THE CRITICAL 2D STOCHASTIC HEAT FLOW

FRANCESCO CARAVENNA, RONGFENG SUN, AND NIKOS ZYGOURAS

ABSTRACT. We consider directed polymers in random environment in the critical dimen-
sion d = 2, focusing on the intermediate disorder regime when the model undergoes a
phase transition. We prove that, at criticality, the diffusively rescaled random field of
partition functions has a unique scaling limit: a universal process of random measures on
R? with logarithmic correlations, which we call the Critical 2d Stochastic Heat Flow. It
is the natural candidate for the long sought solution of the critical 2d Stochastic Heat
Equation with multiplicative space-time white noise.
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1. INTRODUCTION AND MAIN RESULTS

1.1. OVERVIEW. The model of directed polymer in random environment (DPRE) is by
now a fundamental model in statistical physics and probability theory. It is one of the simplest
and yet most challenging models for disordered systems, where the effect of disorder — which
is synonymous with random environment — can be investigated. Originally introduced by
Huse and Henley [HH85| in the physics literature to study interfaces of the Ising model with
random impurities, over the years, DPRE has become an object of mathematical interest
and lies at the heart of two areas of intense research in recent years. On the one hand, it
is one of the canonical examples in the Kardar-Parisi-Zhang (KPZ) universality class of
interface growth models, which has witnessed tremendous progress over the last two decades

in spatial dimension d = 1 (see e.g. the surveys [QS15], [Cor12, [Cor16]); on the other hand,
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it provides a discretisation of the Stochastic Heat Equation (SHE) and (via the Cole-Hopf
transformation) of the Kardar-Parisi-Zhang (KPZ) equation, for which a robust solution
theory in d = 1 has been developed only recently in the larger context of singular stochastic
partial differential equations (SPDE) [H13| [H14, (GIP15 Kup14] [GJ14].

Our goal in this paper is to consider DPRE in the critical spatial dimension d = 2, for
which much remains unknown. Our main result shows that, in a critical window for the
disorder strength, the family of partition functions of DPRE converges to a universal limit,
which can be interpreted as the solution of the (classically ill-defined) 2-dimensional SHE.
This is the first example of a singular SPDE for which a solution has been constructed in
the critical dimension and for critical disorder strength.

In the remainder of the introduction, we first recall the definition of DPRE, its basic
properties, and the works leading up to our current result. We then present our main results
and discuss their connections with singular SPDEs and related research.

1.2. THE MODEL. The first ingredient in the definition of DPRE is a simple symmetric
random walk (S = (S,,),>0,P) on 7%, started at Sy = 0. To specify a different starting time
m and position z, we will write P(-|S,,, = z). The second ingredient is the disorder or random
environment, encoded by a family of i.i.d. random variables (w = (w(n, z))neN,ZEZd’ P) with
zero mean, unit variance and some finite exponential moments:

Elw] =0, E[*] =1,
3By >0 suchthat  A(B) :=logE[¢™] <o  VBe[0,5)].

Given N € N, 8 > 0, and a realization of w, the polymer measure of length N € N and
disorder strength (inverse temperature) § in the random environment w is given by

APY(S] Sy = 2) = gy —eZnmt S A0 ap(s | 5, = 2) (1.2)
Zy"(2)
where
N—
259(2) = E[eZn_f{ﬁw(mSn)—A(ﬂ)} ‘ 5, = Z} (13)

is the partition function. Note that \(3) in the exponent ensures that E[Zﬁ,w(z)] = 1.

In the mathematical literature, DPRE was first studied by Imbrie and Spencer [IS88].
There have been many results since then, although many fundamental questions remain
open. We briefly recall what is known and refer to the recent monograph by Comets [Com17]
for more details and references.

DPRE exhibits a phase transition between a weak disorder phase and a strong disorder
phase. Using the martingale structure of the partition functions (Z f,“’(())) Nen, first identified
by Bolthausen in [Bo89], DPRE is said to be in the weak disorder (or strong disorder) phase
if the martingale converges almost surely to a positive limit (or to 0). It was later shown in
[CY06] that there is a critical value 8. = 0 such that strong disorder holds for 5 > 3, and
weak disorder holds for 0 < 8 < .., where 3, € (0,00) for d > 3 [IS88] [Bo89], and 5, = 0 for
d = 1,2 |CHO02, [CSY03] (see also [L10, BLI7, IN19]).

In the weak disorder phase, a series of works culminating in [CY06] showed that the
random walk under the polymer measure converges to a Brownian motion under diffusive
scaling of space and time, as if the disorder is not present. In the strong disorder phase, it is
believed that under the polymer measure, the path should be super-diffusive, but this has
only been proved for special integrable models in dimension d = 1, see [JOO, [CH16]. Even less
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is known in d > 2 due to the lack of integrable models within the same universality class. We
mention that the strong disorder phase can alternatively be characterised by the fact that
two polymer paths sampled independently in the same random environment have positive
overlap, see [CH02, [CSY03], [V07] and the more recent results [Chal9, BC20a, BC20b) Ba21].

1.3. THE CASE d = 2. Henceforth, we will focus on dimension d = 2. Surprisingly, even
though S, = 0, there is still a weak to strong disorder transition, which was identified in
[CSZI7h]. More precisely, if we choose 8 = By = 3/+/Iog N, which is called an intermediate
disorder regime, then it was shown in [CSZ17b| that below the critical point B. = \/m, the
partition function ZJ’?),N *“(0) converges in distribution to a log-normal random variable, which
is strictly positive, while at and above BC, it converges to 0 (such a transition does not occur
in d = 1). This raises many interesting questions about the 2-dimensional DPRE.

There are two main perspectives in the study of the partition functions of DPRE. One is
to investigate the fluctuation of a single log-partition function log Zﬁ[’w(()) as N — o0. In
d = 1, this is conjectured to converge, under suitable rescaling, to the universal Tracy-Widom
distribution whenever # > 0. Similar universal fluctuations are expected to arise in d > 2
when 8 > [, although only numerical results are available so far [HH12, [HHI13|. In d = 2
and in the intermediate disorder regime Sy = 3/y/log N with a sub-critical interaction
strength 3 < f3., [CSZI7H] showed that log Z]BV’“’(O) converges to a universal normal limit
independent of the law of w. The super-critical case B = BC remains a difficult challenge.

Another perspective, which we take in this paper, is to study the diffusively rescaled field
of partition functions indexed by all starting points in space-time:

(Un(t2) = Z“(VND)) 2o e (1.4)
as well as the diffusively rescaled field of log-partition functions:
(Hu(t,z) = 1og ZRY“(VNT)) g g2 - (1.5)

The fields Uy and H ; provide natural discretizations of the solutions of the two-dimensional
Stochastic Heat Equation (SHE) and Kardar-Parisi-Zhang equation (KPZ) respectively:

1 .
Opu = §Au + W, (1.6)

&b %Ah + %|Vh!2 LB, (1.7)
where W = W(t, x) denotes space-time white noise. These stochastic PDEs are singular and
ill-posed: even the recent breakthrough solution theories of regularity structures [H13| [H14]
and paracontrolled distributions |[GIP15l I(GP17] only apply in d = 1 but not in the critical
dimension d = 2. Therefore, if Uy and H admit non-trivial limits, then these limits are
natural candidates for the long-sought solutions of SHE and KPZ in d = 2.

The study of the random field Uy was initiated in [CSZ17b|, which showed that in the
subcritical regime B < Bc, the centered and rescaled random field +/log N(Z/{N(t, x) — 1)
converges to the solution of the so-called Edwards-Wilkinson equation, which is a Gaussian
free field at each time t. The study of the random field H 5 was first carried out in [CDQO]E
which showed that v/log N ( Hy(¢t,z) — E[H(t,z)]) is tight in N as a family of distribution-
valued random variables for B sufficiently small; shortly after, [CSZ20] proved convergence to

TMore precisely, [CD20] and [Gu20] both study the analogue of H defined by mollifying the noise W in
(1.7) instead of discretizing space and time, while [CSZ17b| considered both types of regularizations.
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the solution of the same Edwards-Wilkinson equation as for U for all /3’ < Bc (simultaneously,
the same result was proved in [Gu20] for 3 sufficiently small).

In the much more interesting and delicate critical regime B = BC — there is in fact
a critical window of width O(1/log N) around f,, see below — the random field
Uy (t, ) no longer needs any centering and rescaling. Its limiting correlation structure was
first identified in [BC98|] through a different regularisation of the 2d SHE (1.6) (mollifying
the noise W instead of discretizing space and time). In [CSZI9b], the third moment of the
averaged random field Uy (t, @) := (Un (¢, ) p(x) dz, for test functions ¢, was computed
and shown to converge to a finite limit as N — oo, which implies that all subsequential
limits of Uy have the same correlation structure identified in [BC9§| (tightness is trivial
since E[Uy] = 1). Subsequently, [GQT21] identified the limit of all moments of Uy (¢, ) (see
also the more recent work [Che21]). However, the uniqueness of the limit of Uy remained
elusive and challenging, because the limiting moments identified in [GQT21] and [Che21]
grow too fast to uniquely determine the law of the random field.

Our main result settles this question and shows that, in the critical window around B = Bc,
the random field Uy indeed converges to a unique universal limit, which naturally provides
a notion of solution of the 2d SHE for disorder strength 8 in the critical window.
Therefore, we name it the Critical 2d Stochastic Heat Flow.

1.4. MAIN RESULTS. To formulate our main results, we generalize the partition functions
in ({1.3) by introducing a point-to-point version, where both the starting and ending positions
of the random walk are fixed: for M < N e Ny ={0,1,2,...} and w,z € Z? we set

785w, z) = E[ N T

Sy = w} , (1.8)

with the convention Zr]y_]\l/fﬂ{ J:=0for N <M+ 1.
To deal Wlth parity issues, for x € R? we denote by [z] the closest point z € Zeven =

{(z1,29) € VARE TN even}; for s € R we define the even approximation [[s]] := 2|s/2] €
ZLogen, *= 27.. We then introduce the process of diffusively rescaled partition functions

N
Z]ﬁVN - (Zﬁ/];]s,t(dx7dy) = Zl/%\\;;]] ﬂNt]([[\/N$]]7 [[\/Ny]]) do dy) 0<<s<t (1‘9)
<s<t<o0

where dx dy denotes the Lebesgue measure on R? x RQ, and Sy will be defined shortly.
We regard Z]@J,V < (dz,dy) as a random measure on R? x ]RZ, where we equip the space of

locally finite measures on R? x R? with the topology of vague convergence:
Py —p = fé(x,y) py(d, dy) — J¢(ﬂs,y) p(dz,dy) Vo e C.(R* x R?).

Our main result proves weak convergence of the law of Zﬁ, as N — oo, when § = [y is
rescaled in a suitable critical window, that we define next. Let us introduce the sequence

N N 2
Ry:=> > P( Z (S =0)= {;(?)} ~ IOiN, (1.10)
n=1 2 n=1 n=1 2

fNote that E[Zf/ﬁj\,w(w,z)] =P(Sy = 2| Sy = w) = O(515;) = O(+) for M/N < ¢ < 1, by the local
limit theorem, which explains the prefactor N in (1.9). The extra factor % is due to periodicity.
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which is the expected overlap (number of collisions) between two independent simple
symmetric random walks starting from the origin in 72 up to time N. Recalling that A(-) is
the disorder log-moment generating function, see (|1.1)), the critical window for § = Sy is

1 1
N =2ABN) _p Ty (1 + m> , for some fixed ¥ € R. (1.11)

Since A(B) ~ %,82 as B ] 0, see (1.1)), we have By ~ Bc/w/logN with BC = /7 irrespective
of the parameter ¢, which contributes to the second order asymptotics, see (3.12)).

We can now state our main result, which will be proved in Section [9}

Theorem 1.1 (Critical 2d Stochastic Heat Flow). Fiz Sy in the critical window ((1.11),
for somed e R. As N — o0, the family of random measures ZJ%N = (Zf,]f’s A(dz, dy))o<s<t<on
defined in (1.9) converges in finite dimensional distributions to a unique limit

Qﬁﬁ = (fgosq?t(dxa dy))0<s<t<oo ’

which we call the Critical 2d Stochastic Heat Flow. This limit 2 is universal, in that it
does not depend on the law of the disorder w except for the assumptions in ((1.1)).

We can infer directly from its construction some basic properties of the Critical 2d
Stochastic Heat Flow, which we collect in the next result, also proved in Section [9}

Theorem 1.2. The Critical 2d Stochastic Heat Flow 2" is (space-time) translation invariant
n law:
dist

(g:ia,ﬂra (d(z +b),d(y + b)))0<s<t<oo = (%?t(dx,dy))0$sst<oo Va=0, Vbe R2,

and it satisfies the following scaling relation:

di o
(Zaar(d(Vaz), d(vay))ocscicon = (a 25,8 (d2,dy))ocscics Ya>0.  (112)
The first and second moments of 27 are given by
E[20)(dx,dy)] = § 91— (y — @) dudy,

(1.13)
Cov[ 2, (dw, dy), 24(da’, dy)] = § K{_y(x,2sy,y) dedy da’dy’,

where g denotes the heat kernel in RZ, see (3.20), and K" is an explicit kernel, see (3.50)).

Remark 1.3. The covariance kernel K?_S(a;,x/;y,y') was first identified in [BCIY| (see
also |[CSZ19b]) and is logarithmically divergent near the diagonals x = Z ory=1y.

We now briefly explain the proof strategy. As noted before, the moments of % ¥ identified
in [GQT21] and [Che21] grow too fast to uniquely characterize the law of 2. The bounds
given in these works suggest that the n-th moment is at most of order exp(exp(nQ)), while
our recent work [CSZ22] gives a lower bound of exp(cn?). Physical arguments on the Delta-
Bose gas [Raj99] suggest that the growth should be exp(exp(n)). It may thus be surprising
that we are still able to prove Theorem [I.1] and show that the limit is unique, without
criteria to uniquely identify the limit. Another prominent result of this nature, which gave
us inspiration, is the work of Kozma [Koz(07| on the convergence of the three-dimensional
loop erased random walk with dyadic scaling of the lattice 2 N73.
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The basic strategy is to show that the laws of ( N ven form a Cauchy sequence, i.e.
ZJ%N and Z]@M are close in distribution for large N, M € N. (1.14)

To accomplish this, we first construct a coarse-grained model Q@(Cg)( -|©), for each € € (0, 1),
which is a function of a family © of coarse-grained disorder variables. We then perform a
coarse-graining approximation of the partition function on the time-space Scale (€N VeN )
which shows that Z’BN can be approximated by the coarse-grained model Qf ( |©) for
a specific choice of coarse-grained disorder © = Oy . that depends on N and ¢, with an
approximation error which is small for small £ and large N (shown via second moment
bounds). As a consequence, we finally prove by showing that the coarse-grained
models a@@(cg)( -1©) with © = Oy . and © = ©,, . are close in distribution, for small € > 0
and large N, M € N (shown via a Lindeberg principle).

We give a more detailed proof outline in Section 2] Let us just highlight here the key
proof ingredients:

A. Coarse-Graining, which leads to a coarse-grained model with the same structure as

the original model, demonstrating a degree of self-similarity;

B. Time-Space Renewal Structure, which sheds probabilistic light on second moment
computations and leads in the continuum limit to the so-called Dickman subordinator;

C. Lindeberg Principle for multilinear polynomials of dependent random variables, which
controls the effect of changing © in the coarse-grained model ff ( |9);

D. Functional Inequalities for Green’s Functions of multiple random walks on ZQ, which
yield sharp higher moment bounds for the coarse-grained model.

This framework is robust enough that it can also be used to show convergence of other
approximations of SHE ((1.6) to the Critical 2d Stochastic Heat Flow.

Remark 1.4 (Mollified SHE). The same proof steps A, B, C, D can be cqrried out for
the solution ug of the mollified SHE (|1.6), where the space-time white noise W is mollified

Spatmlly on the scale 0 and B = B is chosen in the corresponding critical window, that is

19+o . . .o .
65 \1og5\ (cf. - A key point is that coarse-graining us on the mesoscopic
(cg)

scale leads to exactly the same coarse-grained model 27" (-|©) constructed in this paper,
Just with a different family of coarse-grained disorder variables © = O; .. This means that

the solution ugs of the mollified SHE would converge as § | 0 to the same universal limit °
in Theorem [I.I} We will not carry out the details here since the paper is long enough.

We remark that Clark has proved in |[Cla21] an analogue of Theorem for DPRE on
the hierarchical diamond lattice, which is particularly useful for renormalization analysis
and can mimic Euclidean lattices of different dimensions as the lattice parameters vary.
Furthermore, in [Cla22l [Clal9b], he also constructed the continuum polymer measures and
studied their properties. This raises interesting questions as to whether similar results can
be proved for DPRE on the Euclidean lattice, where exact renormalization analysis is no
longer available. We point out that our work developed in parallel to that of Clark, and
our proof strategies share some common features, such as coarse-graining and controlling
distributional distances via a Lindeberg principle in our case vs. Stein’s method in [Cla21],
and showing that the laws of the partition functions form a Cauchy sequence.
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Now that we have proved the existence of a unique limit 2 U __the Critical 2d Stochstic
Heat Flow — the next challenge will be to investigate its properties and characterize its law.

Remark 1.5 (Alternative scaling). The simple random walk on 7% is 2-periodic and
each component has variance % As a consequence, the diffusively rescaled partition functions
Uy (t,x) in (1.4) provide a discretization of a slightly modified SHE (1.6]), namely

1 .
0yt = 1Aa+\/§ﬁwa

(see [CSZ22, Appendix A.3| for more details). The SHE with the usual parameters in (1.6))
can be recovered via the change of variable Uy (t, %) Therefore to describe a candidate

solution of (|1.6]), we should consider the rescaled Critical 2d Stochastic Heat Flow given by
(recall (L.12))

22 A 9 a V+log 2
z" = (ff&t (d%’ d%))ogsst«)o - (2 ”@28,2t0g (dl‘, dy))0<s<t<oo ’
which is also normalized to have mean 1 rather than § (see (L.13)).

1.5. RELATED LITERATURE. We next discuss the connection between our work and
various results in the literature and point out some future directions of research.

SINGULAR SPDES. As explained in Section the scaling limit .2 ¥ in Theorem can
be interpreted as the solution of the 2-dimensional SHE in the critical window. For
SHE, dimension d = 2 marks the critical dimension in the language of singular SPDEs and
renormalisation group theory. To define a solution for singular SPDEs, such as SHE and
KPZ in —, a standard approach is to mollify the space-time noise W in space on
the scale of €, and then try to identify a scaling limit as € | 0. Discretizing space-time by
considering a lattice model, such as the DPRE that we study in this paper, is just another
way of removing the singularity on small scales (also known as ultraviolet cutoff).

All existing solution theories for singular SPDEs, including regularity structures [H13| [H14],
paracontrolled distributions [GIP15] [GP17], the renormalization group approach [Kup14],
or energy solutions [GJ14], do not apply at the critical dimension. The only singular SPDEs
for which progress has been made in defining its solution at the critical dimension are SHE
and KPZ (via the Cole-Hopf transform). The phase transition identified in [CSZI7b| was
unexpected, and to the best of our knowledge no such transition has been established for
other singular SPDEs in the critical dimension. Theorem is thus the first result to define
a solution for a singular SPDE at the critical dimension and for critical disorder strength.

In dimension d = 2, recently there has also been significant progress in understanding the
solution of the anisotropic version of the KPZ equation (aKPZ), which differs from
in that [Vo|? = (635112)2 + (612’0)2 therein is replaced by (611’0)2 - (893211)2. This case is also
beyond the reach of existing solution theories, and unlike the isotropic KPZ, it cannot be
linearized via the Cole-Hopf transformation. Cannizzaro, Erhard, and Schénbauer [CES21]
regularized the aKPZ via a cutoff in Fourier space, instead of discretizing space and time or
mollifying the noise on the spatial scale ¢ (all are ultraviolet cutoffs). They showed that if
the non-linear term (é’xlv)2 - (6’120)2 is rescaled by a factor \/4/|loge|, then the solution of
the regularized aKPZ is tight with non-trivial limit points, which is the anisotropic analogue
of [CD20]. Very recently, Cannizzaro, Erhard, and Toninelli [CET21] succeeded in proving
that the limit is in fact Gaussian and solves the Edwards-Wilkinson equation, which is
the anisotropic analogue of [CSZ20,, [Gu20)]. In contrast to the isotropic case , there is
no phase transition in A for the aKPZ. The same authors also studied the aKPZ without
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scaling the non-linearity, and in a surprising result [CET20a), [CET20b], they showed that
the solution exhibits logarithmic superdiffusive behaviour.

In the supercitical dimensions d > 3, the transition between the weak and strong disorder
phases for the directed polymer is long known [Com17| and has a natural counterpart for
SHE and KPZ. In recent years, there have been many studies on the solutions of SHE
and KPZ via mollification, namely, analogues of the random fields Uy and H p defined in
—. These studies are all in the weak disorder regime and are analgous to results in
d = 2, see e.g. [MU1S, IMSZ16, [CN21l [CNN22|, [CCM20l, IGRZ18, [DGRZ20, L.Z22].

COARSE-GRAINING. The first step in our approach is to construct a coarse-grained model.
Coarse-graining has a long history in statistical mechanics and renormalisation theory. In
the framework of directed polymer models, coarse-graining has played a crucial role in
the studies by Lacoin [L10] and Berger-Lacoin [BL17| on free energy asymptotics, which
extended previous works in the literature of pinning models, see [Gil1], from which we single
out the fundamental work of Giacomin-Lacoin-Toninelli [GLT10].

In our analysis, we need a family of coarse-grained models which provide a sharp approxi-
mation of the partition function at the critical point, while the works mentioned above used
coarse-grained models to provide upper bounds away from the critical point. The need for
a sharper approximation creates several challenges, which lead to the refined estimates in
Sections [ and [§] and the development of the enhanced Lindeberg principle in Appendix [A]

DPRE ON HIERARCHICAL LATTICES. In a series of papers [Cla2ll [Cla22| [Cla19b], Clark
successfully treated the directed polymer model on hierarchical diamond lattices at the
“critical dimension” and in the critical window of disorder strength, which contains an
analogue of Theorem and more. Due to their tree-like structure, hierarchical lattices
are especially convenient for performing exact renormalization group calculations that are
typically intractable on the Euclidean lattice. By tuning suitable parameters (such as the
number of branches and the number of segments along each branch), hierarchical lattices
can mimic Euclidean lattices with different spatial dimensions. When the branch number
equals the segment number, hierarchical lattices mimic Z?. For DPRE on these lattices,
Clark was able to prove in [Cla21] the analogue of Theorem

Exploiting the structure of hierarchical lattices, in [Cla22], Clark was able to use the
limiting partition functions obtained in [Cla2]] to construct a continuum version of the
polymer measure and study its properties. Furthermore, in [Clal9b|, he identified an
interesting conditional Gaussian Multiplicative Chaos (GMC) structure among the continuum
polymer measures with different parameter ¢ (similar to ¥ in Theorem . These results
raise interesting questions as to whether similar results can be obtained for DPRE on the
FEuclidean lattice. In this respect, Theorem provides the starting point.

CONTINUUM POLYMER MEASURE. A continuum version of the DPRE polymer measure in
dimension d = 1 was constructed in [AKQI14al, [AKQ14b], exploiting the continuum limit
of the point-to-point partition functions. The same approach was applied in [CSZ16] to
pinning models with tail exponent o € (3,1). An essential feature of these constructions,
as well as the one by Clark [Cla22| in the hierarchical setting in the critical regime, is that
the continuum partition functions are random functions of the polymer endpoints. The
same holds for DPRE in dimension d = 2 in the subcritical regime By ~ B/\/Iog N, with
B < Bc = /7, where it was recently shown in [Ga21] that the discrete polymer measure,
diffusively rescaled, converges to the law of Brownian motion.
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The situation for DPRE in dimension d = 2 in the critical window is radically different,
because the continuum partition functions ZZ ¢(dz,dy) given in Theorem are only random

measures and undefined pointwise. The point-to-plane partition function Z]B\,N “ defined in
in fact converges to 0 as N — o0, as shown in [CSZ17h|. For this reason, constructing
a continuum version of the polymer measure — or studying the scaling properties of the
discrete polymer measure — started from a fized point, remains a significant challenge.
However, if we consider discrete polymer measures with the starting point chosen uniformly
from a ball on the diffusive scale, then the same proof strategy as that for Theorem
should be applicable to show that the measures converge to a continuum polymer measure
starting from a ball, whose finite dimensional distributions are uniquely determined.

SCHRODINGER OPERATORS WITH POINT INTERACTIONS. When the disorder w is standard
normal, a direct calculation shows that for k£ € N, the k-th moment of the polymer partition
function in is the exponential moment (with parameter 62) of the total pairwise
collision local time up to time N among k independent random walks on 7%. When k = 2,
by a classic result of Erdos and Taylor [ET60] (see also [GaSuQ9]), the collision local time
rescaled by 1/log N converges to an exponential random variable with parameter . In
the critical window we consider here, we have 8y = BC/ v/log N with Bc = 4/, and hence
the parameter of the exponential moment matches exactly the parameter of the limiting
exponential random variable, making the moment analysis particularly delicate.

Via the Feynman-Kac formula, it can also be seen that the k-th moment of the partition
function is the solution of a discrete space-time parabolic Schrédinger equation with a
potential supported on the diagonal (point interaction). In the continuum setting, there
have been a number of studies on the Schrédinger operator with point interactions (also
called Delta-Bose gas) in dimension d = 2 [AGH+05, [AFH+92, [DFT94] [DR04]. Using ideas
from these studies, especially the works of Dell’ Antonio-Figari-Teta [DFT94] and of Dimock-
Rajeev [DR0O4], Gu, Quastel, and Tsai [GQT2I] were able to compute asymptotically all
moments of the averaged solution of the mollified SHE, which are analogues of the averaged

polymer partition functions Z]%;Vs,t(go,w) = (To(x)¥(y) Zﬁ,];’s’t(dx, dy) in (1.9), with ¢ and
1 assumed to be in L% in [GQT21]. Previously, only the third moment had been obtained in
[CSZ19b]. When ¢ is a delta function, the moments of val:’s’t(go, ) diverge as N — o0, and
the asymptotics of the third moment has been investigated in [F16]. But all mixed moments
of the form E[ [T""; Z]%N st (P45 ;)] converge if ¢; are chosen to be distinct § functions, which
was shown recently by Chen in [Che21].

As an input to the Lindeberg principle mentioned in the proof sketch for Theorem [T.1}
we need to bound the fourth moment of the coarse-grained model, which approximates the
original partition function. The results from the Schrédinger operator literature and [GQT2I]
are not applicable in our setting, because they rely on explicit Fourier calculations. We
therefore develop an alternative and more robust approach based on functional inequalities
for Green’s function of multiple random walks on ZQ, see Lemma Instead of working
with ¢, € L% asin [GQT21], we can work with weighted LP~L? spaces with % + % = 1. The
choice of a weight allows us to consider a wider class of boundary conditions, such as ¢ =1
and ¢ an approximate delta function, and also to control spatial decay when the support of
¢ and ¢ are far apart, all of which are needed in our proof. See Section [6] for more details.

LINDEBERG PRINCIPLE. A Lindeberg principle is said to hold when the law of a function ®
of a family of random variables does not change much if the family of random variables is
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switched to another family with some matching moments. Lindeberg principles have been
very powerful tools in proving universality. The usual formulation such as in [Cha06] requires
the family of random variables to be independent (or exchangeable), and ® needs to have
bounded first three derivatives. This is not satisfied when ® is a multilinear polynomial,
whose derivatives are unbounded. This case was addressed in [Rot79, MOOI0] when the
arguments are independent random variables (see also [CSZ17al).

In the proof of Theorem we need to deal with a multilinear polynomial of dependent
random variables with a local form of dependence. We formulate an extension of the
Lindeberg principle to this setting in Appendix [A] Our calculations are inspired by a work
of Rollin on Stein’s method [Roll3|, which is an analogue of [Cha06] for a function ® (with
bounded first three derivatives) of dependent random variables.

1.6. STRUCTURE OF THE PAPER. The rest of the paper is organized as follows.
e In Section [2, we give a detailed proof outline.

e In Section |3, we introduce some basic notation and tools that we need for the rest of
the paper, which includes in particular the polynomial chaos expansion and second
moment asymptotics for the partition function.

e In Section 4 we define the coarse-grained model Q@(Cg)(- |©) and the coarse-grained
disorder © = © .. Then in Section |5, we show that (e (.10 N.) provides a good
L? approximation for the diffusively rescaled partition functions Zy in (1.9)).

e In Sections @ and , we derive key moment bounds for Zy, ©y . and Q”E(Cg)( -1©).
e In Section [9] we wrap up the proof of our main results: Theorems [I.1] and

e In Appendix [A] we formulate an enhanced Lindeberg principle for multilinear polyno-
mials of dependent random variables.

NoTATION. We denote by Cb(]Rd), resp. Cc(Rd), the space of bounded, resp. compactly
supported functions ¢ : R? — R. The usual L¥ norms will be denoted by lell,, for functions

¢ :RY 5 R and by | X|| » for random variables X. For notational simplicity, we will use
¢,C,C",C" to denote generic constants, whose values may change from place to place.

2. PROOF OUTLINE

We elaborate in more detail our proof strategy for Theorem [I.1] especially the coarse-
graining procedure. After reading the proof strategy, to see how the pieces fit together
more precisely, we encourage the reader to go directly to Section [0.1] to read the proof of
Theorems and The proof is contingent on some earlier results, such as Theorems [4.7
and [8.I] but otherwise is mostly self-contained.

Recalling , we just consider a single averaged partition function

2y = 200000 = [, o)) 20, (Ao dy),

R? xR

for some ¢ € C,(R?), ¥ € Cy(R?), and By = By (¥) chosen as in (L.11]) for some fixed 9 € R.
To prove that Zy converges in distribution to a limit as claimed in Theorem we will
show that the laws of (Zy) ey form a Cauchy sequence.
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The starting point of our analysis is a polynomial chaos expansion for Z,;, which will be
recalled in more detail in Section [3:3] In short, by introducing the i.i.d. random variables

En(n, z) = Prnwm2)=ABn) _ 1, (n,z) e N x 72,

which have mean 0 and variance 012\; as in (1.11)), we can expand Zy as a multilinear
polynomial in the &x’s as follows:

Zy = Q(]]VN(SO V) +

72 Z QOn1 ¥5 21 fN ni, 21 {an] 157 Zj—1s j){N( 3 j)}qn N( w)ﬂ <2'1)

Z1yeesZp ez?
0<n1< <n,.<N

where ¢, n(m y) P( = y|S,, = x) is the random walk transition kernel, and qn]\;n(go, z1),
qn]\in 2 qmn ©,v) are the averages of ¢, ,(7,y) w.r.t. o(z/vVN), ¥(y/v/N), or both

W i i )

Each term in the sum in (2.1)) contains a sequence of disorder variables ({n(n;, 2j))1<j<r

linked by random walk transition kernels, and different terms in the sum are L2—orthogonal.
We will see that when it comes to second moment calculations, the sequence of points
(n1,21),-..,(n,,2.) can be interpreted as a time-space renewal configuration.

Before explaining our proof strategy and ingredients, we first give a heuristic calculation
that already shows universality, namely that as N — oo, the limiting law of Zy in
(if a unique limit exists) does not depend on the law of the i.i.d. random variables &y (-, -)
provided the first two moments are unchanged. The heuristic is based on a Lindeberg
principle, which will help to illustrate some key ideas in our proof.

A. HEURISTIC CALCULATION. Let us write Z5(€y) to emphasise the dependence on
the i.i.d. family &x(+,-), and let Zx5(ny) be defined similarly with £y replaced by an i.i.d.
family 7, with matching first two moments and finite third moment. To show that Zy (&)
and Zy(ny) are close in law, it suffices to show that for any f : R — R with bounded first
three derivatives,

Tim |7(Zy(6n) — F(Zx ()] = 0. (2.2)

This difference can be bounded by a Lindeberg principle. In particular, we can apply Theorem
to the case of i.i.d. random variables (the sums in (A.9)-(A.10)) will only contain indices
k =1 = m due to the i.i.d. assumption) to get the bound

1

FEn(en) — FEN ) < Ol Y LE[w(n,Z)a OyPlar,  (23)

2
1<n<N,zeZ

where 5%) = Vt&y + /1 —tny interpolates between ny and &y, and O(n,2)Z (€n) denotes

partial derivative w.r.t. £y (n, z). Since Z(fj(\t,)) is a multilinear polynomial in §Z(\t,)(~, )), it is
easily seen from ({2.1]) that

2y Z(ED) = 32 (0, (n,2) Z((m. ), ),

where Z((n, z),) is the point-to-plane partition function starting from the point (n, z) and
terminating at time N with boundary condition v, and Z(p, (n, z)) is the plane-to-point par-
tition function with initial boundary condition ¢ and terminating at the point (n, z). Since ¢
has compact support, only (n, z) on the diffusive scale (n of order N and z € 72 of order VN )



12 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

contribute to the sum in , and there are N2 such terms. This sum is more than compen-
sated by the factor J5 from E[|0¢, (n.o)Z(En)I"] = HE[Z(, (n, 2))PIE[Z((n, 2), )],
where we used the independence between Z (¢, (n, z)) and Z((n, 2), ¢). To deduce (2.2), it suf-
fices to show that the moment of the point-to-plane partition function E[|Z((n, z),v)[*] « N
as N — oo, which holds by Remark below.

