

The Critical 2D Stochastic Heat Flow in the strong disorder limit

Francesco Caravenna

University of Milano-Bicocca

Emerging Synergies between Stochastic Analysis and Statistical Mechanics

BIRS Workshop, Banff ~ 30 October 2025

Collaborators

Quentin Berger
(Sorbonne Paris Nord)

Nicola Turchi
(Milano-Bicocca)

Collaborators

Rongfeng Sun (NUS)

and

Nikos Zygouras (Warwick)

Outline

1. Stochastic Heat Flow
2. Directed Polymers
3. Stochastic Heat Equation
4. Sketch of the proof
5. Conclusions

Critical 2D Stochastic Heat Flow

One-time marginals of SHF

$$\mathcal{L}_t^{\vartheta}(dx) = \int_{y \in \mathbb{R}^2} \mathcal{L}_{0,t}^{\vartheta}(dy, dx)$$

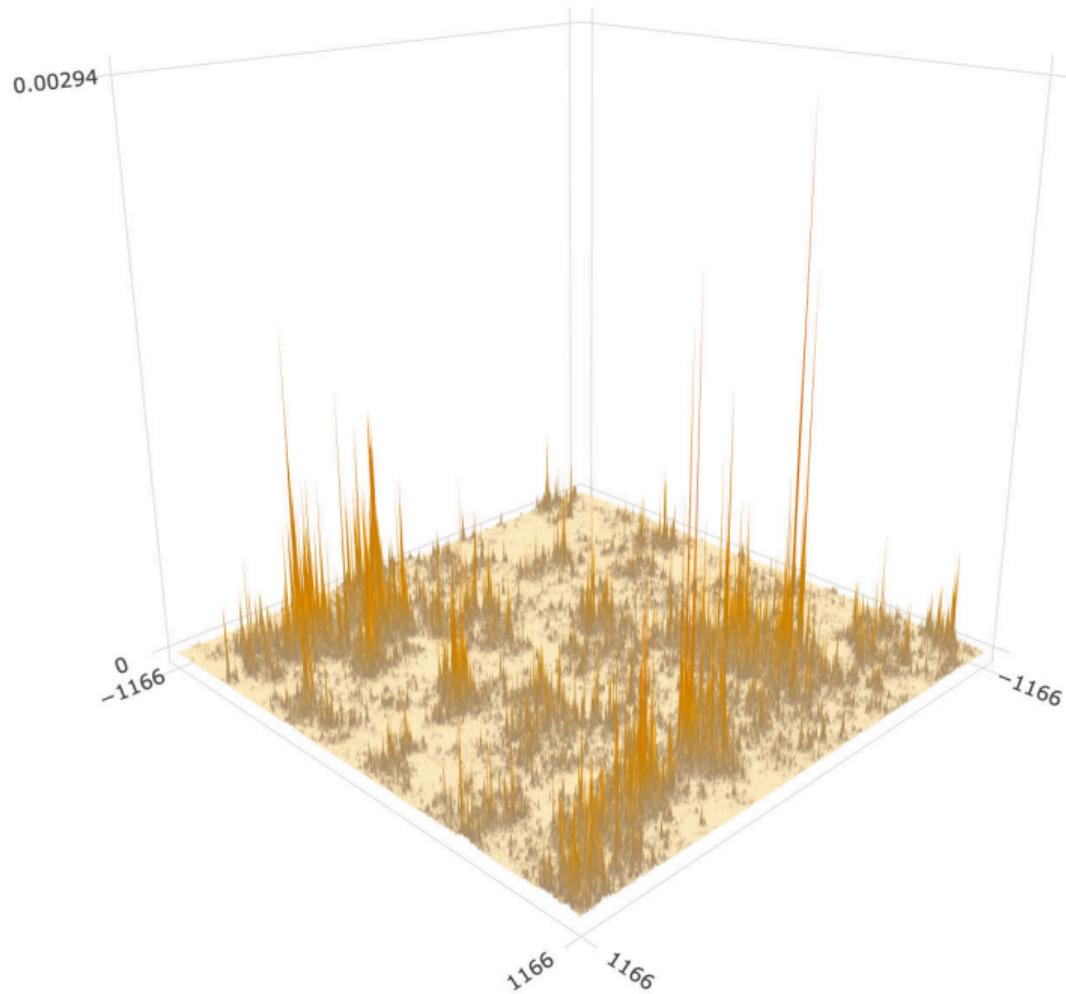
SHF = “solution” to 2D Stochastic Heat Equation (ill-defined)

