where Kp denotes the
R-enlargement of the set K, see (2.1)). It follows that, for any given v € R, the family
of v-coherent germs is a vector space.

Remark 4.8 (Cutoffs). In the coherence condition (4.2)) we could require that the
base points z,y are at bounded distance. Indeed, if (4.2)) holds when |z — y| < R for
some fixed R > 0, then the constraint |z —y| < R can be dropped and (4.2)) still holds
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(possibly with a different multiplicative constant). Similarly, the constraint € € (0, 1]
can be replaced by ¢ € (0, 7], for any fixed n > 0. The proof is left as an exercise.

It is convenient to introduce a semi-norm which quantifies the coherence of a germ.
Fix a compact set K < R, a test function ¢ € D and two real numbers o < 0, v > a.
Given an arbitrary germ F' = (F}),ecre, we denote by || F H|§?}; op ~ the best (possibly
infinite) constant for which the inequality (4.2) holds for y,z € K with |z — y| <
(this last restriction is immaterial, by Remark 4.8 -

€
?()h . = sup ’(FZ Fy)(gox)l . (45)
OO y,2€K, |z—y|<2, £€(0,1] XK (’Z - y’ + 5)7 aK

I

Then, given v € R and @ = (ag), a germ F is («,7)-coherent if and only if for some

¢ € D with {¢ # 0 we have |||F|||§?};QK7 < oo for every compact set K.

ExXAMPLES. We now present a few concrete examples of germs.

Example 4.9 (Constant germ). Let us fix any distribution 7' € D’ and set F, := T
for all z € RY. Then F = (F}),cre is a (a,y)-coherent germ for any (), since
F,—F, =0 for all 2,y € R%

Example 4.10 (A link with Regularity Structures). Let ¢ € D be a fixed
test function with {¢ # 0. Let A < R be a finite set and set a := min A. Let
F = (F,),ere be a germ such that, for some v > «, we have

(F.=F)@)l s ), e'lz—y™

acA: a<vy (46)
uniformly for z,y in compact sets and for ¢ € (0, 1] .

Then the germ F' is (a,7y)-coherent. Indeed, it suffices to note that for a < a <y
ez —yt = (e e —y ) < e e [z —y)T,

simply because v/w’ < (v + w)?*? for any v, w, 3,0 = 0.

All germs which appear in Reqularity Structures satzsfy . For readers who are
familiar with this theory, the precise link is the following: given a Regularity Structure
(A, T,G), if (I1;,T'4y), yera is a model and f € D7 is a modelled distribution, then
the germ (F), := I1, f(x)),era satisfies since one can write

(I (2) = My f () () = =T, (f(y) — Tyzf (2) = > 95, ,7(¢})

IT<v

with |97, < |z — """ and [I1,7(¢))] < €.

Example 4.11 (Taylor polynomials). Let v > 0 and fix a function f € C7(RY).
We recall that by (2.3) we have |f(w) — F,(w)| < |w — y|” for w,y in compact sets,
where for all y € R? the function F, € C’OO(]Rd) given by

Z&k (w— y)’ weR,

k<
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is the Taylor polynomial of f centered at y of order r(vy) := max{n € Ny : n < ~}
defined in (2.4). Let us now show that F' = (F}),cga is a (0,7)-coherent germ.

Fix a compact set K = R? Note that for every k € N such that |k| < v we have
oF f e C7~IF. By Taylor expanding 0* f(y) around z, we obtain

R =Y [ 2 e g |

k!
[El<y \ |4l<vy—[k]

with |R*(y, 2)| < |y — 2"~ uniformly for y,z € K. We change variable in the
inner sum from ¢ to k&’ := k + ¢ and note that the constraint |[¢| < v — |k| becomes
{|K'] <~} n{k =k}, where ¥’ > k means k; > k; Vi = 1,...,d. If we interchange
the two sums we then get, by the binomial theorem,

— K-k (w
- Za'f'f<z>(z<‘gk,_2>! ) 3w

|k <~ k<k' || <y

w y

+ > Ry, 2 (w=y)"
k| <~y :
Therefore
w y
F.(w) - -3 B (4.7
k| <~y !

and since |R*(z,9)| < |y — 2|7 we get
Fo(w) = Fy(w)] s ) [w—y" |y — 2.
[ <y
Therefore, for any ¢ € D we have, uniformly for y, z € K,

| (Ptw) = B i) de] < 3 2 =ap e

n<y

This is a particular case of the class studied in Example [L.10] with o = 0 and
A = {n e Ny :n < ~}, therefore the germ F is (0, y)-coherent. General germs are
meant to be a generalisation of local Taylor expansions.

HOMOGENEITY. For a coherent germ F' = (F,),cra, we can bound |F,(¢5)| as e | 0.

Lemma 4.12 (Homogeneity). Let F' = (F,),cra be a y-coherent germ. For any
compact set K < R?, there is a real number B <~ such that

|F ()| S 9% uniformly for x € K and € € (0,1], (4.8)

with @ as in Definition . We say that F' has local homogeneity bounds 3 = (fk).
If Bx = B for all K, we say that F has global homogeneity bound [.

The request Sx < 7 is to rule out trivialities.
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Proof. Let (F,)gere be y-coherent. Given a compact set K € R%, fix a point z € K.
By Remark applied to T' = F,, see ({3.4)), there is r € Ny such that

|FL ()| < e uniformly for x € K and ¢ € (0, 1] .
If we denote by diam(K) := sup{|x — z| : z,z€ K}, by we can bound
|(Fr = F2)(5)| 5 ™ (Jo — 2 + )77 < e (diam(K) + 1)77% 5 e,
always uniformly for z € K and € € (0, 1]. This yields
Fa(e2)l < [(Fo — F) (@) + | Fa(9l)] S e 777,

hence (4.8)) holds with fx = min{a, —r —d} (which, of course, might not be the best
value of k). By further decreasing [, if needed, we may ensure that fx <. O

Remark 4.13 (Monotonicity of fx). In analogy with Remark , we will always
assume that the homogeneity bounds 8 = (Sk) in (4.8) are monotone:

Note that the right hand side of (4.8) is non-increasing in S

Remark 4.14 (Vector space). We will show in Proposition that in (4.8)) we
can replace ¢ by any test function & € D, provided we also replace Sk by (% = fx,-
As a consequence (recall also Remark , for any given o < 0 and v > «, the family
of (a,7y)-coherent germs with global homogeneity bound B is a vector space.

Remark 4.15 (Positive homogeneity bounds). In concrete applications, we
typically have Sx < 0 in , because the case Sk > 0 is somewhat trivial. Indeed,
we recall that given a ~-coherent germ F', our problem is to find a distribution f € D’
that satisfies . If Bx > 0 for some compact set K < R, then f = 0 satisfies
on K and, by Lemma any solution f of must therefore vanish on K.
In particular, iof B > 0 for all K, the only solution to is f = 0. Using the
notation of the Reconstruction Theorem, we can write RF = 0.

Example 4.16. For a coherent germ there is in general no fixed order between the
lower bound fx of the homogeneity in (4.8)) and the exponent ax appearing in the
coherence definition (4.2)).

e In Regularity Structures, see Example |4.10] it is usually assumed that fx =
ar = o for all K.

e A constant germ F, = T with T € D', see Example [4.9] is (e, 7)-coherent for
any o and ~. It is possible that Sk < 0, e.g. for the function T'(y) := |y|~'/2
we have Sy = —% for K = B(0,1). Since we can choose ax = 0 here, we might
have 0k < ak.

e If F'is a (a,)-coherent germ, then for any fixed distribution f € D the germ
G = (G, := f—F,)era is still (o, v)-coherent. By the Reconstruction Theorem
that we are about to state, it is possible to choose f = RF such that for the
germ GG we have that Sx = 7 (see below), hence Sk > ak.
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5. RECONSTRUCTION THEOREM

We are ready to state the full version of Hairer’s Reconstruction Theorem [Hail4l,
Th. 3.10] in our context (see also [Hail4l, Prop. 3.25]). Recalling the definition (|2.2))
of | - |cr, for r € Ny we define the following family of test functions:

B, :={¢ e D(B(0,1)) : [¢]cr <1} (5.1)
We also recall that K denotes the R-enlargement of the set K, see (2.1]).

Theorem 5.1 (Reconstruction Theorem). Lety e R and F = (F,),cga be a
(e, y)-coherent germ as in Definition with local homogeneity bounds 3, see
Lemma . Then there exists a distribution f € D'(RY) such that for any compact
set K < R* and any integer r > max{—ag,, —fg,} we have, for a := ag,,

A7 ifvy#0
- Fz A < o,y,T F C_Oh :
|(f )(,lvz)a:)| ¢ Y750 ||| |||K2,go7a,’y {(1 + |10g)\|) Zf7 =0 (52)

uniformly for ¢ € B,, x € K, Ae (0,1],

where the semi-norm |||F|||§§;lgocw is defined in [L.5), ¢ is as in Deﬁm’tion and
Cany,rde 45 an explicit constant, see (10.39))-(11.14)-(11.15)).

If v > 0, such a distribution f = RF' is unique and we call it the reconstruction
of F'. Moreover the map F' — RF is linear.

If v < 0 the distribution f is not unique but, for any fixred o < 0 and v = «,
one can choose f in such a way that the map F — f =RF is linear on the vector
space of («,y)-coherent germs with global homogeneity bound .

The strategy of our proof of the Reconstruction Theorem is close in spirit to the
original proof by Hairer: given a germ F', we “paste together” the distributions F
on smaller and smaller scales, in order to build RF. The existing proofs exploit
test functions possessing special multi-scale properties, such as wavelets (by Hairer
[Hail4]) or the heat kernel (by Otto-Weber [OW19]). Our proof is based on the single
arbitrary test function p € D with § # 0 which appears in the coherence condition
, that we will suitably tweak in order to perform multi-scale arguments.