This heuristic can be made rigorous using the results we establish in Section [6} But this
argument will not show that Zx(£y) has a unique limit in law. For that, we need to define
coarse-grained models and compare Zx(§y), for different N, with the same coarse-grained
model. We outline the proof strategy below, which contains many of the same ideas in the
heuristic above, but in a more complicated setting.

A. COARSE-GRAINING. As a first step, for each € € (0,1), we approximate Zy in L?
by a coarse-grained model f»li:(cg)(@, ¥|Oy ), which is a multi-linear polynomial in suitable
coarse-grained disorder variables ©y . and depends on N only through ©y .. The details
will be given in Section [4 Here we give a sketch.
We partition N x 72 into mesoscopic time-space boxes
B.y(i;a) = ((i—DeN,ieN] x ((a = (1,1))VeN,aVeN] A Zien, (2.4)
Ten (i) Sen(a)

where (i,a) € N x Z? is the mesoscopic time-space index of B.n(i,a), which has temporal
width e N and spatial side length v/eN, and (a—b,a] = (a; — by, a;] x (ag — by, ag] for squares
in R%. We then decompose the sum in (2.1)) according to the sequence of mesoscopic time
intervals T_n(i1), ..., Ton (i) visited by the renewal configuration (n, z;), ..., (n,, z,). For
each T_n (i), we then further decompose according to the first and last mesoscopic spatial

boxes S,y (a;), Son (a;») visited in this time interval. This replaces the microscopic sum over
(ny,21),---,(n,,2.) in (2.1) by a mesoscopic sum over time-space renewal configurations
. / . /
(i;a1,a1), -, (i ag, ak) Wthh specify the sequence of mesoscopic boxes B,y (i;,a;) and
B.n(ij,a}) visited. See Figure |1| for an illustration.

Ideally, we would like to replace each random walk kernel g, ,,,(, ) in (2.1)) that connects
two consecutive visited mesoscopic boxes B,y (i;, j) 3 (n,x) and B.y(ij+1,3541) 2 (m,y) by
a corresponding heat kernel. Namely, by the local limit theorem (3.21)), replace g, ,,, (7, y) by

201, (@~ VEN) = gy

/!
A1 —aj;
3 (ij1—ij)=N iy Bi+1 ~3)

2('
where the factor 2 is due to periodicity. With such replacements, given a mesoscopic renewal
configuration (iy; al,all), cey (ik;ak,az), as we sum over compatible microscopic renewal
configurations (ny, z1),..., (n,, 2,) in , the contributions of & (n, z) from each interval
Ten(i;) would decouple, leadlng to a product of coarse-grained disorder variables of the form

2 0 r
GN,S( R ag7 a]) €7N Z 2 (nh zl) H qnj,l,nj (Zj—17 Zj)ﬁN(”]? Zj) <25)
j=2

r=1 (n17z1)7 v(nrvz )EZeven
ZIESEN( ) 2 eSEN(a )
ny<- <nr7n67;N( )
. . . . . . /
with consecutive coarse-grained disorder variables © y (i;;a;,aj ') and © N c(ij41535101,2541)

295295
. /
linked by the heat kernel g%(ij+1_ij)(aj+1 —a;) (we absorbed the factor 6— into (2.5))). This

would give our desired coarse-grained model QZ(Cg)(cp, V[On,).
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N
=
WV
=

=

oY)

<>
eN

FIGURE 1. An illustration of the chaos expansion for the coarse-grained
model . The solid laces represent heat kernels linking consecutively
visited mesoscopic time-space boxes. The grey blocks represent the regions
defining the coarse-grained disorder variables ©y .. The double block in the
middle represents a coarse-grained disorder variable © N’S(T: a) visiting two
mesoscopic time intervals T_x (i) and T,y (i) with |i' —i| < K. = (log %)6 and
cannot be decoupled.

Unfortunately, this ideal procedure does not produce a sharp approximation of the partition
function Zx in (2.1]). Indeed, the kernel replacement

2 /

QH,m($a y) e 57Ng%(i]-+1fij)(aj+1 - aj) (2'6)

induces an L2—error, and this error is small (in the sense that it vanishes as ¢ | 0, uniformly in
large N) only ifi; 1 —i; is sufficiently large (we will choose it to be larger than K, = (log %)6)
and [a; 1 — a;-\ is not too large on the diffusive scale (we will choose it to be smaller than
M_\/ij 1 —i; with M, = loglog %) We address this issue as follows.

The first crucial observation is that, modulo a small L? error, microscopic renewal
configurations (nq,zy), ..., (n,,2,) in (2.1 cannot visit three or more mesoscopic time
intervals Ten(i;), Ten(ij41), and Ton(ijpo) with both i; 1 —i; < K. and ijo —ij44 < K,
(see Lemma below). Furthermore, with a small L? error, we can also enforce a diffusive
truncation |a; 4 —a;-| < M.o/ij4q —ij (see Lemmambelow). We will then make the random
walk /heat kernel replacement (2.6) only between mesoscopic bozes B,y (i;, a;-) 5 (n,x) and
B.n(ijr1,3541) 2 (m,y) that satisfy the constraint i, —i; > K..

After such kernel replacements, what are left between the heat kernels decouple and
appear as a product of two types of coarse-grained disorder variables:

e one type is as given in (2.5)), which visits a single mesoscopic time interval T,y (i);

e another type visits two mesoscopic time intervals 7.y (i) and T_n (i), with i’ —i < K_:
we denote it by Oy (i,a) with i = (i, i') and @ = (a,a’), where a identifies the first
mesoscopic spatial box visited in the time interval 7,y (i), while a’ identifies the last
mesoscopic spatial box visited in the time interval T_y (i) (see ({@.11))).



14 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

This leads to the actual coarse-grained model we will work with:
%‘C@«o,we) = 591(p0) +
log

- 2.7
Py 2 Zgl|1 905731 I1731 {Hgl .._| a —3;—1)@(%3;’)}9;(;4;)(3;,%), ( )

'17 ’7

=

(alv Har )

where ¢, and 1), are averaged versions of ¢ and ¢ on the spatial scale 4/, while g; /2(4,05, a),

gi/z(a/,wa), ij2(pe,.) are averages of the heat kernel g;p(a — a') w.r.t. ¢, 1., or both.
In the sum in (2.7)), we have hidden the various constraints on the mesoscopic time-space
variables for simplicity (see (4.8) for the complete definition). Also note that in (2.7) we

denote by © = (O(i,d)) a generic family of coarse-grained disorder variables; in order to
approximate the averaged partition function Zy, we simply set © = Oy ..

Remark 2.1 (Self-similarity). The coarse-grained model %(Cg)(%w@) in has the
same form as the original partition function Zx in , with 1/¢ in place of N, Oy in
place of {, and the heat kernel g;5 in place of the random walk kernel q,,. This shows a
remarkable degree of self-similarity: coarse-graining retains the structure of the model.

B. TIME-SPACE RENEWAL STRUCTURE. Once we have defined precisely the coarse-
grained model Q’;.(Cg)(go, ¥|On ), see Section |4, we need to show that it indeed provides a
good L? approximations of the original partition function Zy, in the following sense:

- 2
lim limsup “Qﬁ(cg)(ap,¢\@N7€) - Zn|;2 = 0. (2.8)
el Noowo

This approximations will be carried out in Section [5] where we rely crucially on the time-
space renewal interpretation of the sum in ({2.1]), which in the continuum limit with N — oo
leads to the so-called Dickman subordinator [CSZ19a)]. This will be reviewed in Section

C. LINDEBERG PRINCIPLE. In view of (2.8), given € > 0 small, we can approximate
Zx by Q’;.(Cg)(w,w]@]v,a), where the L? error is uniform in large N and tends to 0 as
e | 0. To prove that the laws of (Zy)yey form a Cauchy sequence, it then suffices to show
that given € > 0 we can bound the distributional distance between .,@i(cg)(go, Y|© ) and
() (o, |0 ~.e) uniformly in M > N large, and furthermore, this bound can be made
arbitrarily small by choosing € > 0 sufficiently small. This would then complete the proof
that Z5 converges in distribution to a unique limit.

The control of the distributional distance is carried out via a Lindeberg principle for the
coarse-grained model Q’fc.(cg)(cp, ¥|On ), which is a multilinear polynomial in the family of
coarse-grained disorder variables Oy . = {@N@(T, 3)}. We note that Oy ((i,i'), (a,a’)) and
On.-((,i"), (b,b")) have non-trivial dependence if (i,a) or (i’,a’) coincides with either (j,b) or
(j/, b/). We thus need a Lindeberg principle for multilinear polynomials of dependent random
variables, which we formulate in Appendix [A] and is of independent interest.

D. FUNCTIONAL INEQUALITIES FOR GREEN’S FUNCTIONS. To successfully apply
the Lindeberg principle, we need to control the second and fourth moments of the coarse-
grained disorder variables Oy .. We also need to control the influence of each ©y ., which
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boils down to bounding the fourth moment of the coarse-grained model %(Cg)(gp, Y|On,),
with the choice of boundary conditions ¢ = 1 and p(z) = %]llxKﬁ'

The moment bounds on Oy . and Q@(Cg)(tp,wl@ N.) are technically the most delicate
parts of the paper, especially since we need to allow p(x) = %ﬂ\ftlé\/g and ¢ = 1. Since the
structure of © . is similar to an averaged partition function, we will first derive general
moment bounds on the averaged partition function Zjy in Section [6] The fourth moment
bound on Oy . then follows as a corollary in Section

The approach we develop is different from the methods employed in [GQT21] to bound
the moments of the averaged solution of the mollified SHE. Our approach is based on
functional inequalities for the Green’s function of random walks (see Lemma and it is
robust enough to be applied also to the coarse-grained model defined in , which will be
carried out Section [§

3. NOTATION AND TOOLS

In this section, we introduce some basic notation and tools, including the polynomial chaos
expansion for the partition function, random walk estimates, the renewal interpretation for
the second moment of partition functions and the Dickman subordinator that arises in the
continuum limit.

3.1. RANDOM WALK AND DISORDER. As in Section [1.2} let (S = (S,,),>0, P) be the
. . 2 e
simple symmetric random walk on Z“, whose transition kernel we denote by

QTL(Z) = P(Sn = Z) s Qm,n(zwz) = anm(z - l‘) = P(Sn =z | Sm = l‘) . (31)
Let (w = (w(n, 2)), oy .72 P) be the disorder, given by a family of i.i.d. random variables

with zero mean, unit variance and locally finite exponential moments, see ([1.1)).
The expected overlap between two independent walks is (see [CSZ19al, Proposition 3.2])

2 3 e zqgn 0) =Y 42 oq)

1.ez?

with a:=v+logl6—m~0.208, v = —SO e “logudu ~ 0.577.

(3.2)

Note that Ry is the expected number of collisions up to time N between two independent
copies of the random walk S when both start from the origin. Also note that v is the
Euler-Mascheroni constant. We further define

u(n) = Y 4n(@)” = 420(0) ~

2
TeZ

where the asymptotic behavior follows by the local limit theorem, see (3.21)) below.
In order to deal with the periodicity of simple random walk, we set

1 1
—. = asn — o0, (3.3)
T n

ngen ={z=(21,...,29) € 72 . 21+ ...+ 24 is even} . (3.4)

Given z € R? with d > 2, we denote by [[z]] the point in ngen closest to x (fix any convention
to break the tie if [Jz] is not unique). More explicitly, we have

[z] =veZl,, < 2€B@ —{xER lzg — vy + .+ |zg —vgl < 1}. (3.5)
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For s € R it is convenient to define the even approximation [[s] € 2Z by
5
-2 |3 (5.6)

3.2. PARTITION FUNCTIONS AT CRITICALITY. The point-to-point partition functions
Zf/[ n(w, z) were defined in (1.8)). We mainly consider the case M = 0, for which we write

28 (w, 2) E{ezﬁ:f{ﬁw(n,sm—mm} Iy .

Sp = w] . (3.7)

The field of diffusively rescaled partition functions Zﬁ,, < (dz, dy) was introduced in ([L.9).
In the special case s = 0 we simply write:

23 e, dg) = 7 Zy (VN2 [VNy]) dedy,

where we recall that dzdy denotes the Lebesgue measure on R? x R?. We next define
averaged partition functions Zf,t(cp, 1) for suitable ¢, 1 : R? - R:

28 (0,0) ﬂ (%) 25, (de, dy) $(y)

R?xR?

4]\7 JI IINt]]([[x]] [v1) v (\/Lﬁ)dxdy.

R?xR?

(3.8)

We can rewrite the integrals in (3.8]) as sums. For a locally integrable function ¢ : R? - R,
we define ¢y : Z2,., — R as the average of @(ﬁ) over cells B(v) < R?, see (3.5):

1 N 1 i
on(v) = Bl f v(yy) dz =5 f p( ) dz. (3.9)

B(v) {1 —v1 [+]|zg—va| <1}

=

If we similarly define ¢ : szen — R given ¢ : R? > R, we can rewrite the second line of
(3-8) as a sum over the points v = 2]}, w = [y]] € Z2 ey as follows:

o) = 1 3 on) Zpyg(v,w) in(w). (3.10)

VW E Zeven

Remark 3.1 (Parity issue). Let Zodd =Z7\Z8 ... If in we sum over v, w € Z24q,
we obtain an alternative “odd version” of the averaged partition function, which is independent
of the “even version” because two simple random walks started at even vs. odd sites can never
meet. This explains why we enforce a parity restriction in .

Finally, we recall the critical window of the disorder strength (inverse temperature) that

was introduced in (1.11]). Given the definition (3.2)) of Ry, for some fixed ¥ € R, we choose
B = Byx = Bn(¥) such that

Bxw—MBN)] _ M) -2B) _q _ L (1 Lo 0(1)> . (3.11)

2
oy = Var[e Rn Tog N



THE CRITICAL 2D STOCHASTIC HEAT FLOW 17

We can spell out this condition more explicitly in terms of Sy (see [CSZ19a, Appendix A.4]):

2 1 K3 19/71""(%/1%—%%4—%) 1
/BN = Ri — 32 + 5 —+ 0 5
N (Ry) () (R) (3.12)
T I£37T3/2 (9 — )—|—7r( § 12 4—é)+0< 1
logN  (log N)S/2 (log N)? (log N)?

where k3, ky are the disorder cumulants, i.e. A\(8) = %52 + %ﬂ?’ + %54 + O(B4) as 3|0,
and o ~ 0.208 is as in (3.2). Henceforth we always set 5 = Py -

3.3. POLYNOMIAL CHAOS EXPANSION. We now recall the polynomial chaos expansion
of the partition function. This is based on the following product expansion, valid for any set
A and any family of real numbers (h,,),c4 labelled by A:

Zreals — [T+ =1) =1+ 3 [l 1. (3.13)

neA J#BCZA neB
If we apply (3.13]) to the partition function Z’HN (z,y) in ., by . we obtain

ZP (@, y) — qaz(@,y)
_ E[(ezibﬂzzezz (o= NEwNs, = _ 1)

Sd=$]

j=1

r=1 d<n;<..<n,.<f
2

Sd = x] .
2150y 2rEL

Recalling (3.11]), we introduce a family (£ (n, z))(n s of i.i.d. random variables by

1s,,

En(n, ) i= ePnw(nz)=ABy) _ ¢ 314
so that E[én(n,2)] =0, Var[¢y (n, 2)] = o -

These variables allow us to write

e Bnw(nz)=ABN))Ls, = 1 _ (eﬁNW(nvz)*A(ﬁN) —1) lg _, = Ex(n, 2) ls _.,

hence, by the Markov property for the random walk with kernel ¢, we get

o0
Z9%(x,y) = qag(ay) + ). D

r=1 d<ni;<..<n,.<f

21y 2 €L (3.15)

qdnl(w 21 §N ni, 2 {HQnJ 1,m j—l?zj)fN( R j)}Qn ,f( _77y)7

where 1—[;:2(. ..):=1if r = 1. We have expressed the point-to-point partition function as a

multilinear polynomial (polynomial chaos) in the independent random variables £y (n, 2).
A similar polynomial chaos representation holds for the averaged partition function

Zﬁﬁ((p,d}) given in (3.10). To simplify notation, it is convenient to define an averaged

version of the random walk transition kernel g,, ,(z,y). Given suitable ¢, : R* > R, a
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time horizon M € (0,0), and two points (m,w), (n,z) € Zg’ven, recalling ¢ and vy from

(13.9), we define

Q(])\,[m(% w) = Z @N(v) qo,m(vu ’UJ) ’ (316)
veZeven
q,,]ZM(Z,l/J) = Z Qn,IIM]](sz) 77/)N(w) ) (317)
welgvcn
1
o (p,) = N Z en (V) o,y (v, w) Py (w) . (3.18)
VWELeyon

Then (3.15)) yields the following polynomial chaos expansion for Zﬁ}vt(gp, ¥) in (3.10)):

1

2@@¢0=Q%M%w N -

2

0<nqi<...<n,.<Nt

Z1yeeerZy ez? (319)

QOnl((pazl>§N nlyzl {H nj_1,m j—lazj)fN( 79 j)} an,[[Nt]]< W

b8

As will be explained later, when it comes to second moment calculations, the time-space points
(nq,21),...,(n,, 2 ) in the sum can be interpreted as a time-space renewal configuration.

3.4. RANDOM WALK ESTIMATES. Let g, : R* — (0,0) denote the heat kernel on R*:

1 _we?
gi(@) = c—e 2, gi(z,y) =gy —2), (3.20)
27t
where, unless otherwise specified, we denote by | - | the Euclidean norm on RY.

The asymptotic behavior of the random walk transition kernel ¢,(z) = P(S, = x) is
given by the local central limit theorem: as n — o we have, uniformly for x € ZQ,

(9 (z )+O(%))2]l(nx €72 on

(x> eo(ﬁ)"'o(%) 21

()
(3.21)

3
(n7x)€Zeven ’

where the two lines are two different variants of the local central limit theorem for the simple
symmetric random walk on 72 given by Theorems 2.3.5 and 2.3.11 in [LaLil0]. We recall
that ngen is defined in , the multiplicative factor 2 comes from the periodicity of the
simple random walk S,, = (S (1) S,(f)) on Z*, while the factor % in the time argument of the

n

heat kernel comes from the fact that E[ST(Li)Sq(lj )] = 5 1;,_;. We also note that

(X&) Vn,NeN, VoeZ’ (3.22)

1n
2N
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Similar to the averaged random walk kernels qN defined in (3.16)-(3.18), given ¢ € L' (R?),
e L” (]Rz), t >0, and a,b € R?, we define the averaged heat kernels

ale.) = | pla ol —a)d, (3.23)
av.0) = | L aly =0 vy, (3.21)
gi(p,) = JRQ i’ o) gy — x) (y) dzdy. (3.25)
X
Recall qé\f ~t(p, ) from (3.18). By the local limit theorem (3.21), recalling (3.9) and (3.22),
we have
—00 2

where the prefactor % is due to periodicity.

We will also need the following lemma, which allows us to replace a random walk transition
kernel by a heat kernel even if the time-space increments are perturbed.

Lemma 3.2. Let g, () be the transition kernel of the simple symmetric random walk on
72, see (3.1), and let g,(-) be the heat kernel on R?, see (3.20). Then there exists C € (0, 00)

such that, for alln € N and for all x € Z* with |z| < ni

qn(x) < C’g% (). (3.27)

, we have

Let 01,09 > 0 and set C' := 2e g1 p9. Then, given an arbitrary m € N, for all ny,ny € N with
ny = m and Z—? € [1/0y, 05], and for all z;, x5 € R? with |z, — x| < /m, we have

Lo

C
9 (21) < Cgyyny () = —gerna <ﬁ> (3.28)

m

Proof. Let us prove (3.27)): by the second variant of the local limit theorem in (3.21)),

1) = a2 2 {0(L) 5021} < 0.

We next prove ([3.28]): by the assumption "—f € [1/01, 02], we have

n

2 2
| _ |24

} < 20109 eXP{T 7} < 2010%€,
ny ny

92 (1) 20;m, {W zf?

Yo1ns (z2) n 201n9 n

where the last inequality holds because |zo]* < 2(|z1]? + |29 — 21|%) < 2|21)* + 2m and
ny; = m by assumption. O

3.5. RENEWAL ESTIMATES AND DICKMAN SUBORDINATOR. We next present the
time-space renewal process underlying the second moment calculations for the partition
function. Under diffusive scaling, this leads to the so-called Dickman subordinator in the
continuum limit. This approach was developed in [CSZ19al [CSZ19b].

We first define a slight modification of the partition function Zfz f(a:, y) in , where
we “attach” disorder variables &y (n, 2), see , at the boundary points (d, z) and (f,y)
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(which may coincide, if d = f):

fN(d’ LE) ]l{y:x} if f =d
enld,w) Z9Y () En(fry) iff=d+1

Such quantities will appear as basic building blocks in our proofs. Note that E[X 5 ¥z, y)] = 0.

Xgl}’(:p,y) = { (3.29)

The second moment of X 5’1}’ (z,y) can be computed explicitly by the polynomial chaos
expansion (3.15)) and it can be expressed as follows:

E[X% (2.9)] = o} Un(f —dy — ). (3.30)
where we recall that o3 = Var(&y(a, z)), and for n € Ny = {0,1,2,...} and z € Z* we define
(140 if n =0,
2 2, N\ 2+ 2
onq(n,z)” + Z](O'N)TJr Z Qo.n, (0,21)7 x
UN(n, :I,‘) = A r=1 O<nq<...<n,.<n (331)
zl,...,zT€Z2 ifn>1.
2 2
X { Han,l,nj(zj—lvzj) }an,n(zraw)
j=2

The quantity Uy (n,x), which plays an important role throughout this paper, admits a
(V) g(V)

probabilistic interpretation as a renewal function. More precisely, let (1,77,5:"7),>o denote

the random walk (time-space renewal process) on Ny x Z* starting at (0,0) and with one-step
distribution

2
N N qn (@)
P(r™M = n, 5V =) = B L () (3.32)
where Ry is the random walk overlap defined in (3.2). Then we can write, recalling (3.11]),
0
Uy(n,z) = 3 ()" P(r™ = n, SV = 2)
r=1 (333)
U+ o(1)
where )‘N = U]QVRN:]-—’_W
When Ay = 1, we see that Uy (n,x) is just the renewal function of (TT(N), SSN))@O. When
Ay # 1, we can think of Uy (n,x) as an exponentially weighted renewal function, weighted

according to the number of renewals. Note that the first component 7™ = (T,SN))@O is a

renewal process with one-step distribution

N u(n)
P(Tl( )= n) = Ry L, vy(n), (3.34)
where u(n) = >, ¢, ()% is defined in (3.3). Correspondingly, we can define
0
Un(n) = > Unx(n,z) = 3. () P(r™) =n). (3.35)
zeZ? r=1

The asymptotic behaviors of Uy (n,x) and Uy (n) were obtained in [CSZ19al, exploiting

the fact that 7 is in the domain of attraction of the so-called Dickman subordinator,
defined as the pure jump Lévy process with Lévy measure % ]1(0’1)(30) dxz. More precisely, we
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have the following convergence result, which is an extension of [CSZ19al, Proposition 2.2]
from finite dimensional distribution convergence to process level convergence.

Lemma 3.3. Let (T,SN),SﬁN)),?O be the space-time random walk defined in . Let
(Yy)s=0 be the so-called Dickman subordinator [CSZ19al, i.e. the pure jump Lévy process
with Lévy measure %11(0’1)(t)dt, and let V := %WYS where W s an independent Brownian
motion. Then we have the convergence in distribution

N ' UN

on the space of cadlag paths equipped with the Skorohod topology.

g
( [slog N| "|slog J) ]\20 (YS)SZO P (}/sa‘/s)SZO’ (336)

SN g
Proof. Denote YgN) = (YS(N),VS(N)) = (%,%) The convergence of finite

dimensional distributions was already proved in [CSZ19al Proposition 2.2|. We prove tightness
by verifying Aldous’ tightness criterion [Kal97, Theorem 14.11], namely that for any bounded
sequence of stopping times 7 with respect to (YgN)) s>0 and any positive constants hy | 0,
(N)

TN+hN

fact that the increments of Y*) are i.i.d. and YELJJVV) — (0,0) in probability as N — co. O

we have Y — Y(T]]X) — 0 in probability as N — oo. This follows immediately from the

For ¥ € (0,0), we define the exponentially weighted Green’s function for Y = (Y,).>0:

=

~

Gylt,z) = L " s L(t,z)ds, (3.37)

where f,(-,-) is the density of the law of Y, on [0,0) x R?, given that Y, = (0,0) (we take
notation from ([3.36))). It was shown in [CSZ19a] that

Gy(t,z) = Gy(t) ge (), (3.38)

i
where g.() is the heat kernel, see (3.20), and Gy(t) := §g2 Gy(t,z)dz is closely related to

the so-called Dickman function in number theory. For ¢t < 1, it can be computed explicitly as

R o (9—y)s 451
f ¢ ST gs, (3.39)

Gy(t) = Gy(t) == . T Terl)

with v as in (3.2)) (see [CSZ19a]|j). We will also denote Gy(t, z) := Gy(t) gt (x). Note that for
t <1, Gy(t,z) and Gy(t) are the continuum analogues of Uy (n,z) and Uy(n), respectively.
It is therefore no surprise that the asymptotics of Uy will be expressed in terms of Gy,

which we record below for later use.
In light of (3.30)), it is convenient to define

Un(n) = 0% Uy(n) = > Un(n,z). (3.40)

2
T€Z

Un(n,z) := ox Uy(n, ),

fIn [CSZ19a], there was no separate notation @79 for the weighted Green’s function, which might cause
some confusion.
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Recalling (3.31]), we can give a graphical representation for Uy (b — a,y — z) as follows:

Uyb—a,y—2z)= [ NGRUeY (3.41)
(a,7) (b,y)
P & & d
k>1§}j;"’“ (a,x) (ng,z1)(ng,23) (g, ) (byy)

where in the second line we assign weights qn/_n(a:/ — ) to any solid line going from (n,x)
to (n',2') and we assign weight 012\/ to every solid dot.

Recall that o3 ~ oz See (3-11)) and (3.2)). We now rephrase some results from [CSZ19a].
Fix T > 0.

e By [CSZ19al Theorem 1.4], for any fixed § > 0, as N — o0 we have
TUn(n) = % (Gy(%) +0(1))  uniformlyfor 6N <n<TN, (3.42)
and moreover there is C' < o0 such that
Up(n) < %Gﬁ(%) YO <n <TN. (3.43)
e By [CSZ19al Theorem 2.3 and 3.7|, for any fixed 6 > 0, as N — o0 we have
Un(m ) = 5 (Gofor ) +0(0) 21 yez
uniformly for 0N <n <TN and |z|< S\/N'

The prefactor 2 is due to periodicity and, moreover, there is C' < o such that

Upy(n,z) < %lGﬂ( ) VO <n<TN, VaeZ? (3.45)

(3.44)

e By [CSZ19a, Proposition 1.6], for ¢ € (0,1] the function Gy(t) is C* and strictly
positive, and as t | 0 it has the following asymptotic behavior:

1 29 1
t(log f) log ¢ (log ;)
hence as ¢ | 0

JtG(s)ds— ! {1+ v —1—0( ! >} (3.47)
0" gl logi  “\(logh)’/ )’ |

Remark 3.4. In the proof of (3.42)-(3.45)), the case T > 1 has to be treated differently from
T = 1. In |CSZ19al, the case T > 1 was reduced to T = 1 through a renewal decomposition
and recursion (see [CSZIQa Section 7]). Alternatively, we can reduce the case T > 1 to

=1 by first settmg N :=TN,J:=49+logT + 0(1) so that o = 012\7(19) = 0% (19) by

their definitions z'n , and then applying - with N replaced by N using the
observation that G19+10gT( ) = Gylt).

We will also need the following bound to complement ((3.44)).

Lemma 3.5. There exists ¢ € (0,00) such that for all A >0 and 0 < n < N

7

— 2 ___
3 Un(n,a) M < ce™ " Uy(n). (3.48)

2
z€Z
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Note that by the Markov inequality and optimisation over A > 0, (3.48]) implies that the
probability kernel U y(n,-)/U y(n) has Gaussian decay on the spatial scale y/n.

Proof. Recall the definition of Uy (n,x) from (3.33). Conditioned on TI(N), e ,T,,EN) with
(

TTN) = n, we can write S’ﬁN) = (; + -+ (, for independent (;’s with

0, (7)?
P(Cz = .’E) = 2
ZyeZ2 dn, (y)
where n; := Ti(N) — i(ivl) and z € Z*. For each i, denote by ;1 and (; 5 the two components

of (; € Z%. Then we note that there exists ¢ > 0 such that for any A = 0, n; e N

2
E[ef ] < e j=1,2. (3.49)
This can be seen by Taylor expanding the exponential and using that E[(; .] = 0 by symmetry,
| E[ 2k+1]\ 1(E [f,%] +E[ 2k“]) by Young’s inequality, as well as E[ka] < (Cny)Fk—1)!
for some C' > 0 uniformly in n;, k € N. The bound on E[CZ2 k] holds because by (3.21)),

P(C — ) — Qni(x)Q < {SuperQ Qni(x)

qon, (O) b Qon, (0)

where ¢, has the same Gaussian tail decay as the heat kernel g, . Using e
this then implies

B[N I[r] = B [ 516l] < B[22 1<“|] B 2A|z:_1<¢,2|]§

2/\2;': i —2A30 1 Gy 3
1]([ R P )

2

= I (ITe[=] + []m[e))

}qni (2) < C' g, (1),

|z

<e’+e 7

J

D=

7j=12 =1
< 2640)\ n
The bound (3.48) then follows readily from the definitions of Uy (n,z) and Uy (n) in (3.33)
and (3.35), recalling that U x(n,x) and U y(n) are defined in (3.40). O

3.6. SECOND MOMENT OF AVERAGED PARTITION FUNCTION. Using de(ac y) as
introduced in , and recalling (3 , we can now rewrite the chaos expansion for the
averaged partition function Zﬁ,’\;(go, w) in (3.19) as follows:

1
ZVe) = vl )+ Y Gale D) X @y i), (350)
0<d<f<Nt
x,y€Z2

so that by (3.30]) and the fact that UN = U]QVUN, we have

E[Z30 (0. 0)°] = 0w, ¥)’ v Z 0a(0: )2 Un(f —d,y — 2) i ne (v, 9)°. (3.51)

x, EZ
()<d<f<Nt
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We now compute the limit of E[Zﬁ N, 1) ] as N — oo. This was first obtained for the
Stochastic Heat Equation in [BC9§]| in the special case 1) = 1; see also [CSZ19bl Theorems 1.2
and 1.7| for an alternative derivation, that also includes directed polymers.

Proposition 3.6 (First and second moments). Recall Gy(t) from (3.39) for allt > 0.
For ¢ : R? — R, define

0
R? xR?

H(pHét Jf 2) Gy( 2 —z) (z’)dzdz/, where  G(x) = J gs(x)ds.  (3.52)

Then for all ¢ with |¢lg, < o0 and all ¢ € L™ (R?), we have

lim E[Z10(0,0)] = §9:(p.0), (3.53)
dim E[20%(0. )] = Tos(p.0)” + 3% (0,9, (3.54)

where

(o) ffff VKD (2,2 5w, w') (w) w(w') dz d2’ dw dw’

(3.55)
2 2
< w i ol [ oty u
and the kernel Kf is defined by
K (2,25 w,0) =« 9t (w+w — Z+Z)
(3.56)

H 95(2' = 2) Gy(u — 8) gy (0 — w) ds du.

