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Obiettivo

Raccontare in modo non tecnico un po’ di storia e alcuni progressi fondamentali nelle

Equazioni Differenziali Stocastiche

{

ODE Ordinarie

PDE alle derivate Parziali

Raccontare alcune idee profonde alla base di questi progressi alla frontiera tra

Probabilità, Analisi e Fisica Matematica

(interazioni con Algebra, Analisi Numerica, Geometria, . . . )

Avvertenza: non sono un esperto di equazioni differenziali stocastiche!

Ci sono “andato a sbattere”. . .
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ODE e PDE

ODE controllata
d

dt
X (t) = σ

(
X (t)

)
ξ(t)

X (t) incognita X (0), σ(·), ξ(t) assegnati

X : [0,∞) → R
k ξ : [0,∞) → R

d σ : R
k → R

k ⊗ R
d

PDE controllata
∂

∂t
u(t, x) = ∆xu(t, x)

︸ ︷︷ ︸

d∑

i=1

∂2

∂xi
2 u(t,x)

+ f
(
u(t, x),∇u(t, x)

)
+ ξ(t, x)

u(t, x) incognita u(0, x), f (·), ξ(t, x) assegnati

u, ξ : [0,∞)× R
d → R f : R × R

d → R



Che cos’è una equazione differenziale stocastica?

ODE o PDE dove il “controllo” ξ è stocastico (aleatorio, random) e irregolare:

l’equazione non si può formulare in modo puramente analitico

▶ (Ω,A,P) spazio di probabilità Ω ∋ ω 7−→ ξω(t, x)

▶ (t, x) 7−→ ξω(t, x) non è una funzione regolare

ma solo una distribuzione (Schwartz)

“Perché farsi del male?” Perché ξ irregolari emergono nei casi più interessanti

Rumore bianco: “i valori di ξ(t, x) sono indipendenti in ogni punto (t, x)”



ODE stocastiche (SDE): la teoria classica

ODE d
dtXt = σ

(
Xt

)
ξ(t) in forma integrale: [ Xt := X (t) ]

Xt = X0 +

∫ t

0
σ
(
Xs

)
ξ(s) ds = X0 +

∫ t

0
σ
(
Xs

)
dBs (⋆)

Bt :=
∫ t

0 ξ(s) ds è il moto browniano (t 7→ Bt funzione continua, non derivabile)

Teorema (Ito 1944)

▶ Integrale stocastico
∫ t

0 Ys dBs per un’ampia classe di funzioni aleatorie (Y ω

s )s≥0

▶ Esistenza e unicità per l’equazione (⋆) mediante punto fisso [σ(·) ∈ C 1 ]



Ito (1944) Revuz, Yor (1999)

No. 519

109. tochastic Integral.*

By Kiyosi IT6.

Mathematical Institute, Nagoya Imperial University.

(Comm. by S. K.KEYA, M.I.A., Oct. 12, 1944.)

1. Introduction. Let (/2, P) be any probability field, and g(t, ),
0 ___<t 1, (oe/2, be any brownian motion1) on (/2, P) i.e. a (real)
stochastic differential process with no moving discontinuity such that

(g(s,,o)-g(t,,o))=O) and (g(s,,,,)-g(t,,o))=ls-tl. In this "note

we shall investigate an integral _/.f(r, ) dg(r, o) for any element

f(t, ) in a functional class S* which will be defined in 2; the
particular case in which f(t, o) does not depend upon has already
been treated by Paley and Wiener).

In 2 we shall give the definition and prove fundamental
properties concerning this integral. In 3 we shall establish three
theorems which give sufficient conditions for integrability. In 4 we
give an example, which will show a somewhat singular property of
our integral.