Remark 5.2. Theorem is a special case of Theorem , because equation (4.3])
is a consequence of . This is obvious if £ € B,., while for generic £ € D it suffices
to note that 1 := ¢&" € B, for suitable ¢,n > 0, recall the notation (3.2). As a
consequence, we can write £ = ¢~ 1%7*15 with ¢ € B,., hence yields for

e > 0 small enough, which is enough (exercise).

Example 5.3 (Constant germ, reprise). If we consider the constant germ F, = T
of Example then for f = T we have f — F, = 0 and therefore we can set RF = T.

If we view a germ as a generalised local Taylor expansion, the Reconstruction
Theorem associates to a coherent germ F = (F,) a global distribution f which
is approximated by the germ F, locally around every x € RY. If the germ is a
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classical Taylor expansion of a function in C?, as discussed in Example .11} then the
Reconstruction Theorem yields the function itself, as shown in the next example.

Example 5.4 (Taylor polynomial, reprise). Consider the germ given by the
Taylor expansion of a function f € C7, see Example [4.11] Then by the Taylor theorem

fly) = Fe(y)| < ly — 2|

uniformly for x,y in compact sets. If v is supported in B(0, 1), then 9 is supported
in B(z, A), therefore uniformly for A € (0, 1] we can bound

[ - mmees<x [ola-x (vl 63

This shows that f satisfies (4.1)), therefore by uniqueness we have RF = f. As a
matter of fact, relation (5.3)) holds uniformly for ¢ € By because (|| < [¢]e < 1
(recall that ¢ € By are supported in B(0,1)).

Example 5.5 (On the case 7 =0). If F' = (F,),era is a (a, 0)-coherent germ, i.e.
~v = 0, the estimate (5.2)) in the Reconstruction Theorem reads as follows:

|(f = Fo)(w2)] < log(1 +3) (5.4)

uniformly for x in compact sets, 1 € B, and A € (0, 1]. We now show by an example
that the logarithmic rate in the right hand side of (5.4) is optimal.
Consider the germ of functions F' = (F,(y) := log(1 + ﬁ))xe[@d. If peDisa

non-negative test function supported in B(0, 1) with {¢ > 0, we can bound
[(F. = F))(&5)] < |F.(95)] + |Fy(5)] < log(1+ 1) <& for any given a < 0.

This shows that the germ F is («, 0)-coherent, hence by the Reconstruction Theorem
there is f € D’ such that (5.4) holds (e.g. f = 0). We claim that this bound cannot be
improved, i.e. there is no f € D' such that |(f — F,)(¥))| < log(1 + 1).

By contradiction, assume that such f € D exists. Given a test function ¢» > 0 with
¥(0) > 0 and {4 = 1, we can bound F, () 2 log(1 + 1) and by triangle inequality
F@2) = Fo(¥y) = [(Fe — f)(¥3)] 2 log(1 + 5)
uniformly for x in compact sets. In particular, there is a constant ¢ > 0 such that

f@W)) =clog(l+3)  VzeB(0,2).

This is impossible, for the following reason. Since (3)*) are mollifiers as A | 0 (recall
that we have fixed {1 = 1), for any given test function £ € D we can write

£(6) = lim (€ + %) —hmf £

If we fix £ > 0 supported in B(0,1) with {£ = 1, we finally get

. 1 — 1 1y =
f(§) = 1/%{151 Rdclog(l + 5)€&(z) do lg{)lclog(l +5) =

which is clearly a contradiction.
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Remark 5.6. In the original formulation of the Reconstruction Theorem [Hail4l
Thm. 3.10|, the estimate in the right-hand side of for v = 0 contains a factor
A7 instead of (1 + |log A|). This is not correct, as we showed in Example [5.5l The
mistake in [Hail4] is in the very last display of the proof on page 324: in this formula
we have |z —y|s <0+ 27" and 27" > §, so that the factor 67~ in the left-hand side
must be replaced by 270~#)" For v < 0 the result does not change, but for v = 0
one obtains 1 + |log | instead of ¢°.

5.1. GUIDE TO THE PROOF OF THE RECONSTRUCTION THEOREM. The next
sections are devoted to the proof of Theorem [5.1}

e In Section [6] we show the necessity of coherence for the Reconstruction Theorem.

e In Section [7] we recall basic results on test functions (such as convergence,
convolutions and mollifiers) and we prove Lemma

e In Section [§ we show how to “tweak” an arbitrary test function, in order to
ensure that it annihilates all monomials up to a given degree. This is a key
ingredient in the proof of the Reconstruction Theorem because it will allow us
to perform efficiently multi-scale arguments.

e In Section [9] we present some elementary but crucial estimates on convolutions.

e Finally, in Sections [10| and [L1| we give the proof of the Reconstruction Theorem,
first when v > 0 and then when v < 0.

6. NECESSITY OF COHERENCE

If a germ F' = (F,),egra is y-coherent, by the Reconstruction Theorem there is a
distribution f € D’ which is locally well approximated by F', see (5.2)). In case v # 0,
this means the following:

¥ compact set K € R? 3 r = r(K) € N such that

(f = Ea) (@) s V7 (6.1)
uniformly for x € K, A€ (0,1] and ¢ € B,

Remarkably, coherence is also necessary for (6.1]), as we now show.

Theorem 6.1 (Coherence is necessary). If a germ (F}),cra satisfies (6.1]) for
1-2)

some v € R, then it is y-coherent, i.e. it satisfies the coherence condition , for
any function p € D and for a suitable family of exponents o = ().

If furthermore holds with r(K) = r for every K, for a fized r € N, then the
germ F' is (o, y)-coherent for a suitable o < 0, i.e. we can take ag = « for all K.

This is a direct corollary of the next quantitative result.
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Proposition 6.2. Let (F}),cra be a germ with the following property: there exist
a distribution f € D', numbers ye R, re N, C' < w0 and a set K < R? such that

(f = Fo) ()l < C X

(6.2)
forall ze K, Ae(0,1] and ¢ € B,.
Then for a := min{—r — d, v} we have
(F: = F) @)l < 202 (|2 =yl + )™
(6.3)

forally,ze K with |z —y| <3, A€ (0,3] and ¢ €B,.

Proof. For y,z€ K, A€ (0,1] and v € B,. By we can estimate
(F. = F)(Wy)l = 1(f = ) () = (f = F2)(4y)]
<|(f = Byl +[(f = E) (@)
SON +[(f = E)(Wy)].
1

We claim that for [z — y| < 1 and A € (0, 1] we can bound

(F = F))] < C (=2) (2 =yl + ). (6.4)

Note that for any a < v we can estimate \Y = A* \77* < \* (|]z —y| + )", therefore
if we set o := min{—r — d, v} we obtain (6.3).

It remains to prove (6.4). Estimating |(f — F.)(¢;)| is non obvious because 1) is
centered at y rather than z. However, we claim that we can write

gl =g where €=, (6.5)
where A\, Ay € (0,1] and w € B(0,1) are defined as follows:
: : A : —z
A1=|Z—y|+A, )\sz, wzm

To prove (6.5), recall that & (x) = AT €(A* (z — 2)), hence for € = )2 we get
&' () = AU (AT (@ = 2)) = AU (2 - 2) —w))
= (M) (M) (@ — 2) = Mw}) = AT (AT Ha — y}) = ¥y(a).
Note that & = 92 is supported in B(w, \y) < B(0,1), because |w| + Ay < 1 and 1 is
supported in B(0,1). Since & is supported in B(0, 1), we have /|| € B,., hence we
can apply equation ([6.2) with the replacements
oz, o e, A v N

(note that A; € (0,1] if |z — y| < 4 and X € (0,1]). This yields

(f = E)(EN] < C ) [€]ler - (6.6)
It remains to bound

—|k|—d —r—
I€ller = 7o = max 10" 622 e = max A5 0o < A3

because maxiy <, | ¥ = [¢|cr < 1 for ¢ € B,. By (6.5) and (6.6]), we get (6.4). O
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7. CONVERGENCE OF TEST FUNCTIONS, CONVOLUTIONS
AND MOLLIFIERS

The space of test functions D is equipped with a strong notion of convergence.

Definition 7.1 (Convergence of test functions). We say that ¢, — ¢ in D
if and only if the following two conditions hold:

(1) all v,,’s are supported in some fized compact set K, i.e. ¢, € D(K) Vn;
(2) ¢ converges to ¢ uniformly with all derivatives:
VTENO 5 HgOn—()OHCr — 0.

We typically consider sequences indexed by n € N, with convergence as n — oo, or
continuous families indexed by n = X € (0, 1], with convergence as A | 0.

Remark 7.2. This notion of convergence is induced by a natural topology on D,
called locally convex inductive limit topology. It is quite subtle — non metrizable, not
even first countable — but we will not need to use it directly.

We now show that the “continuity property” (3.1)) in the definition of a distribution
corresponds to “sequential continuity” with respect to convergence in D.ﬂ

Lemma 7.3. A linear functional T : D(RY) — R is a distribution if and only if
on —> @ in D implies — T(pn) — T(p) . (7.1)

Proof. By the definition of convergence in D, it is clear that implies . Vice
versa, if fails for some compact K, then for every r =ne N and C =n e N we
can find ¢, € D(K) such that |T(p,)| > n|p,/cn; if we define ¥, := n~o,/|ln]cn,
we have |T'(¢,,)] > 1 for every n € N, which contradicts because 1, — 0 in D
(indeed, for any fixed r € N we have |1, |c- < n~! as soon as n > r). O

We recall that the convolution of two measurable functions f,g : R¢ — R is the
function f g = g * f : RY — R defined by

Fea@= | fe-noway= | f@ge-d @)

provided the integral makes sense for almost every = € R%. This holds, in particular,
when f = p € D is a test function and g is locally integrable and compactly supported:
in this case the convolution ¢ = g € D is a test function too, and we have

Mpxg) = (") xg. (7.3)

If a map T : D — R is sequentially continuous, i.e. it satisfies (7.1), this does not imply that T'
is a continuous map, because the topology on D is not fist countable (recall Remark [7.2)). However,
if T is a linear map, then sequential continuity implies continuity.
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Given any distribution 7' € D’, we can compute

T(pxg) = fRd T(p(-—v)) g(y) dy,

as one can deduce from (7.2)) (e.g. by linearity and Riemann sum approximations). If
we set @, () := p(z —y) = @, (x), recall (3.2), we obtain the basic formula

T(pxg) = JRd T(py) 9(y) dy, (7.4)

that will be used repeatedly in the sequel.
We next state a classical result that will be used frequently.