O<s<u<t

Proof. The first moment convergence (3.53|) holds because by E[Zf/’\;(cp, 1/1)] = qé\f Ne(p, 1),

see , in view of the asymptotic relation (3.26]).
For the second moment computatlon (13.54)) we exploit (3.51f), where the first term in the

r.h.s. converges to gt/g(cp ) by -, which matches the first term in the r.h.s. of (3.54} -
It remains to show that the sum in converges to the term 1“// (¢, @Z)) in (3.54).

Recall the definition of q in - . By the local limit theorem and in view
of (3.22] -, we see that for any € > 0, umforrnly for m > eN and w € Z* , We have as N — o

N w
Gom(ew) = (932 (0 25) + 0D) L s

and similarly, uniformly for n < (1 — ¢)Nt and z € Z*,

q’rJIYNt(Z7¢) = (g%(t—%)(ﬁ’w) T 0(1)> ]l(n,Z)EZZ’ven '

TThe positivity of HgoHét can be seen via Fourier transform.
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Applying the asymptotic relation (3.44)) for U n(f — d,y — x), we see that the sum in (3.51])
is a Riemann sum that converges as N — o to the multiple integralm

%7/;9( ﬂﬂ < (p,a)? Gy(u — 5,b— a) giu . (b, ¢)*ds dudadb, (3.57)

0<s<u<t
a, beR?

where the prefactor % results from combining the periodicity factor 2 in (3.44) with the

volume factor 1 - 2 which originates from the restrictions (d, 3:) ( fry) € Z2 o in (B.51). Then
it follows by (3. 23) (3.24) and (3.38]) that the equality in ) holds with

Koy = ] @;a—agga—zncwu—$g%4b—w

0<s<u2<t
a,beR

/
X {gthu(w—b)gthu(w —b)}dsdudadb.

We can simplify both brackets via the identity g,(z) g;(y) = gor(z — y) 9t (552), see (3:20).

Performing the integrals over a, b € R? we then obtain (3.56)).
The bound in (3.55)) follows by bounding ¢ with ||1|,, and then successively integrating
out w,w’, followed by u and s in (3.56)). O

Remark 3.7 (Point-to-plane partition function). For ¢)(w) = 1(w) =1, we can view
Zﬁfﬁ (¢, 1) as the point-to-plane partition function Z]%N (z) in (1.3) averaged over its starting

point z. By (3.53)-(3.56),

. By 1
lim E[Z5%(p,1)] = =
Jim E[Z30% (0, )] = S g

t
2

<%n=;fw@m«

: B
]\}I—I}loo Var [ZN];(cp, 1)] = f"f/t ¥, ff Kt (z — 2')dzd?/,

JJ gs(x) Gy(u — s)dsdu.

O<s<u<t

where we set

We note that both the asymptotic mean and the asymptotic variance of ZBN( 1) are half of
those obtained in [CSZI19b), eq (1 19)-(1.20)|. This is because here we have defined ZﬂN(go )
as a sum over Zeven, see , while in [CSZ19b|, the sum is over both Zodd and Zeven,

which give rise to two i.1.d. limits as N — o0 by the parity of the simple random walk on 72

4. COARSE-GRAINING

In this section, we give the details of how to coarse-grain the averaged partition function
and what is the precise definition of the coarse-grained model, which were outlined in
Section [2l The main result is Theorem which shows that the averaged partition function

Zf/\; (p, 1), see (3.10]), can be approximated in L? by the coarse-grained model.

fThe contributions to the sum in given by m < eN and n > (1 — &) Nt are small when € > 0 is
small, uniformly in large N, as can be checked using the uniform bound (3.27).
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4.1. PREPARATION. The starting point is the polynomial chaos expansion (3.19)) for the
averaged partition function Zf}i(gp, 1), which is a multilinear polynomial in the disorder

variables &y (1, z). We will call the sequence of time-space points (nq, z1), . . ., (n,, z,) € NxZ
in the sum in (3.19) a microscopic (time-space) renewal configuration. We assume that the

disorder strength is chosen to be Sy = (1) as defined in —. For simplicity, we
assume the time horizon to be tN with ¢ = 1.

Given € € (0,1) and N € N, we partition discrete time-space {1,..., N} x 7? into
mesoscopic boxes

B.y(i,a) := ((i—1)eN,ieN] x ((a — (1, 1))\/57N,a\/5W1 N 2L (4.1)

- _ -

"

Ten (i) Sen(a)

where 7; (i) is mesoscopic time interval and S, (a) a mesoscopic spatial square.lﬂ These
boxes are indexed by mesoscopic variables

(i,a) e {1,..., 1]} x Z°.

Recall from Section [2] that to carry out the coarse-graining, we need to organize the chaos
expansion according to which mesoscopic boxes B, are visited by the microscopic
renewal configuration (nq,z), ..., (n,, z,.). To perform the kernel replacement , which
allows each summand in the chaos expansion to factorize into a product of coarse-
grained disorder variables © y . connected by heat kernels, we will impose some constraints
on the set of visited mesoscopic time intervals 7y (-) and spatial boxes S,y (+), which will
be shown to have negligible costs in L?. We first introduce the necessary notation.

Let us fix two thresholds

K, := (log é)ﬁ, M, :=loglog L. (4.2)
We will require that the visited mesoscopic time intervals T_n(iy), ..., Ton(i;) belong to
Alrotrivle) | {(il,...,ik) eN': K. <ij<iy<..<iy<|[!|— K. such that
keN (4‘3)
lf |j+1_|] <KE7 then ij+2_ij+1 >KE }
We call this the no-triple condition, since it forbids three consecutive mesoscopic time indices
ij,0j11,1j40 With both i, —i; < K, and i; 5 —i; 1 < K. We can then partition (iy, ..., i)
into time blocks such that i;,i;,; belong to the same block whenever i;,; —i; < K.

Definition 4.1 (Time block). We call a time block any pair i = (i,i’) € N x N with i <.
The width of a time block is

=i —i+1.
The (non symmetric) “distance” between two time blocks T, m is defined by
dist((, @) :i=m—i  for i=(i,i') and @ = (m,m),

and we write “i < m” to mean that “i precedes m”:

nd d
| |

<m — dist(i, M) >0 de i <m.

TWe use the notation (a—b,a] = (a; — by,a;] x (ag — by, a5] for squares in R®.
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With the partitioning of the indices (iy, ..., i) of the visited mesoscopic time intervals into
consecutive time blocks as defined above, which we denote by iy = (iy,i}), ..., i, = (i, i)

)

with possibly iy = i}, the constraint A"° ") then becomes the following:

(nOtrlple) = U {tlme blocks K. <1ij < ... <i, < |2] — K. such that
reN (44)

<K, Yj=1,...,r, dist(i;_;,1;)>K. Vj:2,...,r}.

i
If the time horizon is Nt with ¢ # 1, then in (4.3) and (4.4)) we just replace the upper bound
ir < l%J - Ka by ir < léJ _Ka'

Given a time block i = (i,i’) with i’ —i+ 1 < K_ (possibly i = i), which identifies two
mesoscopic time intervals 7y (i) and T, (i’) visited by the microscopic renewal configuration
(ny,21),-.-,(n,,2.) from (3.19) and no intervals in-between is visited, we can identify the
first and last mesoscopic spatial boxes visited in the time intervals Ty (i) and T_y (i),
respectively. We call this pair of mesoscopic spatial indices a space block.

Definition 4.2 (Space block). We call a space block any pair 3 = (a,a’) € 7?2 x 7*. The
width of a space block is

& = o —al,

with | - | being the FEuclidean norm. The (non symmetric) “distance” between two space blocks
a,b is
dist(3, b):=|b—a'|  for 3= (a,a") and b= (b,b).

Putting the time block and space block together, we have the following.

-

Definition 4.3 (Time-space block). We call a time-space block any pair (i,3) where i
is a time block and 3 is a space block. We also define

T, := { time-space blocks (i,3) with [i| < K. and |3] < Ma\/ﬁ} (4.5)

In (3.19), we will restrict to (nq, zl), ..., (n,,2,) (interpreted as a time-space renewal
configuration) that satisfy condition , so that they determine a sequence of mesoscopic

N triple) . . . . .
time-space blocks {(i;,a7), ..., ( )} A(no tiple) . This would give the main contribution
in (3.19). We now impose further constralnts on the spatial components that still capture
the main contribution.

Given two “boundary variables” b,c € 7% and a sequence of time blocks (?1, .. ,T;), we
(diff) - (diff) - -
denote by .AE :,c = .A; Lc)(il, ...,i,) the following subset of space blocks (ay,...,a,), where

we impose dzﬁuswe constraints on their widths and distances:

- (diff =
.Ai;,c) = {spaoe blocks aj,...,d, suchthat |3;| < M/]i;] Vi=1,...,r,

dist(3;_1,3;) < Mo A/dist(_1, 1;) ¥i=2,. (4.6)

la, —b| < M.A/i; and |c—al| < M/|L }
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FIGURE 2. An illustration of the coarse-graining procedure. The solid lines

represent the heat kernels after the kernel replacement ({2.6]), which connect
(cg)

adjacent coarse-grained disorder variables © 7 (i,a) consisting of sums over
b

the dashed lines in each visited time-space block B,y (i,3) (see ([#.11)). The
diff
sohd and the dashed lines satisfy the diffusive constraint given in AE Lg and

, respectively.

Given a sequence of mesoscopic time-space blocks (Tl, ai), -, (f;,, a,) determined by the
microscopic renewal configuration (ny,21),..., (n,,2,) from (3.19), which satisfies the con-

tripl — (diff
straints .A (nofriple) and .AE:; L’c) , we will perform the kernel replacement ({2.6]), which leads to
a factorization of each summand in (3.19)) as the product of coarse-grained disorder variables
Opne(ij,a,), 1 < j <, connected by the heat kernels 916 )(aj+1 - a;). See Figure
(41715

4.2. COARSE-GRAINED MODEL. We are now ready to give the precise definition of the
coarse-grained model Qpa(cg) (¢,1|©) given earlier in ([2.7), which depends on € € (0,1) and is
a multilinear polynomial of a given family of random variables © = {@(E a)} indexed by
time-space blocks (i, 3).

Definition 4.4 (Coarse-grained model). Fiz e € (0,1) and a family of random variables
0 = (@(l a))( 5)eT., indexed by the set T, of time-space blocks defined in (4.5)). Fix two

locally integrable functions @, : R? 5 R and define p., 1, : Z?> >R as follows:
b= [ e(E)de, (9= | e(Edy  forbeez’. @)
(bf(lvl)vb] (57(171)@]
Recall the heat kernel g,(-) from (3.20). Then the coarse-grained model 2 (¢, 4|©) is

(log 1 )

c 1 g -
Z D (p,010) = S g1(p.¥) + 5 Z > Z( ee(blay, (o1 = D)0, )
r= b,CEZ (Tl,u.,?r)EA no triple
(31, ) AD (4.8)

{ H % (i —| a — a;_l) G(Ea é’j)} g%([%J—';)(C - a;)ws(c) .
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Note that in , for technical reasons that will become clear later (to control the error
induced by kernel replacements - see Section , we also imposed the constraint that the
number of time-space blocks cannot exceed (log %)2 This coarse-grained model has the same
structure as the original averaged partition function Zﬁ,ﬁ(gp, ) in , with 1/e replacing
N, © replacing &y, and the heat kernels replacing the random walk kernels. Note that when
o has compact support, is a sum over finitely many terms.

Remark 4.5. To approrimate the averaged partition function Zﬁ,Nt(go, W) with t # 1, we

define a corresponding coarse-grained model Z Cg)(go ¥|©) which is obtained from (4
simply replacing g1(g0 V) by gt(go,w) and gl(l*J*il) by gl([fjfi’)’ as well as modzfyzng

€ r €
(no triple)

accordingly A, and AE bc (replacing | 1] by | L] therein).

4.3. COARSE-GRAINED DISORDER VARIABLES. We now identify the coarse-grained
disorder variables @%gg) so that the averaged partition function ZB N(p,1) can be approxi-

mated in L? by the coarse-grained model 22y (ce) (¢, 1]|0©) with © = @g\cfga

Recall the point-to-point partition functlon Z’B N (x y) with its chaos expansion as in
- Assuming f — d < eN, we introduce a d1ffu51ve truncation as follows, the effect of

which will be negligible in L? , but it ensures that the coarse- gralned disorder variable @(Cg)

will only depend on &y (n, 2) in a locahzed time-space window. In (3.15)), let a = a(z) € 22
be such that « € S,y (a) (recall (4.1])). We then restrict y and all space Variables z; in (3.15)

to those mesoscopic boxes S,y (a ) w1th |a—al < = log log as in (4.2)), and define
r ) 3
0 ify¢ U S(a),
|5_a|<ME
[ee}
Qdf r,y) 2 Z
diff r=1 d<ni<..<n.<f
Zé,; )(l',y) = A4 21""7ZrEU|§—a\<ME S.n(3)
if S.n(a).
Qdn, (7, 21) En(ng, 21) % wye |a—aL|J<ME v (3)
T
{ H qnj_l,nj (Zj—lu Zj) £N( i, ])} an7f( ]7y)
=2

\

(4.9)
Similar to the definition of X;¥(z,y) in (3:29), we define
. if f=d
Xéd}ﬁ) (z,y) := gN( ) (dlﬁ _ ! . (4.10)

Note that we omit the dependence of Zc(ld;ff)( y) and X (diﬁ) (x,y) on N,e.

The coarse-grained disorder variables @gvg)(l a) are deﬁned as follows (see Figure j

Definition 4.6 (Coarse-grained disorder variable). Given N € N, ¢ € (0,1) and a
time-space block (i,3), with i = (i,i) and 3 = (a,a’), the associated coarse-grained disorder



30 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

variable @g\cfgs) (i,3) is defined by

(2 diff T
N X X ey if =1,
(d,x)eB.y(i,a)

(fw)eB.y (i)
with d<f

0¥ a).={ 2 411
ORI 5 > (4.11)
(dvx)eBeN(ha) b: ‘b_a|<Ms (f’y)EBsN(“b)

/7 ’ Bs ./’ ’ bl: blf ’ SME d/, ’ Bs .lyb/ ) -
(v )eBen@2) Luchat}‘mt ( Isiih éj}\{é,lgl ) Zf ||| >1.
b —bl<M_A/i'—i d<f,d<f
diff diff
XY @, y) qp 002 X;/’f/)(:r',y')

\

In the special case m =1, ie,i=1i, we will also write @S\C,ga)(i;a,a/) in place of @g\cfge) (T, a).

We point out that the prefactor 2 in (4.11)) is due to periodicity, because the sums are
restricted to B.y (i,a) S Z2p, see (L.1)).

4.4. COARSE-GRAINING APPROXIMATION. We can finally state the key result of this
section, which approximates the averaged partition function Z]@Nt(go, ) in L? by the coarse-

grained model %S;g)(cp, 1/1]@5\0,%5) ), with an error which is much smaller than Var(Zﬁﬁ(go, )
in (3.55) when N is large and ¢ is small. Recall || - | g, from (3.52).

Theorem 4.7 (Coarse-graining). Let Zﬁ%((p,lﬁ) be the averaged partition function in

(B3-8), where By = By (V) satisfies for some fized 9 € R. Let %Egg)(cp,w]@) be the
coarse-grained model from , with K, = (log %)6 and M, = log log% as in (4.2), and let
@(T, a) = @g\cfi) (T, a) be the coarse-grained disorder variables from Definition hen, for
any T € (0,00), there exists C = C(T') < oo such that, for e > 0 small enough, we have

. C C 2 HSDHE
limsup |23 (p,v) — 2057 (o, w1022 <C<||¢2KEE+ =) ly, a12)

N—w log 1

uniformly in t € [0,T], ¥ € L(R?) and ¢ : R* — R with lelg, < oo.

Note that the r.h.s. of (4.12)) tends to 0 as € | 0, because K, ¢ — 0. The whole of Section [j]
is devoted to the proof of Theorem [4.7]

5. SECOND MOMENT BOUNDS FOR AVERAGED PARTITION FUNCTIONS

This section is devoted mainly to the proof of Theorem [4.7], which approximates the aver-

aged partition function Zﬁf\; (p, 1) from by the coarse-grained model Qé;:g) (¢, ¢|@§\sz5€))
from . We may assume t = T' = 1 without loss of generality. The uniformity in t < 7T
will be clear from the proof. Throughout this section we simply write Zx(p, 1), omitting the
dependence ont =1 and on By.

The starting point of our proof of Theorem is the polynomial chaos expansion .
In the second moment calculations, the time-space renewal representation and the limiting

Dickman subordinator presented in Section play a crucial role. The proof will be carried
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out in three steps, presented in Subsections [5.I}5.3] below: given € > 0, we introduce two
intermediate approximations Zglgtrlple)(cp,z/}) and Z](\?;H)(go,zp) of the averaged partition

function Zx(p, 1), and bound the following in L*.

e Step 1. We bound Zy (¢, 1) — Z}?ztriple)(go, 1), see Lemma [5.1|in Section this is

. = ipl
the cost of imposing the constraints AS’O triple) and Aino triple , see (|4.3) and (4.4)).
e Step 2. We bound Z](\?Ztriple)(cp, P) — Z](\(,ﬁeff)(go, ), see Lemma in Section this
- (diff
is the cost of imposing diffusive constraints, including Ai; b,c) in (4.6) and the diffusive
truncation in the definition of @S\(;gs) in (4.11]).

e Step 3. We bound Z](\%if)(go, W) — 2L (o, V|0 ), see Lemma in Section this
is the cost of the kernel replacement ({2.6]).

Combining Lemmas [5.1] and [5.8| then gives Theorem

In the last Subsection [5.4] we will prove a separate second moment estimate for the
coarse-grained model, which is needed later in Section [§] for higher moment bounds.

The proof details in this section are technically a bit heavy and could be skipped in a
first reading.

5.1. STEP 1: CONSTRAINTS ON MESOSCOPIC TIME VARIABLES. In this step, we
introduce our first approximation Z](\l;’zmple) (p,1) and show that it is close to Zx(p, ).
Recall the mesoscopic time intervals T,y (i) := ((i — 1)eN, ieN] introduced in (4.1)), to
which we associate the mesoscopic time index i € {1,..., %} In the chaos expansion for
Z]@N (¢,%) in (3.19)), each time index n; belongs to T_y (i) for some i€ {1,..., 1}, The first
step of coarse-graining is to group the terms in the expansion in (3.19) in terms of the
mesoscopic time intervals 7y (+) visited by the sequence of time indices nq,...,n,. Namely,

we can rewrite (3.19) as (omitting Sy from Z]@N(cp,zﬂ), and expanding qé\’[nl(@, z1) and
q,]x ~(2r,9) according to their definitions in (3.16)-(3.17)):

Zn(p,0) = aon(p, )

=

0

en(v) Z
k=1 0<ij<..<ip<l di<fieTon(in), -, dp<fy gTaN(ik) (5.1)
T, YLy Tl Yp EL

+

2|~

2
vaezeven

k

0,4, (v, 01) X, 7, (T1,91) { H a5, ., (Wi-1,25) X, f, (%7%)} a5, N (W, w) Yy (w),
=2

where ¢y, ¥ were defined in (3.9), and X r(z,y) was defined in (3-29).

Recall from that K, = (log 5)6. We will show that in (5.1, the dominant contribution
(in L2) comes from mesoscopic time variables (iy, ..., i;) which contains no consecutive triples
iy i1y 4o with bothi; q —i; < K and ij o —i;1; < K. This is encoded in AgnOtriple) from
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(4.3), which we recall here

Aol | {(il,...,ik) eNF: K. <ij<ip<...<ip<|!]— K. such that

keN (5-2)
lf |j+17|] <K€, then ij+27i]~+1 >K€ }

We will further restrict the sum in (5.1)) to (iy,...,i,) with & < (log %)2, which leads to
the following first approximation of Zx (¢, ):

no triple 1
ZG0P (0, y) = () + D, en()

2
’U?weZeVen
2
(log 1)

2, 2 2 (5.3)
k=1, ipealotiple) di<fieTon(in), - de<fi € Ten (i)
ml,ylv“wmkzykez
k
40,d, (v, 1) Xdl,fl (1, ?Jl){ H qf; 1.d; (yj—la fﬂj) de,fj (553'7 ?Jg)} ka,N(yka w) Py (w).
j=2

The main result of this subsection is the following approximation, which constitutes
part of the bound in (4.12]). The proof is a bit lengthy, but it contains many important
ingredients, including a key renewal interpretation of second moment bounds.

Lemma 5.1 (No close triples). Recall from (4.2)) that K, = (log%)6 and recall || - ||g,
from (3.52)). There exists C € (0,00) such that for e > 0 small enough, we have: for all ¢
with ||p|g, < o and ¢ € L*(R?),

2
(log K.)
log &

€

lim sup || (Z](\?,Ztriple) - ZN)(% @ZJ)Hi? < C <||90|(2}K . T
N—oo with Ne2N €

ol ) 1012
(5.4)

Proof. The random variables X ¢(x,y) depend on the disorder variables {y(n,z) for
d<n < f,see (3.29). They are centered and orthogonal in L? and, by (3.30) and ([3.40)),

E[Xd,f(x» y) Xd/7f/ (xl’ y/)] = ]l{(d,f@,y):(d’,f’,m’y’)} UN(f —d,y — 55) .
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Slnce the sum which defines Z(nomple (p, 1) is a subset of that of Zxn(p, ), cf. (5.1) and
, it follows that we can write

H( notrlple ZN) (907 w)Hiﬂ

5 D, Sy §

log %)2 0<iy<...<ip<z 1 (i17~..,ik)€(¢4£n0triplc) c
I;\;E H;,E
> (5.5)
x Z Z SON("U)QO,dI(’U,l’l)) Un(fi —dyyr — 1)
di<fieTen(in), -, de<fr € Ten (i) “ovez?,.,
Z1,Y1y -+ xkaykez
k B 2
{HQfJ 1,d yj 15 ]) UN(f]—dny— j }( Z ka yk:a ¢N< )) ’
: wEZeven
where Iy . and Il . are the contributions of {k > (log %) Vand {(if, ..., i) € (ATP)yey
We split the proof in two parts, where we show that for some C < o0 we have:
. 1 2 2
limsup Iy, < C—elg, (¥, (5.6)
N—o0 with Ne2N log -
. 2 (log K. ) 2
limsup Iy, < C <|<PgK A+ lelE, | )5 - (5.7)
N—w with Ne2N c log 1

Remark 5.2. Let us sketch a probabilistic interpretation of (5.5)). From (3.33)), we recall

that the expansion for Un(f —d,y — ) has a time-space renewal interpretation, and from
(3.51) the expansion ofE[ZN(go, 1/))2] consists of a mizture of U n(f —d,y — x), with weight

#qé\fd(gp,x)zq}\fm(y,w)?. We can therefore write
E[Zn (e, 0)*] = 2 MZH(S).

S={(7‘L1,Zl) ~~~~~ (nrzzr)} 9
1<ni<--n,.<N, z1,...,2. €L

where denoting S = {(ny,21),...,(n,, 2.} withr = |S\ we define

P U%R%Pl) ?
MR (S) = N Z; on (V) Gon, (v, 21) Z Qn, N (2p, ) P (W)
VEZ wEZ

(5.8)

even

xP((r,50) = (2 v << | (7, 80Y) = (11, 20)).

2

even

The measure M}'f;w(-) is called a spectral measure since M‘ﬁ,’zb(S) equals the square of the
coefficient of H(n,-,zi)ES En(ny, 2;) in the chaos expansion (3.19)) for Zx(p, ), where different

terms in the expansion are orthogonal in L2, similar to a Fourier decomposition. For more
on spectral measure, see e.g. [GaSt12].

The 1.h.s. of (5.5)) can then be written as
(no triple) 2 no triple)\c
|25 — Zy) (e, )2 = MEY(IT6S)] > (log 1) or T(S) & (A""™P)7) - (5.9)
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where given S < {1,...,N} x 72,
S):={ie{l,....,L}: Sn(Tinli) xZ%) # &} .

Thanks to Lemma it can be shown that as N — oo, M}’ijqﬁ converges to a similarly
re-weighted measure for the continuum time-space renewal process introduced in Lemma[3.3,
whose time component is the Dickman subordinator (Y;).>o with exponentially weighted

Green’s function Gy, see (3.37)) and (3.39).

Second Moment Bound via Renewal. We first explain the common steps in bounding
Iy. and Iy, from (5.5), which also applies to the variance of Zy(y,1) and the mean
squared error of later approximations. The common feature is that they all have the same
expansion as in , except the summation constraints are different.

Consider Il . from ({5.5). We first sum out the space variables in (5.5)). Recall (3.9) and
note that

[¥wlee == sup [x(w)] < [¢]e , (5.10)

weZ?

so that in (5.5)) we can bound

2
( 5 o x (e ) 0n(0) ) < ol < IS (5.11)

wEZeven

We can plug this bound into (5.5) and sum over the space variables in reverse order, from
. . E=g 2

Yk, Tp until yo, 9, yy, thus replacmg UN(fj_djvyj ;) by Un(f;—d;) and g5, | a.(y;-1,2;)

by u(d; — f;j_1), see (3.40) and ( (3-3). Finally, we sum over z; and observe that

> < Y, en) qoczlvxl) Z on (V)N (V) gag, (v =) ::NCI)N<%>’ (5.12)

2 2
T1EZ VE€Zgven Vv EZeven

where we introduced the function ® . Substituting these bounds into (5.5 then gives

n,, < C1VL 5 5

k=1 .. ipearetivlele di<fi € Ton (i), o di<fi € Ten (ik) (5.13)

(pN(d1>UN( {HUd — [i-1) Un(f; — dj)}'

A similar estimate can be derived for I ., with a corresponding summation constraint.

We now compute the limit as N — oo of the r.h.s. of (5.13)). Recalling ¢ from (3.9)), the
local limit theorem , and (3.22), if d;/N — s € (0,1), then for ®5 in (5.12)) we have

(@N(EZ\}> = % 2 on (V) o (V) gag, (v — 1)

vveZ

even

ff 2Ngs (2 — 2)dzd? =: ®(s),
R?xR?
where we note that, by the definition of |¢||g, from (3.52),

L B(s)ds = [lpl2,. (5.15)

(5.14)
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We will use the following result, which says that as N — oo, for each | := (iy,...,i) <
{1,..., %}, the term in ([5.13)) converges to a limit that can be interpreted in terms of the
Dickman subordinator, as mentioned in Remark [5.2]

Lemma 5.3. Let ® and ® be defined as in (5.14). For any fired ¢ > 0, k € N and
= {i,... iy} {1,...,%} with i} <iy < ... <y, we have

. 1
Jm 2,

di<fr€Ten(in), s di<fir € Ten (ix)

. (5.16)
Oy (%) Un(fi — {HUd — i) Un(f; —d)} z2()),
j=2
with
2() = ff da; db; - - day, dby,
a1<by €T.(i1) v, ap<b, € T2 (i) (517)

D(ay) Gy(by — aq) {Ha (bjaj)}a
j=2"17

where T_(i) := (e(i — 1), ¢i], and Gy (see (3.39) and (3.37)) is the weighted Green’s function
for the Dickman subordinator with Lévy measure lll( 1)(t)dt introduced in Lemma

t

Proof. If we introduce the macroscopic variables a; := d;/N, b; := f;/N in (5.16]), the
sums converge to corresponding integrals as N — oo (for fixed & > 0), by the asymptotic

expansions (3.3), (3.11)), (3.42) and (3.43)) for wu(-), 012\7, Un(+) (also recall (3.2)), as well as
the local limit theorem (3.21)). This gives (5.16)-(5.17)). O

We can interpret Z2 (1) in (5.17) as the weight associated to a Dickman subordinator.
More precisely, recall that G is the weighted Green’s function of the Dickman subordinator
Y introduced in Lemma and satisfies the following renewal property |[CSZ19al eq. (6.14)]:

Vs<i<t: Gylt—s)— ” Golu—s) -

ue(s,t), ve(t,t)

iuGﬂ(t—v)dudv. (5.18)

In (5.17), let us denote by Z2*(i,...,iy) the integral where the extreme variables a; and by
are not integrated out but rather fixed to be s and ¢ respectively, namely,

2N = ff db, day dby - -+ day,_; dby_ day,
5<b1€7;(i1)7---vZkfteTa(ik) (5.19)
Gylby — 5) ﬁ*@ b —a)\ Gt —ay)
This is the weight of renewal configurations that only visit the intervals T_(iy), ..., T-(iz),

and a;,b; are the first and last renewal points in 7.(i;), while aj_%)jfl comes from the Lévy




36 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

measure of the Dickman subordinator. An iterative application of (5.18]) then shows that
vi<j, Vse T.(j), Vte T.(i) :

0
Z Z Ig’t(ih'"vik) = Gﬁ(t_s)v (520)
k=1 j=ii; <ig<...<i_q <ip:=j
which is just a renewal decomposition by summing over the set of possible intervals 7_(i),
j<i<j, visited by the Dickman subordinator Y, given that s,t are in the range of Y.
Applying Lemma to (5.13) then gives
(log 1)*
. 2 D, .
limsup Iy, < C |95 Z Z . (i1y--sig), (5.21)
N—w k=1 . . (no triple)\c
(Ilv"'vlk)e(AE )

With the same arguments, we obtain a corresponding bound for Iy .:

limsup Iy. < Cl¢)% D, DAY (RN R (5.22)
N k>(log 1 )2 0<iy<..<ip<i

To complete the proof of Lemma it remains to derive ) and . from these bounds.

We start with Il ., which is more 1nvolved, but we first make a remark.

Remark 5 4 (Variance bound). If we remove any constraint on k and (iy,...,i) from
formula (5.5)), summing over all ke N and 0 <i; < -+ <i} < l, we obtain Var(Zy(p, 1))

(recall -) We thus have a simpler analogue of - ) and ( -

limsup Var(Zy (¢, ¥)) < C[¢]% Z Moo i)

N—o© k=1 0<ij<--<ip<t

< Clv H )Gyt — 5) dt ds (5.23)

O<s<t<1

2 ! ! 2 2
< cwnoo(jo Gﬁ@)dt) (jo B(s) ds) = Ceyvl2 gl

where in the second inequality we applied the renewal decomposition , with s and t

being the first and last renewal points, we denoted cy : S Gﬁ t)dt, see , and recalled
(5.15)). Note that this bound is the same as the one in and does not depend on €.

Bound for Il .: proof of (5.7). We start with (5.21]). The constraint (.,éltgmtriplc))C contains
| = (iy,...,i) with either 1 < iy < K_, or iy > 1 — K_, orijy; —ij,ijp9 —ij4 < K, for
some j (hence k > 3). We will treat the three cases one by one.

For the first case 1 < i, < K., omitting the factor |t||%, its contribution is bounded by

(log 1)
Y i< | e06it-gasd<alel, . (6520

k=1 0<i1<KEl 0<s<K.e
1<-.<lgsg s<t<l

where we applied the renewal decomposition ([5.20) as in (5.23)), and recalled from ([5.15)
that H«pHéK . (I]{ ° ®(s)ds. This gives the first term in ([5.7).
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For the second case i, > + — K_, omitting ||1|%, its contribution is bounded by

(log g)

D D 2y, . .. H ) Gy(t — s)dsdt

k=1 0O<ij<...<ip_q<ig O<s<t

%_Ke<ik\% 1-K_e<t<1
K, 5 1 C 2
o[ o) <55
0 0 log <
where in the second inequality, we used that Sa+K e (t) dt < C’S g(t)dt < C/log L

uniformly in € small enough and a € (0,1) (by (3.46)-(3.47) and the ChOlce (4.2) of K,).
This bound is much smaller than the second term in -D
For the third case with i;, 1 —ij,i;49 —i;41 < K, for some j, we need to bound

k—2
k=3 j=1

: C o1
0<ip<..<ip<z
ij41—i; <K and ij 9—ij 11 <K,

< ﬂﬂ dbda’ db’ da” j ds f dt

O<|<| <i’ < bG’T(
|| —|\<K a <b eT.(i )
[i"=i'|<K. 4 "eT (")

B(s) Gylb—5) -

where we again applied the renewal decomposition ([5.20)). Bounding the integral of Gy(t—a")
over t by ¢y = So Glg ) du, we obtain

m\»—t

1
b Gﬁ(b/ — CL,> ﬂ G,@(t — a”) .