2. Definition and Properties. For brevity we define the classes
of measurable functions defined on [0, 1] /2" G, S(t0, tl, ..., t), S and
S* respectively as the classes of f(t, ,o) satisfying the corresponding
conditions, as follows,

G" f(r, (), g(r, o), 0 r , are independent of g(a, o)-g(t, ),
t a 1, for any t, g(r, o) being the above mentioned brownian
motion,

S(to, t,, ..., t,), 0=t0 <:tt <... <t,=t :f(t, ,,)eG A L. ([0, 1]xg)
and f(t, )=f($,_,, ), t,_ <__ < , i= 1, 2, ..., n,

S" f(t, ) belongs to S(to, ..., t,) for a system t0, t, ..., t, which
may depend upon f(t, ) in other words S =_ d S(to, t,, ..., t,),

S* f($, ) e G and for any there exists h(, ) e S such that

P{o ;f(t, o)=h(t, o) for any t} > 1-.

At first for f(t, )eS we define the stochastic integral (r, ,o)

,o) (for brevity denote it by I(t, ;f)) as follows"d,g(r,

The cost of this research has been defrayed from the Scientific Expenditure of
the Department of Education.

1) C.P. Lvy" Thorie de l’addition des variable alatoire, P. 167, 1937, and also
J. L. Doob" Stochastic processes depending on a continuous parameter, Trans., &mer.
Math. Soc. vol. 42, Theorem 3.9.

2) , denotes the mathematical expectation, viz. ’f()=I #
f o)P(d).

3) R.E.A.G. Paley and N. Wiener, Fourier transforms in the complex domain,
Amer. Math. Soc. Coll. Publ. (1934), Chap. IX.

4) means the closure of S with respect to the norm in L.([0,1] #).



PDE stocastiche (SPDE): la teoria classica

PDE ∂tu −∆xu = f (u,∇u) + ξ in forma integrale (“mild”):

u(t, x) = “ (∂t −∆x)
−1

(
f (u,∇u) + ξ

)
”

= u(0, x) +

∫ t

0

∫

Rd

gt−s(x − y)
︸ ︷︷ ︸

nucleo del calore ∝ exp
(
−

|x−y|2

4(t−s)

)

{
f (u(s, y),∇u(s, y)) + ξ(s, y)

}
ds dy (⋆)

Teorema (AA. VV. ’70-’80)

▶ Integrale stocastico per un’ampia classe di funzioni aleatorie

▶ Esistenza e unicità per f (·) non lineari solo in bassa dimensione d ≤ d0



Walsh (1986) St.Flour Lecture Notes Da Prato, Zabczyk (1992)



PDE stocastiche singolari

Alcune importanti PDE stocastiche singolari sfuggono alla teoria classica

in particolare quando f (u,∇u) è non lineare

Due esempi fondamentali:

▶ Quantizzazione stocastica (Φ4
d) per d ≥ 2 [Parisi, Wu (1981)]

∂tu = ∆xu − u3 + ξ

▶ Dinamica di interfacce (KPZd) per d ≥ 1 [Kardar, Parisi, Zhang (1986)]

∂tu = ∆xu + |∇u|2 + ξ



Parisi, Wu (1981) Kardar, Parisi, Zhang (1986)

VOLUME 56, NUMaER 9 PHYSICAL REVIEW LETTERS

Dynamic Scaling of Growing Interfaces

3 MARCH 1986

Mehran Kardar

Physics Department, Harvard University, Cambridge, Massachusetts 02138

Giorgio Parisi

Physics Department, University ofRome, I 00-I 73 Rome, Italy

Yi-Cheng Zhang

Physics Department, Brookhaven Nationa/Laboratory, Upton, New York 11973
(Received 12 November 1985)

A model is proposed for the evolutior. of the profile of a growing interface. The deterministic

growth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-

ied by dynamic renormalization-group techniques and by mappings to Burgers's equation and to a

random directed-polymer problem. The exact dynamic scaling form obtained for a one-dimensional

interface is in excellent agreement with previous numerical simulations. Predictions are made for

more dimensions.