$$\partial_t u(t, x) = \Delta_x u(t, x) + \beta \xi(t, x) u(t, x) \quad u(0, x) = 1 \quad (\text{SHE})$$

We investigate the regimes of long time $t \rightarrow \infty$ and strong disorder $\vartheta \rightarrow \infty$

Scaling covariance property:

$$\frac{\mathcal{L}_{at}^{\vartheta}(\sqrt{a}dx)}{a} \stackrel{d}{=} \mathcal{L}_t^{\vartheta + \log a}(dx)$$



Local extinction

Average mass is constant $\mathbb{E}[\mathcal{L}_t^\vartheta(dx)] = dx$ but **intermittent behavior**

- ▶ SHF vanishes for long time $t \rightarrow \infty$ [C.S.Z. 25]

$$\forall \varphi \in C_c(\mathbb{R}^2): \quad \mathcal{L}_t^\vartheta(\varphi) = \int_{\mathbb{R}^2} \varphi(x) \mathcal{L}_t^\vartheta(dx) \xrightarrow[t \rightarrow \infty]{d} 0$$

- ▶ SHF vanishes for strong disorder $\vartheta \rightarrow \infty$ [Clark Tsai 25]

$$\forall \varphi \in C_c(\mathbb{R}^2): \quad \mathcal{L}_t^\vartheta(\varphi) \xrightarrow[\vartheta \rightarrow \infty]{d} 0$$

We obtain quantitative bounds: **fractional moments** or **truncated mean**

$$\mathbb{E}[\mathcal{L}_t^\vartheta(\varphi)^\gamma] \text{ with } \gamma \in (0, 1) \quad \mathbb{E}[\mathcal{L}_t^\vartheta(\varphi) \wedge 1] = \mathbb{P}(\mathcal{L}_t^\vartheta(\varphi) > U(0, 1))$$

Quantitative bounds

Theorem

[Berger C. Turchi 25]

There are c, C such that

$$c \exp(-C t e^{\vartheta}) \leq \sup_{\varphi \in \mathcal{M}_1(e^{c t e^{\vartheta}} \sqrt{t})} \mathbb{E}[\mathcal{L}_t^{\vartheta}(\varphi) \wedge 1] \leq C \exp(-c t e^{\vartheta})$$

$\forall \varepsilon \in (0, 1)$ there are $c_\varepsilon, C_\varepsilon$ such that

$$c_\varepsilon \exp(-C t e^{\vartheta}) \leq \sup_{\varphi \in \mathcal{M}_1(e^{c t e^{\vartheta}} \sqrt{t})} \mathbb{P}(\mathcal{L}_t^{\vartheta}(\varphi) \geq \varepsilon) \leq C_\varepsilon \exp(-c t e^{\vartheta})$$

LB: 2nd moment method

UB: coarse-graining + change of measure

Spatial scale for mass escape

SHF mass escapes to infinity at spatial scale $\exp(cte^{\vartheta})$

Rescaled SHF $\mathcal{Z}_t^{\vartheta, c}(dx) := \frac{\mathcal{Z}_t^{\vartheta}(e^{cte^{\vartheta}} dx)}{(e^{cte^{\vartheta}})^2}$ $\mathbb{E}[\dots] = dx$

Theorem

[Berger C. Turchi 25]