Lemma 7.4 (Mollifiers). Let p: R? — R, with Sp =1 be compactly supported
and integrable. Then p*(2) := p5(2) := e p(e712) are mollifiers as e | 0, i.e.

YpeD: pxp°—> @ mDase]0.
Proof. By (7.3) and § p° = { p = 1 we can write, for any multi-index F,

(i » 7)(2) — (@) = | (@le —y) — Pole)r (v) dy,

JRd
hence, by the change of variables y = ¢z,

0% (%) (x) — ()] < r oz —y) — "o(2)] 7 (y)] dy
. (7.5)

= | |Fp(z —e2) — Fp(x)||p(2)]dz .

JR4

Fix a compact set K € R? and take x € K. Since p is compactly supported, say
on the ball B(0, R), for € € (0,1) the variable x — ez belongs to the compact set
Kpr, the R-neighborhood of K. Then we can bound |*¢(z — e2) — d*¢p(z)| < €|z,
because 0 is of class C! (in fact C®). Since {|z|[p(z)] dz < o, it follows by
that sup,cj [0%(¢ * p°)(x) — d%p(z)| < e — 0. This shows that p * p° — ¢ in D. O

We finally give the easy proof of Lemma (Uniqueness).

Proof of Lemmal[f.2 Let v > 0. We fix a germ (F,),cra, a test function ¢ € D
with {¢ # 0, a compact set K < R? and two distributions f,g € D’ which satisfy,
uniformly for x € K,

lim |(f = F2) ()] = lim |(9 = F2)(@2)| = 0. (7.6

Our goal is to show that f(v) = g(¢) for every test function ¢ supported in K, i.e.
Y € D(K). We may assume that ¢ := [ =1 (otherwise just replace ¢ by ¢! ).

We set T := f — g, we fix a test function ¢ € D(K) and we show that T'(¢)) = 0.
We have T'(¢)) = limy;o T'(¢ * ¢*) by Lemma , because limy|o 1 * ¢* = 1 in D by
Lemma . Recalling , we can write

T = | [ T o) ds

< [[¢]o0 sup [T(g3)]
zeK
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where the last inequality holds for any A > 0 since ¢ is supported in K. It remains
to show that limy o T'(¢}) = 0 uniformly for z € K, for which it is enough to observe
that

()l = 1£(ez) — g(e)l < (f = Fo) (o) + (g = Fo)(3)]

and these terms vanish as A | 0 uniformly for x € K, by (7.6). U

8. TWEAKING A TEST FUNCTION

Given an arbitrary test function ¢ and an integer r € N, we build a “tweaked” test
function ¢ which annihilates monomials of degree from 1 to r — 1. Recall that ¢*
denotes the function ¢*(x) := A4 (A" 1z).

Lemma 8.1 (Tweaking). Fiz arbitrarily r € N = {1,2,...} and distinct

A0y Aty .-y A1 € (0,00). Define the constants co, c1, .. .,¢—1 € R as follows:
Ak
P = 8.1
‘ 5= &1
ke{0,...,r—1}: k#i
(when r = 1 we agree that co := 1). Then, for any measurable and compactly
supported o : R — R and any a € R, the “tweaked” function ¢ defined by
=1l
Yi=a Z ci o (8.2)
i=0

has integral equal to a ¢ and annihilates monomials of degree from 1 to r — 1:

J@zafgo and Jykgé(y)dyz(), VkeNi: 1<|kl<r—1. (83)
Rd

Remark 8.2. For fixed a € R, equation (8.3)) is a set of conditions, one for each
k € (No)* with |k| <7 —1 (where k = 0 corresponds to {¢ = a (). The number
of such conditions equals r for d = 1, while it is strictly larger than r for d > 2.
Nevertheless, we can fulfill these conditions by choosing only r variables cg, ¢, ..., ¢._1
as in . This is due to the scaling properties of monomials.

We now show that in the coherence condition (4.2]) we can replace ¢ by a suitable
¢ as in Lemma [8.1 Assume that for some R, < oo we have that

¢ is supported in B(0, R,,) .
Then, given r € N, we define ¢ = ¢l by ([8.2) for a = 1/ { » and for suitable \;’s:

Q= Y ¢t where )\; :=
Sgpizo 1+ R,

and ¢; as in (8.1)). (8.4)
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Lemma 8.3. Let F' = (F,),cra be a (a,7)-coherent germ as in Definition .
For any r € N, the coherence condition (4.2)) still holds if  is replaced by ¢ = ¢
defined in (8.4). Such a test function ¢ has the following properties:

¢ is supported in B(0,3), (8.5)
| sway-1. | o d=0 frisfi<r—l, @9
Rd Rd
[l < |S H<PHL1 : (8.7)
Proof. The functlon ¢ is supported in B(0, 1/2) because \; < . Relation (8.6)

holds by (8.3] . To prove (8.7)), note that by (8.1]) we can bound

0

1 1 = _m 2
ci| = H mgnl_2_mgn(l+2 ) <e, (8.8)
m=1

ke{0,...,r—1}: k#i m=1

because [1 — 287 > 1 for k> i and (1 —2)™' <142z < e* for 0 <z < 3. This
bound proves (8.7), by (8.4) and the fact that || |1 = |||z O

Proof of Lemma[8.1]. If r = 1 equation reduces to { ¢ = { ¢, which holds because
¢ = ™ (recall that co = 1 when 7 = 1). Henceforth we fix r € N with r > 2.

Fix distinct Aoy A1y -+ A1 € (0,00) and define ¢, ¢1, ..., ¢—1 by . Define ¢
by (8.2). For any multi-index k € N¢, since 2* := 2% 252 .. :c];d, we can compute

r—1 r—1
J 2 o(x) do = Z Ci f 2" Ao\ ) do = (Z Ci )\Lkl) J z* p(z) dz
R? i=0 YR i=0 R4

Therefore ¢ fulfills the conditions in (8.3) if

r—1 r—1
Zcizl and Zci)\yd:o for 1 <|k|<r—1.
i=0 i=0

This is a linear system of r equations, namely

Co 1 1 1 c. 1

C1 0 )\0 )\1 . /\d

Al e |=10 where A= | A A A
Crot 0 YLD Vs D U

Note that A is a Vandermonde matrix with det(A) = [ [, ;<q(A; — Ai) # 0, because
Aos AL, - .., Ay are all distinct. The inverse matrix A~! is explicit, see equation (7)
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(where a transpose is missing) in [KliG?]ﬂ

2 I

KC{0,...r—10\{i} keK
K |=r—1-j

[T =)

ke{0,....r—13\{i}

(A = (=1 VO <i,j<r—1.

In particular, if we set j = 0, we see that ¢; = (A71); is given by

1

ke{0,...r—1}\{i} Ak

.- SO
H (A — i) ke{0,....r—1}: ki A = Ai
ke{0,...r— 11\ (i}
which matches (8.1)). O

9. BASIC ESTIMATES ON CONVOLUTIONS

In this section we give two elementary but important Lemmas on convolutions. We
fix re N={1,2,...} and a test function ¢ = ¢"l € D with the following properties:

¢ is supported in B(0, 3), (9.1)
J v o(y)dy=0 for 1< |k|<r—1. (9.2)
Rd

We stress that (9.2) is not required for £ = 0 (indeed, we typically want §¢ = 1).

Remark 9.1. Starting from an arbitrary test function ¢ € D, we can define ¢ as in

Lemma for any choice of distinct (\;);—o..,—1 and a € R. Then (9.2)) holds by

-----

(8.3)), while (9.1)) holds provided we choose the \;’s small enough.

Next we define
< AL ~92
pi=¢r-9 (9:3)
(where by ¢? we mean @*(z) = A™9p(A712) for A = 2). The function ¢ will play an
important role in the sequel. It follows by (9.1) and (9.2)) that

¢ is supported in B(0,1), (9.4)
J y"o(y) dy=0 for0<|k|<r—1. (9.5)
R4

We stress that (9.5) holds also for k = 0, because {2 = {2 = {@* for any .
Our first Lemma concerns the convolution of a test function n with ¢.

tSee also https://proofwiki.org/wiki/Inverse_of_Vandermonde_Matrix
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Lemma 9.2. Fiz a test function n € D(H) supported in a compact set H < R,
Let ¢ € D satisfy (9.4) and (9.5). For any e > 0, the function @ =1 is supported
in the e-enlargement H. of H, see (2.1)), and

[6° « nllor < Vol(He) [Inflcr [l e” (9.6)

Proof. Since n is supported in H and ¢ is supported in B(0, 1), then ¢° =7 is supported

in H.. Fix y € H. and denote by p,(-) := Dilkl<r—1 % (-—y)* the Taylor polynomial

of n of order r — 1 based at y, which satisfies for all z € R?
n(2) = py(2)] < [nller |z =yl (9.7)
It follows by (9.5)) that (., @°(y — 2) py(2) dz = 0, hence we can write

@ o) = | o2 1) -t} de.
Since ¢° is supported in B(0,¢), by

(@7 =) ()] < [nler JRd 27y = 2z = yl" dz < [nfler [Plere”

This completes the proof of . U

Our second Lemmas concerns convolutions of (scaled versions of) a test function v
with either ¢ or ¢, integrated against an arbitrary function G..