PACS numbers: 05.70.Ln, 64.60.Ht, 68.35.Fx, 81.15.Jj

Many challenging problems are associated with

growth patterns in clusters' and solidification fronts. '
Several models have been proposed recently to

describe the growth of smoke and colloid aggregates,

flame fronts, tumors, etc. ' It is generally recognized

that the growth process occurs mainly at an "active"
zone on the surface of the cluster, with interesting

scaling properties. ' However, a systematic analytic

treatment of the static and dynamic fluctuations of the
growing interface has been lacking so far.

In this paper we propose a model for the time evolu-

tion of the profile of a growing interface, and examine

its properties. Guided by the ideas of universality we

write down the simplest nonlinear, local differential

equation governing the growth of the profile applicable

to such processes as vapor deposition4 or the Eden

model. ' The analysis of this equation is considerably

simplified by mappings to two different, albeit more

familiar, forms. One is the hydrodynamic problem of
the Burgers's equation, and the other is a directed

polymer in a random environment. The deterministic

growth of the profile can in fact be obtained exactly,

and its long-time relaxation behavior exhibits very in-

teresting patterns related to the shock waves in

Burgers's equation. 6 The stochastic growth is treated

by dynamic renormalization-group techniques. For a
one-dimensional interface a fluctuation-dissipation

theorem9 exists, leading to an exact dynamic exponent

z =—,'. This result is in excellent agreement with pre-

vious numerical simulations of ballistic aggregation'

and Eden clusters. " For two-dimensional interfaces,

the mapping to the random directed-polymer problem

is used to make an efficient indirect numerical simula-

tion with the result z—1.5. A nontrivial behavior is

also predicted for the static fluctuations in this case.

The interface profile, suitably coarse-grained, is

described by a height h(x, t). As usual, it is con-

venient to ignore overhangs so that h is a single-valued

function of x. The simplest nonlinear Langevin equa-

tion for a local growth of the profile is given by'2

The first term on the right-hand side describes relaxa-

tion of the interface by a surface tension v. The

second term is the lowest-order nonlinear term that

can appear in the interface growth equation, and is

justified later on with the Eden model as an example.
Edwards and Wilkinson'3 have studied Eq. (1) without
the nonlinear term, but we demonstrate that such a

term is necessary, and responsible for the unusual

properties of the growing interface. Higher-order

terms can also be present, but they are irrelevant, and

will not modify the universal scaling properties. The
noise q(x, t) has a Gaussian distribution with

(7l(x, t)) =0, and

(q(x, t )q(x', t') ) = 2D5~(x—x') 6(t—t'),

although the actual form of the distribution is ir-

relevant. In principle there is also a velocity term,

which is removed by choice of an appropriate moving

coordinate system. Note that Eq. (I) is invariant

under translations h lt +const, and obeys the infini-
tesimal reparametrization

h+a X, X X+Xat,

which describes the tilting of the interface by a small

angle.

To justify the nonlinear term in Eq. (1), consider
the growth of an Eden cluster5 taking place by addition

1986 The American Physical Society



PDE stocastiche e distribuzioni

Il rumore bianco ξ = ξω non è una funzione ma solo una distribuzione (aleatoria)

Non è definito puntualmente ξ(t, x) ma solo “integrato” ξ(A) = “

∫

A

ξ(t, x) dt dx ”

• ξ(A) e ξ(B) indipendenti per A ∩ B = ∅ • ξ(A) ∼ N (0, |A|)

Non sono ben definite operazioni non lineari sulle distribuzioni (ad es. ξ2, ξ3)

Ci aspettiamo la soluzione u un po’ più regolare di ξ . . . ma non abbastanza:

▶ u distribuzione per d ≥ 2 ⇝ u3 non è definita ⇝ Φ4
d è singolare

▶ ∇u distribuzione per d ≥ 1 ⇝ |∇u|2 non è definita ⇝ KPZd è singolare



Jona-Lasinio, Mitter (1985) Da Prato, Debussche (2003)

Φ4
d per d = 2 : soluzioni deboli e soluzioni forti

The Annals of Probability

2003, Vol. 31, No. 4, 1900–1916

© Institute of Mathematical Statistics, 2003

STRONG SOLUTIONS TO THE STOCHASTIC

QUANTIZATION EQUATIONS

BY GIUSEPPE DA PRATO AND ARNAUD DEBUSSCHE

Scuola Normale Superiore di Pisa and Ecole Normale Supérieure de Cachan

We prove the existence and uniqueness of a strong solution of the

stochastic quantization equation in dimension 2 for almost all initial data with

respect to the invariant measure. The method is based on a fixed point result

in suitable Besov spaces.

