The Critical 2D Stochastic Heat Flow

in the strong disorder limit

Francesco Caravenna

University of Milano-Bicocca

Emerging Synergies between Stochastic Analysis and Statistical Mechanics
BIRS Workshop, Banff ~ 30 October 2025



Collaborators

Quentin Berger Nicola Turchi
(Sorbonne Paris Nord) (Milano-Bicocca)



Collaborators

Rongfeng Sun (NUS)
and

Nikos Zygouras (Warwick)




1. Stochastic Heat Flow



Critical 2D Stochastic Heat Flow

One-time marginals of SHF 20 (dx) = / , 2 (dy, dx)
y€ER ’
SHF = “solution” to 2D Stochastic Heat Equation (ill-defined)
deu(t,X) = Dau(tx) + BE(EX)u(tx)  u(0x)=1  (SHE)

We investigate the regimes of long time t — o and strong disorder % — oo

23 (\/ad
Scaling covariance property: Zat(vVadx) g %ﬁ+loga(dx)
a



0.00294




Local extinction

Average mass is constant E[2;,”(dx)] = dx but intermittent behavior

» SHF vanishes for long time t — oo [C.S.Z. 25]
Vo e C(R?): / o(x) 27 (dx) ?dm% 0
» SHF vanishes for strong disorder 1 — oo [Clark Tsai 25]
Voe C(RY):  Z(9) ﬁ 0

We obtain quantitative bounds: fractional moments or truncated mean

E[2”(9)"] with y€(0,1) E[27 (@)A1 =P (2" (¢) > U(0.1))



Quantitative bounds

Theorem [Berger C. Turchi 25]

There are ¢, C such that

cexp(—Cte?) < sup [E[,ﬁpté((p)/\l} < Cexp(—cte?)
(PE-///l (ectcﬁ\/?)

Ve € (0,1) there are cg, Ce such that
ce exp(—Cte?) < sup P(Z2(9)>¢€) < Ceexp(—cte®)

¢e%1 (ecteﬁ\/?)

LB: 2" moment method UB: coarse-graining + change of measure



Spatial scale for mass escape

SHF mass escapes to infinity at spatial scale exp(c te’s)

O (acte’
Rescaled SHF Qfﬁ’c(dx) = Ze (7" &) E[...] =dx
t (er:t“e19 )2
Theorem [Berger C. Turchi 25]
There exist 0 < a < b < o such that
vpe C®): 20 (p) —— {° fe<s
o ‘ gm0 | Je()dx ifc>b

Conjecture: non trivial limit ~ 2,”%(¢p) %) U (dx) for some ¢ € (a,b)
—>00



2. Directed Polymers



Directed polymers partition functions

A
> S =(S,)n>0 simple random walk on 79 S
n
» Independent Gaussians w(n,x) ~ .4#(0,1) X
A A
> H(va) = Z w(nasn) 0 K N
n=k+1
Partition Functions (keN, ze 79

Zy gk, z) = E[eBH(S’“’)_%ﬁ2(N_k)‘Skzz] E[Zyg] =1



SHF from directed polymers

SHF is the scaling limit of partition functions [C.S.Z. 23]

d
Z‘P/v NﬁOZ)N—)gﬁ((p)

5 -1 ;
in the critical regime B2 = é <1—|— _logN> with @n(z) = Lﬂ(p(\iw)

Super-critical regime: any ¥ = ¥y — oo such that

B < Bo€(0,00) ie. % = logN—2% < logN —
B ﬁo

Fixed B = Bo > 0 is also allowed



Local extinction and free energy

Quantitative bounds for Z@ .(f) — 0 uniformly over N € N, B € (0, o)

N.B
Theorem [Berger C. Turchi 25]
cexp(—Cte?) < sup [E[Z,\a,’tﬁ(f)/\l] < Cexp(—cte?)
fe.a (ccte? ViTE)
Free energy: Z,‘\*,’ﬁ(O) = eF(B)N+o(N) - 0 [Lacoin 10, Berger Lacoin 17]
Ll —»00
Theorem [Berger C. Turchi 25]

— s exp(~) < F(B) < —c exp(— )



3. Stochastic Heat Equation



Partition functions and SHE

Partition functions Z,(\‘,’ﬁ(k,z) are solutions of A
discretised Stochastic Heat Equation Sm
. . . 2
Diffusive rescaling (+ time reversal)
—»
un(t,x) = Z,‘\‘,”ﬁ (N(l—t),\/ﬁx) 0] N
at“UN(t7X) :AXUN(taX) + ﬁ 5N(t7x) UN(t7X)
(disc-SHE)

uy(0,x) =1 white noise regularized on scale € =

<
3



Spatial scale of mass escape for SHE

R
Spatial scale ecte” —eCtfiN with fg=e B2 (9 =logN — é%)
~ Rescaled solution uf,’c(t,x) = up(t, e”fﬁNx)
Theorem [Berger C. Turchi 25]

There are 0 < a < b < o such that

0 if c<a
Vo € C.(R?): / Bt x)dx —T—
¢ & [RQ(p(x) (£, x)dx N—reo Jo(x)dx ifc>b

Special case B2—% with ﬁ>1 s eCtEN = e tNT ith y=1-2L

BZ



4. Sketch of the proof



Proof of the UB: coarse-graining

sup [E[Z,?,’ﬁ(f)/\l] < Cexp(—ce?) for any ¥ = ¥y — o
fe///{ﬁsc (eceﬁ\/ﬁ)

> Change of scale argument: reduce .35 (e“¢" V/N) to .285(v/N)

reduce ¥ = ¥y — oo to fixed ¥ € R

» Coarse-graining argument:
replace exp(—ce”) by any f(©%) =0

for fixed 0 € R

SJ Nl

Key bound sup [E[Z,f,".ﬁ(f)/\l} <
fe I (VN /



Proof of the UB: change of measure

Change of scale: sup [E[Z,\“,’.B(f)/\l] < sup [E[Z/‘\‘,’.ﬁ(f)/\l}
fe i (VN) ’ fe i (VeN) '

™ IN

|dea: for f on scale Ve N, partition function Z,‘\*,’ﬁ(f) is almost point-to-plane
Size-biased law H5(da)) = Z(0) P(do) for Z() = Zlilo,ﬁ(f)
Change of measure

E[Z A1] < P(A) + P(A9) for any event A

Optimal with A= {Z > 1} (but we don't know Z ...)



Proof of the UB: choice of a proxy

Take X with E[X] =0 and set A= {X > 1E[X]}

Var[X]
Ex]?

Var[X]

By Chebychev P(A) < 4 -
y Cheby (A) < X

P(A) < 4

We take X as a manageable proxy of Z: restrict the chaos expansion of Z to

width(/) = nx —n; < eN,

F={(m,x1),.,(moxe)}  with {|/|=k§|og(€N)

We finally estimate Var[X], £[X] (2" moment) and Var[X] (3 moment)



5. Conclusions



Conclusions

Quantitative bounds for local extinction of SHF and directed polymers

large time and/or strong disorder

Mass escapes to infinity at spatial scale exp(c teﬁ) = exp(c te—7/B? N)

Application to discretized SHE in the super-critical regime up to fixed 3
We expect analogous result for the mollified SHE (in progress)

Robust proof based on coarse-graining 4+ change of scale + change of measure

Q. Berger, F.C., N. Turchi. arXiv: 2508.02478 (to be updated soon!)
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