Lemma 9.3. Let \,e > 0, K < R? a compact set and G. : R — R, a measurable

function. Let ¢, o € D satisfy (9.1), (9.2) and (9.4), (9.5), respectively. Then for
all x e K and ¢ € B,, see (5.1)),

[ dy\ <2|gln sw G., 9.8)
R4 B(zAte)

J Ge(y) (¢ = w;\)(y) dy) < 4¢ |#]zr min {5/)\, 1}T sup G.. (9.9)
R B(z,\+¢)

Proof. Since ¢ and v are supported in B(0,1/2) and B(0, 1) respectively, the function
@% « 1) is supported in B(z, A + ¢). Then we can bound

[ G- @ e o] < 1% - 2l sw e
R

B(z,M+¢)

Now
6% « 92l < 6%l < 2 1@l

because %] 1 = @]z and is proved, because
sup |2z = sup | < 2¢ sup | < 2¢. (9.10)
YeB, YeB, PYEBy
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Analogously

J Ge(y) (¢* = ¥)(y) dy| < [¢* =¥yl sup G,
Rd

B(z,\+e)
As in we can bound
127 « plee < [@% e [plee = 1@l 9l < 27 [@lee
which proves for A <e. When A > ¢, we apply to get
[% 3]l < Vol(B(w, A + €)) [¥3lor " @] 11

Note that Vol(B(z, A +¢)) < (2(\ + €))% < 44\ for A > e. Since ¢ € B,, see (5.1]),
we can easily bound [¢}|c by (3.2):

[0 ller = max 0" (12) oo = max |ATF=A (@ ) o < AT
|k|<r |k|<r

The proof of is complete. O

10. PROOF OF THE RECONSTRUCTION THEOREM FOR v > 0

In this section we prove Theorem when v > 0. Given any 7-coherent germ
F = (F,)era, we show the existence of a distribution f € D" which satisfies (5.2).
Uniqueness of f follows by Lemma [4.2] because the right hand side of vanishes
for v > 0. Then linearity of the map F'— RF is a consequence of uniqueness.

We now turn to existence. A large part of the proof actually holds for any v € R,
only in the last steps we specialize to v > 0.

STEP 0. SETUP. We fix a («, y)-coherent germ (F),era as in Definition , for some
o = (ag), with local homogeneity bounds 3 = (fk) as in Lemma [4.12] Without loss
of generality, we suppose that with K — ax and K — [x are monotone as in (4.4]
and . We will specify when we need to assume v > 0.

We fix a compact set K < R? and throughout the proof we define

ai=ag,,, B = Bry, (10.1)

so that (4.2) and (4.8) hold on the compact set K3/9. More explicitly, there are finite
constants C1, Cy such that for all y,z € K3/, with |z —y| <2 and € € (0, 1] we have

(F. = F)(g)l < Cre®(lz—yl +2)™, B ()] < Cae”, (10.2)
and in fact we can choose C := H]F!H;—?;Z%aﬁ. We also fix an integer r € N such that
r=Tg,, > max{—a,—}. (10.3)

By Lemma we can build a “tweaked” test function ¢ = @'} which fulfills
properties (8.5) and (8.6)), namely the support of ¢ is included in B(0,1) and

J Ply) dy =1, f Y o(y) dy =0 for 1< |k|<r—1.
R4 Rd
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We claim that we can replace ¢ by ¢ in ([10.2) and obtain, for all y, z € K35 with
|z —y| <2and €€ (0,1],

|(F. = Fy)(&)] < (|Z— [ +e)77, (10.4)
[Fy(8)] < (10.5)
where the constants C1, Cy are given by
~ 62 —r—1\« coh A L e2 —r—1 B/\O
Cl = W r (?+Rw> |||F||’K3/2,¢,a,7 ) C2 T |S_<M r (?+Rtp) 02 ) <106)

and R, is such that ¢ is supported in B(0, R,,).
Indeed, for every € € (0,1] and ¢ = 0,...,7 — 1 we can estimate by ({8.4))

G ()" e (2 =yl + ey,

because 2 < A\ <1 (recall that @ < 0 and v > «, see Definition . Similarly

(5)\1')6 < (2 r— 1)BAO 5

1R,
Plugging these bounds into ((10.2)), by (8.4]) and (8.8)) we obtain ([10.4)-({10.5))-(10.6)).

STEP 1. STRATEGY. We can now outline our strategy. We use the mollifiers

p(z) =ep(e™'2)

where p is defined as follows (recall that ¢? means ¢* ( ) = A79p(A712) for A = 2):

1+R

~

pi=@% % and E=¢€p =

Note that {p={¢? (¢ =1.
This peculiar choice of p ensures that the difference p% — p s a convolution:

p% —p=Q*P where we define Q= 95% — 2, (10.8)
because (f)N = N and (f + g)* = f* = ¢*, see (3.2) and (9.3)). It follows that
1 En ~En Y En
Pt —p = (p2 — p)T = BT P (10.9)

This will allow us to compare efficiently convolutions with p**+' and p°".

We are ready to define a sequence of distributions that will be shown to converge
to a limiting distribution f € D’ which fulfills . To motivate the definition, note
that for any distribution £ € D" and test function ¢ € D, by Lemma [7.3], we have

) = lim €l ev) = lim | ()0 (2) d.

where we applied (7.4). When we have a germ F' = (F}),cre instead of a fixed
distribution £, a natural idea is to replace £(pS*) by F,(pS"). This leads to:

Definition 10.1 (Approximating distributions). Given a germ F = (F}),epd,
for n € N we define f, € D' as follows:

) f E() ¢ (z) dz,  $eD. (10.10)

Ra
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Remark 10.2. We recall that, by Definition 4.1} the map z — F.(p%) is measurable.
Since the map z — pZ € D is continuous, it follows that the map (z,y) — F.(p}) is
jointly measurable as pointwise limit of measurable maps: F.(p;) = limp o0 F. (0}, /)5
where |z| := (|z1],...,|zq]) and |a] := max{n € Z : z < a} is the integer part of
a € R. In particular, z — F,(pS") is measurable.

STEP 2. DECOMPOSITION. Let us look closer at f,(¢) in ((10.10). We start with a
telescopic sum:

Falt) +Z% where  gi(¢) = firi(¢¥) = fi(w).  (10.11)
We can write g (¢ SRd Pt —per)ah(z) dz by ([10.10]) and then F(pz**' —psk) =

Spa Fo(95) 92+ () dy, by (10.9) and (7.4), which leads to the fundamental expression

V) = fRd JRd FL(@5F) ¢ (y — 2) ¥(2) dy dz.

If we write F, = F, + (F, — F,) inside the last integral, we can decompose

JRd fRd ) (y — 2) (2) dy d=

) (10.12)
ffF F)(@5) ¢y — ) $(2) dy d= .
R4 JRd ,
ne
When we plug this into ((10.11)), we can write
fa(¥) = fi() + fr(0) + £ (1), (10.13)
n—1 n—1
where  fr(¥) = > gi(¥),  fl@) =D gl(¥). (10.14)
k=1 k=1

In the next steps we proceed as follows. Recall that we fixed a compact set K < R%.

e In Step 3 we show that

VyeR: f(¢):= linc}o fr() exists Ve D(K;). (10.15)
e In Step 4 we show that
Vy>0: f"(¢):= lim f/(v)) exists Vi e D(K,). (10.16)
Then if v > 0 the limit f% (1)) := lim,_ f,,(¢) exists for ¢ € D(K;) and equals
AW = AW+ W)+ (),  deD(E). (10.17)
e In Step 5 we show that ¥ is a distribution on K; which satisfies
¥y >0: K_F)@)| <c||Fle A7
Y ‘(f )(wa:” ||| |HK3/2,¢,Q,7 (1018)

uniformly for v € B,, z € K, A€ (0,1],
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where the constant ¢ = ¢, .4, 1S given in below.

We stress that in principle f5(¢) depends on the chosen compact set K,
because f, (1) depends on ¢ = @Il see (10.10) and (10.7)), and the value of r
depends on K through o = Ry s B = Bk, see (10.3)) and (10.1). In the special
case when ax = a and fx = [ for every K (i.e. the germ F' is (a,y)-coherent
with global homogeneity bound ), then fX(¢)) = f(¢) does not depend on K
and the proof is completed, because f satisfies in virtue of . In the
general case, a small extra step is needed to complete the proof.

e In Step 6 we show that for v > 0 the distributions f¥ are consistent, i.e.
for K< K= f5) = fX@w) VyeD,). (10.19)

This property lets us define a global distribution f € D’ which satisfies ([5.2]),
thanks to ([10.18]). This concludes the proof for v > 0.

STEP 3. PROOF OF (|10.15) FOR v € R. By ({10.14)), to prove (10.15]) it suffices to
show that

for all y e R Z g, (V)| <0,  YieD(K,). (10.20)

Recall that
JRd J]Rd (2y) ™y = 2) ¥(2) dy dz = fRd Fy(§50) ¢« (y) d

Note that ¢ = 955 — P2 is supported in B(0,1), because ¢ is supported in B(0, 3).
Since 1 is supported by K; and ¢ by B(0,e;) with e, < 1/2, then ¢ « ¢ is
supported by K3/,. Then

|95(V)] < |67 = P2 sup [Fy (0]

yeK3)2

By we have the bound
[ = bl < Vol(Ksp) [¢ler e [ ]lre -
By (10.5)), for all y € I_(g/g we have the bound |F,(¢;)| < C,e?. Then we obtain

94 ()] < {Ca Vol(Kayo) 2] 12 Hchr}sﬁ”. (10.21)

Since g4 = 27" and 8 + r > 0 by assumption, see (10.3)), we have Y,,” | |g,(¢)] <
which completes the proof of ((10.20]).