1. Introduction. In this article, we consider stochastic quantization equations

in space dimension 2 with periodic boundary conditions. These are reaction–

diffusion equations driven by a space–time white noise. It is well known that the

solution is not expected to be a smooth process and the nonlinear term is modified

thanks to a renormalization.

More precisely, let G = [0,2π ]2 and H = L2(G). We are concerned with the

equation set

dX =
(

AX+ :p(X):
)

dt + dW(t),

X(0) = x,
(1.1)



La mappa soluzione

ODE stocastica (SDE) Bt = moto browniano in R
d

d

dt
Xt = σ

(
Xt

) d

dt
Bt = σ

(
Xt

)
ξ(t)

Forma integrale Xt = X0 +

∫ t

0
σ
(
Xu

)
dBu

︸ ︷︷ ︸

integrale stocastico

▶ (d > 1) La mappa soluzione B 7−→ X tipicamente è solo misurabile

▶ (d = 1) La mappa soluzione B 7−→ X è continua Convergenza loc. uniforme

[Doss (1977), Sussmann (1978)]



Uno sviluppo di Taylor aleatorio

Xt = X0 +

∫ t

0
σ
(
Xu

)
dBu

︸ ︷︷ ︸

integrale stocastico

(⋆)

Se σ(·) è regolare (C 3) possiamo caratterizzare le traiettorie della soluzione X

Teorema (Lyons 1998, Davie 2007)

Per q.o. B , la soluzione di (⋆) è l’unica funzione X : [0,∞) → R
k tale che

Xt − Xs = σ(Xs) (Bt − Bs) + ∇σ(Xs)σ(Xs)

∫ t

s

(Bu − Bs)⊗ dBu + o(t − s)

loc. uniformemente per 0 ≤ s < t < ∞.



Probabilità e Analisi

Riscriviamo la ODE stocastica (⋆) come

Xt − Xs = σ(Xs)B
1
st + ∇σ(Xs)σ(Xs)B

2
st + o(t − s) (⋆′)

dove

B
1
st := Bt − Bs B

2
st :=

∫ t

s

(Bu − Bs)⊗ dBu

︸ ︷︷ ︸

integrale stocastico

▶ B
2 = (B2

st) è un oggetto probabilistico (non canonico: Ito, Stratonovich, . . . )

▶ Assegnato B
2, l’equazione (⋆′) diventa puramente analitica

▶ La mappa soluzione (B1,B2) 7−→ X è ora continua (topologia Hölder)



Rough paths

Abbiamo fattorizzato la mappa soluzione B 7−→ X isolandone la parte “singolare”

(B1,B2)

B X

(analisi)
continua

(probabiiltà)
misurabile

misurabile

La coppia (B1,B2) è un esempio di rough path (Lyons 1998) (analisi + algebra)

La soluzione X è un esempio di path controllato da B (Gubinelli 2004)

(B1
ε
,B2

ε
) → (B1,B2)

convergenza del rough path
=⇒

X ε → X

convergenza della soluzione



Lyons (1998) Gubinelli (2004)

Journal of Functional Analysis 216 (2004) 86–140

Controlling rough paths

M. Gubinelli

Dipartimento di Matematica Applicata ‘‘U. Dini’’ Via Bonanno Pisano, 25 BIS-56125, Pisa, Italy

Received 1 October 2003; accepted 23 January 2004

Communicated by D. Stroock

Abstract

We formulate indefinite integration with respect to an irregular function as an algebraic

problem which has a unique solution under some analytic constraints. This allows us to define

a good notion of integral with respect to irregular paths with Hölder exponent greater than

1=3 (e.g. samples of Brownian motion) and study the problem of the existence, uniqueness and

continuity of solution of differential equations driven by such paths. We recover Young’s

theory of integration and the main results of Lyons’ theory of rough paths in Hölder topology.

r 2004 Elsevier Inc. All rights reserved.



