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The Stochastic Heat Equation multiplicative
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WHITE NOISE

Formally Git ti e o and centered Gaussian
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SINGULARITY

sue and Kfz are ill defined due to singularproducts
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THE ROLE OF DIMENSION
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DIMENSION 4 1
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Discretized WHITE NOISE alternativeto modification on
Fourier cutoff ma Fabio's course

Discreteapproximation via i id random variables
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REGULAR ZING SHE VIA DISCRETIZATION

We fix d 2 and restrict to the lattice
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CONVERGENCE

Can we hope that Unit.tl ma Uta nontrivial limit

YES But

Convergence as random distributions Pelle

d

fYHUnItixldxnaasfYixdUltidxlIRZratdomTneasureonK

Resrale.coupling p Pn Off 0 WHY



MAIN THEOREM Lectures 2 3 5723

Restate Batf more precisely critical
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PLAN OF THIS LECTURE
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DIRECTED POLYMER IN RANDOM ENVIRONMENT
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FEYNMAN KAC FORMULA

Discretized SHE solution Unita Zì Nist Fx
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SCALING LIMITS OF PARTITION FUNCTIONS

Henceforth we fix tes and we focus on partition functions
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Second MOMENT PHASE TRANSITION
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SUB CRITICAL

RESULTS



SUB CRITICAL REGIME

There is a phasetransition for Biff with criticalvalve f 1

We focus in this lecture on the sub critical regime po 1
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LOG NORMALITY

Resale disorder strength Biff with I 1 Fixer
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EDWARDS WILKINSON FLUCTUATIONS FOR Z

Resale disorderstrength pet with f 1 Fix locale
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EDWARDS WILKINSON FLUCTUATIONS FOR logZ
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II Tools Proofs



A SELECTION OF TOOLS AND PROOFS

We conclude this lectureillustrating

Polynomial chaosexpansion

Secondmoment computations ma Proof of THEOREM 1

Hints on multi scale structure ma Proof of THEOREM 2
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KEY COMPUTATIONS
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Proof of THEOREM 1 VARIANCE COMPUTATION

Polynomial chaos terms ofdifferentdegrees orthogonal in
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Second moment ALTERNATIVE APPROACH
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VARIANCE AND COVARIANCE 5

EVARINI I IN IENE

COVIZNIZ Zac p
o norma In

9nF 21 gusta Zi

It SÉ MIEI D

ftp.dt

fkflnflgfzr



Sub Critical COVARIANCES

Taking Z XV Z'eye we obtain
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PROOF OF THEOREM I LOG NORMALITY
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