STEP 4. PROOF OF (10.16) FOR v > 0. By ({10.14)), to prove (10.16) it suffices to
show that

ifv>0: Z|g ) <o,  VipeD(K). (10.22)

Recall that
JJ (F — F)(85) 6y — ) (2) dy dz. (10.23)
R4 JR4
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We recall that @+ is supported in B(0,¢y), so that
lge (@) < @™o [¥lr sup  |(F2 = Fy)(80)]

€K1, |ly—z|<er

with e, < 1/2 since k > 1. Then (|10.4) gives
sup (B = E) (@) < Creft (24)7°,

zeK1,ly—z|<ep

hence from (10.23) we obtain |g(¢)] < 27~ *Cyel |9 L1 |4 L. We finally observe
that @], = [|@]: by B2 . This gives the bound

gk @) < {277 Cr @l ¥z} &7 - (10.24)
Since v > 0 and ¢, = 27, we obtain >, | |g7(¥)| < o, proving (10.22)).

STEP 5. PROOF OF ((10.18]). We showed in the previous steps that both f/ (1) and
f"(+)) converge for v > 0. Recalling (10.13)), we have that f, (1)) converges to f& (1))

given by (10.17)), i.e.
@) = AW) + D gu@) + D gr (@)
k=1 k=1

Remark 10.3. By (10.21)) and (10.24) there is C' = Ck 3,5 < o0 such that

W) < C{IW)r + Wler} < C{VOl(Ksp) + 1} [ther for o € D(KY).
This shows that f% € D'(K,) is indeed a distribution on K, see (3.1)).

We now prove that f5(-) satisfies (10.18). We fix a point z € K and define
f@) = fRW) = F(v), ¢ eDK).
We also define f, (1) similarly to f,(¢) in (10.10), just replacing F. by F, — F}:

Fa0)i= | (=P 0() 4 = £0) = Fle™sw),  (1025)
having used (7.4). Since F,(p*" x¢)) — F,(¢)) by Lemma(7.4 and Lemmal7.3| we have
f@) = lim Fal®) (10.26)
We now fix A € (0, 1] and define
N =N, :=min{k e N: g, < A}, (10.27)
so that V > 1 and in particular

eEN < A<éen_i=2en. (10.28)

Let us now fix ¢ € B,, see (5.1]). By the triangle inequality we can bound
F@ < In(@)] + 1(F = Fn) ()] - (10.29)

We will estimate separately the two terms in the right-hand side.
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First term in . By (10.25)), recalling (10.7) and ([7.4]), we can write
v g
f J (F — Fo)(@57) 2 (y — 2) ¥(2) dy dz. (10.30)
R JRrd

This integral is similar to (10.23]) and we argue as in the proof of (10.24]). Recall that
¢ has support in B(O ) Then ¢*~ has support in B(0,ex) and we may assume

that |y — z| < 5 in the right-hand side of ( m Since 17 is supported in
B(z,\) < Kl, we can assume that |z — x| < A, hence z € K; and y € K3/5. Then
[In D] < 185 o 92 e sup |(F: = F2)(23Y)]-

z€B(z,\),|ly—z|<en
By the triangle inequality |(F, — Fx)(cﬁzNﬂ < |(F, — Fy)(cﬁzNﬂ + [(F, — Fw)(gézN)L
and since ((10.4)) and ((10.28)) give

Sup [(F: = Fy) (V)] < C ey (2en)17% < Cy 207> \7
ZEB(CC,/\)Jy—z‘ggN
sup |(Fy — Fm)(@;N” < 01 e (N +2en)7 < Cfl 417\

zeB(x,\),|ly—z|<en
we obtain 3 X
[fv(@2)] <247 Co XY % [9g] pn -
We can easily bound |21 < 2¢ for ¢ € B,, see , and Q%N |1 = [|P]:. All
this yields the following estimate for the first term | fx(¢})] in (10.29)

v < {4772 g G X (10.31)
Second term in (10.29). Next we bound, by (10.26),
(F = @D < DS 1w — F)@)]- (10.32)
k=N

Recalling and (10.13))-([10.14)), we can write
(frer = Je)@2) = (fuwr = fi)(42) = Fu (01 = p™) = 47)

G - Bl ) ) + ) . (103)
A) By

We now look at Ay and Bp. The estimates for A7 hold for any v € R and will be
useful in Section (11} for the case v < 0, hence we state them as a separate result.

Lemma 10.4. Define A} as in (10.33). For any v € R we have

NI edF T ifep < A
Y

: 10.34
g ifep = A ( )

43| < 4477 C @ - {

and for N = Ny in (10.27) we have
4d+’y «a

34 < — ——— 1@ A (10.35)
k=N
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Proof. By ([7.4)), together with the crucial property ((10.9) of p*¥+! — p% we can write

Fullr =)o ud) = [ Ralper =) 02(e) ds

- [ R e 20 g a.
R JRd
Recalling the definition (10.12)) of g, we obtain

A= [ [ R PG - 202 dy e
- | (B = R 0 dy

If we define G.(y) := |(F, — F)(¢5)|, we see that [A}| can be estimated as in (9.9),
which yields

|Apl <44 @)p min {ep/A 1} sup  |(F, — Fu)(@54)] -
yeB(z, A +er)

For y € B(z, A + ¢;), by (10.4) we have
(Fe = E)(E)] < Creg(jo—yl +ex) ™ < Cr (A +22) "¢,

which proves ((10.34) because (A + 2e;)" % < 377 max{eg, A\}7™*
We next turn to (10.35)). For & > N we have g, < A, see (10.28), hence we can
apply the first line in (10.34)). Since oo + r > 0 by assumption, we have

a+r >\o¢+r

Z eoz-i-r _ < ’
= o S1-3

therefore from ((10.34)) we obtain ((10.35)). 0
We next focus on By = g7 () in (10.33)). Recalling the definition (10.12)) of g7,

we can write

BYim || (= B = 2)v20e) dy e

Since 1) and ¢ are both supported in B(0,1), we can suppose that [z — 2| < X and
ly — 2| < &, < 1/2 and therefore z € K1, y € K35. Then

Bl <@ gl sup  [(F. = Fy)(&50)]-

2€K1,|ly—z|<ek

By ((10.4)) we have the bound
sup  |(F. = F)(@5)] < Cref (2e4)777,

zeK1,|ly—z|<ep

and therefore, since ¢} 1 < 2% for ¢ € B, by (9.10)),
|Bil <2727 Ch [|@llu e
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Note now that v > 0 here, so that

which yields

)\ 27 « 2d -
> IBy C1 @] L2 A (10.36)
k=N

Recalling (10.32) and (| , we obtain from (10.35) and (10.36|) the desired
estimate for the second term in ((10.29)):

~ ~ 2. 4d+’y—a N }
1(f = fv) ()] < T ontein Ch @l A7 (10.37)

Conclusion. At last, we can gather ((10.29)), (10.31) and ((10.37). We estimate
|6l < 2]@lz: by (10.8), to get
2 4d+1+'y—a

(5 = Fo)(yy)] < T ontern) Cr @l A7

If we estimate Q|1 using and C’l using ((10.6)), we obtain

I ~ 62 2 —r—1\« h

Crll < (f57) )" el IIFNIR, , pan - (10.38)
If we bound e < 4 for simplicity, we obtain finally ((10.18) with

c=¢ _ 220 ettt ol (1+ Ry)~®
— ety T g a(adn) | §l?

(for v > 0) (10.39)

where R, is the radius of a ball B(0, R,) which contains the support of ¢.

STEP 6. PROOF OF . We finally show that the distributions f% built in the
previous steps are consistent, namely for K € K’ and for all test functions ¢ € D(K;)
that are supported in K, we have f' (1)) = f%(¢). This is an immediate consequence
of Lemma [4.2] because if we fix any & € D(K7;) with {& # 0 it follows by (10.1§ m with
1 = &£ that both ¥ and f% satisfy (@1 . with ¢ = £ on the compact set K.

We can finally define a global distribution f € D’: given any test function ¢ € D, we
pick a compact set K large enough so that ¢ € D(K;) and we define f(¢) := fX ()
(this is well-posed thanks to the consistency relation (10.19)) that we have just proved).
Then, for any compact set K, we can replace fX by f in (10.18)), which shows that f
satisfies . This completes the proof of Theorem for v > 0. 0]

11. PROOF OF THE RECONSTRUCTION THEOREM FOR 7 < 0

In this section we prove Theorem [5.1] when v < 0. We stress that we do not have a
unique choice for the reconstruction RF', because relation for v < 0 does not
characterize f uniquely, see Lemma above and Remark |: 9 below.

Henceforth we fix a germ F' = (F, )xeRd which is y-coherent with v < 0. In order
to find a correct choice of RF, we start following the proof of the case v > 0, see
Section . We fix a compact set K < R? and we fix «, 3,7 as in —. The
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key problem when 7 < 0 is that the sequence of approximating distributions f,
that we defined in (10.10) will typically not converge, hence we can no longer define
& :=1lim, 4 f,. More precisely, if we recall the decomposition

fu) = i) + L) + £ (¥), ¥ eD(K),

see (|10.11))-(10.14), then it is the term f(¢) which can fail to converge for v < 0,
since the proof in Step 4 was based on ((10.24]) and exploited v > 0. On the other

hand, we showed that f'(v) := lim, . f/(¢) exists for every v € R, see ((10.15]).
Therefore, for v < 0 the idea is to suppress f(1). Recalling (10.14)), we thus set

W) = AW + A@) = Al) + > gh(®), Y eDKy). (11.1)

We complete the proof in two steps, that we now describe.

e In Step I we show that fX e D'(K;) is a distribution on K; which satisfies

AV ifv<0
K A coh Y
T L N A S S

uniformly for ¢ € B,, z € K, A€ (0,1],

for a suitable € given below, see (11.11]) for v < 0 and ((11.12)) for v = 0.

Remark 11.1. We stress that in general f%(¢) depends on the compact set K.
Indeed, f,(¢)) and g} () depend on ¢ = ¢l"l and the value of r > max{—a, -3} :=

max{—ag, . —Pk,,} is a function of K, see (10.3) and (10.1).