Rough paths e PDE singolari

Si possono applicare le tecniche dei rough paths alle PDE stocastiche singolari?

S̀I : esistenza, unicità, continuità per KPZ1 (Hairer 2013)

Annals of Mathematics 178 (2013), 559–664
http://dx.doi.org/10.4007/annals.2013.178.2.4

Solving the KPZ equation

By Martin Hairer

Abstract

We introduce a new concept of solution to the KPZ equation which is

shown to extend the classical Cole-Hopf solution. This notion provides a

factorisation of the Cole-Hopf solution map into a “universal” measurable

map from the probability space into an explicitly described auxiliary metric

space, composed with a new solution map that has very good continuity

properties. The advantage of such a formulation is that it essentially provides

a pathwise notion of a solution, together with a very detailed approximation

theory. In particular, our construction completely bypasses the Cole-Hopf

transform, thus laying the groundwork for proving that the KPZ equation

describes the fluctuations of systems in the KPZ universality class.

(
u(t, x)

)

(t,x)∈[0,∞)×Rd

↓

(
Ut

)

t≥0
dove Ut =

(
u(t, x)

)

x∈Rd



Le Strutture di Regolarità

Teoria genuinamente multi-dimensionale: Strutture di Regolarità (Hairer 2014)

Permette di definire un’ampia classe di PDE stocastiche singolari “sotto-critiche”

Φ4
3 KPZ1 e molte altre

Per questi contributi Martin Hairer ha ricevuto la Medaglia Fields 2014

Parallelamente sono stati sviluppati approcci alternativi, in particolare (non solo)

▶ Calcolo Paracontrollato (Gubinelli, Imkeller, Perkowski 2015)

Descriverò alcune delle idee cruciali alla base delle Strutture di Regolarità



Hairer (2014) Gubinelli, Imkeller, Perkowski (2015)

Invent. math. (2014) 198:269–504

DOI 10.1007/s00222-014-0505-4

A theory of regularity structures

M. Hairer

Received: 1 October 2013 / Accepted: 21 January 2014 / Published online: 14 March 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract We introduce a new notion of “regularity structure” that provides an

algebraic framework allowing to describe functions and/or distributions via a

kind of “jet” or local Taylor expansion around each point. The main novel idea

is to replace the classical polynomial model which is suitable for describing

smooth functions by arbitrary models that are purpose-built for the problem

at hand. In particular, this allows to describe the local behaviour not only of

functions but also of large classes of distributions. We then build a calculus

allowing to perform the various operations (multiplication, composition with

smooth functions, integration against singular kernels) necessary to formulate

fixed point equations for a very large class of semilinear PDEs driven by some

very singular (typically random) input. This allows, for the first time, to give a

mathematically rigorous meaning to many interesting stochastic PDEs arising

Forum of Mathematics, Pi (2015), Vol. 3, e6, 75 pages

doi:10.1017/fmp.2015.2
1

PARACONTROLLED DISTRIBUTIONS AND

SINGULAR PDES

MASSIMILIANO GUBINELLI1, PETER IMKELLER2 and

NICOLAS PERKOWSKI3

1 CEREMADE & CNRS UMR 7534, Université Paris-Dauphine and

Institut Universitaire de France, France;

email: gubinelli@ceremade.dauphine.fr
2 Institut für Mathematik, Humboldt-Universität zu Berlin, Germany;

email: imkeller@math.hu-berlin.de
3 CEREMADE & CNRS UMR 7534, Université Paris-Dauphine, France;

email: perkowski@ceremade.dauphine.fr

Received 24 July 2014; accepted 10 April 2015

Abstract

We introduce an approach to study certain singular partial differential equations (PDEs) which

is based on techniques from paradifferential calculus and on ideas from the theory of controlled

rough paths. We illustrate its applicability on some model problems such as differential equations

driven by fractional Brownian motion, a fractional Burgers-type stochastic PDE (SPDE) driven

by space-time white noise, and a nonlinear version of the parabolic Anderson model with a white

noise potential.

