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The Stochastic Heat Equation multiplicative
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WHITE NOISE
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SINGULARITY

SHE and KPZ are ill defined due to singularproducts

te Ult hit 2

It x is a distribution no Ultixt and hitxp expectedto be

non smooth functions d 1

genuine distributions d 2

Wemainly focus on SHE



THE ROLE OF DIMENSION
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DISCRETIZED White Noise alternativeto mollification or
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Discreteapproximation via i id random variables
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REGULAR ZING SHE VIA DISCRETIZATION

We fix d 2 and restrict to the lattice
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CONVERGENCE

Can we hope that Unit.tl ma Uta nontrivial limit
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β
Why do we rescale β prua
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DIRECTED POLYMER IN RANDOM ENVIRONMENT
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FEYNMAN KAC FORMULA
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SCALING LIMITS OF PARTITION FUNCTIONS

Henceforth we fix tes and we focus on partition functions
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SECOND MOMENT PHASE TRANSITION
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I TOOLS PROOFS
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KEY COMPUTATIONS
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Proof of THEOREM 1 VARIANCE COMPUTATION

Polynomial chaos terms ofdifferentdegrees orthogonal in
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KEY SUB CRITICAL OBSERVATIONS

EXPONENTIAL TIME SCALES NO VS TN
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SUB CRITICAL

RESULTS



SUB CRITICAL REGIME

There is a phasetransition for β III with criticalvalue f 1
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LOG NORMALITY
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EDWARDS WILKINSON FLUCTUATIONS FOR Z
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