There exist $0 < a < b < \infty$ such that

$$\forall \varphi \in C_c(\mathbb{R}^2): \quad \mathcal{Z}_t^{\vartheta, c}(\varphi) \xrightarrow[\substack{t \rightarrow \infty \\ \text{or } \vartheta \rightarrow \infty}]{} \begin{cases} 0 & \text{if } c < a \\ \int \varphi(x) dx & \text{if } c > b \end{cases}$$

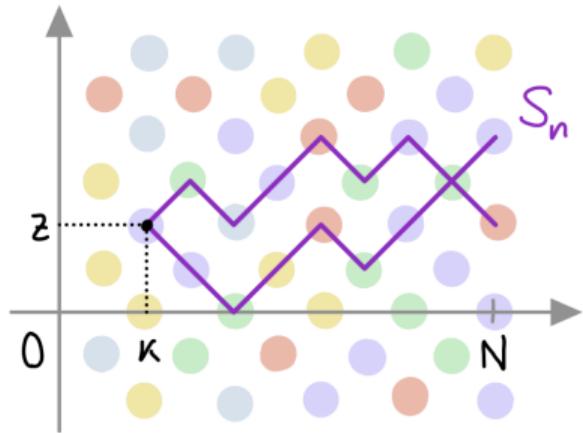
Conjecture: non trivial limit $\mathcal{Z}_t^{\vartheta, \hat{c}}(\varphi) \xrightarrow[\vartheta \rightarrow \infty]{} \mathcal{U}_t(dx)$ for some $\hat{c} \in (a, b)$

Outline

1. Stochastic Heat Flow
2. Directed Polymers
3. Stochastic Heat Equation
4. Sketch of the proof
5. Conclusions

Directed polymers partition functions

- ▶ $S = (S_n)_{n \geq 0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n, x) \sim \mathcal{N}(0, 1)$
- ▶ $H(S, \omega) := \sum_{n=k+1}^N \omega(n, S_n)$



Partition Functions

$(k \in \mathbb{N}, z \in \mathbb{Z}^d)$

$$Z_{N,\beta}^{\omega}(k, z) = \mathbb{E} \left[e^{\beta H(S, \omega) - \frac{1}{2} \beta^2 (N-k)} \mid S_k = z \right]$$

$$\mathbb{E}[Z_{N,\beta}^{\omega}] = 1$$

SHF from directed polymers

SHF is the scaling limit of partition functions

[C.S.Z. 23]

$$Z_{N,\beta}^{\omega}(\varphi_N) = \sum_{z \in \mathbb{Z}^2} \varphi_N(z) Z_{N,\beta}^{\omega}(0, z) \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}_t^{\vartheta}(\varphi)$$

in the **critical regime** $\beta^2 = \frac{\pi}{\log N} \left(1 + -\frac{\vartheta}{\log N}\right)^{-1}$ with $\varphi_N(z) = \frac{1}{\sqrt{N}} \varphi\left(\frac{z}{\sqrt{N}}\right)$

Super-critical regime: any $\vartheta = \vartheta_N \rightarrow \infty$ such that

$$\beta \leq \beta_0 \in (0, \infty) \quad \text{i.e.} \quad \vartheta = \log N - \frac{\pi}{\beta^2} \leq \log N - \frac{\pi}{\beta_0^2}$$

Fixed $\beta = \beta_0 > 0$ is also allowed

Local extinction and free energy

Quantitative bounds for $Z_{N,\beta}^\omega(f) \rightarrow 0$ uniformly over $N \in \mathbb{N}$, $\beta \in (0, \beta_0)$

Theorem

[Berger C. Turchi 25]

$$c \exp(-C t e^{\vartheta}) \leq \sup_{f \in \mathcal{M}_1^{\text{disc}}(e^{c t e^{\vartheta}} \sqrt{N t})} \mathbb{E}[Z_{Nt,\beta}^\omega(f) \wedge 1] \leq C \exp(-c t e^{\vartheta})$$