: i+K, / /
€ _ b _
w.< Y Y 2 ﬂﬂdbda ' da" f e,d(s)Z2b=8) Golb =) ;o
~ a—b a —b (5.25)
i=1{=it1i"=i"+1 beT (i :
o' <b’ G’TE(l )
a//e,]—e(i//)
Note that if we restrict the sum to 2 < i —i,i" — ' -, then using (3.47)), it is not difficult
to see that the integrals can be bounded by C' lOgK So s)ds. Complications only arise
wheni' =i+ 1lori’ =i +1.
We will proceed in three steps. The following bound will be used repeatedly:
J log(1 + %
V6 e (0,3), Vze [5,): J Gy(x) log [ 1+ = dz < C’Ll‘s). (5.26)
0 o0—x log 5
Indeed, splitting the integral over (0, 2) and ( ,0) and exploiting (3.46)), we note that:
o for z < § we have log(1+5%) < log(1+575) < C log(1+5) and S(S/Q (x)dz < log
e for z > g we can bound Gy(z) < —Y%— and, by the change of variable t := =,

d(log 5)

0 o9
z log(1 +t) / z
1 1+ — = ————=dt < 1 14+—<. 2
fo og( +6—a:> dz zL 2 dt<C'§ og( +5> (5.27)

5
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We now continue to bound the r.h.s. of (5.25)).
Step 1. Given i’ € N and o’ € T_(i"), we bound the integrals over a” and " in ([5.25)):

i'+K,

K.
» H d”dbGﬂ(b—a)i J dbGﬁ(b—a)long)),b
gl —
=i +1 beT( ) b'>ad
a/l/€7,6(ill)
s log(1 + =%=)
= [f dz Gy(x) log<1+ 2 )} <C#,
0 d—x §:=ei' —d log o —d

where we used (5.26)) and changed variable z := b’ — a/. Plugging it into (5.25)), we obtain

DK, b 1
€ € 1 og(l + )
W.<Cy > H dbdd’ f ds ®(s) Gy(b— s) — d-al (5.8
= 0 a—b log—
i=1 y—i+1 beT. (i) ei'—d
d'eTo(i)
Step 2. Given i € N and b e T_(i), we focus on the integral over a’ in ([5.28):
i+ K, 1 lOg( ek, ) i+K, € 1 1 ek,
ei' —a Og( T )
> . = >, . dz, (5.29)
1) a—b log —1— o —b—x log L
i =i+1 ('~ ei' —a' i’ =i+1 z

by the change of variables z := ei’ — a’. We first bound the sum from i’ = i + 2 onward, for
which we note that for z € (0, ¢),

'Z 1L _ 1y eir Ko —boa 1 eK.
i —b-z e it -b-a e B\ T (i+t)-b-=x

1 K
<10g<1+€_ E).
e ei—b

Moreover, by the change of variables z = ¢ e,

1 © _log(l+ K¢ ¥ -
JOg()dx*EJ e twdm Elf e ' (t +log(1 + K.)) dt,
0 logf 0 t+log 2 log = Jo
(5.30)

because t + logé = log% and 1+ K.e' < (1 + K.)e'. Therefore

i+K ek,

°(* 1 1 < log(1+ K, K
Z f ¥ o8 1x)dx<COg(7+la)log 1+ ).
vy o gl - b—x log - log = ei—b
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Now for the case i’ = i + 1, we have

F 1 log(1 + =B=) 1
X
o eli+1l)—b—=x log 1

X
ek log(1 + K.) 1

/2 log( - A €
< - ———a=dz +C 1 _ dz
€ Jo log log < epeli+tl)—b—x

\Clog(1+K)<1+log<1+ 5/2 )) <CIOg(1+lK‘€)log(1+ eK, )

log 1 ei—b log < ei—b

Substituting the above bounds into ([5.28]) then gives

log (1+K,) b eK
<C o —s)1 £
W. g I Z J dbfo ds ®(s) Gy(b — s) og( a_b>

5T (5.31)

log(1 + K.) K
_ /Og i ZJ ds (s f dbGMb—s)log(l—i—;_ab).

max{s,e(i—1)}

Step 3. Given s € (0, 1), we bound the integral over b in ((5.31)).
e For s € (e(i —2),¢ei) we can bound, by (5.26]) with § = i — s,

K log(1 + i) /
J Gy(b—s) log ( b> db < C Ta's < C'log(1 + K,), (5.32)

El—S
where the last inequality (which is very rough) holds, say for € € (0, 1), uniformly for

1
s€ (e(i—2),e) and K. > 1, because z := =— > 5 > 2 and

W log(1 + (eK,)x) < sup log((1+ K.)x) log((1+ K.)2) -

72 log 32 log B log 2 = log?2
e For s < e(i — 2) we can bound Gy(b—s) < CGy(e(i — 1) — s), see (3.46), and

€i €
J log (1 e > db = J log (1 +
e(i—1) ei—b 0

by the change of variables = := ¢i — b and the estimate (5.27) with 6 = € and z = ¢K_.
Substituting these bounds into ([5.31)) then gives

W, < C”WZ U B(s)ds + ¢ f(ifﬁ(s) Gyle(i—1) — s) ds}

log(1+ K,).

K
£ E>dac < C'elog(l + K,),
x

m =

log < = Ulei-2) 0
1
2 rl €
<" (log(1 +1I{5)) f B(s){2 + Z eGyle(i—1) —5) v ds (5.33)
log ¢ 0 i=2+]2]

log(1+ K.)* (! log(1 + K.))?
Hl))L Q)(s)ds_C((l()gl))“(pél,

3 3

<C
log

where the last sum can be seen as a Riemann sum and bounded by a multiple of ¢y =
SO Gy(x) dz. This bound gives the second term in ([5.7) and completes its proof.
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Bound for I .: proof of (5.6). In view of (5.22)) and (5.15]), we need to show that

V. - D 7°0) < © <f1<I>(t) dt) L (5.34)

Ic{1,..., 1, 1]>(log 1)? 0

EARRE I

By Markov’s inequality, we can bound

™ =

yo< 1 SN < — (n.

(log 1)* ;
Ic{L,..., 2}, 1> (log 1)? e/ =il L

yer g

g
N
&

Recalling the renewal interpretation of I;D (1) after Lemma and the renewal decomposition
(5.20)), we can integrate over the first renewal visit s, the last visited point u € 7.(j), the
first visited point v after 7.(j), and the last renewal visit ¢ < 1, to obtain the bound

V. < 11 > ﬂﬂ D(s) Gy(u—s) Gyt —v)dsdudodt

- O<s<u<wv<t<l
ueT, (i), v><j

< Cﬁ1)2 Z Jf D (s) Gy(u — s) log _1 dsdt.

1<j<! R
1=

V—Uu

0<s<u,ueT.(j)

Observe that the sum of the integrals is exactly the same as in the r.h.s. of (5.31]) with K,
replaced by % Therefore the bounds leading to ([5.33)) also applies, which gives

Cy " 1y (* c (!
V. < 5 C" log (1 + 7> O(s)ds < T | ®(s)ds.
(log g) e/ Jo log = Jo
This matches our goal (5.34) and completes the proof of (5.6)). O

5.2. STEP 2: DIFFUSIVE TRUNCATION IN SPACE. In this step, we introduce our

second approximation Z](\(,iif)(go, 1) and show that it is close to Zﬁgtriple)(go, ).

For a = (a(l), a(Z)) € 7%, recall from (4.1) the mesoscopic spatial square

S.n(a) :=((a— (1,1))VeN, aveN |

= ((a(l) — 1)\/67]\7, a(l)\/EW] % ((3(2) _ 1)\/57]\7, 3(2)\/{;‘7]\7] ’ (5.35)

to which we associate the mesoscopic space variable a. We now perform coarse-graining
in space by grouping terms in the expansion of Zﬁt‘;triple)(go, 1) in (5.3) according to the
mesoscopic spatial boxes visited by the space variables v, z;, y;, w in . Namely, recall
the definition of the mesoscopic time-space box

BEN(i7a) = (EN(') X SEN(a)) N Zg)ven' (5'36)
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We can rewrite ([5.3) by introducing the mesocopic space variables by,aq, by, ..., ag, by, apy1:

00U (0 ) = gy (e d)

(log )2

%2222 >y

k=1 ; (notriple) 2 2 (dy,x1)eB.n(i1,21) (d>xr)EBen (ir,az)
(i1ymsig JEA, bo€Z” a1, by, ... ,ay, by € Z7 1,71 )€ N (11,31 k Tk )ESe N (>3
: (fry)eBen(inbr)  (fruk)€Ben (ix:by)

with d; <f; with dp <f,
k
> v dog, (v, m) Xayp, (“”Cl’@“){ [ Tas, s (129 Xy g, (25 )}
'UESEN(b)ngven J:2

(XD gatennw). (5.7

2, 11€%° weS.n (a4 1) " Liven
We now perform a diffusive scale truncation by replacing each X, ¢ (;,y;) in the above

expansion by its truncated version Xc(lc_h;f_) (;,y;) defined in (4.10). Let us stress that

X{D(@y) =0 forzeS.y(a), ye Soy(b) with [b—a| > M. . (5.38)
Furthermore, we restrict the mesoscopic space variables (ay, by, ... ,a, by) in (5.37) to a

“diffusive set” that depends on the initial and final space variables by and a;, and time
variables (ig :=0,i1,...,ig, i1 i= 1):

Al = {(al, by, ... ap, by) € (Z)™ st.V1<j<k, |b;—a| <M,
and V1<j<k+1, |aj—b;_y| < Mfi; —ij } (5.39)
Remark 5.5. Once (iy,...,i;) € A(mtriple) are grouped into time blocks, see Deﬁm’tz’on
we can then group (ay, by, ... ,a, by) € AE bc into space-blocks, see Definition . The

. ﬁ‘
constraint Ai?tﬁc) then maps to the constraint As;;,c) defined in (4.6).

More explicitly, we can approximate Zy, nomple (p,v) from ([5.37)) by

(log 1)*

2 o) =)+ DY ) )

k=1 (i17...,ik)€./4£no triple) b07ak+1 €Z2 (317 b17 <k bk)eAg?lig,)ak+l

2 o 2 > on(Yo) (5.40)
(b

(dlvxl)EBsN(ll’al) (dkka)GBe:N('k)ak) yOESs ) ngen
(f1:91)EBen (i1,01)  (fryr)EBen (i ,by)
with d;<fy with d <f

{HQf] Ld y] 1T )thj,fj)( j,yj)} Z ka,N(yka$k+1)7/}N(xk+l>7

2
xk+IESsN(ak+l)hZeven

where fy := 0. The main result of this subsection is the following, where the approximation
error is much smaller than Var(ZgNl(go, ¥)) in (3.55)).
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Lemma 5.6 (Diffusive bound). Recall from ([{.2) that M. = loglog 1 and recall | - ||g,
from (3.52). There exist c,C € (0,00) such that for e > 0 small enough, we have: for all ¢
with |G, < o and ¢ € L*(R?),

(diff)

. tripl 2 —cM?) 2 2
imsup (255 — 202 (0,972 < Cem Ml 0% (5.41)
N—o0 with Ne2N

Proof. We argue as in the proof of Lemma Note that the chaos expansion for Z](\(,ﬁf) 18
a restricted sum of terms in the expansion for Zﬁlztrip ©) due to the following two effects:
diff
(1) the replacement of X f (x;,9;) by X\ (x;,y;) (cf. (10)-(EI) and B29));
.. diff
(IT) the restriction of (ay, by, ... ,ay, by) to Aé;oy)akﬂ.

Since terms in the chaos expansion are mutually L? orthogonal, we can write
diff tripl 2
|28 = 252" (0, 9)| 72 = Ty, + Ty, (5.42)

where Iy . and Iy . are the squared L? error as we first make the replacement in (I) and
then impose the restriction in (II).

To be more precise, we can define Xc(ls}lperdiff) (z,y) by the equality
diff superdiff
Xap(@,y) = X7 @, y) + X5 (). (5.43)
In view of (3.30)) and (3.40), we define
—(diff diff
Ugv,d?f(x,y) = E[Xflvf N(z,9)°]. (5.44)
—(superdiff superdiff 2
Ug\,’g’f )(ac,y) = E[X((i’fp )(a;,y) ] ) (5.45)

Note that XC(IS;pcrdiH) (z,y) and deiﬁ) (2,y) are orthogonal in L?, see (£.10)-(2.9) and (3.29).
As a consequence, if we plug (5.43)) into (5.37) and expand the product, we obtain

. (log 1)?
Iy, = 2 Z Z Z Z
k’:1(il,m,ik)eAén‘”“ple) bg,bo’ c72 (dlﬂ»‘l)EBsN(h@N (dkvzk)EBsN(.ikvak)
a1, by, ...,ax, b (f1y1)eBen (in,b1)  (fin)EBen (ik5b)
with d; <f; with dj, <fj
(T ) ) a0, )
vES. N (b) " Lyen (5.46)
UIGSEN(bO/)ﬁzgven
k 2
2
X {Hij_l,dj(yjla$j) } ( Z a5, N (Y, w) @Z}N(w))
]:2 wezgven
—(superdiff) —(diff)
X 2 HUN,dj,fj (mjayj) H UN,dj,fj(xj7yj)'

JS{1,. k) |J|=1 et jef1, . kp\J
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The term Iy . in (5.42) accounts for the further restriction to (ay, by, ... ,ay, by) €

diff diff l / 2
AWGD - AGE  for some bo, bg, aky1, k41 € Z7, and hence

oo O Al el
(log
ly. =3 2 5 5 Yoy
k= 1(|17 7|k)eA(“°mple) bg,bo’ ,akﬂ,akHeZ (d1,$1)€BeN(_i1731) (dkﬁ?k)EBaN(_ik,ak)
(a b ., b ) (A(dlf‘f) ) m(J4(Cﬁff) )C (flvyl.)EBsN(ll»bl) (fk»yk.:)EBsN(lknbk:)
1,1, ks Pk €bg, @Ak 41 85bOlva;c+1 with dlgfl with dkgfk
/ /
(0 on() o, (001) 0, (0 1) )
gESSN(bognggen
v ESEN(bO )mZeven

diff
X Ugv di,fl (z1, 9 {HQf] 1d y] LT ) Ug\fd]),f]( j:%’)}

X ( Z ka,N(Z/k’$k+1)ka,N(ykn$2+1)¢N($k+1)¢N($;€+1)>- (5.47)
Ik+1€SEN(ak+l)mZ§ven
I;c+1eSsN(a;€+l)mZ§ven

To prove ((5.41)), it suffices to show that for some ¢, C € (0, o0),

—cM —cM

limsup Iy, <Ce ”‘PHQIWHOO and limsup IIy. < Ce

. : lolg, 1%
N—oo with Ne2N N—oo with Ne2N

(5.48)
We need the following bound, which follows easily from Lemma Recall Uy (n) and

U (n) from (3.35) and (3.40).
J¢,Ce(0,0) st. YNeN, e>0, d< feNwith |[f —d| <eN

2 __
3 ORT " ) < MU~ d). (5:49)
yeZ

We are ready to bound INE in - As in the proof of Lemma [5.1] ., the last term

(Zw522 a5, N (Y, w) P (w )) can be bounded as in (5.11)). We then sum over all space
variables in reverse order from yy, z), until y;. We will use 3, 2> qy4(y, 2)? =u(d— f) by

(3.3), apply (5.49) together with the fact that
(diff) - —
2 Uirar(@,y) < Y, Un(f —dy—2) = Un(f —d), (5.50)
yeZ y€Z2
and finally sum over x;, noting that, by (5.12)),

>0 2 D on(v) on (V) dog, (v, 1) dog, (Vs 21)

31622 z1€8 N (a1) bo,bo'eZ2 veSEN(bO)mzzvcn
2
UIESEN(bO/)mZeVen (551)

= ) en@en() gy (v =0 = N(I)N(;l\})

’ 2
U,V €Zgyen
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We then obtain an analogue of (5.13]):
1 )2

. < cwuw b 5

F=1 (i )eAo iR di<fy € Toy () o di<fi € Ton (ir)

[ 3 C,ecM§|J|] (d1>UN( {HUd ~ i) Un(f; = dj)}'

JS{1,...k}: | J|=1

(5.52)

For k£ < (log %)2, recalling that M, = loglog %, we can bound for € > 0 small enough

[ 3 C e M1

JE{1,...k}: |J|=1

2 2 c 2
=C{1+e M) —1} <2Cke M <2025

We now plug this bound into (5.52)) and sum freely over all 0 < i; < ... < i < % As
N — o, by Lemma and similar to (5.21), we obtain (with ¢ = §)

(log 1)
2
limsup Ly < Clglee ™ )] Do i), (5.53)
—® k=1

0<iy<..<ip<1i

The renewal decomposition ([5.20)), together with ¢y = So Gy(x)dzr < oo, yields

i oo I, ) H §) Gy(t — s)dsdt < fcp(s)ds. (5.54)

— . . 0
k=1 o<ij<..<ip<l O<s<t<l

By (5.15)), this proves the first bound in (5.48]).
We now prove the bound on Il . in (5.48). Note from (5.39)) that

k+1

(A4D ) U{|bl—al|>M} U U{|a b 1|>Mﬁ} (5.55)

The first union in (5.55)) gives no contribution to (5.47) since Uﬁ&f )f(x,y) = 0 when
z € S.y(a) and y € S.y(b) with |b —a| > M_, by (5.38)) and (5.44)). It remains to consider

the contribution to (5.47) from the second union in ([5.55)), namely, |a;—b;_1| > M.y /i; —i;_4

for some j e {1,...,k,k+ 1}.

2
—cM,
“Me comes from the bound on

Zyjezz Uﬁ@?ﬁffg iff) (7;,y;) in (5.49), in the bound for Il ., the same small factor now comes

from the following estimates: there exists ¢ € (0,00) such that for any i < i, f € T.n(i),
deTn() be 72, and y € S.n(b), we have

In contrast to the bound on Iy, where a small factor Ce

2

2 S aqpewa) < ce (5.56)
a'ez? |a'—b|> M./ —i 2'eS.n(@")
2
> > a ) < CemMud — ), (5.57)

a'eZ2: |a'—b|>M./i —i 7'eSen(a)
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where recall from (3.3) that u(n) := > _» 4n(2)? = ¢o,(0). The first bound follows from
the fact that ¢, (-) has Gaussian tail decay. The second bound is a consequence of the first

bound, because sup, ¢, (z) < %/ < Cu(n) by the local limit theorem ) and (B.3).
The bound on Iy . then follows the same steps as that for Iy ., where we take a union

bound over all 1 < j <k + 1< (log1)® + 1 with |a; — b; 4| > M.\/i; —i;_;.
e For j = k + 1, bounding % by |¢|., and applying (5.56), the sum over w,w’ and
api1> k1 in (5:47) under the super-diffusive constraint |a, . — by| > Meq/% — iy,

2
leads to an extra factor of Ce” Ve compared with the bound when this constraint is

not present (see (5.11))).
e For 2 < j < k, by (5.57 -, the sum of af, ., d (y] 1, T ])2 over z; in (5.47) under this

M2
super—dlffuswe constraint gives an extra factor of Ce” “"'c compared to the case when
this constraint is not present.

e For j = 1, given by, by € Z*, we could have either |a, — by| > M_+/i or |a; — by| >
M_+/T}; either way, given v € S.y(bg), v € S.y(by) and d; € T.n(i;), the sum of
0,4, (V; T1)q0,4, (v',z1) in (5.47) under this super-diffusive constraint gives a factor

2
Ce Me compared to the case when this constraint is not present.

Since there are at most (log %)2 + 1 choices of such j, this leads to the same bound we had
for Iy . in (5.53)), which establishes the second inequality in ([5.48).
This completes the proof of Lemma [5.6] O

5.3. STEP 3: KERNEL REPLACEMENT. In this step, we introduce a last approximation
Z(Cg)(go, 1) and show that it is close both to Z](\?laﬁ)(go, 1) and to the coarse-grained model

Qi(cg (¢, 1/)|@S\C,ga) ). This completes the proof of Theorem

Let us first summarize the previous steps. So far, we have performed coarse-graining by
grouping terms in the chaos expansion for Zy(p, 1) in according to the mesoscopic
time-space boxes B,y (i,a) visited by the microscopic time-space renewal configuration
(ny,21),---,(n,,2,.) in . Imposing suitable restrictions, we have defined the approx-

imations Z(nomple)(go, ¥) in and Z(diﬁ)( ,¥) in (5.40). The next step is to replace

the relevant random walk transition kernels in the expansion ) for Z(dlﬂr (p, ) by
heat kernels as in ({2.6)), i.e., replace the random walk transition kernels qu_l,d (Yj—1, j)

connecting the microscopic points (f;_1,¥,;_1) € Ben(ij_1,bj_1) and (d;, x;) € B.n(ij,a;) by
a heat kernel that depends on the mesoscopic time-space variables (i;,_1,b,;_1) and (i}, a;).

However, such an approximation is only good if i; —i,_; is sufficiently large, say at least
= (log%)6 as in (£.2).

This naturally leads to the decomposition of (iy, ..., i) into time blocks, where consecutive
- 1 i with distance less than K, are grouped into a single block. The constraint AS“’ triple)
in ensures that each time block consists of either a smgle ij, or two consecutive i;_q, ij,
leadlng to the definition of time blocks i in Definition [4.1] while A(HOtriple) is mapped to the

(no triple)
constraint .A introduced in ) for a sequence of time blocks. Given a sequence

of time blocks (?1, e |T) visited by the microscopic time-space renewal configuration, for
each time block i, = (i;,i;), we can identify the first mesoscopic box S,y (a;) visited by the



46 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

renewal configuration in the time interval 7.y (i;), as well as the last mesoscopic box S,y (a;)
visited by the renewal configuration in the time interval 7y (i;). This produces a space block
3, := (a;,a;) as in Definition .
Summarizing: we can rewrite the expansion for Z](\(,{f)(tp, ) in according to the
A (diff)
€;b,c

sequence of visited time-space blocks (Tl, ay), .-, (T;, a, ), where the diffusive constraint

- (diff
in (5.39)) is mapped to A;bﬁ) defined in (4.6]) for the sequence of space blocks. See Figure .

We are ready to define our last approximation ZJ(\?gE) (¢, 1): having rewritten the expansion

- 5.40)) for Z dlﬂ (i, 1) in terms of the visited time-space blocks (Il, al), ... (Tr, a,), we replace
each random walk‘ transition kernel connecting two consecutive time-space blocks by a heat
kernel depending only on the mesoscopic variables (T, a.). More precisely, given (f;_1,y;_1) €
B.n(i5_1,2;_1) and (dj,z;) € B.x(i;, a;), we make within the replacement

32X
2 /
0y Yi-1585) > w916 y(@5 —25-), (5.58)
where the prefactor 2 is due to periodicity (note that i; — i;_l > K, by the constraint
Jtino tripte) from (4.4)). We similarly replace the “boundary kernels” in ([5.40)), namely
1
N
QO,N((p: ¢) s 5 g% (Soa w) ) (559)
2 Yo € SEN(bO) ;
) wo ——g1. (a,—bg) _ 5.60
2 (frsux) € By (g b))
, > —— - (ap.q —b f 5.61
a5, N Yk Trr1) N gé(é—lk)( k+1 — by) or Tpir € Son(apsy) (5.61)

tripl
where the constraint A(nomple) (which maps to A(no riple)

We thus define ZJ(\(;ga (¢, 1) as the expression obtained from (5 via the replacements ({5.58|)

and (5.59)-(5.61) (this description is useful to compare Z( g) (<,0 1) with Z]\?lf (p,1)).

An alternative, equivalent description of Z](Vg)(go, ) is through the following formula:

) ensures i; > K_ and L —i; > K_.

(log 1)?

c 1 1 3
2P (o) = sy (o) + % D 3 (2 o)

r=1

d (no triple) ’ 2
('17 'r) A UESsN(aO)mZeven
’ N (diff)
30737«+1€Z s(@150008 )€ -A‘
€,ao,a,r+1

x Hgé(iz—iiﬂ(al - 3271)95\3?@,5}) X (gé(i_;’r)(ar+1 EN Z Y (w >7 (5.62)

wESsN( T+1)0Zeven

where i, := 0 and @( )( a;) is the coarse-grained disorder variable deﬁned in , which

j>aj
collects the contrlbutlons in - 5.40) from a given visited time-space block ( ), and it arises
thanks to the factorisations induced by the replacements in (5.58) and 15 59) 15 61)).
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Remark 5.7 . Only the prefactor elN arising from the last replacement ((5.61) appears

explicitly in : all other factors of arising from (5 and (| - have been absorbed

in the coarse- gmmed disorder variable @g\(;gg)( ij,a;) followmg the replaced kernel q, see (4.11]).

Finally, to compare Z,/ (ce) > (¢, 1) with the coarse-grained model 27 (cg) (¢, LZJ|@ ) defined
in (4.8), we introduce the notatlon

A= (8 e) e (3 ee). 6o

2 2
UES&N (aé)) ﬁZeven U)ESSN (ar+1)ﬁZeven

which allows us to rewrite (5.62)) more compactly as

log 2

25 (pv) = %g% + 2 Z > 2
=1

ag,a r+1€Z Ty, )EAL

(317 -a ) A(dlﬂ) (564)

€58053r 41

(no triple)

ot (ap) x { [[g%(i,,i;_l)@l —ai-1) OKY (i, aﬁ)} 910y —a) v (@40

Compare this with 2, Cg)(go,1/1|@ Cg) in (4.8), the only difference is that ¢, and 1, in (4.8])

are now replaced by gpé and 1/)5

The main result of this subsection is the following L2 approximation, which completes
the proof of Theorem [4.7]

Lemma 5.8 (Coarse graining). Recall Z](\(,i,if)(go, V) from (5.62)), Cg)(g@,iﬂ@ Cg)) from

{4.8) and | -|g, from (3.52). There exists C € (0,0) such that for e > 0 small enough, we
have: for all ¢ with Hg0||é1 < o and ¥ € L*(R?),

. C 1 C
lmsup [[(2¥% (0. 0) = 232 )@ 072 < 1 Il Il (5.65)

N—o0 with Ne2N og <
lim 2D l0f) - 25 (0,02 = 0. (5.66)

N—o0 with Ne2N

Proof. We first prove (5.65)). To define Z](\(;gg)(go,z[)) from Z(dlﬂ)( , 1) in , we first

replaced the summation constraint 1 < k < (log ) in (5.40) (on the number of visited
mesoscopic time intervals) with the constraint 1 < r < (log1 )% in (on the number of
visited coarse-grained disorder variables), where each coarse-grained disorder variable can
visit either one or two mesoscopic time intervals. This amounts to adding some terms with
(log %)2 < k < 2(log %)2 in (5.40). The error from such additions is bounded as in ([5.34)
and agrees with the bound in (5.65)). We then replaced the random walk kernels by heat
kernels as in and —5.6] ). We will make these replacements sequentially and
control the error in each step, showing that it is bounded by the r.h.s. of .

First note that the replacement ([5.59) simply changes the first term in (5.40)), which is
a deterministic constant. Since the Lh.s. of (5.59) converges to the r.h.s. as N — 0, see

(3.26)), the L? cost of the replacement (5.59) vanishes as N — oo, which does not contribute
to the bound in ([5.65)).
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Next note that thanks to the diffusive constraint Aadgﬁ gy, D (5.40)), which maps to
— (diff
Salf) ;TH in (5.62)), the replacements in (5.58)) and (|5.60D—(]5.61|) are all of the form

2
qs,t(xvy) > Ewg%(,]_,)(b — 3)

for some (s,z) € B.y(i,a) and (¢,y) € B.x(j, b), with (t — 8,y — ) € Loven, j — 1= K., and
|b—al < M, \/j — i (recall from . that M, = log log ). We can then apply the local limit
theorem and refine the bounds in Lemma E 3.2| as follows

M4
1 —CC4 o) €
qs(2,y) = 29%9(3/ — ) exp {O(t—s) + O(%)} = 2gt_?s(y —x)e (aKeN)
2 eNges(y —x) o M
= 2 g I(b_a).2—eo(aK6N)
eN gi-i(b—a)
2
4
_ ig-,-(b—a)eo(d]\égfv) eN( - i) exp{ _ly—af , b—af }
eN7'T t—s t—s j—i )
where since |(t —s) —eN(j—i)| <eN and |(y — x) — VeN(b —a)| < v/2eN we can bound
eN(—1i) 1 ly—=°  [b—al’ M
R A 1 ), _ . , — (75) ,
t—s +O(K6> t—s * J— 0 VK-
so that for some ¢ > 0, uniformly in € > 0 small enough and N large, we have
o~ CMe/\/ K. < qs,t(,y) < oCMe/\/Ke (5.67)

vgi(b—2)
Namely, every time we replace a random walk kernel by the corresponding heat kernel, we

introduce an error factor of eXMe/VKe,

We ﬁrst estimate the cost of the bulk replacements (5.61)). Consider each term in the
sum in , which we abbreviate by Z; for simplicity, where ¢ gathers the indices k and
ij,a;,bj, (d],x]) (fj>y;) for 1 < j < k (excluding by, yy and aj 1, 2j41). Note that within
1

each term Z;, we replace at most (log 5)2 random walk kernels, which amounts to replacing

Z; by v;Z; with e c(log )" Me/v/K ¢ <y, c(log )" Mc/y K< We then have
4 M2 C

E[(vi2; — 2] = (v, —1)’E[2]] < C (log 1) E[2]] <

E[Z?], 5.68
K. ClZi 10gé[z] (5.68)

since M, = log log% and K. = (log é)ﬁ by (4.2)). Since the terms Z; in the sum in (5.40)) are
mutually orthogonal, we can sum the bound above over ¢ and we see that the contribution of
the bulk replacements to (5.65) is at most

C diff C
- limsup Var(Z90(p,4)) < —vl% el (5.69)
log = N—oo with Ne2N log <

where the last bound follows from (5.23]). This agrees with (5.65]).
We next consider the boundary replacements ([5.59) and (5.61)). Replacing the leftmost
random walk kernel qo s (yo, x1) in (5.40) by the corresponding heat kernel introduces an

error factor ¢ Me/VE < Vyoo(dyy) S eteMe/y KE, see (5.67), which affects the L? norm
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2 MZ 2 . : .
by {22, e~ (%0) Vo, (dy.e) — D} < C e {2y, 9N (W) [}™ (no disorder variable is attached
to yo). Thus, as in (5.69)), the left boundary replacement contributes to (5.65) at most by

M? I V(20 . ¢ 2 2
im sup ar(Zy (el v) < — s vllels,
K. N0 with Ne2N (log 1)

which is a stronger bound than (5.65)). The right boundary replacement ([5.61)) is controlled
in a similar fashion, which completes the proof of (|5.65)).

Lastly, we prove ([5.66)). As noted before, the only difference between Z](\fg;)(ga,w) and
Qi:(cg)(tp,zb@g\‘;ga)) is that ¢, 1, in (4.8) are replaced by LpgN),@/JéN) in (5.64). For a € 72,
ep.(a) is the integral of ¢ over the square S.(a) = (v/ca — (1/€,4/€), v/ca], by the definition
of ¢, in (4.7)). On the other hand, by the definition of gogN) in (5.63)) and ¢ in (3.9), 54,0[(_:N)
. . . . 2 1
is the integral of ¢ over the reg10n~85(a) = UvESE(a)m(ngen/\/ﬁ) {reR”: |z —v; < W}
The difference between S.(a) and S.(a) is contained in a shell of thickness 1/+/N around
the boundary of S_(a). Therefore, if ¢ : R? — R is locally integrable, then cpéN) converges
pointwise to . as functions on ZQ, while if v : R? - R s also bounded, then @béN) converges
uniformly to .. If ¢ has bounded support, then (5.66) is easily seen to hold since we already
have control over Var(Z](\?gE)(go, 1)) that is uniform in N. General ¢ can then be handled by
truncating its support. This concludes the proof of Lemma [5.8| O

Combining Lemmas and [5.8| then gives Theorem

5.4. A SECOND MOMENT BOUND FOR THE COARSE-GRAINED MODEL. In this
subsection, we prove a second moment bound for the coarse-grained model, which is loosely
speaking the analogue of Lemma [3.5] This is needed when we bound the fourth moment of
the coarse-grained model in Section [§]

- ipl
First we introduce some notation. Let us define the following variants of Ainomp © and
- (diff
AE:; L’c) (see (4.4) and (4.6])), without dependence on the boundary conditions:
= (no tripl - N 5
.Ai. i {time blocks iy < ... <, suchthat [i;| <K, Vj=1,...,7
o (5.70)
and dist(i,_,,1;) > K. Vj=2,...,r }
- (diff) 5 o o - .
A. = {space blocks aj,...,a, suchthat |3;] < M/[i;] Vji=1,...,r,
(5.71)

dist(3;_1,3;) < M. y/dist(i;_y,0;) Vj=2,...r } .