We first consider the special case when the germ F' is (a,7)-coherent with global
homogeneity bound [, that is when ax = « and S =  for every compact set K.
Then we can choose a fixed r > max{—a, —} and f¥(¢)) = f(¢)) does not depend
on K, hence replacing f¥ by f in we obtain precisely (5.2)).

[t remains to show that the map F'— f =: RF is linear (we recall that the family
of («,7y)-coherent germs with global homogeneity bound S is a vector space, see
Remark . This follows easily by the definition (11.1)) of fX = f, because both f;
and g, are linear functions of F', see and (10.12)). We have thus completed
the proof of Theorem for v < 0 in this special case.

We finally go back to the general case when a and fx may depend on K, hence
% also depends on K. We complete the proof of Theorem for v < 0 as follows.

e In Step II we build a global distribution f € D’ out of the fX’s, by a localisation
argument based on a partition of unity, and we show that f satisfies (5.2]).

It only remains to prove Steps I and II.

STEP I. PROOF OF (11.2). Let us outline the strategy we are going to follow.
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We have fixed a compact set K < R?. We now fix a point x € K. By Lemma
and Lemma [7.4] we have F,(¢) = lim,, o F,(p*™ * ¢). In view of (I11.1]), we define

fal®) = <f1(¢) + nz_: 92(10)) — B (p™ + ) (11.3)
k=1

so that we can write
F) = (7~ F) (@) = lim F,(w).
We now fix A € (0, 1] and replace ¢ by 1. By the triangle inequality, we get
[FED < |(f = fn) @) + [ i) (11.4)
where N > 1, defined in ([10.27)), is such that (we recall that e, = 27%)
en<A<ey_1=2¢epn.
We estimate the two terms in the right hand side of separately.
First term in . We bound

|(F = F) @D < D5 1w = F)(02)]

k=N

By we can write
(forr = f)(W2) = g1(02) = Fu((p7+ = p™) »43) = Ap,

where the term A7 was defined in (10.33]). We can then apply Lemma [10.4], which
holds also for v < 0: in particular, by relation ({10.35)) we obtain

Jd+y—«

(F = PRI < 5 Cr @l A7 (11.5)

T ar

Second term in (11.4]). Since N > 1, we can bound

@) < IR+ 3 1B — T (1L.6)
k=1

For kK < N — 1 we have ¢, > ey_1 = A, therefore by the second line in ((10.34)

|(fesr = fWD)] <447 Cr || @l €] (1L.7)
Next we estimate |fi(¢2)]. By (7.4) we have F,(p™ =) = (. Fo(p?) ¥(2) dz.
Recalling ((11.3)) and the definitions ((10.10)), (10.7]) of f; and p, we obtain

R = ) — Folp™ o) = f (F, — E) () 02 (y) dy

R4

- | L B e - 20 dy e,
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Since ¢, = 27% and ¢ has support in B(0, %) then ¢%*' has support in B(0,&1) =

B(0, %) and we may assume that |y — 2| < 1. Since 1) is supported in B(x,\) < K,
we can assume that |z — 2| < X and z € Kl, y € K3/5. Then
|Fr@)] < 192 o1 92 e sup [(F = F2) ().

2€B(z,\), |y—z|<%

Moreover ((10.4)) for € = 1 gives

sup (F. = E)(@) < Ci(ly—z[+1)7* <27,
zeB(w,)\),|y—z|<%
sup (B, = F)(@)l < Ci(ly—a| + 1) < G377,

zeB(x,\), |yfz\<%
therefore by the triangular inequality
A <2637 II%?HL1 |¢% I < G132 @] 1 (11.8)

since [|[¢}]| ;1 < 24 for ¢ € B,, by , and [@*1 |, = |@]|1. We can finally estimate
| fn(¥2)] by (11.6). We get by (11.7] and-
N-1

@] <47 Cy @l D €. (11.9)

k=0
Recalling that g, = 27% and ey = 27 > )\ /2, we obtain for v < 0
W2 -1 _ X

ifv<0

N-1 N—-1

-1 S1-2
da=>27"< o2 (11.10)
k=0 k=0 %8 X\ if v =0

log 2 e '

Conclusion. At last, we can gather (11.4), (11.5) and (11.9)-(11.10). For v < 0, since
|6z < 2] by (10.8), we obtain

K A
‘(f - F$)(¢$)‘ g 1 o 27(0{4’7’ /\
By ({10.38)), if we bound e < 4 for simplicity, we obtain for all A € (0,1]

r 27(r+1)a 4d+77a+6 HQOHLl (1 + R‘p)fa
1 — 2—(a+r)a(—) | S90|2

¢
For ~ = 0, since log(2/)A)/log2 < 2(1 + |log A|), we obtain by (L1.9)

742 2—(r+1)a 4d—a+6 HSDHLl (1 + RSD)_Q
1 —92—a-r | 3‘90’2

~
¢

4d+7 a+1

HSOHLl 01 AT

coh
(ipall AT (11.11)

K3)a,0,07

[(f* = F) ()] <

I, (1 +[log Al) -

K3/2,0,0v

(11.12)
This completes the proof of ((11.2)).
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STEP II. LOCALIZATION. In Step I we constructed for every compact set K < R?
a distribution f* € D'(K;) which satisfies (11.2). We now exploit this construction
only when K is a ball. Indeed, we use a partition of unity subordinated to a cover
made by balls, to construct a global distribution f € D’ which satisfies ([5.2)).
Fix n € D(B(0, 1)) such that n > 0 on B(0, 1) and n > 1 on B(0, ;) and set
g o n(z) d
E: 4@2’ &(x) - S n@—2) xr € R%

For every y € E we set §(x) := {(x —y), v € R Then ¢, is supported in B(y, 1)
and note that >, &, (z) =1, forall v € R?, that is (§,)yer is a partition of unity
subordinated to the cover (B(y, 1))yep. We finally define a distribution f € D'(R?) by

f o= Z fBy &y, where B, := B(y, i)7
yeE

or more explicitly

F@) =) P (&),  VpeDRY).

yeE
We fix an arbitrary compact set K < R? and we redefine o, 3 and r as follows:
ac=ag,, B = Bz, r > max{—ag,, —Bz,} (11.13)

i.e. we replace K35 by Ks, as in the statement of Theorem . It remains to show
that f satisfies on K with these values of r and a.

We select the finite family of points y,...,y, € E for which the balls B,, have
non-empty intersection with K. Since each ball B,, has diameter %, we have

Kc U B, € K.

1=1,....n

Note that the 3/2-enlargement of each B,, is contained in Kj, the 2-enlargement of
K. Then, by Step I and by the monotonicity properties - of K — ag and
K +— Bg, each distribution fPv satisfies for K = B,, and for r and o chosen
as i . For any test function 1 supported in B(0, 1) we can write

&,(2) 2 (2) = C(2) where C(z) = ¢lPvA(2) = Ey(x + A2)Y(2).
If we apply (11.2) for K = By, to (/|/(|cr € B,, we obtain for v < 0
(P = E)(& )| = 17 = E)C)] < €[Cllor I1FIIE g0n AT
where € is as in (11.11])). Note that, by Leibniz’s rule,

[¢ler <27 [€ller ¥l er -
Then, by definition of f and by >, ., &, =1,

DB - Fa) (& vd)

yeE

< (1Wa)re2 ¢

(f = F)(4)] = < (P = Fo) (&)

yeE

Yl I1FNI Ry pan A7 -

KQ,@,OL,’Y

cr
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The last inequality holds because &, 1) = 0 unless |z — y| < }1 + A< % and this can
be satisfied by at most (2 -3 - 44/d +1)* < (11v/d)* many y € E. Therefore f € D’
satisfies (5.2) for v < 0, with ¢ = ¢4 4, given as follows (recall (11.11))):

4 r2 2—(r+1)a 4d+y—a+6 HSOHLl (1 + R@)—a

Coy,rd = 2" HfHCT (11\@) 1 — 2—(a+r)a(=7) | SQO|2

(for v < 0)
(11.14)

where R, is the radius of a ball B(0, R,) which contains the support of p. With
similar arguments, using (11.12]), for v = 0 we obtain that f € D’ satisfies (5.2), with

g r29o—(r+l)a gd—a+6 ”SOHLl (1 + R@)—a
1 —9—a—r ’ S(p‘2

Cardee = 2" [€ller (11Vd) (for v = 0)

(11.15)
The proof is complete. O

In the next sections we introduce the spaces of distributions with negative Holder
regularity and we discuss some consequences of the Reconstruction Theorem.

12. NEGATIVE HOLDER SPACES

We generalize the classical Holder spaces C%, by allowing the index « to be negative.
We recall that the family B, of test functions was defined in (5.1)).

Definition 12.1 (Negative Holder spaces). Given o € (—0,0], we define

C* = C*(R?) as the space of distributions T € D' such that
T3] < = o)
uniformly for x in compact sets, for e € (0,1] and for ¢ € B,_, '

where we define r, as the smallest integer r € N such that r > —a.

Remark 12.2. Other definitions of the space C° are possible, see e.g. [HLI7]. The
one that we give here is convenient for our goals.

For any distribution 7" e D" and a < 0, we define |T'|¢a (k) as the best constant in
(12.1)):
T(4y
Tleoy = sup T, (122)
zeK, Ae(0,1], YeBr,

Then T € C* if and only if |T|¢a(x) < 0, for all compact sets K < R?.
Remark 12.3. The quantity | - |ca(k) is a semi-norm on C*. It is actually a true

norm for distributions 7" which are supported in K, i.e. such that T'(§) = 0 for all test
functions £ € D which are supported in K¢.

Remarkably, in order for a distribution 7" € D’ to belong to C%, it is enough that
(12.1)) holds for a single, arbitrary test function ¢ = ¢ with (¢ # 0, rather than
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uniformly for ¢ € B, . This is ensured by our next results, that we prove below using
the same ideas as in the proof of the Reconstruction Theorem.

Theorem 12.4 (Characterization of negative Holder spaces). Given a
distribution T € D' and o € (—0,0], the following conditions are equivalent.