Free energy: $Z_{N,\beta}^\omega(0) = e^{F(\beta)N + o(N)} \xrightarrow[N \rightarrow \infty]{} 0$ [Lacoin 10, Berger Lacoin 17]

Theorem

[Berger C. Turchi 25]

$$-\frac{c'}{\beta^8} \exp\left(-\frac{\pi}{\beta^2}\right) \leq F(\beta) \leq -c \exp\left(-\frac{\pi}{\beta^2}\right)$$

Outline

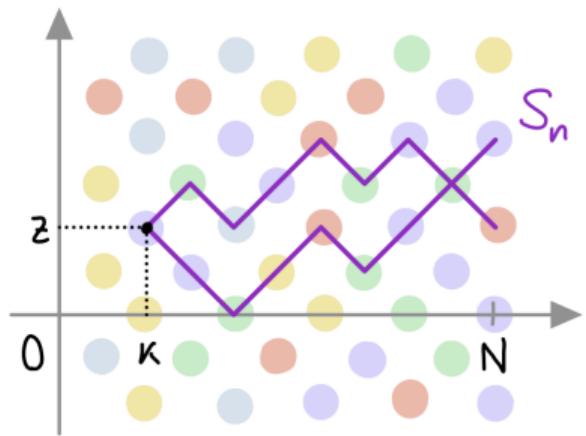
1. Stochastic Heat Flow
2. Directed Polymers
3. Stochastic Heat Equation
4. Sketch of the proof
5. Conclusions

Partition functions and SHE

Partition functions $Z_{N,\beta}^\omega(k, z)$ are solutions of
discretised Stochastic Heat Equation

Diffusive rescaling (+ time reversal)

$$u_N(t, x) := Z_{N,\beta}^\omega(N(1-t), \sqrt{N}x)$$



$$\begin{cases} \partial_t u_N(t, x) = \Delta_x u_N(t, x) + \beta \underbrace{\xi_N(t, x)}_{\text{white noise regularized on scale } \varepsilon = \frac{1}{\sqrt{N}}} u_N(t, x) \\ u_N(0, x) \equiv 1 \end{cases} \quad (\text{disc-SHE})$$

Spatial scale of mass escape for SHE

$$\text{Spatial scale } e^{cte^{\vartheta}} = e^{ctf_{\beta}N} \text{ with } f_{\beta} = e^{-\frac{\pi}{\beta^2}} \quad (\vartheta = \log N - \frac{\pi}{\beta^2})$$

$$\rightsquigarrow \text{Rescaled solution} \quad u_N^{\beta,c}(t, x) := u_N(t, e^{ctf_{\beta}N}x)$$

Theorem

[Berger C. Turchi 25]

There are $0 < a < b < \infty$ such that

$$\forall \varphi \in C_c(\mathbb{R}^2): \quad \int_{\mathbb{R}^2} \varphi(x) u_N^{\beta,c}(t, x) dx \xrightarrow[N \rightarrow \infty]{d} \begin{cases} 0 & \text{if } c < a \\ \int \varphi(x) dx & \text{if } c > b \end{cases}$$

$$\text{Special case } \beta^2 = \frac{\pi \hat{\beta}^2}{\log N} \text{ with } \hat{\beta} > 1 \quad \rightsquigarrow \quad e^{ctf_{\beta}N} = e^{ctN^{\gamma}} \text{ with } \gamma = 1 - \frac{1}{\hat{\beta}^2}$$

Outline

1. Stochastic Heat Flow
2. Directed Polymers
3. Stochastic Heat Equation
4. Sketch of the proof
5. Conclusions

Proof of the UB: coarse-graining

$$\sup_{f \in \mathcal{M}_1^{\text{disc}} \left(e^{c e^{\vartheta}} \sqrt{N} \right)} \mathbb{E} [Z_{N,\beta}^{\omega}(f) \wedge 1] \leq C \exp(-c e^{\vartheta}) \quad \text{for any } \vartheta = \vartheta_N \rightarrow \infty$$

