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2. A LINK W\TH DIRECTED POLYMERS
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3. MAIN RESULTS: EXISTENCE QF THE STOCHASTIC HEAT Flow

The solution of The discretized Stochastic Heok Ec\w\‘\'iovx 'S
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The 2d directed ‘oo)vwe‘f‘ wrode| umc\eﬂgogs‘ o~ \ob\m frovsition
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which we call the CRITICAL 2D STOCHASTIC HEAT FLOW.
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4. GAUSSIAN MULTIPLICATIVE CHAQS
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5. MAIN RESULTS: SHF & GMc
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6. MAIN RESULTS : MOMENT BOUNDS
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7. IDEAS FROM THE PROOF (1): MOMENT FORMULAS
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f. IDEAS FROM THE PROOF (I1): CORRELATION INERUAL\TY
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CONCLUSIONS
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