(1) T is in C*
(2) There is an integer r > —« such that holds with B,, replaced by B, .
(3) There is a test function ¢ € D with § ¢ # 0 such that
IT(5)| < e
uniformly for x in compact sets and for € € {2 %} ey < (0,1] .

Moreover, the semi-norm ||T'|ca(k) defined in (12.2) can be estimated explicitly
using an arbitrary test function ¢ € D with (¢ # 0:

T(pE
leoo < bpana  sup L)
2K, e(0,1] €

where by o rq 5 an explicit constant, defined in (12.19) below.

(12.3)

We deduce a simple countable criterion for a distribution 7" € D’ to belong to C?.

Theorem 12.5 (Countable criterion for negative Holder spaces). Let
a<0and T eD'. Then T € C if (and only if ) there is a test function ¢ € D with
§ o # 0 such that, for every fized n € N, we have

T(p2)] < e

12.4
uniformly for x € Q% N B(0,n) and € € {2’k}keN ) ( )

Proof. The map x — £ € D is continuous, hence = — T'(g) is a continuous function.

It follows that (12.4) holds for all x € B(0,n), so Theorem applies. O

We finally turn to the proof of Theorem [12.4] that we obtain as a corollary of the
following more general result, proved at the end of this section.

Proposition 12.6. Let T'€ D'(R?) be a distribution with the following property:
there are a subset K € R and a test function @ € D with § o # 0 such that

Vre Ky, Vee {27%hen: IT(05)] < €% f(e,x), (12.5)

for some exponent o < 0 and some arbitrary function f : (0,1] x Ky — [0, 0).
Then we can upgrade relation (12.5)) as follows: for any integer r > —a,

Vre K, Y\e(0,1], Yy eB,: 1T ()] < bpara ) f(N, 2), (12.6)
where B, a1 the constant in (12.19) below, and f: (0,1] x K — [0,0) equals
f\z) = sup fN,2'). (12.7)

Ne(0,M], z'eB(x,2X)
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Proof of Theorem[12.]. Clearly [I implies [2], because B, < B,, for r = r,, and [
implies , because we can choose any ¢ = 1 € B, with {¢ # 0.

To prove that [3| implies [T}, it suffices to apply Proposition [I12.6] on every compact
set with a constant function f(\, x) = C. Equation then follows by . U

We next show that the reconstruction f = RF of a coherent germ F' provided by
the Reconstruction Theorem belongs to a negative Holder space and it is a continuous
function of the germ, in a suitable sense.

We recall that the coherence of a germ is quantified by the semi-norm ||F H|i}?i1 oo
defined in . We introduce a second semi-norm which quantifies the homogeneity
of a coherent germ: for any compact set K < R? we define, recalling Lemma m,

(2]
T, |_m7 12.8
{l H‘K,wﬁ zeK, e(0,1] e’ | |

where ¢ is as in Definition 1.3 We can now state the following result.

Theorem 12.7 (Reconstruction Theorem and Ho6lder spaces). Let (F}),era
be a (o, y)-coherent germ with local homogeneity bound 5 < ~. If f > 0, then
RF =0. If 3 <0, then RF belongs to C® and for every compact set K < R?
coh hom
IRFlesgy < € (IS + IFIEEE, ) (12.9)

R47$07O‘7’7

where ¢ be the test function in the coherence condition (4.2) and € = € 54, < 0O
1s a constant which depends neither on F nor on K.

Remark 12.8. The bound (12.9) holds for any test function ¢ € D with ¢ # 0, as
for the coherence condition (4.2)). This will be shown in Proposition

Proof. When 8 > 0 we already observed in Remark [1.15] that RF = 0. Henceforth we
fix 5 < 0. Let ¢ be the test function in the coherence condition (4.2). Let f = RF
by a reconstruction of F. Fix a compact set K: if we show that

VN < 0 (U, + 1P ) (12.10)

— I_{47907a77 I_(Q#Pﬁ
zeK2, Ae(0,1] A

for some &' = €&, _ 5, < o0, then we obtain (12.9) by (12.3) with € = b, 5., 4"

It remains to prove (12.10). Let us set 7 := min{r € N: r > max{—a, —5}}. We
observed in Remark that £ := c" € B; for suitable ¢, > 0 (which depend on ¢
and 7). Then by (5.2) for r = 7 we have, uniformly for 2 € K5 and X € (0,1],

1 A7 ifv#0
_Fx AN 1 _Fx niA < / r coh )
for a suitable ¢ = ¢, 5, . Since § < 7, we bound \* < A for v # 0 and

1+]log A| < ¢ M for v = 0, for all A € (0, 1] (by direct computation cs = —3~te~177).
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Recalling (12.8)), by the triangle inequality we obtain

PNl = B+ IR
_ g T p \B
zeKs, Ae(0,1] A zeKa, Ae(0,1]
coh hom
< (T 4ep) ANFNR, pon + IR ps
which completes the proof of (12.10)). U

Remark 12.9 (Non uniqueness). Let (F),cre be a (o, 7y)-coherent germ with
v < 0 and let f; and fy be two distributions which both satisfy (5.2]). Then

(i = F) (W)l < [0 = Fo) @)l + |(fa = Fo)(w2)] < X

uniformly for z in compact sets and A\ € (0,1] and therefore f; — fo € C7, by

Theorem [12.4] Viceversa, if f € D’ satisfies (5.2]) and D € C7, then f + D also satisfies
(5.2). Therefore, the reconstruction f = RE of a (a,7y)-coherent germ F with v < 0
1s not unique, but it is well-defined up to an element of C7.

We conclude this section with the proof of Proposition [12.6]

Proof of Proposition[12.6. Fix ¢ € D with {¢ # 0 which satisfies (12.5) and r € N
with 7 > —a. We define the test function ¢ = $l"} by (84) and we claim that

Vee Ky, Yee{2 %} en: IT(¢5)| < Ce® fe, ), (12.11)
where
~ 2 —r—1\«
f(e,z) = s?g)]f(e’,x), C = IeSsZI (L—Rq)) . (12.12)
e’e(0,e

To prove this claim, it suffices to write T(¢%) = S%: o i T(p) and to apply

(12.5) to T(¢), noting that % <\ < 1Dy (8.4) and |¢;| < €2 by (.8).
We recall that ¢ satisfies (8.5)-(8.6) as well as (8.7). Next we define

p=¢* @, =27,
as in (10.7)) above. Then, see (10.9)),
=Pz — P (12.13)

$
Note that (p*)nen are mollifiers, because {p = {@ - §p* = 1 (recall that {¢ = 1),
therefore for any test function ¢ we have

PEEFL — R = Bk (5K where

T(yy) = lim T(p™ «4y) (12.14)
hence for every N € N we can write
TW2) = T(™ = 4) + (TW2) = T « 43)) - (12.15)
A B
Henceforth we fix ¢ € B, and we set N := min{k € N: g, < A} so that N > 1 and
IA<en <A (12.16)

We estimate separately the two terms A and B in ((12.15)).
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Estimate of A. We can write
A=T( ) = [ T o) s
- || rem e - 20k dy a:
Rd Rd
- [ T @ ) a.

We now apply Lemma [9.3| with G.(y) := |T(¢5)]: by (0.8) we obtain
Al < 2@l sup  T(EM)].

yeB(z, \en)

By (12.16) we have A + ey < 2X and ey = A/2. Since a < 0, we obtain by (12.11])

sup  |T(§Y)| < Cey sup  flen,y) < C(1/2)° sup fN, 2,
yeB(z, \en) yeB(x,2\) Ne(0,M], z’eB(z,2\)
and finally, recalling ((12.7)),
Al < {27 C @l A" fF(\ ). (12.17)

Estimate of B. Let us fix k € N with £ > N. We can write, by (12.13)),

b = T(p+" =) — T(p* = 4}) = J T(pr+ — piF)p(z) dz
Rd

- || e e -2 vie) ay a:
- | T e e a

Note that ¢ is supported in B(0,1) (because ¢ is supported in B(0, 3), recall (8.5]))
and g, < ey < A for k > N. Then ¢ « 1) is supported in B(w, X + &) S B(w, 2)).
We apply again Lemma (9.3 with G. := [T'(¢5)[: by (12.11)) and (12.7) we can bound
SUDye ey |Gen (W) < Cef fer, w) < Ceg f(A, w) which yields, by (9.9),

[br| < C A% @l A7 e F(A w) -

Since o 41 > 0 by assumption, we obtain Y}, _ \ [bx| < +00 and, recalling (12.14)), we
can write B = T'(¢) — ( N« 9h) as the converging sequence B = > \ by. Since
Y et = (1—=27)"t et this yields

1B| < i b < CHUPls - G PN, w) (12.18)
\k:N AR 1 _ 9—a—r EN ,W) . .

Conclusion. By (12.15)), (12.17)) and (12.18)), since ||@[,: < 2|@|r and ey < A, we
get

4dfa+1

T—o=a=r |@ll C A F(A w).

T (¥2)| <
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If we plug the bound ({8.7)) and the definition (12.12)) of C', we get

.\ gd—a+1 e2r \2/ 91\ oz
Tl < { g (1rh) () lele e Fom),

Therefore we have proved (12.6]), with the explicit constant

fd-otlgdg=alr+1) 12 (1 4 R_)= |||
1— 2o | § ol

The proof is complete. [l

bcp,a,r‘,d = (1219)

13. MORE ON COHERENT GERMS

As an application of Proposition [12.6, we show that the coherence condition (|4.2])
can be strengthened, replacing the test function ¢ by an arbitrary test function,
provided we slightly adjust the exponent ag.

Proposition 13.1 (Enhanced coherence). Let F' = (F,),cra be a y-coherent
germ, i.e. (4.2)) holds for some ¢ € D and some family o = (o). If we define

o' = (ay) where o = ag,, (13.1)

then we can replace @ in (4.2)) by an arbitrary test function, provided we replace
ag by oy. More precisely, for any compact set K < R? and any r > —a’y we have

(F, — F)(@5)] S e (|2 — y| + €)%
uniformly for z,y € K, €€ (0,1] and ¢ € B,.