- ▶ Change of scale argument: reduce $\mathcal{M}_1^{\text{disc}}(e^{c e^{\vartheta}} \sqrt{N})$ to $\mathcal{M}_1^{\text{disc}}(\sqrt{N})$
- ▶ Coarse-graining argument: $\begin{cases} \text{reduce } \vartheta = \vartheta_N \rightarrow \infty \text{ to fixed } \vartheta \in \mathbb{R} \\ \text{replace } \exp(-c e^{\vartheta}) \text{ by any } f(\vartheta) \rightarrow 0 \end{cases}$

Key bound

$$\sup_{f \in \mathcal{M}_1^{\text{disc}}(\sqrt{N})} \mathbb{E} [Z_{N,\beta}^{\omega}(f) \wedge 1] \leq \frac{C}{\vartheta} \quad \text{for fixed } \vartheta \in \mathbb{R}$$

Proof of the UB: change of measure

Change of scale: $\sup_{f \in \mathcal{M}_1^{\text{disc}}(\sqrt{N})} \mathbb{E}[Z_{N,\beta}^\omega(f) \wedge 1] \leq \frac{2}{\varepsilon} \sup_{f \in \mathcal{M}_1^{\text{disc}}(\sqrt{\varepsilon N})} \mathbb{E}[Z_{N,\beta}^\omega(f) \wedge 1]$

Idea: for f on scale $\sqrt{\varepsilon N}$, partition function $Z_{N,\beta}^\omega(f)$ is almost point-to-plane

Size-biased law $\tilde{\mathbb{P}}(d\omega) := Z(\omega) \mathbb{P}(d\omega)$ for $Z(\omega) = Z_{N,\beta}^\omega(f)$

Change of measure

$$\mathbb{E}[Z \wedge 1] \leq \mathbb{P}(A) + \tilde{\mathbb{P}}(A^c) \quad \text{for any event } A$$

Optimal with $A = \{Z > 1\}$ (but we don't know $Z \dots$)

Proof of the UB: choice of a proxy

Take X with $\mathbb{E}[X] = 0$ and set $A = \{X > \frac{1}{2}\tilde{\mathbb{E}}[X]\}$

By Chebychev

$$\mathbb{P}(A) \leq 4 \frac{\mathbb{V}\text{ar}[X]}{\tilde{\mathbb{E}}[X]^2} \quad \tilde{\mathbb{P}}(A^c) \leq 4 \frac{\tilde{\mathbb{V}\text{ar}}[X]}{\tilde{\mathbb{E}}[X]^2}$$

We take X as a **manageable proxy** of Z : restrict the **chaos expansion** of Z to

$$I = \{(n_1, x_1), \dots, (n_k, x_k)\} \quad \text{with} \quad \begin{cases} \text{width}(I) = n_k - n_1 \leq \varepsilon N, \\ |I| = k \leq \log(\varepsilon N) \end{cases}$$

We finally estimate $\mathbb{V}\text{ar}[X]$, $\tilde{\mathbb{E}}[X]$ (2nd moment) and $\tilde{\mathbb{V}\text{ar}}[X]$ (3rd moment)

Outline

1. Stochastic Heat Flow
2. Directed Polymers
3. Stochastic Heat Equation
4. Sketch of the proof
5. Conclusions

Conclusions

Quantitative bounds for local extinction of SHF and directed polymers

large time and/or strong disorder

Mass escapes to infinity at spatial scale $\exp(cte^{\vartheta}) = \exp(cte^{-\pi/\beta^2} N)$

Application to discretized SHE in the super-critical regime up to fixed β

We expect analogous result for the mollified SHE (in progress)

Robust proof based on coarse-graining + change of scale + change of measure

Q. Berger, F.C., N. Turchi. arXiv: 2508.02478 (to be updated soon!)

Thanks