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Critical 2D Stochastic Heat Flow

One-time marginals of SHF Z
ϑ
t (dx) =

∫

y∈R2

Z
ϑ
0,t(dy ,dx)

SHF = “solution” to 2D Stochastic Heat Equation (ill-defined)

∂tu(t,x) = ∆xu(t,x) + β ξ (t,x)u(t,x) u(0,x) = 1 (SHE)

We investigate the regimes of long time t → ∞ and strong disorder ϑ → ∞

Scaling covariance property:
Z ϑ

at (
√
adx)

a

d
= Z

ϑ+loga
t (dx)





Local extinction

Average mass is constant E[Z ϑ
t (dx)] = dx but intermittent behavior

▶ SHF vanishes for long time t → ∞ [C.S.Z. 25]

∀ϕ ∈ Cc(R
2) : Z

ϑ
t (ϕ) =

∫

R2

ϕ(x)Z ϑ
t (dx)

d−−−−→
t→∞

0

▶ SHF vanishes for strong disorder ϑ → ∞ [Clark Tsai 25]

∀ϕ ∈ Cc(R
2) : Z

ϑ
t (ϕ)

d−−−−→
ϑ→∞

0

We obtain quantitative bounds: fractional moments or truncated mean

E
[
Z

ϑ
t (ϕ)γ

]
with γ ∈ (0,1) E

[
Z

ϑ
t (ϕ)∧1

]
= P

(
Z

ϑ
t (ϕ)> U(0,1)

)



Quantitative bounds

Theorem [Berger C. Turchi 25]

There are c ,C such that

c exp(−C t e
ϑ ) ≤ sup

ϕ∈M1

(
ec t eϑ √

t
)
E
[
Z

ϑ
t (ϕ)∧1

]
≤ C exp(−c t e

ϑ )

∀ε ∈ (0,1) there are cε ,Cε such that

cε exp(−C t e
ϑ ) ≤ sup

ϕ∈M1

(
ec t eϑ √

t
)
P
(
Z

ϑ
t (ϕ)≥ ε

)
≤ Cε exp(−c t e

ϑ )

LB: 2nd moment method UB: coarse-graining + change of measure



Spatial scale for mass escape

SHF mass escapes to infinity at spatial scale exp(c t e
ϑ )

Rescaled SHF Z
ϑ ,c
t (dx) :=

Z ϑ
t (ec t e

ϑ
dx)

(ec t eϑ
)2

E[ . . . ] = dx

Theorem [Berger C. Turchi 25]

There exist 0< a < b < ∞ such that

∀ϕ ∈ Cc(R
2) : Z

ϑ ,c
t (ϕ)

d−−−−−−→
t→∞

or ϑ→∞

{

0 if c < a
∫

ϕ(x)dx if c > b

Conjecture: non trivial limit Z
ϑ ,ĉ
t (ϕ)

d−−−−→
ϑ→∞

Ut(dx) for some ĉ ∈ (a,b)



Outline

1. Stochastic Heat Flow

2. Directed Polymers

3. Stochastic Heat Equation

4. Sketch of the proof

5. Conclusions



Directed polymers partition functions

▶ S = (Sn)n≥0 simple random walk on Z
d

▶ Independent Gaussians ω(n,x)∼ N (0,1)

▶ H(S ,ω) :=
N

∑
n=k+1

ω(n,Sn)

Partition Functions (k ∈ N, z ∈ Z
d)

Zω
N,β (k ,z) = E

[

e
βH(S ,ω)− 1

2
β2 (N−k)

∣
∣
∣Sk = z

]

E
[
Zω
N,β

]
= 1



SHF from directed polymers

SHF is the scaling limit of partition functions [C.S.Z. 23]

Zω
N,β (ϕN) = ∑

z∈Z2

ϕN(z)Z
ω
N,β (0,z)

d−−−−→
N→∞

Z
ϑ
t (ϕ)

in the critical regime β 2 =
π

logN

(

1+− ϑ

logN

)−1
with ϕN(z) =

1√
N

ϕ
(

z√
N

)

Super-critical regime: any ϑ = ϑN → ∞ such that

β ≤ β0 ∈ (0,∞) i.e. ϑ = logN− π
β2 ≤ logN− π

β2
0

Fixed β = β0 > 0 is also allowed



Local extinction and free energy

Quantitative bounds for Zω
N,β (f )→ 0 uniformly over N ∈ N, β ∈ (0,β0)