Recall the definition (3.40)-(3.41)) of U(n —m, z —y). We introduce an analogous quantity
for the coarse-grained model defined in (.8 (illustrated in Figure [2)). Given n € Ny and
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x € Z*, we define a coarse-grained analogue of X, (z,y) in (3.29):
o\ ((0,n), (0,x)) ifn<K.,

(log 1)*

%]\(,ff)(n,x) =9 Z Z Z ®§\Cfgg)('1a51) (5.72)
a)e

r=2 ('17 77‘)€A<n0triple (_‘17 -5 A(dlﬂ)

i1 =0, | =n a;=0, a =X if n = KE’
(cg) (v =
- Hg%(ij—i}_l)(aj —aj_q) 9Nge('waz)
and define
TN (n,x) = E[(22 (n,%))?] (5.73)
N,e \'D T ’ '

We prove the following analogue of Lemma (with an extra sum in the time index).

Lemma 5.9. For every c € (0,00), there exist C = C(c) € (0,00) and Ay = Ao(c) € (0,0)
such that: there exists e > 0 such that for all € € (0,q) and X € (Ag, 00), we have

2/e
lim sup Z e Z cVEl U(Cg)(n x) < ¢ . (5.74)

N—o n=0

XEZ

Proof. The basic strategy is to first undo the replacement of the random walk kernels by
heat kernels in the definition of the coarse-grained model Z(Cg)( ,1) in Section We
then undo the summation constraints imposed in Sections [5 and [.2] which allows us to
bound U g)( x), the second moment of 27 (c g)(n, x), in terms of the second moment of the
original partition function, so that Lemma can be applied. The details are as follows.
Let us recall how the coarse-grained model Z(Cg)(cp ¥) in was defined from

Z (dlﬁ)( ©, 1) in - by replacing the random walk kernels with heat kernels in the chaos
expansmn (see (15.58]), - - It was shown in the proof of Lemma [5.8] m, in particular,
in and 1-) that the aggregate effect of such replacements is to change the second
moment by a factor that is bounded between 1 —C'/ log% and 1+ C/log % We can therefore
undo these replacements, which only changes the second moment by a factor that is bounded
between 1 — C’/log? and 1+ C’'/log L (< 2 for € small). More precisely, define

0¢]

XNE n,x) ::lN Z Z ~N(ny, 2 anj 1, \Zj—1) ])fN( j’zj)v

ni<..<n,

21 5ee0y2p € z?

(nlvzl)eBeN(Ozo)v (n'rvzr)eBeN(an)

which is obtained by reversing the replacements of the random walk transition kernels by
heat kernels in the definition of % ]\(,Cf)(n,x) in (5.72), plugging in the chaos expansion for
the coarse-grained disorder variables @g\(}ga) from (4.11), (4.10) and (4.9)), and then relaxing
the constraints on the time-space summation indices. The pre-factor 2/e N comes from the
first @g\c[g;) in (5.72)) and is a normalising factor in its definition in (4.11)). Since relaxing the

summation constraint only increases the second moment because the terms of the chaos
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expansion are L? orthogonal, we have that for ¢ sufficiently small and all N large,

UNE (%) = B[22 (n,))°] < 2E[(Xy .(n,%))’]
8 — .
:? Un(n—m,z—y), (5.75)
(EN)™ (.)€ (0.0)- (n.a)eBr (09
where we have used the definition of Uy (n — m,z — y) from (3.40)-(3.41)). Substituting this
bound into the Lh.s. of (5.74]) then gives

2/e .
D e Y VTR (%)
n=0 xeZ?
8 2/e
< 3 Z Z ~Aen Z eSVEl Z Uy(n—m,z—vy).
EN) By n=0 ez B0
We now observe that for (m,y) € B.x(0,0) and (n,x) € B.y(n,x) e [n—1,n+1]

and % [Ix| = v/2, x| + /2], hence en = 2 + O(e) and y/2|x| = £2 7 +O(y%). Recalling
that |B.y(0,0)| = O((eN)?), the change of variables (n — m,z — y) = (l, z) then yields

2/e
2|
lim sup 2 e —Jen Z cVel| U(Cg)(n x) < C limsup Ze Z e VN Un(l,2)
N—0 n=0 XEZ N— 1=0 ZEZQ

— L1 l
< Climsup e (A—ce )WU l C'lim sup e (A—ce )N—G —
s Z w0 < Climsu Z v

C
logS\’

3 5\ 2 \% N 3 A
_ Cf OIS (5)ds < Cf X 3G (s)ds + cf e 3G, (s)ds <
0 0 L
VA
where we apphed Lemma and in the second and third inequalities, then we chose
A= 2 = )\0 and apphed in the last line. This concludes the proof of Lemma O

6. HIGHER MOMENT BOUNDS FOR AVERAGED PARTITION FUNCTIONS

In thls section, we bound higher moments of the averaged partition function z8 (@, 1)
(see (3.8) and ( - in the critical window as specified in Theorem |1.1] H and ( - -
As noted in Section [I.5] and the discussion therein on Schrodinger operators with point
interactions, these bounds are very delicate in the critical window. Unlike in the sub-critical
regime considered in [CSZ17bl [CSZ20], where the chaos expansion of Zf,(gp, 1) is supported
(up to a small L? error) on chaoses of finite order independent of N, for § = Sy in the
critical window, the expansion is supported on chaoses of order log IV, so hypercontractivity
can no longer be used to bound higher moments in terms of the second moment. Instead,
the expansion has to be controlled with much greater care. Bounds on the third moment
were first obtained in [CSZ19b]. Bounds on higher moments of the averaged solution of the
mollified stochastic heat equation (continuum analogues of Z}%(g@, V), for p, 1) € L% were
then obtained in [GQT21] using techniques from the study of Schrédinger operator with
point interactions (also called Delta-Bose gas) [DET94., [DR04|. The recent work [Che2]]
studied the semigroup associated with the Schrodinger operator and allowed ¢ to be delta
functions.
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Our goal is to develop similar moment bounds as in [GQT21] for the averaged polymer
partition function Zﬁ,(gp, ). The approach of [GQT21I] used explicit Fourier calculations and
the underlying space-time white noise, which cannot be easily adapted to lattice models with
general disorder. We develop an alternative approach, where the key ingredient is a functional
inequality for the Green’s function of multiple random walks on 72 (see Lemma . This
leads to Theorem [6.1], which is the main result of this section, where instead of working with
Y E L? asin [GQT21], we will work with weighted LP~L? spaces with }3 + % = 1, which
allows (y) =1 and p(z) = 871]1‘1.|<\/E to be an approximate delta function on the scale
V€, and it also gives spatial decay if the support of ¢ and 1) are far apart. Our approach is
robust enough that it can be applied the coarse-grained disorder variables @g\(;i)
be seen as an averaged partition functions (see Lemma , and it can also be adapted to

, which can

the coarse-grained model ﬁ’;(;g) (¢, 1/1]@5\(}?2 ), as we will show in Theorem

6.1. STATEMENT AND PROOF. Given a countable set T and a function f: T — R, we
use the standard notation

1/p
HszP=Hf|gP(T):=<Zf(2)|p> frpellon),  [fle sl (61

zeT

while we let [g], denote the usual L norm of g : R* — R. We will ignore parity issues,
since this only affects the bounds by a constant multiple: for a locally integrable function
P R? — R, we consider its discretization PN Z?> - R in (13.9) to be defined on the whole

z? (rather than just on ngen). Here is the main result of this section.

Theorem 6.1 (Higher moments). For N < N € N, let Zjﬁ\,ﬁ(go,z/)) = fo?l((p,z/}) be the
averaged partition function in , where B = 5 = By (V) satisfies for some ¥ € R.
Fiz p,q € (1,0) with % + % =1, an integer h = 3, and a weight function w : R? — (0, 0)
such that logw is Lipschitz continuous. Then there exist C,C" < 0o such that, uniformly in
large N < N € N and locally integrable o, 1) : R? - R, we have

B+ B h C 1 %) h h h
E[ (28 (0 0) —EIZF (0 0)]) || € ——— =5 | 22|, Iowlfe lwwts, |
los(1 ) AW (6.2)
¢ A > h .
< ———|Z| Il ozl
log(1+ &) "wlp

where oy, Yy, Wy : 7> > R are defined from p, ¥, w : R? - R by (3.9), we denote by
B < R? q ball on which Y is supported (possibly B = ]R2), and we set By := BV/N.

Theorem will be needed later in the proof of Lemma where we consider N = e N
with € € (0, 1); this is why we allow for g = B with N > N.

Remark 6.2. The second line of (6.2) follows from the first line by Riemann sum approzi-
yl

mation (note that w(x—\/%y) =(1+ O(\/—ﬁ)) w(ﬁ) by the Lipschitz continuity of logw).

Remark 6.3. Typically we will let w(zx) = efm, which allows ¥ = 1 provided ¢ decays
sufficiently fast at co. If 1 is bounded with compact support, (6.2)) also gives exponential
spatial decay as the support of ¥ moves to infinity. This answers the conjecture in |[GQT21],
Remark 1.2] in our lattice setting, which can be extended to their continuum setting.
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Remark 6.4. Similar to [GQT21], Theorem 1.1|, we can show that the moments in the l.h.s.
of (6.2) converge as N — 0. However, the limits are expressed as series of iterated integrals
and are not very informative, so we will not state them here.

Remark 6.5. In the bound ., we could first assign oy, Yy : Z? — R and then define
the corresponding o, : R* — R, e.g. by piecewise constant extension o(z) := o ([vNz])
and Y(y) == Yy ([VNz]), because Zﬁ(gp,w) depends on the functions ¢, : R* — R only
through their discretizations @y, Yy n , see .

In particular, we can apply the bound to the point-to-plane partition function Z]BVN (0)

defined in (1.3). More precisely, we can write Z/BN(O) = Z 72 ZﬁN(O y) =: ZBN(QO, 1)

with py(w) = Nlg,—gy and Yn(2) = 1(2) = 1, of. B-7) and (3-10), which correspond
1,,

to p(z) := on([VNz]) = N]l{\ml\Jr\xQ\sl/\/N} and ¥(y) = 1. Note that |¢], = O(N" 7).

Then, applying (6.2) with w(x) = eIl implies that for any integer h = 3 and for any p > 1,
there exists Cy, , < o0 such that for all N € N,

E[(230) [z 0])']] = [E[@r©0 - "] < ¢un" P 63

Since we can take any p > 1, this shows that centered moments of any order h = 3 of the
point-to-plane partition function Z]%N (0) diverge as N — oo more slowly than any polynomial.

Proof of Theorem [6.1l Our starting point is the polynomial chaos expansion of Zf/(’ (p,v)

as in (3.19)), which gives

M}@@"Vh ~ B[ (23 (0.v) ~ E[237 (0. 0)]) | (6.4)
[(Z Z QOnl v, 21)&(ny, 21) {anj L (Zio1, 2 ])f(nj,z])}quVj’N(Zj’w)y],
zl, Zp ez?

O<nq<...<n,. <N

where {(n, z) = {5 (n, 2) is as defined in (3.14) with By therein replaced by 35 (¥) so that

Var(§) = 012\7. We will expand the h-fold product above, which gives a sum over h microscopic
; i

. zf,z), 1 < i < h. Given these h renewals, each lattice

point (m, z) will contribute a factor of E[¢(m, z)¥], where # is the number of times (m, z)
appears among the h time-space renewals. Recall £ and o from (3.14)) and (3.11)), we have

E[¢(m,z)] = 0, E[¢(m,z)*] = 0% ~ 10;\7 E[¢(m,2)"]| < Coly forl1=3. (6.5)

time-space renewals (ny, z1),...,(n

Therefore a given configuration of h time-space renewals will give a non-zero contribution to
the expansion in if each (m,x) is visited by none or by at least two of the h renewals.
We will rewrite the expansion by first summing over all possible choices of the set of time
coordinates U?zl{nll, e nfnl}, then for each time n in this set, sum over the locations x € 72

such that (n, ) is visited by (at least two) of the h renewals (ni,z1),...,(n,, z,,), and
lastly, determine which of the h renewals visits (n,x). Note that in the expansion (6.4), for
each of the h renewal sequences that visits (n, z), there is a random walk transition kernel ¢
entering (n,z) and another one exiting (n, z), while for each renewal that does not visit the
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time plane {(n,y) : y € Z*}, there is a transition kernel Qap(, 2) With @ < n < b, for which

we will use Chapman-Kolmogorov to rewrite it as g, ,(z, z) = Zy522 Qan (T, Y)qn b (Y, z)ﬂ
To expand the centred moment M?’ 1zpv,h in (6.4) as described above, we first introduce

some notation. Given h > 2, let I - {1, ..., h} denote a partition I = I(1) u--- 1 I(m) of

{1, ..., h} into disjoint subsets I(1), ..., I(m) with cardinality |I| = m. Write k L1ifkand |
belong to the same partition element of I. The interpretation is that, for a given time n, we

have k < [ if the k-th and I-th time-space renewals visit the same time-space point (n,z) for
some x € ZQ, which leads to a power of the disorder variable {(n,x). Given I + {1,...,h},

denote '
E¢1= J]  EEVN (6.6)
1<G<| I (5) =2

For = € (Z*)", we denote

z~1 ifa,=a, Yk Ll (6.7)
For x,x € (Z2)h, denote the h-component random walk transition probabilities by
h h
Quz,2) = [ [a(@ — ), Q (o, qu 0,7:), QF (2,0) = [ [ aon(zi ), (6.8)
i=1 i=1
where qé\’[t(gp, x;) and qé\;(mi, 1) are defined in (3.16)—(3.17)), and for I, J + {1,..., h}, denote
(@, &) = Ligs gy Qule, ). (6.9)

We can then write

1 &
M]ff;ﬁf h - h Z Z nyl (Qpayl)]l{y1~ll}E[€Il]

1<ng<--<n,.<n, ;=N
117"'717"}_{17"'7}7/}7mi::|[i|<h‘

2\h
Y1, Y,E(Z )L

Hin —I;LZ 1 Yi— 17yi)E[§Ii] x ]l{yT~IT}QnNT+1—nT<yraw)‘

(6.10)

First note that we can bound \M‘P’di | from above by replacing E[EIZ] @ and @ with

their absolute values. To simplify notatlon we assume from now on E[§ ‘], ¢ and ® are all
non-negative.

Next, we bound ¢ by [¢|,1g, where B is the ball of radius ¢ € [1, 0] containing the
support of ). We then note that, uniformly in 1 <n, < N <n,,; < 2N and y,, we can
find C' > 0 such that

QN -, Wy [V 1p) < C QY o (s [¢]15). (6.11)

Recalling the definition of qé\j +(y, |¥]lo1p) from (3.17)), this bound follows readily from the

observation that, given that a random walk starting from y reaches vV N B at time N — n,
the probability of being inside v N B at time n,,; —n, € [0,2N] is uniformly bounded away

This is the key difference between the expansions in [CSZ19b] and [GQT2I]. This decomposition was
used in [GQT21], which allows a functional analytic interpretation of the iterated sums and helps bypass the
combinatorial complexity encountered in [CSZ19b|, which the authors could control for the third moment
but seemed intractable for higher moments.



THE CRITICAL 2D STOCHASTIC HEAT FLOW 55

(0,21)

(0,29

(0, 23)

A
(Ogﬁea/é /

FIGURE 3. An illustration of the expansion for the fourth moment in .
Solid dots are assigned weight E[¢ #] with # being the number of renewal
sequences visiting the lattice site, while circles are assigned weight 1 and
arise from the Chapman- Kolmogorov decomposition of q,;(z,y) at an
intermediate time. Curly lines between sites (a, z), (b,y) (together with the
solid dots at both ends) represent Ug (b — a,y —y) as in (6.14)) and (3.41)),
while solid lines between sites (either solid dots or circles) (a,z), (b,y) are
assigned weight g, ;(z,y). As an illustration of the expansion in , we
see the sequence of operators prh = Q*’Il UII7 phul Qll’l2 UIQ7 plals —
Q'2fs plads = Qlsls plats — Qlels with |I)| = 3, |I| = 3, |15 = 2,|1,] =
17 ’15| =3

from Om Therefore we can sum the r.h.s. of (6.10)) over N < n,,; < 2N and then divide by
N to get

X)) CHd}HQo - N I
’MNNh’ < h+1 Z in (907y1)]1{y1~11}E[‘5 ]
N r=1 1<n;<-<n,.<n,;1<2N
I, L.H{1,...,h}, m;:=|I;|<h
e @) (6.12)
i1 I N
x HQn —1nl 1 yz 1’yz)E[€ ] x ]l{yT~IT}QnT+1fnr(yrv]lB)'
We first single out consecutive appearances of the same I among I, ..., I, with |I| = h—1

(that is, I consists of all singletons except for a pair {k,l}). Given I  {1,...,h} with
[I| =h—1,for 1 <s; <sy <N and zy,29 € (ZQ)h, define
0
I 2
U327517N(zlaz2) = ]l{zl,z2~l} Z E[§ ]7" Z HQn —n;_,q yz 1ayz) (613)
r=1 Nng:=81<nN;<-<N,:=S9 =1
y,6(2°)" yyi=21,y,1=2,

(recall that the moments of £ depend on N, see (6.5))) and define Ué’N(zl, z9) =1, _oopy
If {k,1} is the unique partition element of I with cardinality two, then we can write
I
U, s, (21, 22) = Ug(s2 — 51,29 — Z11) H Usy—s, (22, — 21,4, (6.14)
ie{L RN {k,0)

For 3N/2 < n,.; < 2N, the inequality (6.11) holds for much more general B than balls of radius ¢ > 1,
and Theorem can be extended accordingly. But we use balls for simplicity.
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where Uy (n,z) was defined in (3.31)) (with o3 therein replaced by 0]2\7). In (6.12), we can
then contract the consecutive appearances of I; = I, 1 = ---I; = I with [I| = h —1 into a

single kernel U/ (-, ), so that each I; with |I;] = h — 1 does not appear twice in a row in the
summation in ((6.12)).
With a slight overload of notation in order to avoid extra symbols, for A > 0 we set

2N
Qv 2) ==Y e " Qn’(y, 2), y,z e (2",
=l (6.15)
J 2\h
U .5 (¥, 2) Ze Mol sy z), oy, ze (2D
for partitions I, J - {1,...,h}, and we finally define, with operator notation,
1,J .
’ if |J|<h—1,
pld . ) AN (6.16)

AN Qyn Uiy iflJ[=h—1.

To lighten notation, we will often omit the dependence of these operators on N, N.

The introduction of the parameter A, especially the choice A = 5\/N we will take later,
will be crucial in decoupling the sum over ny,ny —nqy,..., 7., —n, = N — nr in (6.10]).
Together with the replacement of n,.,; = N by averaging ”r+1 over [N,2N] in , this
allows us to take Laplace transform and bound the r.h.s. of (| in terms of the operators
defined in Furthermore by taking A large, we can extract a logarithmic decay
in A from )\ N See . These ideas were used in [GQT21] in a continuum eettlng

To proceed with estimates along these lines, we first obtain an upper bound on

. . 20N, A (ni—ni_y) -
by inserting the factor e Mimi-1) > 1 for A > 0 to be determined later, and
enlarging the range of summatlon for each n; — n;_; to [1,2N]. Denoting by I = = the
partition consisting of singletons (namely, I = {1} u {2} --- 1 {h}), we can then rewrite the

sum in 1) and obtain the bound

2)\N T

g5l = S S S et el g [Tee ), 0
r=11I4,...,1I i=1

where the sum is over r partltlons Ii,---,I. + {1,--- , h} such that |I;|] < h —1 for all

1 < i < r and there is no consecutive I;_; = I; with |I;| = h — 1; we also applied the

definition of qé\fn(rp, z) and qéYn(z,w) from (3.16)—(B.17), we set By := V/NB and, given

f:7* >R, for y e (Z*)" we define & (y) := H?:l f(y;)-

Our bounds will be in terms of the norms of operators acting on the function space
¢1((Z*™) for some ¢ > 1. To allow for 1) = ]l%];, in (6.17), it is necessary to introduce spatial
weights, which incidentally will also give bounds on the spatial decay if 1 has compact
support and we shift its support toward co. More precisely, for a function w : R? - (0, 00)

such that logw is Lipschitz, we define its discretized version wy : 7 >R by (3.9) and we
introduce the weighted operators

AlLJ w%h(y) I,J
Q)\7N(y7z) = %R )\,N(yaz)a
wy (%)
(6.18)
(7 w%h(y) J
U)\,N,N(y7z) = UA}N’N(yaZ)a
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with Pi N defined from Q and U as in (6.16]). Given a partition I - {1,...,h}, denote

(ZH = {x e ()" x ~ 1}, (6.19)

which is just a copy of (Zz)”| embedded in (Z%)". Due to the delta function constraints in
its definition (]l{w~l wa} in ), we will regard Qﬁ"]]\,(m i') as an opemtor mapping from
q((72\h q

“(ZAHY) to (1((Z*) for some q > 1, and similarly for U,\NN and P /\NN

with % + % = 1, by Holder’s inequality, we can then rewrite the bound (| - as

For p,g > 1

)\N r
‘Msﬁﬂé ‘ < HTZJHOO Z Z <SON P* v PI1,12 .. Pﬁ\r—lvlr Qirv* 'ﬂ%]’?]w%h> HE[&I]

NNRS TR W
r=11y,..,1
W)k & prh 511
Nthl 2 Z ‘ o |TA e (6.20)

T
Blr—1.1r AL % ®h  ®h I
.HP’\ o |8 g [T BNN E‘ZHEK J

1=

where | - (g is defined in (6.1]), and given an operator A : (9(T) — ¢4(T"), we set

1A gl o
[Allga_yr = sup —— 2 = sup (. AD. (6.21)
g0 lglemy  1s1p <190y <1

In our case P/\ QYT (2P - ((ZH)]) (note that for T = * we have (Z%)] = (Z*)").

We will choose A := )\/N with X large but fixed so that ™ remains bounded. We will
show the following.

Proposition 6.6. Fizp,q > 1 with 5T l =1, an integer h = 2 and A\ > 0. Then there exz'sts

C=0Cponi <O such that, umformly for partitions I, J = {1,...,h} with 1 < |I|,|J]| <

and I # J when ]I|—\J\—h—l,forlargeN\NeNand)\—— we have

AT .
‘Q)\,N g0 < ¢ (6.22)
AL G AL 7.
‘ e <eNT k] e (6.23)
furthermore, for |I| = h —1, HU oo < (S\CJN;,)2 (6.24)

Recall by (6.5) that [E[¢"]] = O'N if |I\ = h —1, while |E[ i <c a?;, = ((logN)_%)
if |I;| < h — 1. Then, by the definition of P analogous to , Proposition implies that
in (6.20]), for each 2 < i < r, we have for N sufficiently large

2 "
C C

< Ugrjen-1v——= + Ly j<n—1 cdo? < —=
a {113 }(log)\ ) {l1;|<h—1} N Jog A

A

[Py

I

AR

|z
2=z
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Wh?re for |I;| = h — 1 with Igf\"_l’ = /\l 1k Uw we used the fact that HQ i—fi Gﬁf [[p2_,p0 <
ANli—1.1; Nl .
QY™ [l gy U3 ga_,pa. Similarly,
cl
NG <{f|hl} N
log )\N log )\%
Substituting these bounds into (6.20)), bounding the number of choices for each I; - {1, ..., h}

by a suitable constant ¢, choosing A large such that Ch% < %, and using the fact that

|I],]1,] < h —1, we then obtain that, for all N sufficiently large,

1
*,1; &

A

N
Q|

E[¢"]|P

L + L <n- 1}CUN> <

25\ 0 "
Ce® v, ‘ ‘hC _\"
< ot ll 3 (240)
| Nh’ h it ,; log)\%
(ZCcchc
—T R H Ng, (6.25)
"~ N log e
C
<—n¢|\ \ " s, s,
N"log(1 + ) * i

where the last inequality holds for A > 2. This concludes the proof of Theorem O

6.2. FUNCTIONAL INEQUALITIES. It only remains to prove the bounds in Proposi-
tion The key ingredient is a Hardy-Littlewood-Sobolev type inequality. First we need
the following bound on the Green’s function of a random walk on (Z*)"

Lemma 6.7. Given N € N, A = 0, an integer h = 2 and x,y € (Z2)h, denote Q y(x,y) =
2721]11 e~ H?Zl qn(y; — x;). Then for some C € (0,0) uniformly in A\, N and x,y,

c h
il a:\Q)h_l for all x,y € (Z2) ,
T,Y) < 6.26
QN (T, Y) O sl (6.26)
We CN for |w—y|>\/ﬁ.

Proof. We may assume A = 0. Note that H?Zl q,,(+) is the transition kernel of a random

walk on Z*". By the local central limit theorem [LaLil0, Theorem 2.3.11] and a Gaussian
concentration bound, we have

h Cl 702 \y—:c\2
H%(yz’ —x;) < € "
i=1 n

for some Cy,Cy € (0,00) uniformly in n € N and @, y € (Z*)". We then have

2N 2
_h —C,ly==l" . 1 _h 70 \z K
Q)\(m,y)<01 Zn e 2 n <Clm1n{2, ]Vh_lL t 27t dt s

n=1

where we used a Riemann sum approximation and we set zy := (y —«)/v'N. When z = 0,
we just use the constant upper bound Q) y(z,y) < 2C;. When zy # 0, we write

Cy (% —n ol Cy * h—2 7
Q\n(z,y) < — f t e 2Tt dt = — J T e dr,
’ Nt o (CoN|zy )" Jicylzn?
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where N|zy|* = |y —x|*, while the integral is bounded uniformly in zy and can be bounded
2
by C'3efc4|zN| when |z x| = 1. The bound (6.26]) then follows. O

The following crucial lemma proves a Hardy-Littlewood-Sobolev type inequality. This
generalizes an inequality of Dell’Antonio-Figari-Teta in [DFT94] (see Lemma 3.1 and
inequalities (3.1) and (3.5) therein) which played an important role in [GQT21] for moment
bounds with L? test functions and initial conditions.

Lemma 6.8. Fiz p,q > 1 with % + % = 1 and an integer h = 2. Consider partitions
LJbEA{1,... k) with1 < |I|,|J| <h—1, and I # J if |I| = |J| = h— 1. Recall (Z*)" from
(6.19) and the associated function space Ep((ZQ)}}), Let f € Ep((Z2)?) and g € Eq((Z2)§),
Then there exists C' = C,, , , < 0, independent of f and g, such that

3 f(®)g(y)

h NG
xe(Z%)  ye(z?)) (1+ 20 |2 —wl)

=5 <C[flelgle (6.27)

In [DET94], an analogue of was proved in the continuum for the special case p = g = 2
(i.e., L? test functions) and |I| = |.J| = h — 1 with I # J. They presented their inequality
in Fourier space, but in the L? case, it is equivalent to by the Plancherel theorem.
Here we work on the lattice, which requires us to also consider partitions with |I| < h—1 or
|J| < h— 1, which cases are not present in the continuum. We also consider test functions in
general /7-¢? spaces (our proof steps can also be carried out in the continuum to extend the
inequality of [DFT94] to LP-L? spaces). Instead of working in Fourier space as in [DET94],
we will work directly in real space, which allows the extensions mentioned above.

Remark 6.9. The inequality (6.27) is not expected to hold for |I| = |J| =h—1 with I = J,
because it is exactly the borderline case of the Hardy-Littlewood-Sobolev inequality when it
fails, see |[LiLoO1, Theorem 4.3|.

Proof of Lemma [6.8l We first consider the case |I| = |J| = h—1, and I # J. Then I and
J each contains a partition element with cardinality 2, say {k, !} and {m,n} respectively,
and {k,1} # {m,n}. In particular, z;, = 2; and y,, = y,, for © € (Z*)},y € (Z*)".

Fix any 0 < a < ——. We then apply Holder to bound the left hand side of by

pvaq’

1
( > f(@)” .<1+¢xms—xnﬁﬁp) ”
seztaezys (L Simylzi—wil)"™ (O g — ™)

)5

x( 3 9(y)’ ,ﬂ+M—wWVY@

h 2\h—1 2
we(2”)] e(Z)} (1425 |2 — il (L |2 — 20 ™)

(6.28)

We now bound the first factor in (6.28). Note that since y,, = y,, by the triangle
inequality,

2 2
‘xm B xn‘ + |xn — yn|

3

2 2
‘xm - ym‘ + ‘xn - yn’ = (629)
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Substituting this inequality into Z?:l lx; — yi|2 then bounds the first factor in (6.28) by

1 1/p
Zf 1—|-|:L‘ _$n| )Z — a > !
( 7 (L4 2 — 2+ S |7 — 5D A+ [y — )"
(6.30)

Note that for r > 1 we can bound ZyEZ ﬁ << uniformly for s = 0 and z € 72
s+|y—x s

We can then successively sum over the variables y; with j # k,[: there are |J| — 2 such

variables y; and they are all present in the sum Z#m |y; — $¢|2 (recall that we sum over

RS (Zz)(}}7 hence y,, = vy, is a single variable), hence we get

1

Z 2 2\ h—1 2

e (@) (L |2 = 2"+ D i — 2l 7)" (U Jye — 0™
1
<C)> :
2 2 2\ h+1-|J 2
i (1 Lo = 2l + g = 2l + g — )"+ g —
Note that x;, = x;. Via the change of variables 4; = y;, — y; and gy = y, + y; — 23, and the

observation that |y, — z1|* + [y, — 2,)° = (7 + 75)/2, we can bound the above sum by

1
¢ Z ~Z)h—&-l |J\(

Y1592 (1 + |xm - xn| + yl + Yo

_ 2
L+ |g]™)P

1 C
CZ <
2\ h—|J - 2(h—1—|J 2ap’

(1+ @ — 2>+ 7))+ [P 1+ |z, — PO F2

where the last inequality is obtained by summing separately over |§;| < |z,, — z,,| and
91| > |x,, — 2, |, plus the assumption that ap < 1. Substituting this bound into , since
we assume |J| = h — 1, we obtain that the first factor in is bounded by C||f]|». The
second factor in can similarly be bounded by C|g|,. This concludes the proof of
(6.27), and hence also (6.22), for the case [I| = |[J| =h—1and I # J.

We can adapt the proof to the case min{|I|,|J|} < h — 1 as follows. If |I|,|J| < h — 1,

. . 1 — ¢ . . .
then there is no need to introduce the factor % and its reciprocal in (6.28]) because
Ye—Y

1 p—
ve@) vy, o) If I <h—1and [J] = h —1, then we

can still find k,[ in the same partition element of I, but not the same partition element of
2a
J. We should then replace the factor % and its reciprocal in (6.28]) by N

. ) +lyk—ul
The rest of the proof is essentially the same.

we already have )

1
T
k=™

6.3. PROOF OF PROPOSITION [6.6] We now prove (6.22)—(6.24).
Proof of (6.22). Note that (6.22)) is equivalent to showing (recall (6.18]))

’U)®h xTr
Y @ @) D ) < flp ol (6.31)

®
we(2?)) e ()] Wy (y)

uniformly for all f € (/((Z*)%) and g € ¢4((Z*)"%). To control the effect of the weight w",
we split the summation into the regions

Ay ={(z,y): |z —y| < Co\/ﬁ}
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and A% for some Cj to be chosen later. Note that log w(\/yﬁ) log w(f) = O(lfﬁyl)

because log w is assumed to be Lipschitz. Since wpy : Z® — R is obtained from w : R* - R

by (3.9)), we have for all x,y € (Zz)h

< LClyl/VN (6.32)

which is bounded by e““oin A ~- Therefore, the contribution of this region to the lLh.s. of
(6.31)) is controlled by the following uniform bound, that we prove below:

> @y y) o) <cilfle lgle- (6.33)

In the region A%, since Q X N < Q) n (recall . . we can apply Lemma to bound

®Xh
w C z—y|? z— C z—
N E ;Q)\ Nz, y) < N exp{ _ 1 011\17‘ + C‘\/Nm} < N exp{ — |\/Ny|}’ (6.34)

where the last inequality holds for |& — y| > Cyv/N with C, := C(C + 1). Thus

Y @) @) o ) g)

®
(x 7y)€AN WN (y)

_ ==yl
< ]\fhlmz’?;f(m)e N g(y)

(6.35)
C _lz—yIN1/p _le—yl\1/q
< W( Z |f(z)[e W) ( Z l9(y)|?e W)
we(2”)1 we(2")] we(2”)].ye(2")]
1, 1]
B —(h1
< ON P e gl e,
where the prefactor is bounded if ||, |J| < h — 1. Combined with (6.33)), this implies (6.31)).
It only remains to prove ((6.33)), which follows from Lemmas and [6.8] above. O

Proof of (6.23). It suffices to show that for p,q > 1 with }D + % =1landfor [I|<h-—1

w®h xIr 1
S @) Q) gh( ) 4(y) < eNF | £l gl (6.36)
W ("J)

2\h 2\h
xe(Z7)1,ye(Z7)

uniformly in f € 7((Z*)}) and g € £7((Z*)"), which proves the second relation in (6.23); the
first relation follows by interchanging f and g. (We recall that J = % denotes the partition
of {1,...,h} consisting of h singletons, i.e. J = {1},{2},...,{h}.)

