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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
zoom=1.30
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
zoom= 3.00
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
zoom= 4.00
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
zoom= 6.00
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
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SHF for N = 5e+04, hb2 = 1 i.e. theta = 0 (r0 = 3, range = 0)
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