It follows that the family of v-coherent germs is a vector space.

(13.2)

Proof. Assume that (13.2]) has been proved. Given an arbitrary test function & € D,
we can write & = ¢t for suitable ¢ € R, X\ € (0,1] and ¢ € B, (exercise), hence

& = cqﬂ?js. Then it follows by ((13.2)) that we can replace ¢ by & in (4.2]).
It remains to prove ((13.2)). It is convenient to center the test function at a third
point z, i.e. to replace ¢y by ¢7. By the triangle inequality we can bound

((F2 = Fy)(@2)] < [(F: = Fa)(@0)] + [(Fy — Fa)(92)] - (13.3)

Let us fix a compact set K < R%. Both terms in the right hand side of (13.3)) can be

estimated by the coherence condition (4.2)) for the enlarged set K,. Recalling (13.1)),
we see that there is ¢x < o0 such that

Vz,ye K, Vo e Ky, Vee (0,1]:

(. = F)(@3)] < ex e (|2 — | + |y —af + )%
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For fixed y, 2z € K we can apply Proposition [12.6] with 7" = F, — F, and f(e,x) =
(|z — x| + |y — x| + €)7 k. Given any r € N with r > —a/j, relation ((12.6)) yields

Vz,y,x e K, YA€ (0,1], Yy e B, :
[(Fe = F) ()] < By ra A (12 = af + [y — ] + 5A) %
SN (|2 — | + |y — 2| + A) %K.
If we plug x = y we obtain ((13.2)). 0

We now show that also the local homogeneity relation (4.8]) can be strengthened,
replacing ¢ by an arbitrary test function, provided we slightly adjust G-

Proposition 13.2 (Enhanced local homogeneity). Let F = (F,),cre be a
y-coherent germ with local homogeneity bounds B = (Pk), see (4.8)). If we set

B =(Bk)  where By :i=Pkg,,
then we can replace v in (4.8) by an arbitrary test function, provided we replace By
by Bj. More precisely, for any compact set K € R and any r > max{—a’, —B%},

with oy defined in (13.1), we have
B ()] S P

. (13.4)
uniformly for v € K, e € (0,1] and ¢ € B, .

Proof. We apply the Reconstruction Theorem: let f = RF' is a reconstruction of F.
Fix a compact set K < R? and r > max{—ag,, —Bg,}. Then, by (5.2),

e if v # 0

(1+|loge]) ify=0

uniformly for x € K, ¢ € (0,1] and ¢ € B,.. Since f € C? by Theorem [12.7, we have
[f@o)] < &

uniformly for x € K, € € (0,1] and ¢ € B,. Since 5 < ~, we finally get

()] < [(Fe = NI+ [f(W5)] < €%,
uniformly for x € K, ¢ € (0,1] and ¢ € B,. This proves ([13.4). O

(f = F) (o)l s {

14. YOUNG PRODUCT OF FUNCTIONS AND DISTRIBUTIONS

As an application of the Reconstruction Theorem, we prove that there is a canonical
definition of product between a Holder function f € C%, with a > 0, and a Holder
distribution g € C?, with 38 < 0, provided o + 3 > 0. This classical result has been
obtained with wavelets analysis or Bony’s paraproducts, see e.g. [RS96, Theorem 1
in Section 4.4.3|, [BCD11, Theorem 2.52| and [Hail4, Proposition 4.14]. Our proof of
the Reconstruction Theorem provides a new approach to this result, which bypasses
Fourier analysis and applies to general (non tempered) distributions. In the case
a + 8 < 0, a non-unique and non-canonical “product” can still be constructed.
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We start with some general considerations. Given any distribution g € D’ and any
smooth function f € C*, their product P = g - f is canonically defined by

Ple)=(g9-f)le):=9glpf), VeeD.

If feC* with o > 0 this no longer makes sense, as ¢ f might not be a test function.
However we can still give a local definition of g - f close to a point x € R%, replacing
f by its Taylor polynomial F), of order r(a) := max{n € Ny : n < a} based at z:

Fo():= >, & f(x) ¢ _k""“") . (14.1)

0<|k|<a
This leads us to define the germ P = (P, := g - F},),crd, that is
Pu(p) = (g Fu)(p) :==gloF:),  ¢eD. (14.2)

We can now state the following result.

Theorem 14.1 (Young product). Fiz a> 0 and g < 0.

o Ifa+ B > 0, there exists a bilinear continuous map M : C* x C? — CP
which extends the usual product M(f,g) = f - g when f e C*. This map is
characterized by the following property: for any r € N with r > —f

Ao+h fa+B#0

(1+[logh]) ifa+pB=0 (14.3)

uniformly for x in compact sets, A € (0,1] and ¢ € B, ,

where F, is the Taylor polynomial of f based at z, see (14.1)).

o If a+ <0, there exists a bilinear continuous map M : C* x C? — C? which
satisfies property . This map s neither unique nor canonical. However,
for a+ 5 <0 any two maps M, M’ which satisfy property must differ
by a map in C°*P, i.e. we must have M — M’ : C* x C8 — C*5,

(M(f.9) =g F)®2)| < {

Remark 14.2. For fired o > 0 and 8 < 0 with a + 8 > 0, we cannot claim that
M : C* x C? — CP is the unique continuous map which extends the usual product
M(f,g) = f-gwhen feC® simply because C* is not dense in C*. On the other
hand, given any < 0, we can state that M : Uw_ﬁ C* x CP — CP is indeed the
unique continuous map which extends the usual product, because C* is dense in C¢
with respect to the topology of C*', for any o/ < a.

Remark 14.3. For a + 8 < 0 the “product” M that we construct is non-local, as
can be inferred from the proof of the Reconstruction Theorem. This is reminiscent of
the para-products studied by Gubinelli-Imkeller-Perkowski [GIP15].

Before proving Theorem [I4.1] we need some preparation. We recall that the negative
Hélder space C? with 8 < 0 is equipped with the family of semi-norms || - les k)
defined in ((12.2)), for compact sets K = R?. We now introduce a corresponding family
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of semi-norms |¢||ca(x) for positive Holder spaces C* with o > 0. Recall that
r(a) :=max{neNy:n < a}.

Then, given a compact set K < R?, we define | - |¢a(x) by taking the maximum
between between || f|cr(x) and the best implicit constant in (2.3) when z,y € K:

[ fllee ) = maX{!f\o»~<K>, sup M} (14.4)
zyek |y —

We can now formulate more precisely the continuity of M stated in Theorem [14.1}
we are going to prove that for every compact set K < R?

IMCfs D les ey < 1 leai [9les iz - (14.5)
To prove Theorem [14.1] we first quantify the coherence of the germ P in ((14.2)).

Proposition 14.4. If f € C* and g € C?, with a > 0 and B < 0, then the germ
P = (P,)era 18 (B, a + B)-coherent and has homogeneity bounded below by 5.

Proof. We are going to show that there is a test function ¢ € D(B(0,1)) with {¢ # 0
such that, for every compact set K — R?, the following relations hold:

(s = P) ()] < [ flea I9les ey €” (12 =yl + ), (14.6)
Po(@2)] = [ flleaqo) lglesc € (14.7)

uniformly for z,y,z € K and ¢ € (0,1]. Throughout this proof, all implicit constants
hidden in the notation < may depend on the parameters «, 8, but but not on K, f, g.
We first prove (14.6). Let us fix a compact set K < R? and we set r = rg :=

min{r e N: r > —g}. By (12.1) applied to ¥ /|| - we can bound, recalling ((12.2)),
193] < lglles iy Il €7 for all e € (0,1], v e D(B(0,1)), ye K. (14.8)
Fix now any ¢ € D(B(0,1)) with {¢ # 0 and |¢[c- < 1. By ([(£.7), for any y,z € K
5 o Ry, 2)
(P-=P)(e) == D, 9((—w)'e)) — 7=
0<|k|<a
where |R¥(y, 2)| < | fllcex) |2 — y|*~'¥. We have for fixed y € R, k € N¢ and & > 0
(w =) py(w) =M yj(w), where p(w):=w" p(w).
Then ¢ € D(B(0,1)) and |[¢|cr < |¢]|cr < 1, hence it follows by (14.8)) that
l9(C = )" )| =" g(v5) < lglesc ™. (14.9)
We thus obtain, uniformly for z,y € K and € € (0, 1],
(P = P S | fllearey lglesrey D5 &Mz =yl
0<|k|<a
< flleaey lglles iy (12 =yl + ),
which completes the proof of ((14.6)).
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We next prove (14.7). By (14.1) and (|14.2)), recalling (14.4]) and ((14.9)), we obtain

0" f(2) O f ()
Pelel < 25 lo((—2)" ) ‘ —a | Slaleag 2, =5
0<|k| <y o<lk|<y
< [ fllewxy lglles ) Z eFHikl < | fllcecry 19lles o) e
0<|k|<y
uniformly for z in compact sets and e € (0, 1]. This completes the proof. O

We can finally give the proof of Theorem [14.1]

Proof of Theorem [1].1 We know that the germ P in is (o, a+ ()-coherent and
has local homogeneity bound 3, by Proposition [14.4, We also know by Theorem [12.7]
that RP belongs to C? (note that 8 < a + ). Since the map P + RP is linear, and
since P is a bilinear function of (f, g), it follows that we can define a bilinear map

M:C*xCP — CP, M(f,g) :=RP.

Property ((14.3)) is a translation of ([5.2)), which characterizes M if and only if o+ > 0.
Note that by ({12.9))

coh hom
MU Dlesr S (1PN + IPIEE, )
It follows by the estimates ((14.6)-(14.7)) in the proof of Proposition that

h h
PR, g0 + 1PN Rps S Nglles(iny 1f lea iy

which proves (14.5)), hence M is a continuous map. O
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