The proof is similar to that of . When the sum in is restricted to A% with
Ay = {(z,y): | — y| < Cyv/N}, the same bound in (6.34)-(6.35) holds, which gives an
upper bound of

I (p— 1
CNv i DIflelglys = CN lglles < CNZ|f]e]g]e - (6.37)
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It only remains to bound the sum in (6.36]) restricted to Ay and show the following

analogue of (6.27):

f(x)g(y) - 1
2 - <CN7|f] ]9 - (6.38)
xe@)  ye@Hh (1 + Z?:l |xz - yi’2)h ' ‘ ‘
|z7y|<00\/ﬁ

W.l.o.g., we may assume that 1 and 2 belong to the same partition element of I, so that
1 = T9. By Holder’s inequality, we can bound the Lh.s. by

2 j2
P loo (1 4+ —SN VYo 3
( f@os (1 + 5, ) )
h 2\ h—1
we@®)  ye@®)t (1 + Zi:l |z; — i )

lz—y|<Cyv N

(6.39)

=

9(y)*

X
h 2\h—1 C4N
( vety eyt (14 2o = il")" log (14 7-07—)
\z—y\SCO\/ﬁ ! 2

In the second factor, since x; = x4, we can bound |y — y2]2 + |z — y1|2 > M
as in to replace |zy — y2\2 by |y — y2]2 inside 2?21 |z, — y;|%. By the same argument
as that following (6.30), we can sum out the variables x; for i > 3. Since there are |I| — 1
such variables in (Z%)}, for |I| < h —1 we get

1

9 2\ h—1 CiN
ze(22)" (T+lyr — 9ol + Diveo [T —yil7)" log (1 + m) 6.10)
6.40
< D) = s < C.
log (1+—<2 ) T (+y =gl + 2 —unl)
1+]y1 —yol 1

|z =y |ISCyvV N

where the last bound holds because »’ < Clog(1 + ) uniformly in k,s > 1,

2eZ’: |z|<k ﬁ NG
and furthermore |y, —ys| < |y — 21| + |22 — 92| < 2CoV/N by |& —y| < Cyv/N. This implies
that the second factor in can be bounded by C/|g| .

For the first factor in (6.39)), we can first sum over y € (Z*" to bound

__GN_ \\i _GN_ \\i
(log (1 + 1+|y17y2|2)) ’ Z (log (1 + 1+|yry2|2)) '
B 2 2"
pezty (U Sy o —wil)"™ Bt B T TR P

ly1—z1|,lyg—zo|<Cyv N

Recall 1 = zy. Let z1 := y; — yp and 25 := y; + yo — 22, so that |z1], |25] < 2Cyv/ N and
121 + |22* = 2(Jy; — 21* + |yo — 25]*). Summing over z, then leads to the bound

2 142
> (log (1+C°7N2)) T con
|2, |<2Co VN 1+ |z

by a Riemann sum approximation. Therefore the first factor in (6.39) can be bounded by

CNv | fl». Together with (6.40]), this implies (6.38)) and concludes the proof of (6.23). O
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Proof of (6.24). Note that (6.24) is equivalent to showing

Wi () _
> @U@y ay) 3
w,ye(Z)] v

X

clogN

< 71l gl
wi'(y)  log AN

(6.41)
uniformly in f € //((Z*)%) and g € ¢4((Z*)"). Without loss of generality, we may assume
h} consists of partition elements {1, 2}, {3}
Recall from (6.15]) and (6.14) that

I+-{1,..

I
Us
N

{h}, so that z; = z9 and y; = ys
2N

>

n=1

—A\n

NN(CU Y) = Ly + Z e "NUg(n,y1 — 1) HQn(yi - ;)

where Ug (n,x) is defined in (3.31]), with o replaced by o%. Let us set T
. By (3.35

(6.42)
i=3
2 = % > 1 for
short. By -, 3.43]) where UN = oyUy, and -, we have
, 2N i
Z UﬁNﬂ(m,y) <1+ Z e N
ye(z?)]

NGﬁ(Q

2 ~
) <1+ ClogNJT e MGy (t)dt
0

InZ —)\Tt
<1+ Ce 2logN+ClogNJ
(Al 1,2

<C log N

log )

where the last inequality follows by bounding the integral separately over (0,
()\T)l/27§ NT)s i

—, (6.43)
log AT’

) with the dominant contribution coming from the first interval
On the other hand, for any C' > 0, by - we have

C\m*y

VN
ye(z? )

W) and

1+Ze Y ZU (n,y; —

oln=ail B olei=uil
zy)e’ VN H(Z%(yi—xi)@ m)
y1€Z =3 yiEZ2
_ log N
<140 Y e VU (n) < 0B 6.44
Z w(n) log AT (6.44)
where we applied ([3.48 - and -
We can now bound the Lh.s. of as follows, recalling
®h
w xr C\W*y\
¥ @)U ) () gh( Lo N S@ V) )
@ ye (2} UN) )
I clz—yl\1/p C
<co( X @U@ )TN @)Vl (@)
@ye(Z)]
logN
<C
og )\Tllfllep\lg\lzq

le—y|\ 1/q
i y)e W) ,
N
2\h
mny(Z )I
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where we applied (6.44)). Recalling that T = %, this concludes the proof of (6.41)). O

7. MOMENT ESTIMATES FOR COARSE-GRAINED DISORDER

In this section, we derive second and fourth moment estimates for the coarse-grained
disorder variables 6( )(I 3) defined in . These will be used later to bound moments of

the coarse-grained model Q@Cg (¢, w]@) introduced in Definition with © = @g\igg) .

7.1. SECOND MOMENT ESTIMATES. We first study the second moment of @g@ga) (i, 3).

Lemma 7.1. For each time-space block (i,3) = ((i,1), (a a/)) € T. defined in ([4.5), the

coarse-grained disorder variable G)( )(I ) as defined in ) has mean 0 and its second
moment converges to a finite limit

2003 = T (cg) (7 1) 2
oZ(i,d) := A}linooE[(@]\?E (i,3)) ], (7.1)
see (7.4)-(7.5) below. Furthermore, there exist ¢, C > 0 independent of €, T, a such that

-2 7
Ce—clal™/lilg
27 o
oz(i,a) <

a1/} (7.2)

Ym0z 12

(log é

Proof. (I) Random walk representation. We first express E[(@g\cf? (i, 5))2] in terms of

the time-space renewal (T,(N),S,(N)) defined in (3.32). First consider the case [i| = 1, i.e.,

i = i’. Recall from ({@.11)), (4.9) and (@.10) that

>, 2
@g\cf,gg) (i,a) = 6]\7{ Z ]l(dw)eZSVengN(d’ z) + Z ﬂ(d,x)elgvenqdvf (z,9)En(d, 2)En (f,y)

deTon (i) d<feTen (i)
zesaN(a)ﬁSsN(a/) zESEN(a)y yESEN(a/)
0 r+1
+ Z Z 11(d,ac)eZiven 2 §N d x anJ 1,m -1 j)‘SN( jvzj)}’
r=1 di=ng<f:=n,,1€Tcn (i) d<ni<..<n,<f

wi=20€8. N (2), yi=2,4188cn (a) F1r7r €Uppa<ar, Sen (@)

where we note that the terms are uncorrelated because {x(-,-) are independent centred
random variables with mean 0 and variance o3 (recall (3.14) and (3.11))). Therefore

- 4
2 2 2 4 2
E[@E\C,i)(ha) ] " (eN 2{ 2 Vamez 08t 2 Vg, oG (@)
ENTL ety d<FeTn ()
IESEN(a)mSEN(a/) zeS.n(a), yeScn (a/)
0 2(r+1) r+1
r+
Z Z ]l(d,ac)eszen Z an] 1y (Zj—15 % ])}
r=1 d:=ng<f:=n, 1€T_N(i) d<ni<..<n,<f

Z: _ZOESEN( ) y: _zr+1655]\7(a/) Zl""’ZTGU\é—a|<J\/I€ SeN( )
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Note that this sum admits a representation in terms of the space-time random walk

(T;EN)a Sl(fN))k;>O defined in (3.32)), namely,

[@E\ﬁ)( a) ] = 20% Z %R,

N g L+ V) ,
X Pi,aﬁ \;N € U 88(5) Vi<i<k; kT; ﬁ € 7;(') X Se(a ) )
a—al<M,

|afa| €

(7.3)

where Pi{\;‘E denotes probability for (T,EN), S ,gN)) k>0 With (TO(N), S[()N)) sampled uniformly from
Ton (i) x Son(a) N Z2 . Changing variable k = slog N, using o5 Ry = 1+ (9+0(1))/log N,

and applying Lemma on the convergence of (7, (N) , S (N))k>0 to a Lévy process Y. =
(Y., V), we find that the sum above converges to the Rlemann integral

ag(is)zzwfoe%ﬁ <V e |J 8.(3)Vue(0,s); (YS,VS)eﬁ(i)xSE(a'))ds, (7.4)
0 |a—a|<M,

where Pia denotes the law of the Lévy process Y, = (Y,,,V,) with Y, sampled uniformly
from T_(i) x S.(a).
For |if > 2, ©y (i, d) is defined in (4.11). The same argument as for the case |i| = 1 gives

0
o2(i,3) = 2 27TJ‘ ds e’
b: |b—a|<M, 0
b’ |b'—a’|<M,, |b'—b|<M_ A/ |i' =i
xP&(%emﬁwmeﬂVJenmx&w»a@mm7mvx&w% (7.5)
Vue (0,t): Vye | S.(8); Yoel(ts): Ve | Sb); (Y, Vi) e To(i) xSE(a')>.
|a—al<M, |b—b'|<M.

Here ¢ is the time (Y., V) jumps from 7_(i) x S.(b) to T(i') x S.(b').

(I1) Proof of (7.2). First consider the case [i| = 1. By translation invariance, we may
assume i = i’ = 1 and a = 0. First note that

2(08) < 2n [ Phg((V.V2) € Te0) x 5.1 ds

— ¢ %o ff Gyt —s) gizs (y — z)dsdtdzdy, (7.6)

O<s<t<e
€8, (0),y€S. (a)

where Gy(t — s,y — x) := Gy(t — s) gi—s (y — x) is the weighted Green’s function defined for

the Lévy process Y, see (3.38)) and (|3.37)).
When a’ = 0, we can relax the domain of integration in (7.6)), use standard bounds on
the Gaussian kernel g, and set u :=t — s to obtain

Ue | a) <27 ff Gy(u y)dudy < Cfo Gy(u)du < logl’ (7.7)
13

ue(0,¢)

where we applied the asymptotics for SO Gy in (3.47)).
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v

al

S . . —cl
When a’ # 0, the bound for O’?(I,a) can be improved with an extra factor of “— .

Indeed, using polar coordinates (with respect to the | - |, norm) for z € S.(0), we have )

o2(i,3) < e *2m Jf Gy(t—s) gz (y — z)dsdtdzdy
O<s<t<e
z€S8.(0),yeS. (")

291 H dsdt Gy(t — s) f 2erdr f gis(2)dz. (738)

/ !
O<sst<e 0<r<l (al=r)va<ll<(|+2)vE

If |a’| = 2, then we can use (3.46)) to bound the right hand side of (7.8) by

e tor ff dsdt Gy(t — s) f gi—s (w)dw
4e
O<s<t<e |a/\71<|w|
_1 _ 1P 1 1 _E?
e 2 ff Gy(t — s)e 2(-9 dsdt<47rf il e 2 du
0 u(log ; +log <)
O<s<t<e

1,2

A7 Ty @2 47 © 1 e Are—cl? ]

<ﬁ —e  2u duzﬁ —€ Zdv<7.
(log2)” Jo u (log <)

If 1 < |a'| <2, then we can bound the right hand side of (7.8) by

1
e o Jf dsdt Gy(t — s)f 2rdr ngs(w)dw
0 £

O<s<t<e 1—r<|w|

1 2
< 27 f Gy(u JQre lu “drdu < 4r J Gy(u Je_usdrdu

0
O<u<e

1 1 1 -2
< CJ 5 J e v drdv
0 v(log% +log%) 0

1 o cla’?
1 2 C C
éCJ T 12Jesdsdv< 12< 612.
0 vu(log y; +1log2)” Jo (log2)”  (log )

O<u<e

This concludes the proof of the upper bound in ([7.2)).

We now bound ¢2(i,3) for the case [i| = 2. By relaxing all the constraints in (7.5) except
(Y,,V,) e T.(i") x S.(a"), we note that except for a change of constants, the bound in (7.2)

for |i| = 1 also applies in this case. In particular, the bound in (7.2)) holds for ||_'\ =2 and
3| # 0. For [i| = 2 and |a] = 0, let us assume for simplicity that i = 1, = 2, and a = 0.
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Again, relaxing all constraints in (7.5 except the constraint on (Y;, V), we have

o2(i,3) < Ce? ff 9t —5)gi=s s( — z)dzdydsdt
0<s<a<t<2a
z,yeS, (
<Ce™? U Gyt — s)dsdt < cf uGy(u (7.9)
O<s<e<t<2e

3
1
<C f du < CI 5
0 (log a) (log g)
The upper bound in ((7.2) also holds.

We now consider the case [i| > 3. We first ignore the constraints on V, for r € (0,¢) U (¢, s)

in (7.5). Using the weighted Green’s function Gy and the Lévy measure IL(?;” g¢/4dtdz for
the Lévy process Y, = (Y, V;) (see [CSZ19al Section 2|), we obtain the bound

02(i,3) < > Ce™? ” U drdyda’dy’dsdtds’dt’

PR b: \b\s]/\/lg _ O<s<t<e (i'—1)e<s' <t'<i'e
b b —a'|< M., |b'—b|<M.~/Ji] 2€S,(0),y€S: (b) 2'eS._(V),y'eS. (a")
st (:B/ —v) ’ / ’ /
Gyt —98)gt-s(y —z)  ———— -Gyt —5) -9, o (y — ).
1 s —t =
Since [i| =i —i+1> t < (|ﬂi2)€ < i to obtain
2,7 C
oz(i,a) < |_,| Gyt —5)Gy(t' — s )g (v — ) dsdtds’dt' dady’
0<s<t<€ €S, (0)

(i'—1)e<s' <t'<i’ ey'es (a

< mi’g (JE ff ff gt (Y — ) dsdt'dzdy’

0<s<€ €8, (
(i'—1)e<t'<i’ €4S, ( )

o el
<
= 27 72
(log 2)” i
where we first relaxed the constraints on b and b’, then successively integrated out vy, z’, s,

and t and applied (3 , while in the last inequality, we applied a uniform bound on the
heat kernel g des (y — :U) This concludes the proof of the upper bound in (|7.2]). U

; (7.10)

7.2. FOURTH MOMENT ESTIMATES. We next study the fourth moment.

Lemma 7.2. Let @S\C,’ge) (i,3) be defined as in [@11)), with (i,3) = ((i,), (a,a")) € T, defined
in (LB). There ezist ¢, C € (0,00) uniform in (i,3), such that for all e > 0 sufficiently small,

Ce—claVily

lim sup IE[G)( )(_: 5)4] < {|5|<M f} (7.11)
N—o0 log =
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Proof. We first prove (7.11) for |i| = i =i+ 1 < 2. Consider a time-space block (i,3) =
((i,i), (a,a")) with |3] < Ma\/ﬁ and assume without loss of generality that i = i’ = 1 and
a = 0. The case |i| = 2 is similar (just replace ¢ by 2¢). We will compare (9( )( a) with an

averaged partition function so that Theorem [6.1] can be applied.
Let us recall the polynomial chaos expansion of o g)( a) from ((4.11])

cg) 7 2 diff
oI -2 Y X
(dvx)EBaN(lro)

(fvy)eBsN(lva,)
with d<f

which is essentially an average of point-to-point partition functions with average over (d, x)
and (f,y) in the bulk instead of through boundary conditions at time 0 and N respectively.
To compare with an averaged partition function as in Theorem we replace @S\C[ge) (f, a) by

2 diff
- M s )@z D)X (@ 9 aren 0, 2)1g (), (7.12)
2, ,20€22 (d,@)EB N (1, 0)
(fy)eB.y(1,2)

with d<f

where S.y(a) = ((a — (1,1))veN,aveN]| and we note that uniformly in (d,z) € B,x(1,0)
and (f,y) € B.y(1,a"), we have

Z ]ls 21 4o, alz1,z )‘If,eN(y, ZQ)ngN(a/)(ZZ) =C>0.

zl,zQGZ

Therefore E[@g\(;ga) (i,3)*] < CE[©"] because in the expansion for the fourth moment, all

. . 3 . .
terms are non-negative if we assume E[¢y] = 0, which we may assume from now on since

our bounds are in terms of |E[§§,]| for 1 < k < 4 (see the proof of Theorem . In the
definition of ©, we can further remove the constraint on y and the summation constraints

in the definition of Xc(ld}ﬂ) (z,y) in (4.9)—(4.10), which gives the centred partition function

2 () ~ El2l¥ (. 9)]
as defined in Theorem with o(z) = 1, (0)(7) and ¥(z) = Ig (a/)(m). Therefore for N
large, we have
BON2 (3] < C[(2L (. 0) ~ BLZEY (2, ))']

_ Cefla'fal (7.13)
w Sl(a,)”2 = log 1
€

where we applied Theorem with N set to eN, T = 1/e, p = ¢ = 2, h = 4, and

w(z) = ¢~ 1. This proves [7-11) for [i| < 2
We now consider the case [i| > 3. Recall the definition of @S\C,gs) (i,3) from (£.11), we can

rewrite it as

oY 2 oY (i (a,b), (b',a")), (7.14)
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where
05 (i, (a,b), (b',a)

2 diff diff
N X Y X @y ae ) X))
(dvm)EBsN(i:a) (f»y)EBsN(ivb)
(f'y))eBen (') (@ 2)eBoy (i b)
d<f,d'<f'
For each (b,b), because i’ — i > 2, we can apply Lemma (with m = eN) to bound
AP
4rg\y,T) s ——=¢€
ra W:) eN|i]

uniformly in (f,y) € B.y(i,b) and (d',z") € B.x(i’,b"). We can make this replacement in the
bound for the fourth moment to obtain
(cg) (7 cg eiclbibq{z/m (cg) 4
2[6(,9)'] < CB[( X, 0% (1) (a.6) 61, () | (7.16)
b’ il
By triangle inequality, we can split the sum over b, b’ into three parts (with overlaps): (1)
Ib—a| = [3]/3; (2) |b' —a'| = |3]/3; |b' — b| = |3]/3. Tt suffices to bound the fourth moment
of each part.
For part (1), we can bound

o —clb=b’] */1il

E|( Z O (i), (a,b) ——=—— f ol (. ),(b',a'))>4]
bal2 13 (7.17)

<E[( % el o) (el o) |
b:|b—a|>[3]/3 N

where the inequahty can be justified if we first expand the power and take expectation and

then bound w < 1; we also used the independence of @5\,2(( i),-) and ol ((i",i"), ).

N,
For the first factor in , we can expand the power and bound

E[( Y @55%2<<i,i>,<a,b>>)4]= > E[ﬁ@%@%ﬁ((i,n,(a,m»]

lb—al>[31/3 by—al>[a/3 imL
for 1<i<<4

H
=
—
S
/
|
o
o

< X HE[@ L) @)= (Y B[R0, b))
e lbal>la1/3

where in the last inequality, we apphed the fourth moment bound (| - ) for @(Cg)( )
with |i \ = 1. The second factor in can be bounded the same way without the factor
¢~ This implies that when the sum in is restricted to |b — a| > |3]/3, we get a
fourth moment bound of C'e /(log %)2 The same bound holds if the sum is restricted to
b" —a'| = |a]/3. )

When the sum in is restricted to [b—b'| > |3]/3, we can bound % < e~/

The rest of the calculations is the same as before, which leads to a fourth moment bound
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=12 /7
of Ce ! /|'|/(log %)2 Combined with the previous estimates, it is clear that (7.11)) holds.
This concludes the proof of Lemma [7.2] O
8. MOMENT ESTIMATES FOR THE COARSE-GRAINED MODEL

In this section, we will prove an analogue of Theorem for the coarse-grained model

(defined in (4.8))), that we rewrite for convenience:

log

(cg) 1 €
22(p,]0) = 59; @, ) 5 Z:l bZ]Z Z( t@;()b)géi (al_b)G)('lval)
" €L (i) e AL TS
CISEREY. Ko (8.1)

X { ]lg;(blgl)(a] - afj*l) @(67 5])} g%(léj_l;)(c - a;)d)E(c) )
j=

with coarse-grained disorder variables O(i, 3) := @g\ii) (i,3) (see ([@.11))) indexed by time-space
blocks (i,3) = ((i,7'), (a,a’)) in the set T. (see (L£.5)), while ¢_, v, : Z*> — R are defined by

[@7) from ¢ € C.(R?) and ¢ € Cy(R?).
We will prove the following analogue of Theorem for the 4-th moment of the coarse-
grained model.

Theorem 8.1. Let Zy (p,7) 1= Cg (o, |0y (ce) ~) be the coarse-grained model defined
above. Further assume that ||, < 00 and 1) is supported on a ball B (possibly B = RY).
Then for any p,q € (1,00) with 1% + % =1 and any w : R? - (0,00) such that logw is
Lipschitz continuous, there exists C' € (0,00) such that uniformly in € € (0,1),

limsupE[(gN,e(%w) - E[QFN,E(‘P’W])L}] < Cer H %

N—0

where w, : 7Z? SR s defined from w by (4.7)).

Htf)\loo\lwﬂBHq, (8.2)

Proof. We will adapt the proof of Theorem to the current setting. The complication is
that the coarse-grained disorder variables GE\C,ga (i.3) are assigned to time-space blocks (i, 3)
instead of individual lattice sites. We will therefore divide the proof into two parts: first,
expand the fourth moment and perform a resummation to bring it into a similar framework

as in the proof of Theorem second, give the necessary bounds analogous to those in the
proof of Theorem

Part I. Expansion. First, as in (6.4]) in the proof of Theorem denote
4
M [(gNs((p 7/1) ["@pN,s((pa 17Z))]) ]

107

[( Z 2, 2 ve(b)gy;, (a1 = b)ORY(i1,3)) (8.3)

b CEZ ( iH’r)e./4'(notriple)
- diff
(51000 Je ALY

c 4
< ATTorg 1)@ — 300823 bar s o (e —a)e.() |
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By assumption, we have |¢.| < |4, 1p_, where B, = B/\/E By the same reasoning as

in the proof of Theorem [6.1] - see the discussion leading to ), we can replace ¥ by

[¥|»1p_ and replace 91(,_()( ) by 91 (i )() (with 7 first summed over [5_1,26_1], then
€ 2\e 7 lr 2 r

extended to [1,2¢']) to obtain the following bound

2/e

o0
ML <cplye Y E[(Y Y S e(blgy;, (ar — D)OKE ([, )
n= r=1 b,cEZQ (rl,-..,?T)EA(nO triple)

(diff)

(517 -2 )EAabc (84)

{H 916 ¢ _ 32‘71)95\61?@’ *J)}gl( . )(c— a;«)]lBE(C)>4].

We then expand the product in ) to obtain the sum over 4 sequences of time-space
blocks, each time-space block contributing a @S\(;gg) variable. Because we will bound the sum
by taking the absolute value of each summand, we can relax the summation constraint on r

to obtain an upper bound. Also note that thanks to the assumption ¢ € CC(RQ) and the
— (diff
diffusive constraint .Ai; C) (see (£.6)), we have a sum with finitely many terms, which allows

us to pass the limit N' — oo inside the sum later. For each G)(Cg)(l 3) with [i] =" —i+1>2,
we further expand it as
oia = Y o\ (ab), 1) (8.5)
N, N ) ) .
b: [b—al<M,

b':|b’—a’|< M.
b —b|<MA/[7|
where @S\C,gg (i, (a,b), (b',a")) is defined as @g\(;ga) (i,3), except the sum in its definition in (4.11))
is restricted to a fixed choice of b := (b, b). The expansion of the product in (8-4) then gives
(c )

4 sequences of coarse-grained disorder variables @ , some of which may visit two distinct

mesoscopic time intervals with indices i,i due to the expansion in . If we record the
indices of the visited mesoscopic time 1ntervals and the mesoscopic spatlal boxes of entry and
ex1t m each time mterval then we obtain 4 sequences of time-space indices (i, aJ, bl s e
( b] ) < 4. We will call each such sequence a mesoscopic time-space renewal

sequence or Just renewal sequence (see Figure [4)).
We will rearrange the expansion of (8.4]) as follows:

(1) Sum over the set U?zl{i{, ey iZj} =:{nq,...,n,.}.

(2) For each time index n;, 1 < i < r, sum over the set of indices J; < {1,...,4}, which
determine the renewal sequences that visit time interval n,.

(3) For each j € J,, i.e., a renewal sequence that visits time interval n;, sum over the
indices (a, b?) that determlne the spatial boxes of entry and exit in that time interval.

Given a choice of these summation indices, the summand contains a product of coarse
grained disorder variables of either the form @g\iga) ((n;,n;), (a;,b;)) =: @%ga) (n;;a;,b;) or the
form Gg\c,,ga)((ni, n;), (a;,b;), (aj,b;)), connected by heat kernels 9L (ne—my) (a, — by). For such
a product to have non-zero expectation, we have the following constraints (see Figure [):

(a) |J;| =2 for each 1 <@ < r;



72 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

<>
eN

FIGURE 4. A depiction of the expansion of the fourth moment of the coarse-
grained model that satisfy conditions (a)-(g). There are four time-space
renewal sequences, each depicted in a different colour. Different sequences
visit different mesoscopic boxes B,y (i, a), but each visited box must be visited
by at least two sequences to give a non-zero contribution. The first two time
strips are visited by the two renewal sequences coloured black and red, which
match in the disorder they sample. These two strips are grouped together
as a block of type U. The third and fourth time strips are visited by three
renewal sequences, coloured black, red, and green, which form a block of
type V and its width cannot exceed 4. Within this V block, the spatial boxes
of entry by the three renewals are all within distance 2M, of each other, 2
of which match exactly. The last time strip is only visited by two renewal
sequences, coloured blue and red, which also forms a U block.

(b) If |J;| = 2, say J; = {k,1} = {1,...,4}, then we must have a\ = a} and b} = bl:
(c) If |J;| = 3, then for each sequence k € J;, there must be another sequence [ € J; such
that |ai~c — aﬁ] < 2M_, where M, = loglog 1 as in (4.2).

If (c) is violated, then by the spatial constraint in the definition of @S\C,gs) in (4.11), there will

be a coarse-grained disorder variable visiting time interval n,, which is independent of all

other coarse-grained disorder variables in the product, and hence leads to zero expectation.
- ipl — (diff

The summation constraints Ainomp ) and Ai;;’c) (see (4.4) and (4.6)) in the defini-

tion (8.1]) of the coarse-grained model implies the following additional constraints on the

summation indices 7, (n;)1<i<,» (Ji)1<i<r, and (al, bg)KKmEJi:
(d) For all 1 < ¢ < r and each renewal sequence with index j € J;, |bf - ag | < M_;
() For1 < j<d4and1<iy <iy<vrifjed; nJ, and j¢ J; forall iy <i <iy
(namely renewal sequence j visits the mesoscopic time intervals with indices n; and
n,,, but nothing in between), then |ag2 — bgl| < Moy /ng, —ng ;s

(f) K.<ny<ng<---<n, <i—K_ where K, = (log%)6 as in (4.2));
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(g) (nq,...,n,) can be partitioned into consecutive stretches Dy, ..., D,, such that each
D; consists of consecutive integers, with a gap between D; and D;,;. Then each
D. = (n; ZH:n—i—l n; = n; + (j —4)) has width n; —n; + 1 < 4, since
|Jn | > 2 for <1<y (namely the mesoscoplc time interval with index n; is visited by

at leabt two renewal sequences), and each sequence can visit at most two mesoscopic

. . 1 e 1 (no triple)
time intervals with indices among n;,7n;41,...,n; by the constraint .A .

Conditions (d)-(e) follow from the definitions of .,1 ) in and @SV ? in (4.11)), while
conditions (f)-(g) follow from the definition of A(nOtrlple) in (4.4).

To handle the dependency among the coarse-grained disorder variables in the expansion
of , we perform a further resummation. First partition (nq,...,n,) into consecutive
stretches Dy,...,D,, as in (g), so that {n,...,n,} = U, D;. For each D;, let J; :=
U jeD, J;, which records which of the 4 renewal sequences visits the stretch D;. Next we group
together consecutive D; , D; 41, ..., D;, with the same J; = {k,l} for some k # l € {1,...,4},
and only keep track of s := minD; and ¢ := max D, , thus effectively replacing Ui1 <i<iy Di
by [s,t]. This allows us to identify from (ny,...,n,) a sequence of disjoint time intervals
(which we call blocks) Z; = [s;,t;] n N, 1 < i < k, each associated with a label set
Ji = {1,...,4}. Some of these intervals arise from | J; ;<;, D; as above, which are visited
by exactly 2 renewal sequences, the rest coincide with the original D,’s. We can then rewrite
the expansion of as follows:

(1) Sum over integers K, < §1 <t] < Sy <ty < -+ <8, <t <N < %7 with s, —t; > 2
for each ¢ (recall the summation index 7 from (8.4))). Denote Z; := [s;,t;] n N.

(27) For each block Z;, sum over the set of indices J; < {1,...,4} with |7;| = 2. If |7;| = 2,
we call Z; a block of type U because it leads to Contributlons similar to U S(zl, z2) in
(6.14) (see also ); otherwise we call it a block of type V. There are no consecutive
blocks Z;, Z; ., of both type U with the same label set J; = J;,1, and each block Z;
of type V must have length |Z;| < 4. See Figure E 4| for an illustration.

(3’) For each block Z; and each renewal sequence j € j that visits block Z;, sum over
time-space indices (07,a) and (r7,b/) with s; < o7 <7/ <t; and a’,b! € Z*, which

identifies the mesoscopic tlme—space blocks of entry and exit by the j-th renewal
sequence in the time interval Z; = [s;, ;] n N.

The constraints imposed in (d)-(g) carry over, so we do not repeat them here.
To rewrite the expansion of (8.4]) in a form that fits the framework developed in the proof
of Theorem we will carry out the following steps, that we describe below.

(A) To decouple different blocks replace each coarse-grained disorder variable @( g) (it
will arise as a summand in (8.5))) that visits two consecutive blocks Z; and Z;, by the

product of two coarse- gralned disorder variables of the form @( )(I 3) with [i] = 1,
joined by a heat kernel.

(B) Bound the moments of the effective disorder variable associated with each U block
and V block.

(C) Modification of the heat kernels g1 3v+1—tv)(') connecting different blocks. In particular,
RS i
carry out a Chapman-Kolmogorov type decomposition for the heat kernels as in the
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proof of Theorem [6.1} so that we sum over the spatial locations for all 4 renewal
sequences at the beginning and end of each block Z;.

This rewriting will introduce a constant factor for each block, but it will not affect our final
result. We now give the details for (A)-(C).