Theorem [Berger C. Turchi 25]

c exp(−C t e
ϑ ) ≤ sup

f ∈M disc

1

(
ec t eϑ √

N t
)
E
[
Zω
Nt,β (f )∧1

]
≤ C exp(−c t e

ϑ )

Free energy: Zω
N,β (0) = e

F(β )N+o(N) −−−−→
N→∞

0 [Lacoin 10, Berger Lacoin 17]

Theorem [Berger C. Turchi 25]

− c ′
β8 exp

(
− π

β2

)
≤ F(β ) ≤ −c exp

(
− π

β2

)
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Partition functions and SHE

Partition functions Zω
N,β (k ,z) are solutions of

discretised Stochastic Heat Equation

Diffusive rescaling (+ time reversal)

uN(t,x) := Zω
N,β

(
N(1− t),

√
Nx

)







∂tuN(t,x) = ∆xuN(t,x) + β ξN(t,x)
︸ ︷︷ ︸

uN(t,x)

uN(0,x) ≡ 1 white noise regularized on scale ε = 1√
N

(disc-SHE)



Spatial scale of mass escape for SHE

Spatial scale e
c t e

ϑ
= e

c t fβ N with fβ = e
− π

β2 (ϑ = logN− π
β 2 )

⇝ Rescaled solution u
β ,c
N (t,x) := uN

(
t, e

c t fβ N x
)

Theorem [Berger C. Turchi 25]

There are 0< a < b < ∞ such that

∀ϕ ∈ Cc(R
2) :

∫

R2

ϕ(x)u
β ,c
N (t,x)dx

d−−−−→
N→∞

{

0 if c < a
∫

ϕ(x)dx if c > b

Special case β 2 = π β̂2

logN with β̂ > 1 ⇝ e
c t fβ N = e

c t Nγ
with γ = 1− 1

β̂2
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Proof of the UB: coarse-graining

sup
f ∈M disc

1

(
ec eϑ √

N
)
E
[
Zω
N,β (f )∧1

]
≤ C exp(−c e

ϑ ) for any ϑ = ϑN → ∞

▶ Change of scale argument: reduce M disc

1

(
e
c e

ϑ√
N
)
to M disc

1 (
√
N )

▶ Coarse-graining argument:

{

reduce ϑ = ϑN → ∞ to fixed ϑ ∈ R

replace exp(−c e
ϑ ) by any f (ϑ )→ 0

Key bound sup
f ∈M disc

1
(
√
N )

E
[
Zω
N,β (f )∧1

]
≤ C

ϑ
for fixed ϑ ∈ R



Proof of the UB: change of measure

Change of scale: sup
f ∈M disc

1
(
√
N )

E
[
Zω
N,β (f )∧1

]
≤ 2

ε sup
f ∈M disc

1
(
√

ε N )

E
[
Zω
N,β (f )∧1

]

Idea: for f on scale
√

ε N , partition function Zω
N,β (f ) is almost point-to-plane

Size-biased law P̃(dω) := Z (ω) P(dω) for Z (ω) = Zω
N,β (f )

Change of measure

E[Z ∧1] ≤ P(A) + P̃(Ac) for any event A

Optimal with A= {Z > 1} (but we don’t know Z . . . )



Proof of the UB: choice of a proxy

Take X with E[X ] = 0 and set A=
{
X > 1

2 Ẽ[X ]
}

By Chebychev P(A)≤ 4
Var[X ]

Ẽ[X ]2
P̃(Ac)≤ 4

Ṽar[X ]

Ẽ[X ]2

We take X as a manageable proxy of Z : restrict the chaos expansion of Z to

I = {(n1,x1), . . . ,(nk ,xk)} with

{

width(I ) = nk −n1 ≤ εN ,

|I |= k ≤ log(εN)

We finally estimate Var[X ], Ẽ[X ] (2nd moment) and Ṽar[X ] (3rd moment)



Outline

1. Stochastic Heat Flow

2. Directed Polymers

3. Stochastic Heat Equation

4. Sketch of the proof

5. Conclusions



Conclusions

Quantitative bounds for local extinction of SHF and directed polymers

large time and/or strong disorder

Mass escapes to infinity at spatial scale exp
(
c t e

ϑ
)
= exp

(
c t e

−π/β2

N
)

Application to discretized SHE in the super-critical regime up to fixed β

We expect analogous result for the mollified SHE (in progress)

Robust proof based on coarse-graining + change of scale + change of measure

Q. Berger, F.C., N. Turchi. arXiv: 2508.02478 (to be updated soon!)
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