0����	  �51�57/ ������� .�����������:�21�0���5�21������

��71�/����1��7�1����7���



1. Arricchire il rumore

Messaggio dei rough paths: “arricchire il rumore” (per guadagnare continuità)

B ⇝ B =
(
B
1
st , B

2
st

)
=

(

Bt − Bs ,

∫ t

s

(Bu − Bs) dBu

)

PDE stocastiche singolari sotto-critiche: numero finito di arricchimenti

rumore bianco ξ ⇝ “modello” Ξ =
(

Ξ
1
(s,y)(·)

︸ ︷︷ ︸

ξ(·)

, Ξ
2
(s,y)(·) , . . . , Ξ

M
(s,y)(·)

)

Ξ
i
(s,y)(·) : distribuzioni che descrivono funzioni non-lineari di ξ(·) in prossimità di (s, y)

(costruzione probabilistica non banale)



2. Distribuzioni modellate

Supponiamo di avere il “modello” Ξ =
(
Ξ

i
(s,y)(·)

)

1≤i≤M
per la nostra PDE stocastica

Descriviamo la soluzione u(·) con uno “sviluppo di Taylor” rispetto a Ξ

u(·) ≈ U(s,y)(·) =

M∑

i=1

ci (s, y) Ξ
i
(s,y)(·) + polinomio vicino a (s, y)

Teorema di Ricostruzione (Hairer 2014)

Imponendo condizioni di “coerenza” sui coefficienti, la famiglia

U =
(
U(s,y)(·)

)

(s,y)
“distribuzione modellata”

determina un’unica distribuzione u(·) su [0,∞)× R
d .



3. Sollevare e risolvere la PDE

Operazioni non lineari su ξ (ad es. prodotti): descritte dal modello Ξ =
(
Ξ

i
(s,y)(·)

)

⇝ ben definite per distribuzioni modellate U =
(
U(s,y)(·)

)

Stime di Schauder multi-livello (Hairer 2014)

L’integrazione è ben definita e regolarizzante per distribuzioni modellate U

La PDE si “solleva” ed è ben posta

in uno spazio di distribuzioni modellate U

U = K
(
f (U ,∇U) + Ξ

1
)

Ξ U

ξ u

(PDE sollevata)
continua

(ricostruzione)
continua



4. La rinormalizzazione

La parte probabilistica è confinata alla costruzione del modello Ξ =
(
Ξ

i
(s,y)(·)

)

1≤i≤M

Operazioni non lineari su ξ richiedono spesso forme di rinormalizzazione

In concreto: regolarizzando ξ = lim
ε↓0

ξε le soluzioni corrispondenti uε non convergono

Per aver convergenza uε → u occorre modificare le equazioni

∂tuε = ∆xuε − (u3ε − cε uε) + ξε ∂tuε = ∆xuε + |∇u|2ε − c̃ε + ξε

per opportune costanti cε, c̃ε → ∞

Solo in questo modo il modello converge: Ξε → Ξ



Conclusione

Le Strutture di Regolarità permettono di formulare PDE stocastiche singolari

Per domare le singolarità aleatorie si definisce una nuova nozione di regolarità aleatoria:

sviluppi di Taylor con “monomi aleatori” costruiti sul rumore ξ

La teoria generale, molto bella e complessa, si intreccia con diverse aree matematiche

(algebre di Hopf, analisi numerica, . . . )

I risultati cruciali (Ricostruzione, Schauder) si possono formulare indipendentemente

[C., Zambotti, EMS Survey (2020)] [Broux, C., Zambotti, preprint (2023)]

Le idee profonde possono essere utili in altri ambiti della matematica



Grazie
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