(A) Note the technical complication that given a realisation of the summation indioes in
(1)—(3"), there could be coarse-grained disorder variables @S\(;ga)((Tj ol ) (al aj bfl) (a] aj,, biz))
(see (8.5)) that visit two distinct blocks Z; = [s;,t; ] "N and Z; = [sWt ,] 0N for some

11 < iy, due to the contribution from the j-th renewal sequence for some j € J; nJ;,. In
particular, 7' €Z; and a € Z;,. Recall from (8.5 and (4.11) that

OV (] ,ol). (al bl ). (al b))
2 diff diff
-5 2 > XS0 (@,y) qp 0 (v.2) Xfl/,f/)(x’,y')-
(da)eBon (], al) (fw)eBen(r szl)
(f’iy’)EBEN(Ui2vb£2) (d/7$/)EBsN( i,2 312)
d<f,d'<f

(8.6)

Note that by the definition of a U block, if Z; is a block of type U, then we must have

77 =1, , the last time index in the block 7, ; while if Z; is a block of type V, then we must

i i1
i, = t;, — 3 because V blocks of length at most 4. Similarly, if Z;, is of type of
U, then we must have 013-2 = 8;,, the first time in the block Z; ; while if Z;  is type V, then

we must have 02‘72 < t;, < s, + 3. Therefore d—f< (85, —t;, + 7)eN. On the other hand,

22<

Z;, and TZ;, are distinct blocks and hence s;, —t; > 2 and d — f = eN. We can therefore

11

apply Lemmamwith m=eN,n, =d — f, ny = s;, —t;, and o; = 10 to bound

have 7'31 = s

C . .
sup 4y (yvx/) < 87N910(si2—ti1) (352 - bil)- (8.7)
(f’y)EBsN(Tgl 7b£1)
(d/vxl)EBEN(U{2 7352)

Applying this bound in then allows us to make the replacement (recall the definition
of @E\C,ga) from (4.11)))
OND (7,1, (3}, b]): (a1, b],))

CGS\?@( 731 b )910(5 —t; )(] _b])e)g\(;gg)( a z bj)

10 iy 2’ 2

(8.8)

(cg)

Noo could be negative. However, when we

compute the moment in , we end up with products of the moments of @( )
constituent &y’s, which are then be bounded by their absolute values. Applying (8.7 at this
point gives a true upper bound, which has the same effect as making the replaoement in
the expansion before taking expectation, and then compute the moment as in . To keep
the notation simple, we will assume this replacement from now on, so that the expansion

Of course this is not an upper bound since O},

’s and its

of (8.4) now contains only o g)(|, a, b) that visits a single mesoscopic time interval T,y (i),
which simplifies the expansion from (8-4). The cost is replacing some heat kernel g; (-) (more
2

accurately, the associated random walk transition kernel) by Cgyq;(-) as in (8.7)).
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(B) We now consider a U block Z = [s,t] n N. Assuming w.l.o.g. J = {1,2} so that
only renewal sequences 1 and 2 in the expansion of visit block 7. Let a,b € 72 be
spatial indices for the mesoscopic boxes of entry and exit in the time interval Z. Then the
coarse-grained disorder variables @S\(;i) visited by renewal sequences 1 and 2 in the time
interval Z must match perfectly in order to have non-zero expectation. Taking expectation

in (8.4)), each U block in the expansion therein leads to the following quantity analogous to
Un(n,z) defined in (3.40) and (3.41):

T (t—s5,b—a) := 2 E[0(® ([, 5)%) Hmhﬂ (a; — ) 1E[OFE (7}, 3;)], (8.9)
(|17 i T)EA no triple)
(alr"'vﬂ'r)EAidlﬁ‘)

. o/ /
ii=s,i.=t,a;=a,a,.=b

(no triple)

- (diff
where A_ and Ai ) are defined in (5.70)) and ([5.71)). Because the sum above is a
sum over finitely many terms, by Lemma the following limit exists

Uggi)(t—s,b—a) = A}im Ugﬁgg)(t—s,b—a). (8.10)
—00 ’

We next consider a V block Z = [s,t] "N with size t —s+1 < 4. Let J < {1, 2, 3,4} denote
the set of renewal sequences that visit Z. To have non-zero expectation in the expansion
of (8.4), we must have | 7| = 3 (|J| = 2 would make it a U block instead). Each renewal
sequence can visit at most two mesoscopic time intervals with indices in Z. For each renewal
sequence j € J that visits block Z, let (¢7,a’) and (77, b’) be the indices of the mesoscopic
time-space boxes of entry and exit in Z. In the expectation in , such a V block then
leads to the following factor

Vv(cg)((J 7 a b )ier) [H@(Cg) o) 7_) (J b]))]
jed

< H (3j#keT |a’ —a"|<6M, }E[@( g)((‘f T ) (a 7 b])) ]

NI

where the indicators follow from the local dependence of @( ) from its definition in .
Applying (7 with |i \ < 4 (since V blocks have length at rnost 4) then gives

) C Ibf—a?
hmw%%@ﬁﬁwmﬂ< ilHW,ﬂwa.we' ”
N—w (log )T jeg b/ —a |<n_}

= V{8 (a,b). (8.11)

(C) We next modify the heat kernels connecting different blocks Z;. First, we will
contract each V block Z; = [s;,t;] n N into a block of size 1. Note that every heat kernel

in the expansion connects two different blocks Z; = [s;,t; | "N and Z;, = [s;,,t;,] 0 N,
i < 12, and are of the form 91 (0, -, )(312 —b; ) for some 7; € Z; and 0, € 12 with
la;, — < M.,/o;, —7;,- The heat kernel 9% (s, - )( ) from time 7, to ¢;, may jump

over multlple blocks of type V. If we contract the tlme span [Til,O'iz] of the heat kernel

by shrinking each block of type V that intersects [Til , 01-2] into a block of size 1, and let u

denote the length of the reduced time span for the heat kernel, then u > %(UQ — Til) since
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blocks of type V have length at most 4. Therefore
g%(o'iQ—Til)(aiQ - bll) < 892’&(312 - bll)

The heat kernels introduced in (8.7) are of the form g9, -, y(a;, — b;,) and can similarly
2

be bounded by 8gg,(a;, — b;, ). For consistency, we will further bound gy, (-) < 20gg¢,(-)-
This shows that at the cost of introducing a constant factor C' for each block Z;, we can
assume from now on that all blocks Z; of type V have length 1, namely s; = ¢;, and all heat
kernels appearing in the expansion (as an upper bound for the expansion of ) are of
the form 980(s;,—t,, ()

Lastly, we perform a Chapman-Kolmogorov type decomposition for each heat kernel
980(s;, —til)(bh’aiz) F= 980(si,—t; y(ai, —b; ) at each s;,t; € (t;,,s;,) NN, similar to what was

done in the proof of Theorem To simplify notation, let ug = t; ,uq, ..., up_q,up = s;,,
with uq,...,u,_; being the times at which we want to perform the decomposition. Let

Xp :=b; , X} 1= a;,. Then we can bound

980 (uy,— u0)<X07Xk J f 980(uy — uo)(X07x1) " 980(up—up_ 1)(3% 1Xg)dzy - dag_y

Ty, @kfleR

k
< >0 T @osoqu—u ) (xim1:%)),

24=1
X1y Xp_1EZL

where we have discretized the spatial integral into a sum over the lattice and introduced a
factor 2 for each intermediate time u;, 1 <1 < k, as a crude upper bound.

The steps (A)-(C) we have performed so far basically allow us to bound the expansion
in a form that is similar to , and ready to lead to the analogue of . The U
blocks we have introduced correspond to U’ introduced in , while V blocks correspond
to the disorder variable £, which even after contracting each V block into a block length
1, still has non-trivial spatial dependence. Due to the heavy notation, we will not write
down the analogue of here. Instead, we explain below how the analogues of
and can be derived.

Part II. Bounds. Based on the considerations above, we can write down an upper bound
for (8.4]) that allows us to adapt the proof of Theorem First, we introduce some notation
that parallels those in the proof of Theorem . Similar to , for a = (aJ)1<j<4, b=

(bj)1<]<4 € (22)4 and ¢ : Z° — R, define

4
b) := HQSOt(aj7bj)a
j=1
H ( Z gSOt(bJ - C])), Q(a,¢) := H ( Z gsor (¢! — ajW’(C]))'

Jdez? =1 Jdez?
Similar to (6.14)), for J = {k,l} = {1,2, 3,4}, define (recall Uf;i) from (8.10)))
USE (ta,b) =1, Z}U(Cg t,b" — ) [ ] gsor(a”, b7 (8.12)

J¢J
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with go(a’,b’) := ]l{aj:bj}. Similarly, define (recall Vggi)’j(a, b) from (8.11)))

V& (a,b) := VL% (a, b) | JRIEERN (8.13)
Ji¢T

To be consistent with the notation in the proof of Theorem [6.1] we will replace J <
{1,2,3,4}, which determines which mesoscopic renewal sequences collect coarse-grained
disorder variables at time ¢, by a partition I - {1,2,3,4}, which specifies which sequences
interact with each other through the coarse-grained disorder variables at time ¢. In particular,

in U(Cg) g corresponding to a U block, the associated partition I consists of J and {j} for
j¢ J,sothat [I| =3.In Vog 5) corresponding to a V block, if | 7| = 3, then the associated

partition I consists of J and {j} for j ¢ J, so |I| = 2; if |J| = 4, then the associated
partition I is given by the connected components of {1, 2, 3,4} with an edge between i and

J whenever |ai —a’ | < 6M,, and there can be no singletons in the partition to ensure that
V(Cg) 7 %0 (in particular, |I| =1or2).

From now on, we write Uggi) (t;a,b) and Vg&gg’l(t; a,b), replacing J by the associated
partition I  {1,2,3,4}. Define

WED T (t,2,b) := 147123y USD (£, 2,b) + Loy VL (a,b). (8.14)

We can now write down the following upper bound for (8.4)) in the limit N — co:

0
%w — 1 @7#" 4 5 T
ME e = lmsup MGY < [¢0e C
N=eo r=1 Il»'“717"7{172a374}7‘1i|<3
Ks<51<t1<52<"'<5r<t;<5r+1<* (815)
alvblz--~7ar7bre(z )

i

7Ii
Qs0s, (25 21) ng%s (ti — sir24,b5) Qgo(s,, 1) (bis Aiy 1),
i=1

where C' does not depend on ¢, a,,; := 1g_, the sum in (8.15) contains no consecutive
I; = I; .4 with |I;] = 3, and when |I;| < 2, we must have s; = t; thanks to the contraction of
the V blocks.

22
For A > 0 to be chosen later, we can insert the factor e = e

into (8.15) to obtain a bound similar to (6.17):

r+1 r
=ADD (8=t ) =AY (ti—s;) >1

[0 0]
, 22 4 5 4 I, ply;1 L1301 AL 4
IMEY| < e= [wlse® Y e D (e PP Py g F IR, (8.16)
r=1 Iy,..,1,

where given tWO partitions I, J - {1,...,4}, with I = % denoting the partition consisting of
singletons, p! )\’ - are integral operators with kernels given by

QyIVY, if|J] <3,
pLiv . —{ reVie fLI (8.17)

e T .
Q§ Ui, if|J| =3,
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where for a, b e (Z%)*,
2/e
Qii(b,a) = Lipra~gy Z e M Qgpn (b, a),
n=1
2/e (818)
Ug\,e(av b) = ]l{a,b~l} Z e_)\nUgg,gs)J(naa> b)v |I| =3,
n=0
Vg\,s(av b) = ]l{a,b~I}Vgg,gz:‘)’I(a¢ b)v |I| <3.

Here, given a = (aj)1<j<4 € (Z*)* and a partition I - {1,2,3,4}, with & Ly denoting k, 1
belonging to the same partition element in I,

Vi Ll af = al if |I] = 3,
a ~ I denotes the constraint ; (8.19)
VEAL jaf —al| <206, if |1 <2

We will denote (Z%)7 := {b € (Z*)* : b ~ I}. The main difference from (6.17) and (6.15)

is that the spatial constraint there are delta functions (see (6.7))), that is, a ~ I with M,

set to 0. Here we also have the additional operator Via(a, b) because we allow b # a. The

analogue of E[£F] are the moments of the coarse-grained disorder variables @g\c[ga) , which are
N J ’

now captured in V) . and U} ..

As in (6.18]), for a weight function w, : 7% > R, see (4.7)), we define the weighted operators

w® (b)
w®(a)

9\ (b,a) := Q17 (b,a),

and define Uie(a, b), \A/ia(a, b), and Isi‘! similarly. For p,q > 1 with % + % = 1, we can then
bound (8.16) via the following analogue of ((6.20)):

#,1

P = 5 plul
IMEY| < 2wl 20 ) \ 51 o P e P 820)
17 ’7 h
pr ul Alri# 194,84
H eq_)gq ME || ga_,p8 B, %e 0z 2)4T)7

where we still have (Z*)7 := {b € (Z*)* : b ~ I}, but the definition of the constraint
b ~ I has changed as in (8.19)). We still regard Q{\‘E](, -) and Pf\i‘;(-, -) as operators from
(Z%)5) — (Z%)7), and similarly for U . and V..

We choose A := Ae with \ large but fixed so that ¢ remains bounded. We have the
following analogue of Proposition where we again omitted (Z*)7 from | - | # (-



THE CRITICAL 2D STOCHASTIC HEAT FLOW 79

Proposition 8.2. For some ¢ uniformly in \ = % >0,c€(0,1), and I,J < {1,...,4}

with 1 < |I|,|J] <3 and I # J when |I| = |J| = 3, we have

H 0}/ g S CLgn=ig=3 + ML) 0g1<2y; (8.21)

101, < e T (Lgrsy + Lgnen M2); (8.22)

H ) oS e (Lqri=3y + Loy M2); (8.23)

HAﬁa,E PRV 10; for [I| = 3; (8.24)

e (10613 for 1T] < 2. (8.25)
gz)?

We now substitute these bounds into (8.20)) and note that when |I| = |J| = 3, each factor
HQ{\;}]qu—»f‘? can be controlled by HUg\m“K‘]—»zq’ and when |I| A |J| < 2, the powers of M, =

log log% from (8.21))-(8.23) can be controlled by H\A/§€H%2_%q|\\7§€|\%2_)q (set H\7§\,€qu—>fq =1
if |I| = 3). This leads to a convergent geometric series similar to (6.25]), which gives

; A 4 4
IMEE| < Cev | 2| [l wl gy (8.26)
w, e
for some C depending only on A. This proves Theorem O

To conclude this section, we sketch the proof of Proposition [8.2]

Proof of Proposition We will sketch how the proof of Proposition [6.6]can be adapted
to the current setting.
Proof of (8.21)). First note that it is equivalent to

®4

we (x
Y f@)eyl(z.y) @4( )
ze(22)} ye(@?)) we(y)

9(y) < c(Lqr=pgi=sy + MEL 1 01<sy) | v gl (8:27)

uniformly for all f € *((Z*)7) and g € ¢4((Z*)7). We split the region of summation into
A, = {|z — y| < Cy/+/2|} and AL. Note that the analogue of Lemma holds for Q, ..
Therefore following the same argument as in ([6.35)), the region A; gives the contribution

X4
Y @0 @) s ™ o)

w® (y)

2.4 2.4
ze(Z”)r,ye(Z7)
(m,y)eA

<cd( Y eV 1/’”( S gl 1a

xe(2%)],ye(Z°)5 xe(2%)],ye(Z)5
5 121l .
<Ce” P (Ayypzpg=ay + MoLggagi<sy) 1w gl (8.28)
< Olfle gl

where the spatial constraints in @ € (Z%)7 and y € (Z%)} (see (8.19)) led to the factor in the
bracket in the third line.
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In the region A_, the factor w®*(x)/w®*(y) is bounded. By the analogue of Lemma
for Q, ., it sufﬁces to show

) e +Zf(m)|i(y) XL < c(Lypopsjesy + MELgnas1<sy) 1w lgle  (8.29)
2.4 i=1

xe(Z7)7 7ye(

When |I| = |J] = 3, the proof is exactly the same as that of (6.27). When |I|,|J| < 3, we
can apply Holder to bound the Lh.s. of (8.29) by

< D f(x)” )1/P< Y 9(y)* )1/‘7
1 2.3 1 2.3
we(Z2): ye (72} (1+ Zi=1 |z, — v;]7) we(22)! ye(z?)t (1+ Zi=1 lz; — y;|7)
< CM| flpllgles- (8.30)

When |I] < 3 and |J| = 3 (the case |I| = 3 and |J| < 3 can be treated identically), we can
find k,1 € {1,2,3,4} that belong to the same partition element in I, but to different partition
elements in J; in particular, = € (Z?)7 implies |z;, — 2;| < 20M.. Fix any a € (0,1/q). W

can then apply Holder to bound the 1.h.s. of - 8.29)) by

x)’ 1 1/
5 f(@) | )"

3
2) (1+Zz 1|$ _yz| ) (1+|yk_yl|

ace(Z ) Jye(Z .
N 9(y)* NN CM | fllewlgles,
xe(Z°)],ye(Z?)5 i=1 1% — Yi

where in the first bracket, the sum over y is uniformly bounded by the same argument as
in the bound for , while in the second bracket, we can distinguish between two cases:
elther ]yk —y| < 4OM in which case we apply this bound and sum over x to get a bound of

Hg||£q or |y, —y;| > 40M, > 2|z}, — x|, in which case we apply the triangle inequality
|2k — yil + |z =y + lyr — vl
2 4

and follow the same argument as for (6.30]) to get a bound of M;l/quHeq7 where Mf/q comes
from summing over the redundant components of x after selecting one component of x for
each partition element of I. This concludes the proof of (8.21)).

Proof of (8.22)-(8.23)). Similar to (6.36)), we need to show

®1 .
S S >w§@4g§g<y><ca‘p(n{u.:3}+n{1|<3}M§>r|frupguq (8.31)

a:E(Z ) ,ye(Z )

|z — yi| + |2 — il =

uniformly in f € #((Z*?) and g € ¢9((Z**). Restricted to (z,y) € AS, we note that the
bound (8.28) can now be replaced by

3 8—2|1]

4
3_= _2 _ _1
O™ 7 (Lnanye @ + LgneayMe * 0 )Ifle gl < Ce™2 | Ll

Restricted to A, it suffices to bound the following analogue of ((6.38)):

f(x)g(y) )
< CeT7 (Lyppmsy + Lnesy ME) | flrllgles.  (8:32)
‘”Z (12 |xi—y¢’2)3 (L= + Ln<ay Me) 1 el

ee@h)l  yezh?
(x, y)EA
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When |I| = 3, this follows by exactly the same proof as that of (6.38)). When |I| < 2, the
estimate is simpler and we can apply the Holder inequality to bound the Lh.s. of (8.32)) by

1 1
< 5 /()" ) ' < 5 9(v)" ) e
4 2\ 3 4 2\ 3 : .
2e(@)} ye(@?) (1 + Zi:l |l’z - y2| ) we @ ye@?)t (1 + Zi:l |l’z — yz| ) (

(z,y)eA, (z,y)eA,

Since |I| < 2, the second factor can be bounded by CM2|g] 2. For the first factor, summing
over y gives

1 _
2 4 PNE] < C«S 1
y6(22)4 (1 + Zi:l |xl - y’L| )
ly—x|<Cq/+/E

uniformly in x € (ZQ)? Collecting all the bounds obtained so far then gives (8.31]).

Proof of (8.24). Assume w.l.o.g. that I + {1,2,3,4} consists of the partition elements
{1,2}, {3}, {4}. Recall from (8.18) and (8.12)) that for =,y € (Z2)}1,

2/e
)\58 7y Ze )xan oosnyl_xl Hg80n zayz
1=3,4
We then have the following analogues of (6.43)) and (6.44)):
2/e C
UL (e y)<4a e —den ol (n,z)
Z Aese ) Z Z * E log A
ye(Z*)] 27’
2/e C
Z U§ m y C‘a: y|\[ < C Z —Aen Z UCX)E Z)ec‘zh/g < -,
2, 0 log A
yE(Z 27>

both of which follows from Lemma by Fatou’s Lemma (recall U((;i) from (8.10))). The
rest of the proof is exactly the same as that of (6.24)).

Proof of (8.25)). Given a partition I - {1,2,3,4} with |I| < 2, recall the definition of \7§7E
from (8.18)). We need to show that
®4
wy (x c
S H @V (@, y)g(y) imi ; <
,yE(Z )I 8 y (1 g )

Hf”e””gueq (8.34)

uniformly for all f € (/((Z*)]) and g € ¢9((Z*)7). As before, we consider the sum of x,y
over A, = {|z — y| < Cy/+/2]} and A¢ separately and apply Holder’s inequality. The bound
(B-25) will follow if we show that uniformly in @ € (Z%)7,

C _ C
Z Vgg;gg’l(a:,y) < — and Z Végi)’l(a:,y)ec‘y eIVE < — (8.35)
2,4 (log =) 214 (log =)
ye(Z7); € ye(Z7)r €
These bounds hold because (8.13) and (8.11]) imply that

4

C Cly—

cg),l i T4

Vgo,gz-:) (wvy) < NE | | ]l{|yi*ffi\<Me}e v "
(log 2)* i=1

This concludes the proof of Proposition O
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9. PROOF OF THE MAIN RESULTS: THEOREMS [I.1] AND [1.2

9.1. PrROOF OoF THEOREM [1.1] We can rephrase Theorem as follows.

Theorem 9.1. Assume the same setup as in Theorem [I.1] Let k € N. For t=1,...,k,

assume 0 < s; < t; < 0, @; € C.(R?) has compact support, and v; € Cy(R?) is bounded.
Then the followz'ng convergence in distribution holds as N — o0:
9
(Z]%Ns R (902'7 %)) i=1,....k Ed (%,t(gpia 1/%)),517_”7;? ’ (91)
where Zf,Ns 4 = {§o(z) Z]%NS +(dz, dy).

We will prove Theorem by showing that the random vector in the Lh.s. of (9.1)
converges in distribution as N — o to a unique random limit. This in turn implies that

(Z]ﬁstt(d:U dy))o<s<t<oo converges to a unique limit, denoted 7" = (D@f (dz, dy))o<s<t<on-

The convergence of the one point distribution in Theorem [9.1] follows from the following
result. We will explain how this can be adapted to finite dimensional distributions in Remark

Proposition 9.2. Given ¢ € C.(R?) and ¢ € Cy(R?), let Zy(p,0) = Zﬁ%}l(go,z/)) =

§ () ZﬁN (dx,dy) be as in Theorem with N € 2N. Then Zy(p,1) converges in
dzstrzbutmn to a unique limit as N — 0.

Proof. Since

Blzw(e. 0l < v 3 el ()l =)~ | [ le@/vley v - adady,
x yEZ
it follows that E[|Zx (¢, 1)|] is uniformly bounded in N and hence (Zy(p, %)) yen is a tight
family and admits subsequential weak limits.
To show that the limit is unique, it then suffices to show that for every bounded f : R — R,
with uniformly bounded first three derivatives, the limit

Jim E[f(Zy (. 0))]

exists. To this end, we will show that (E[f(Zn(p,%))]) vey is a Cauchy sequence.
Theoremnallows us to approximate Zy (i, 1) by the coarse—grained model 28 (p,1]|©)
with coarse-grained disorder variables © = @( ) , with an L? error that is arbitrarily small,

uniformly in large N, if € > 0 is chosen sufﬁmently small. Therefore it only remains to show

lim lim  sup |E[f(Z{® (¢, v|05E)] - E[f(Z® (o, v|0\))]| = 0. 9.2)

EiO N—>OOmn>N

We will prove (| - 9.2) by applying the Lindeberg prineiple for multilinear polynomials of
dependent random variables formulated in Lemmas [A.2HA .4
Let us set ®(0) := 21 (,1|0), and note from its definition in ([A.8) that ®(©) is a

multilinear polynomial in the variables © := (O(i, a))( 3) where recall from ([4.5) that

€T’
T.o= {@3) = (1), (2,2)): I =7 —i+1< K, 4] =[a—a] < M/}

We write 0,, for the coarse-grained disorder variables G(Cg) = (G(Cg)(| a))(is) et.» S€e 4.11)).
These satisfy Assumption [A.1] with the following dependency neighborhoods:
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e for each z; := (?1, a;) € T,, its dependency neighbourhood is given by
A, = {22 = (iy, @) € T. : {in, io} N {i1, i1} # &,
dist({az}, {a1,31}) A dist({ab}, far, a1 }) < 201 ;
e given z; € T, and z, € A4, , the dependency neighbourhood of {z;,z,} is given by
Ay, = A, VA,

2122

Recalling the definition of T,, we see that, uniformly in € > 0 and ze T,
|4, < C M2 K. (MA/K.)* = C M2 KZ. (9.3)
In order to apply Lemma we first verify that condition (A.8]) is satisfied by ®(©).
Lemma 9.3. The multilinear polynomial ®(0) := %(Cg)(w,w(%) satisfies condition (A.8).
Proof. Condition reads as
Vz, €T, Vzoe A, , Vzze A, , = A, UA, : 07,,®=0forall 1 <i,j <3,

where 0, denotes derivative w.r.t. ©(z). Since ® is multilinear in (©(z)),er_, this condition
is equivalent to the claim that no term in the expansion of ® (recall its definition from )
contains more than one of the factors ©(z;), 1 < i < 3. From the definition of ®, clearly the
product ©(z;)0(z,) cannot appear because z; = ((iy,i1), (ay,a1)) and zy = ((ig, i5), (a2, a3))
have an overlapping time index. Similarly, if z3 € A, for either i = 1 or 2, then the factor
O(z;)O(z3) cannot appear. The last case is if z3 € A, , but z3 ¢ A, (the case z3 € 4,
z3 ¢ A,, is the same by symmetry, since z, € A, if and only if z; € A, ): let us show that
O(z1)O(z3) does not appear in ®(0). Both i; and iy have an overlapping time index with
iy, hence dist(iy,i3) < ih — iy = |iy] — 1 < K. — 1, which contradicts the constraint imposed

by .Zlinomple) in (4.4), that for ©(z,)O(z3) to appear, we must have dist(?l,%) > K,. This

verifies condition (A.8)). O
We can then apply Lemmas to bound

[EL/(@(0,))] - ELf (@O < /"™ + 1" + 1V + BV + ™ (9.4)

where Il(m) and Iém) are the terms from applying Lemma to h(-) = f(®(:)) and
X =0, see (A.4) and (A.5)), similarly for Il(n) and Ién), while Iém’n) is the term from
applying Lemma to two Gaussian families Z = 97(7? ) and Z = @,&G) with the same mean

and covariance structure as 0,,, and 0,,, respectively, but independent of them, see 1}
We are now ready to prove (9.2)) exploiting (9.4)). It suffices to prove that

lim lim sup Il(n) =0, lim lim sup Ién) =0, lim lim sup I?Em’n) =0, (9.5)

eld now el now el0 n,m—00

We will prove these relations separately, exploiting (A.9), (A.10) and (A.11) from Lemmal[A.4]
This will conclude the proof of Proposition [9.2}

fSince (©4(2))zer, are uncorrelated, (®$LG)(Z))ZQTE are in fact independent Gaussian random variables.
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Bound on hm supI By , we have

W”*W%WM@@” 3
z,€T 1 zle’]I‘E,ZQEAZl,Zg,eAZlZ2 1 (96)
71,2113 13 W22 313 W22 313
sup |6, @ (W2i) '] sup B[ |ay, @ (w22) '] swp B[, 0 (W) ]

where for s,t,u € [0, 1],

A A, ,\A Ay
WSZ,HZQ = SU\/genZI + U\/E@nﬁzz\ “ + \/%@nﬁzz + m@g})’ (97)

. A
with ©;,(2) 1= ©,,(2)1(ze4}-

First note that by the assumption ¢ € C,(R?) and the definition of the multilinear
polynomial <I>( ) ([.8), ®(©) depends only on O(z) for a finite set of z € T.. In particular,

the sum in is ﬁnlte, and we can pass limsup,,_,, inside the sum.
Note that || f”/HOO is bounded by assumption, and by (7.11)),

lim sup sup E[|@n(zl)|3] < limsup sup E[|@n(zl)|4]3/4 < ¢

n—o z€T, n—w0  z,€T, (IOg%)s/4

The sum in can be bounded by

2 *ZSUPEU@ (W, 5%’22)!4]3/4. (9.9)

21€T8,226A21,23€A212 i=15bu

(9.8)

Given z = (i,3) = ((i,1), (a,a")) € T., by the definition of ®(O) = Q@(Cg)(go,w\@) in (4.9),

2
0,8(0) = do) 24 (p,110) = = Zi ) (0. 15,)[0) 2% [ (1g (. 010),  (9.10)
where Qz[gﬁ) (¢, Ls_(a)3/©) denotes the centred coarse-grained model with initial condition ¢
at time 0 and terminal condition 1g_(,) at time i: this is just the original coarse-grained model
in (4.8) with time horizon i instead of |1/¢] and with the constant term % g 1 (¢, 1) omitted.
(We recall that S.(a) is a square of side length 4/c defined as in (5.35)).) The definition

of Qp[(cfi ]( ,M@) is similar, which is independent of ff[( ])(90’]1{35(3)”@)' Each of

S.(a)
%0(z) .ff}”g( e) ffté ]) and Qf[l(, 135] contains a factor of €/2 by the defintion of the coarse-grained
model in , which is W,hy there is a prefactor of 2/e in (9.10). We then have

E||ee (W) (9.11)

16 - 4
B[( 25 (15,0 0~ vEIWEE) |B[(Z9)_ (L0 0 — V2 W) ],

6 [0,1] s,Lu [0,1/e—i"] $,tu
where we interchanged initial and terminal conditions by symmetry and used translation
invariance and independence.

We can bound the two factors in the r.h.s. of (9.11) by applying slight variants of
Theorem which was formulated for the original coarse-grained model. Let us focus on
the first factor in the r.h.s. of (9.11)), for which we need to take into account two differences:
the time range [0, ] instead of [0, '] and the disorder W12 instead of ©,,.

s,tu
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The first difference is immaterial, because our moment estimate Theorem [8.1] is monotone
increasing in the time length i € [1, 51isee the argument leading to (8.4))). As a consequence,

we can apply the bound in Theorem [8.1| with w(z) = el to fgécig)(go, 1]©,,), which yields

B (28 (15,00 0~ vEIO) ] < 0 [P ol fut 5 _ ey

< cusou;*oe—d““f “Pelen

(9.12)

where C depends on the choice of p, ¢, but is uniform in i and a and in n sufficiently large,
while B, is a ball that contains the support of ¢.

The second difference is also immaterial, that is we can replace ©,, by WSZEZZQ in (9.12).
This is recorded in the following result, which we prove later.

Lemma 9.4. The bound (9.12)) also holds if ©,, is replaced by
and s,t,u € [0,1], and n large

5. o s uniformly inzy,zy € T,

Similarly, we can also bound the second factor in the r.h.s. 1) by

o (C z .z 4
B[(Z19), (s v~ vEIWEE) | < Ceb el < Clylber. (9.13)
Substituting these bounds into (9.11)) and then gives ( for n sufficiently large)

Z z 3/4 > — —2dis
2. ZsupE[)a W' < Clelblvler™ Y, e rERLE)

z1€T_, z EA s;t,u
1 2€4z, =1

ILSl

zq :(Tl ,37)€eT,, Z2€AZ1

z9€A zo€A
3572129 364225

3 3 8-5,:10.-6

< Clelsolvlzer "MK,
where we used the symmetry in the dependency structure between z,z,,235 (z5 € A, if and
only if z; € A,)) to reduce Zf’:l to the case i = 1, and in the last inequality, we first summed

< C’]\[;1 Ka2 from (9.3), then summed out
(i1,a}) in z; = ((iy,i}), (a1, a})) where the sum over ij gives another factor of K. and the

out zy,zg and applied the bounds [A, [,[A4,, |
sum over a) gives another factor of ME2 K_, and lastly we summed out (iy,a;), noting that
i, € {1,...,e '} while the sum over a; gives a factor O((y/2) ?) = O(¢ ') because of the
exponential decay on the scale (v/&) ' (we recall that ¢ has compact support).

We recall from that K, = (Iog%)6 and M. = loglog 1. Choose p > 1 sufficiently
close to 1 and substitute the above bound into and then , together with , we
then obtain that for any ¢ € (0, 1), there exists Cy such that

lim sup |I{n)\ < Cse.

n—0o0

This proves the first relation in ((9.5)).
Bound on hm supI By m,

1Y) < fnf”’uoo sup E[|0, ()] 3

z,€T
1 zle'H‘E,zQeAZl , deAzlz2

1 1 1
sup B[ |0, (W71 [*]* sup B[ o, @ (W) | swp B|o,, @ (0772) ]
t,u t,u tau
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AZ y4 A; Z
where W7 L% = un/t0, ™2 + /10,2 + /1 — 10l for t,u e [0, 1]. The bounds are exactly

the same as for |I7(Ll)\, which gives limsup,,_, ., \Iz(n)\ < Cs¢’ for any 6 € (0,1). This proves
the second relation in (9.5)).

Bound on limsup Iém’n). By (A.11)) and the fact that ©,, is a family of mean zero uncorre-

m,n— 00
lated random variables,

|I?£m’n)| < %Hf”Hoo Z (E[@i(z)] —E[@?n(z)]) SEéQ]EHaZ(D(Wt)F] (0.14)
zeT, t€l0,

where W, := \/EG;G) +4/1— t@fﬁ;) for ¢t € [0,1]. Note that by definition, ®(0) depends only
on a finite set of ©,, z € T,. Therefore the sum in (9.14)) contains finitely many terms. For
each ze T,

. 2 2 _
m’lqllrgoo (E[65(2)] —E[6;,(2)]) =0
. : 2
by Lemma On the other hand, uniformly in ¢ € [0,1], E[|0,®(W;)|"] converges to a
finite limit as m,n — oo because 0,®(W;) is a multilinear polynomial in W;(z) for finitely

many z € T, while its second moment is a multilinear polynomial of E[W?(z)], z € T.,

each of which converges by Lemma |7.1} It follows that lim sup,,, ,, . |1, ém’n)| = 0, which is
stronger than the third relation in (9.5))

Conclusion. Assuming Lemma , we have proved (9.5). This implies (9.2) and finally
completes the proof of Proposition [9.2] O

Remark 9.5 (Extension to finite-dimensional distribution). Finally, to prove the
finite-dimensional distribution convergence in Theorem we argue as in the proof of
Proposition . First we approximate the components ZNS_ + (©i,9;) of the random vector

in the L.h.s. of (9.1)) by coarse-grained models (8 (04, 14|©), with the same coarse-grained

Evsivti
disorder variables © = @S\C,ga), which we can do with a small L* error, uniformly in large N,

provided we choose € > 0 small enough, by Theorem [].7]

It remains to apply a Lindeberg principle for a vector of multilinear polynomials, which
is given in Remark [A-5 The estimates needed are exactly the same as in the Lindeberg
principle for a single multilinear polynomial. This concludes the proof of Theorem [9.1]

Proof of Lemma [9.4l. We re-examine the proof of Theorem First note that, similar
to the L orthogonal decomposition of ©,,(i,a) with [i| > 1 as in (8.5)), we can write

—

Wi (,d) = > W2 (a,b), (b',a"), (9.15)
b: [b—a|<M,,b": |b'—a'|< M,

Ib'—bl<M./[i]
where WZL22(i, (a,b), (b',a’)) are defined through the same mixture as in between

s,tau
0,(, (a,b), (b',a")) and e!¢) (i, (a,b), (b',a’)), with the latter being independent normals
with mean 0 and the same variance as ©,,(i, (a, b), (b',a’)). We can then carry out the same
expansion as for , and note that: whenever a product of coarse-grained disorder variables
0,, has zero expectation because of the presence of some ©,,(i,a) with either (i,a) or (i’,a’)

unmatched by any other ©,, in the product, the same is true if the family ©,, is replaced by
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WSZ%ZZ, similarly, whenever two collections of ©,, variables are independent of each other, the

same is true if ©,, is replaced by VVSZ %ff This implies that the expansion and re-summation

carried out for the r.h.s. of (8.4), as well as the accompanying constraints on summation
indices, also apply when ©,, is replaced by W>12?

s,t,u

Next we claim that, for WZ122((iy,is), (a1, b1), (2, by)) that visits two distinct blocks

it
7,,Z, (see the exposition leading to ), although we no longer have a chaos expansion
representation as in due to the Gaussian component of VVSZ 12, we can still make a

replacement similar to (8.8)) in order to bound the r.h.s. of (8.4), with ©,, replaced by W22

s,t,u
WsZ,HZQ((ilv i2)7 (alv bl)v (32’ b2))

< , . Zo /e
o CWIYTE (521, b1) giog,—iy) (a2 — br) Wi (ia; 20, by).

(9.16)

To see this, note that WSZ ;ZQ is a mixture of ©,, and @;G) with mixture coefficients given in

(9.7). When we expand the r.h.s. of (8.4) with W22 in place of @S\C,ge) , we can further expand

s,tu
WZL*2 in terms of its mixture. Each term in the expansion then consists of a product of ©,,

s,tu
variables and @%G) variables, whose expectation factorises due to the independence between

0,, and @%G). For terms that contain the factor ©,,((iy,is), (a1, b;), (ag, by)), the decomposi-
tion applies, and the same argument justifying the replacement ({8.8)) can be applied
here. For terms that contain the Gaussian factor @%G)((il, i), (a1, by), (ag, by)), the expecta-
tion will be non-zero only if this factor appears exactly twice or four times. The resulting
contribution will be either the second or the fourth moment of @;G)((il, ia), (a1, b1), (ag, by)).
Its second moment coincide with that of ©,,((iq,i3), (a1, by), (ag, by)), while its fourth moment
can be bounded in terms of its second moment by Gaussianity. Then as in (8.8)), we make
the following replacement in the expansion:
Q) - < G) /- G) /-

@q(v, )(('17 i2), (a1, b1), (ag, by)) o C@% )('1§a17 by) 910(i5—iy) (ag—by) ®£L )('23 ag, by). (9.17)
Therefore in the mixture of WZ}72((iy,i2), (a1, by), (ag, ba)) (recall (9.7)), we can replace the
0,, and @%G) components each by its factorisation as in (9.17). The mixture coefficient of the
term CO,,(iy;a1,b1)g10(i,—i,) (a2 — b1)©Oy,(ig; a9, by) is equal to ay/t with either o = su, u or
1, while the mixture coefficient of the term C@,&G)(il; ai, b1)g106,—i,) (a2 — bl)@gG)(iZ; ag, by)
equals /1 —t. This mixture can be further replaced by the r.h.s. of (9.16)), which just
contains extra terms and larger coefficients, where the choice of s =u=1and t =1/2 in

the first factor W1Z,117/222,1(i15 a;, by) helps to bound the mixture coefficients.

The remaining parts of the proof of Theorem [8.1] depends on the coarse-grained disorder

variables ©,, = 6&%) only through their second and fourth moments. Note that uniformly

in s,t,u € [0,1] and z;,zy, the second moment of Wﬁff is bounded by that of ©,,, and

modulo a constant multiple, the fourth moment of W12 can be bounded by that of ©,,.

Therefore the remaining parts of the proof of Theorem |§j| carries through without change if
©,, is replaced by W21?2. In particular, the bound on U 1(\;:? in (8.10) still holds since it only

s,tu
depends on the second moment of ©,,, and the bound on V]E,ff) in (8.11)) still holds because
it only depends on the fourth moment of ©,,. O

9.2. PROOF OF THEOREM |_L_2| The translation invariance of the law of 2 is obvious.
To prove the scaling relation ([1.12]), let us write Sy (19) to emphasize that 8y as specified
in (1.11)) depends on a parameter . Given a > 0, let N = N/a. Then using (1.11) and the
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fact that Ry = 2 (log N + o + o(1)) given later in (3.2)), we have

9 1 < 19+0(1)> 1 < ﬁ—loga—i—o(l))
S TP i R - , 9.18
oN Ry log N Ry log N ( )

so that Sy (9) = By (¥ log a), or equivalently, Sy (¥ + loga) = B (7).
By. for ¢, weC( ),Wehave

| e(G)u(de)ziianan — [ o(F=)u(Le) Zhatar.an
- || e 2L atdtvan). aa)

On the other hand, recall m, we can rewrite the Lh.s. of (9.19)) as

NJJ ) [[Nas]] [[Nat]] [[\Fx]] [[\/721]] )dz dy
N 22 Z[flz\i:s])] [[Nat]](x 0) f ‘P(\/Z—N>du f ID(ZN)dv

(9.19)

i‘vgezeven "U, 2|1<1 ‘U*?ﬂlél
B ﬁN J+loga), ~ ~ < U ) f < v )
= z, — |du — |dv
N Z ZiNsping (&) f \UN AW
7, §€Laven lu—2]; <1 lv—g], <1

where we again applied (9.1] . Combined with - this implies ({1
The first and second moments of 2V can be identified from the hmlts in (3.53)) and (|3.54] -,

since for ¢ € C,(R?) and ¢ € Cy(R?), the averaged partition function ZNt_s(cp, 1Y) has a
finite fourth moment that is uniformly bounded in N, see Theorem [6.1]

APPENDIX A. ENHANCED LINDEBERG PRINCIPLE

In this appendix, we prove a Lindeberg principle for multilinear polynomials of dependent
random variables with a local form of dependence. This extends |[Rol13|, which requires
the function to have bounded first three derivatives and is not applicable to multilinear
polynomials, and it extends [MOO10], which considers multilinear polynomials of independent
random variables. We first introduce the necessary setup. Let T be a finite index set.
Assumption A.1 (Local dependence). Let X = (X;);cr be random variables satisfying:

o for every k € T there is Ay T such that X}, is independent of (X;);e 4 ;
o forallkeT, le Ay there is Ay < T such that (Xy, X;) is independent of (X;)ec o¢,-

The sets (Ay)ger and (Agy)ker jea,, will be called dependency neighbourhoods of X = (X;);er-

Let Z = (Z;)ier ~ N(0,0.) be a Gaussian vector independent of X, but with the same
covariance matrix as X. For u,t € [0,1], k € T and [ € A, we define

Wtklf = uV/EX M 4 XA V1i—tz, (A1)
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where for any subset of indices B € T we write
X7 = XiLjep . (A.2)
For s,u,t € [0,1], k€ T and [ € A, we define

WEL = suVIX A 4 un/ex A e 4 ix Al 4 T =17, (A.3)

We have the following Lindeberg type result, which controls the distributional distance
between X and Z through smooth test functions.

Lemma A.2 (Lindeberg principle for dependent random variables). Let X, Z,
th?q’j and Ws’f’tl’u be defined as above. Let h : R R be bounded and thrice differentiable.
Then

BIL(X)] - E[A(Z)] = I, + Iy

where

1
Il = 2] 5 Z E|:Xk Xl Xm(S]l{meAk} +]l{m€AM\Ak})\/iai’lmh(W;f;{u)] dsdtdu,
[0.1]" keT, 1e Ay, me Ay,
(A.4)
! f D S E[Xm Vi a,ilmh(wt’f;f)]dt du, (A.5)

2 [0,1] keT,leAy, meAy;

IQZ

assuming that the integrals and expectations above are all finite.

To control the distributional distance between X and another random vector X = ()N(i)ier[
with slightly perturbed covariance matrix (6;;); jer and dependency neighbourhoods Ay, Ay,

we will apply Lemma to X and X separately, plus the following result that compares
two Gaussian vectors.

Lemma A.3. Let Z = (Z;);er ~ N(0,0.) and Z = (Z;);ex ~ N(0,5.) be centred Gaussian
random vectors with covariance matrices (0,); jer and (G;;); jer respectively. Let h : RT S R
be bounded and twice differentiable. Denote W, := ViZ + V1 —tZ. Then we have

1

- 1
BMZ)] ~ B2 = Ty = 5 ¥ (Gu =) | B[dROV)Jee (4
k,leT

assuming that the integrals and expectations above are all finite.

We now specialise Lemmas and to our case of interest, where h is a function of a
multi-linear polynomial ®(X).

Lemma A.4. Assume that h(X) := f(®(X)) for some bounded f : R — R with bounded
first three derivatives, and

o(X) =D e [ X (A7)

ICT el

for some fized coefficients c; € R. Furthermore, assume that

VEkeT,le Ay, me Ay,  0pp®=01y®=0g®=0. (A.8)
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Then for I, Iy and I35 as in (A.4), (A.5) and (A.6), we have

1 3
< 1" Losw Bl XS] Y
keT

kET leAk, meAkl

ol

supE[‘&k ( Sktlu)|3] SltlpE[|(?l ( sktluﬂd] supE[’@ @(Wstu)‘g]é, (A.9)

s,tau

1
15| < in”/HooSUPEHXH | >
keT

kET, leAk, meAkl

ol

1 1
supE[}&k (W, kul)‘?’]gstupE[‘&lq)(Wf;f)P]SsglpE[‘ﬁm@(Wt’fj)‘?)] ,  (A.10)

[SIE
[NIE

B < 31k Y @G- o) supE[ @07’

SupE[(@li’(Wt))Q] . (A.11)
keT,leAy t

Remark A.5. We can extend Lemma to the vector setting, i.e. for a function h(X) =

f(<I>(1)(X), el (X)) of a finite number k of multi-linear polynomials 3™ (X) as in (A7),

each satisfying , where f : R¥ > R has bounded partial derivatives of order up to three.

The bounds (A.9)-(A10) are simply modified replacing | f" | by maxi; 1<k [0 1f]00 and

the three occurrences of ® by @(i), <I>(j), @(D) and then summing over 1 < 1,7j,1 < k; similar

modifications apply to the bound . The adaptation of the proof is straightforward.
We now give the proofs of Lemmas [A-2HA™]]

Proof of Lemma [A2l Let Y, := vtX ++/1—tZ, t€[0,1]. Then we can write

td
BIACY)] ~ E[(Z)) = | GEIn)]a
1
=3

f LE Y- % Ak i

keT

Given C' < T, let us denote
o= VXY +V1-tZ,  where  X{ =X, 1yee.

In particular, ¥; = U}, Observe that E[X,, 6,h(U{"*)] = E[X,]E[0.h(U{**)] = 0 by inde-
pendence. We recall Gaussian integration by parts: for smooth functions ¢,

E[Zy0(Z)] = Y o Blae(2)] = ). o Eldp(2)],
leT leAy

since o, = 0 for [ ¢ Aj. Then

1
B[] - EIZ)] = 5 [ B| 3 TE @) - @) % o dhn(wd)]ar.

keT \[ keT,leAy
Let us expand the first term. We can interpolate between UtT and UtA ¥ by

UtAz + sVEX A for s e [0,1].
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Then
14
(V) = () = | Ui+ svVix ) as
Vi ZXAk 4 (UM + svEX ) ds
0 jeT
Note that we can restrict the sum to [ € A; because X lA ¥ = 0 otherwise. This leads to

I 2 A A
E[h(X)] — E[h(Z)] = QL L E{ D X Xy oph (U + sViX )

keT,leAy

- D> ow ailh(UF)]ds dt .
keT,leA,

Note that E[X;, X, 65h(U{*)] = E[X, X,JE[64h(U/*)] = onE[63h(U{*)] by the
independence assumption. By adding and subtracting this term, we get
E[r(X)] - E[r(Z)] = I, + I

where

1 pr1 c
I = ;f f E{ > XXy (R (U 4 svix ) - aklh(UAkl)>] dsdt
0J0 keT, le Ay,

L= ff LTZA l(&ilh(UtAZl) o2 h(U, ))}dsdt

_ ;L E{ N oo <6klh(UtA“) —8£lh(UtT)>}dt,

keT,leAy

where we performed the integration on s in Iy (whose integrand does not depend on s).
Let us deal with I;. Note that

UM 4 sVIX M = sVIX M+ VIXM 4 V1= 1Z and UMP = ViXM 4 yT—12.
We can therefore interpolate between UtA " and UtA F g osy/EX by

W

s,t,u

= UtAzl +uVt(s XM+ XA“\A’“) , ue[0,1].

Note that (sX“ + XA“\A’“)m = 0 for m ¢ A;;. We can then write
c . 1
uh (U + svVixX ™) — ayh(U™) = fo 3 b (W,) du

= \[J m (8L mea ) + Limea, \a,}) Onimh (Wsktlu) du.

meAkl

This yields the final form of I;:

1
I = 2J , E[ Y X Xy X (5 meayy + Limeaagy) VEOiumh (Wstu)] ds dt du.
[0,1] keT, leA,,, meAy,
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Let us now deal with I,. We can interpolate between UtA“ and UtT by

thf;f = UtAz’ +uEX AR we[0,1].
Then
1
c d
duh (U™ — o n(Uf) = —J 3 (W) du = —\ff X Opimh (WD) du.
0 meAy,
This yields the final form of I5:
1
_[2 = —2J‘ 2]E|: Z O'lem\/ia]%lmh(Wt]f{f)]dtdu
[0,1] keT, leA,,, meBy,
This concludes the proof of Lemma [A22] O

Proof of Lemma A3l Let W, := /tZ + /1 —tZ, t € [0,1]. Using Gaussian integration
by parts as in the proof of Lemma[A-2] we have

EW(2)] - EIh2)] - | ey ar

o dt
1J1 { 7, Z,, ]
= — E — 0 h(W,) — ——— 0 h(W,) |dt
2 0 ];E\/% k ( t) ;Tm k ( t)

1 5 Lory
=35 (Ukz—%z)J E[aklh(Wt)]dta
0

which proves the lemma. O

Proof of Lemma [A.4l We can easily compute
dh(a) = [ (®(2)) 04 P(2),
Guh(x) = f"(2(x)) o4 () O(z) + f(D(x)) G ®(x),
QRamh(@) = f"(®(x ) ®(z) 0, () 0, ()
+ (@ {a,m ) () + 07y ®(x) 0, (2) + Oy ®@(2) 0, () }
+ f(® (x))aklm (@)
which by assumption (A.8]), gives
Oermh() = " (®(x)) 0P (x) 8,P(x) 0, (). (A.12)
We can then substitute this into to bound

B[ X0 X X, (1= 51 ) Ve h (WD)
<171 (B[ a0 (w2 B[ X a0 (v B[ X000 ¢(Wstu>\g]>l/g

<1771 suplll’) (el (2L o v, v )

where we used the fact that 0,®(...) is independent of X}, since assumption ({A.8)) implies
that 0, ®(...) does not depend on (X,;,)mea,,- This immediately implies (A.9).
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The proof of ([A.10) is the same if in ([A.5)), we write oy, = E[X,,X;] for (X}, X;) with the
same distribution as (X, X;) but independent of X . The proof of (A.11) is even simpler. [

ACKNOWLEDGEMENTS

We especially thank Te LI for showing us how Hardy-Littlewood-Sobolev type inequalities
can be proved without using Fourier transform. R.S. is supported by NUS grant R-146-000-
288-114. N.Z. is supported by EPRSC through grant EP/R024456/1.

[AKQ14a]
[AKQ14b]

[AFH 92|

[AGH+05]

[Ba21]
[Bog9]

[BCOS|
[BC20a]
[BC20b)
[BL17]
[CES21]
[CET20a
[CET20b]
[CET21]
[CSZ16]
[CSZ17a]
[CSZ17b]
[CSZ19a]
[CSZ19b]
[CSZ20]
[CSZ22]
[CHO2|

[Cha06]

REFERENCES

T. Alberts, K. Khanin, J. Quastel. The intermediate disorder regime for directed polymers in
dimension 1 + 1. Ann. Probab. 42, 1212-1256, 2014.

T. Alberts, K. Khanin, J. Quastel. The continuum directed random polymer. J. Stat. Phys. 154,
305-326, 2014.

S. Albeverio, J.E. Fenstad, R. Hoegh-Krohn, W. Karwowski, T. Lindstrom. Schrédinger operators
with potentials supported by null sets. Ideas and methods in quantum and statistical physics,
63-95, Cambridge Univeristy Press, 1992.

S. Albeverio, F. Gesztesy, R. Hoegh-Krohn, H. Holden. Solvable models in quantum mechanics.
AMS Chelsea Publishing, 2005.

E. Bates. Full-path localization of directed polymers. Electron. J. Probab. 26, 1-24, 2021.

E. Bolthausen. A note on the diffusion of directed polymers in a random environment. Comm.
Math. Phys. 123, 529-534, 1989.

L. Bertini, N. Cancrini. The two-dimensional stochastic heat equation: renormalizing a multi-
plicative noise. J. Phys. A: Math. Gen. 31, 615, 1998.

E. Bates, S. Chatterjee. The endpoint distribution of directed polymers. Ann. Probab. 48, 817-871,
2020.

E. Bates, S. Chatterjee. Localization in Gaussian disordered systems at low temperature. Ann.
Probab. 48, 2755-2806, 2020.

Q. Berger, H. Lacoin. The high-temperature behavior for the directed polymer in dimension
1+ 2. Ann. Institut Henri Poincaré, Prob. et Statistiques 53, 430-450, 2017.

G. Cannizzaro, D. Erhard, P. Schénbauer. 2D anisotropic KPZ at stationarity: Scaling, tightness
and nontriviality. Ann. Prob. 49, 122-156, 2021.

G. Cannizzaro, D. Erhard, F.L. Toninelli. Logarithmic superdiffusivity of the 2—dimensional
anisotropic KPZ equation. ArXiv:2009.12934, 2020.

G. Cannizzaro, D. Erhard, F.L. Toninelli. The stationary AKPZ equation: logarithmic superdif-
fusivity. ArXiv:2007.12203, 2020.

G. Cannizzaro, D. Erhard, F.L. Toninelli. Weak coupling limit of the Anisotropic KPZ equation.
ArXiv:2108.09046, 2021.

F. Caravenna, R. Sun, N. Zygouras. The continuum disordered pinning model. Probab. Theory
Related Fields 164, 17-59, 2016.

F. Caravenna, R. Sun, N. Zygouras. Polynomial chaos and scaling limits of disordered systems.
J. Eur. Math. Soc. 19, 1-65, 2017.

F. Caravenna, R. Sun, N. Zygouras. Universality in marginally relevant disordered systems. Ann.
Appl. Probab. 27, 3050-3112, 2017.

F. Caravenna, R. Sun, N. Zygouras. The Dickman subordinator, renewal theorems, and disordered
systems. Electron. J. Probab. 24, paper no. 101, 2019.

F. Caravenna, R. Sun, N. Zygouras. On the moments of the (2+41)-dimensional directed polymer
and stochastic heat equation in the critical window. Commun. Math. Phys. 372, 385-440, 2019.
F. Caravenna, R. Sun, N. Zygouras. The two-dimensional KPZ equation in the entire subcritical
regime. Ann. Prob. 48, 1086-1127, 2020.

F. Caravenna, R. Sun, N. Zygouras. The critical 2d Stochastic Heat Flow is not a Gaussian
Multiplicative Chaos. ArXiv:2206.08766, 2022.

P. Carmona, Y. Hu, On the partition function of a directed polymer in a Gaussian random
environment. Prob. Th. Rel. Fields, 124(3), 431-457, (2002).

S. Chatterjee. A generalization of the Lindeberg principle. Ann. Probab. 34, 2061-2076, 2006.



94

[Cha19]
[CD20]
[Che21]
[Cla19b]
[Cla21]
[Cla22]
[Com17]
[COM20]
[CSYO03]
[CYO06]
[Cor12]
[Cor16]

[CH16]
[CN21]

[CNN22]

[DFT94]
[DRO4]
[DGRZ20|
[ET60]
[F16]
[Ga21]

[GaSt12]

[GaSu09]
[Gil1]
[GLT10]
[GJ14]

[Gu20]

F. CARAVENNA, R. SUN, AND N. ZYGOURAS

S. Chatterjee. Proof of the path localization conjecture for directed polymers. Comm. Math.
Phys. 370, 703-717, 2019.

S. Chatterjee, A. Dunlap. Constructing a solution of the (2 + 1)-dimensional KPZ equation. Ann.
Prob. 48, 1014-1055, 2020.

Y.-T. Chen. The critical 2D delta-Bose gas as mixed-order asymptotics of planar Brownian
motion. arXiv:2105.05154, 2021.

J.T. Clark. The conditional Gaussian multiplicative chaos structure underlying a critical contin-
uum random polymer model on a diamond fractal. ArXiv:1908.08192, 2019.

J. T. Clark. Weak-disorder limit at criticality for directed polymers on hierarchical graphs.
Comm. Math. Phys. 386, 651-710, 2021.

J.T. Clark. Continuum models of directed polymers on disordered diamond fractals in the critical
case. Ann. Appl. Prob. 32, 4186-4250, 2022.

F. Comets. Directed Polymers in Random Environments. Lecture Notes in Mathematics, 2175.
Springer, Cham, 2017.

F. Comets, C. Cosco, C.Mukherjee. Renormalizing the Kardar-Parisi-Zhang Equation in d > 3
in weak disorder. J. Stat. Physics 179, 713-728, 2020.

F. Comets, T. Shiga, N. Yoshida, Directed polymers in a random environment: path localization
and strong disorder. Bernoulli 9, 705-723, 2003.

F. Comets, N. Yoshida. Directed polymers in random environment are diffusive at weak disorder.
Ann. Probab. 34, 1746-1770, 2006.

I. Corwin. The Kardar-Parisi-Zhang equation and universality class. Random Matrices Theory
Appl. 1, 1130001, 2012.

I. Corwin. Kardar-Parisi-Zhang universality. Notices of the AMS 63, 230-239, 2016.

I. Corwin, A. Hammond. KPZ Line Ensemble. Probab. Theory Relat. Fields 166, 67-185, 2016.
C. Cosco, S. Nakajima. Gaussian fluctuations for the directed polymer partition function in
dimension d > 3 and in the whole L2—region. Ann. Inst. H. Poincaré Prob. Stat. 57, 872-889,
2021.

C. Cosco, S. Nakajima, M. Nakashima. Law of large numbers and fluctuations in the sub-critical
and L* regions for SHE and KPZ equation in dimension d > 3. Stochastic Process. Appl. 151,
127-173, 2022.

G. F. Dell’Antonio, R. Figari, A. Teta. Hamiltonians for systems of N particles interacting
through point interactions. Ann. Inst. H. Poincaré Phys. Théor. 60, 253-290, 1994.

J. Dimock, S. Rajeev. Multi-particle Schrédinger operators with point interactions in the plane.
J. Phys. A: Math. Gen. 37(39):9157, 2004.

A. Dunlap, Y. Gu, L. Ryzhik, O. Zeitouni. Fluctuations of the solutions to the KPZ equation in
dimensions three and higher. Probab. Th. Rel. Fields 176, 1217-1258, 2020.

P. Erdés, S. J. Taylor. Some problems concerning the structure of random walk paths. Acta
Math. Acad. Sci. Hungar. 11, 137-162, 1960.

Z. S. Feng. Rescaled Directed Random Polymer in Random Environment in Dimension 1+2. Ph.D.
thesis, Ann Arbor, MI, 2016. Available at https://www.proquest.com/docview/1820736587.
S. Gabriel. Central limit theorems for the (2+1)-dimensional directed polymer in the weak
disorder limit. ArXiv:2104.07755, 2021.

C. Garban, J. Steif. Lectures on noise sensitivity and percolation. Proceedings of the Clay
Mathematics Institute Summer School (Buzios, Brazil), Clay Mathematics Proceedings 15,
49-154, 2012.

J. Gartner, R. Sun. A quenched limit theorem for the local time of random walks on 72. Stochastic
Process. Appl. 119 , 1198-1215, 2009.

G. Giacomin. Disorder and critical phenomena through basic probability models. Lecture Notes
in Mathematics, 2025, Springer, Heidelberg, 2011.

G. Giacomin, H. Lacoin, F.L. Toninelli. Marginal relevance of disorder for pinning models. Comm.
Pure Appl. Math 63, 233-265, 2010.

P. Goncalves, M. Jara, Nonlinear fluctuations of weakly asymmetric interacting particle systems.
Arch. Ration. Mech. Anal. 212, 597-644, 2014.

Y. Gu. Gaussian fluctuations from the 2D KPZ equation. Stoch. Partial Differ. Equ. Anal.
Comput. 8, 150-185, 2020.


https://www.proquest.com/docview/1820736587

[GQT21]
[GRZ18
[GIP15)
[GP17]
[H13]
[H14]
[HH12|
[HH13)|
[HHS5]
[1S88]
[Joo]

[Kal97]
[Koz07]

[Kup14]
[L10]

[LaLil0]
[LiLo01]

[LZ22]
[MU18]
[MOO10]
[MSZ16]
[N19]
[Qs15]
[Rajoo]
[Rol13)]

[Rot79]
[V07]

THE CRITICAL 2D STOCHASTIC HEAT FLOW 95

Y. Gu, J. Quastel, L.-C. Tsai. Moments of the 2D SHE at criticality. Prob. Math. Phys. 2,
179-219, 2021.

Y. Gu, L. Ryzhik, O. Zeitouni. The Edwards-Wilkinson limit of the random heat equation in
dimensions three and higher. Comm. Math. Phys. 363, 351-388, 2018.

M. Gubinelli, P. Imkeller, N. Perkowski. Paracontrolled distributions and singular PDEs. Forum
Math. Pi 3, e6, 2015.

M. Gubinelli, N. Perkowski. KPZ reloaded. Comm. Math.Phys. 349, 165-269, 2017.

M. Hairer. Solving the KPZ equation. Ann. of Math. 178, 559-664, 2013.

M. Hairer. A theory of regularity structures. Inventiones Math. 198, 269-504, 2014.

T. Halpin-Healy. (2 + 1)-dimensional directed polymer in a random medium: scaling phenomena
and universal distributions. Phys. Rev. Lett. 109, 170602, 2012.

T. Halpin-Healy. Extremal paths, the stochastic heat equation, and the three-dimensional
Kardar-Parisi-Zhang universality class. Physical Review E 88, 042118, 2013.

D.A. Huse, C.L. Henley. Pinning and roughening of domain walls in Ising systems due to random
impurities. Phys. Rev. Lett. 54, 2708-2711, 1985.

J. Z. Imbrie, T. Spencer. Diffusion of directed polymers in a random environment. J. Stat.
Physics 52, 609-626, 1988.

K. Johansson. Transversal fluctuations for increasing subsequences on the plane. Probab. Theory
Related Fields 116, 445-456, 2000.

O. Kallenberg. Foundations of modern probability. Springer, 1997.

G. Kozma. The scaling limit of loop-erased random walk in three dimensions. Acta Math. 199,
29-152, 2007.

A. Kupiainen. Renormalization Group and Stochastic PDEs. Ann. H. Poincaré 17, 497-535,
2016.

H. Lacoin. New bounds for the free energy of directed polymers in dimension 1+ 1 and 1 + 2.
Comm. Math. Physics 294, 471-503, 2010.

G.F. Lawler, V. Limic. Random walk: a modern introduction. Cambridge University Press, 2010.
E.H. Lieb, M. Loss. Analysis, 2nd ed. Graduate Studies in Mathematics 14, American Mathe-
matical Society, 2001.

D. Lygkonis, N. Zygouras. Edwards-Wilkinson fluctuations for the directed polymer in the full
L2—regime for dimensions d = 3. Ann. Inst. Henri Poincaré Probab. Stat. 58, 65-104, 2022.

J. Magnen, J. Unterberger. The scaling limit of the KPZ equation in space dimension 3 and
higher. J. Stat. Physics 171, 543-598, 2018.

E. Mossel, R. O’Donnell, K. Oleszkiewicz. Noise stability of functions with low influences:
Invariance and optimality. Ann. Math. 171, 295-341, 2010.

C. Mukherjee, A. Shamov, O. Zeitouni. Weak and strong disorder for the stochastic heat equation
and continuous directed polymers in d > 3. Electron. Comm. Prob. 21, 1-12, 2016.

M. Nakashima. Free energy of directed polymers in random environment in 1 + 1-dimension at
high temperature. FElectron. J. Probab. 24, 1-43, 2019.

J. Quastel, H. Spohn. The One-dimensional KPZ equation and tts universality class. J. Stat.
Physics 160, 965-984, 2015.

S. G. Rajeev, A condensation of interacting Bosons in two dimensional space, arXiv preprint
hep-th/9905120, (1999).

A. Rollin. Stein’s method in high dimensions with applications. Ann. Inst. Henri Poincaré
Probab. Stat. 49, 529-549, 2013.

V.I. Rotar. Limit theorems for polylinear forms. J. Multivariate Anal. 9, 511-530, 1979.

V. Vargas. Strong localization and macroscopic atoms for directed polymers. Probab. Theory
Related Fields 138, 391-410, 2007.



96 F. CARAVENNA, R. SUN, AND N. ZYGOURAS

DIPARTIMENTO DI MATEMATICA E APPLICAZIONI, UNIVERSITA DEGLI STUDI DI MILANO-BICcOCCA, VIA
Cozzi 55, 20125 MiLANO, ITALY
E-mail address: francesco.caravenna@unimib.it

DEPARTMENT OF MATHEMATICS, NATIONAL UNIVERSITY OF SINGAPORE, 10 LOWER KENT RIDGE
RoaD, 119076 SINGAPORE
E-mail address: matsr@nus.edu.sg

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF WARWICK, COVENTRY CV4 7TAL, UK
E-mail address: N.Zygouras@warwick.ac.uk



	1. Introduction and main results
	2. Proof outline
	3. Notation and tools
	4. Coarse-graining
	5. Second moment bounds for averaged partition functions
	6. Higher moment bounds for averaged partition functions
	7. Moment estimates for coarse-grained disorder
	8. Moment estimates for the coarse-grained model
	9. Proof of the main results: Theorems 1.1 and 1.2
	Appendix A. Enhanced Lindeberg principle
	Acknowledgements
	References

