Singolarita e Regolarita Aleatorie

Francesco Caravenna

Universita degli Studi di Milano-Bicocca

| seminari del Centenario

Incontri Scientifici UMI 2022-24 ~ Milano, 26 Gennaio 2023



Raccontare in modo non tecnico un po' di storia e alcuni progressi fondamentali nelle

ODE Ordinarie

Equazioni Differenziali Stocastiche
PDE alle derivate Parziali

Raccontare alcune idee profonde alla base di questi progressi alla frontiera tra
Probabilita, Analisi e Fisica Matematica

(interazioni con Algebra, Analisi Numerica, Geometria, ...)

Avvertenza: non sono un esperto di equazioni differenziali stocastiche!

Ci sono “andato a sbattere”. ..
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ODE e PDE

ODE controllata

PDE controllata

D X(t) = o (X(1) £(1)

dt
X(t) incognita  X(0), o(-), &(t) assegnati
X :[0,00) — R¥ €:[0,00) — R? o:RF 5 RF @ RY

%u(t,x) = Ayu(t,x) + f(u(t,x), Vu(t,x)) + &(t, x)
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u(t, x) incognita  u(0,x), f(-), £(t,x) assegnati

u, £:]0,00) x RY = R f:RxRI =R



Che cos'e una equazione differenziale stocastica?

ODE o PDE dove il “controllo” £ & stocastico (aleatorio, random) e irregolare:

I'equazione non si puo formulare in modo puramente analitico

> (Q, A, P) spazio di probabilita Q3w — &9t,x)

» (t,x) — £“(t,x) non & una funzione regstare
ma solo una distribuzione (Schwartz)

“Perché farsi del male?” Perché ¢ irregolari emergono nei casi pill interessanti

Rumore bianco:  “i valori di £(t,x) sono indipendenti in ogni punto (t,x)" J




ODE stocastiche (SDE): la teoria classica

ODE %Xt =0o(X¢) &(t) in forma integrale: [ X::= X(t)]
t t

X, = x0+/ o (X.) £(s)ds = x0+/ o (X:) dB, )
0 0

B: = fot &(s)ds & il moto browniano (t — B funzione continua, non derivabile)

Teorema (Ito 1944)
» Integrale stocastico fot YsdBs per un'ampia classe di funzioni aleatorie (Y:*)s>0

» Esistenza e unicita per I'equazione (x) mediante punto fisso [o() € Ct]




Ito (1944)

Revuz, Yor (1999)
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109. Stochastic Integral.*

By Kiyosi ITO.
Mathematical Institate, Nagoya Imperial University.
(Comm. by S. KAKEYA, M.LA., Oct. 12, 1944.)

1. Introduction. Let (2, P) be any probability field, and g(¢, »),
0=t<1, weL, be any brownian motion® on (2, P) i.e. a (real)
stochastic differential process with no moving discontinuity such that
8 (g6, ) —g(t, ©))=0" and &(g(s, 0)—g(t, ) )’=Is—¢|. In this note
we shall investigate an integral S:f(r, ) d.g(zr, w) for any element

f(t, @) in a functional class S* which will be defined in §2; the
particular case in which f(¢, @) does not depend upon w has already
been treated by Paley and Wiener®.

In §2 we shall give the definition and prove fundamental
properties concerning this integral. In §3 we shall establish three
theorems which give sufficient diti for i ility. In §4 we
give an example, which will show a somewhat singular property of
our integral.

2. Definition and Properties. For brevity we define the classes
of measurable functions defined on [0, 11x 2: G, S(t, &y, ..., &), S and
S* respectively as the classes of f(¢, ) satisfying the corresponding
conditions, as follows,

G: f(z, ), 9(z, w), 0 =t Xt, are independent of g(s, w)—g(t, »),
t<os=1, for any ¢, g(r,w) being the above mentioned brownian
motion,
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PDE stocastiche (SPDE): la teoria classica

PDE Oiu— Aju=f(u,Vu)+¢ in forma integrale (“mild"):
u(t,x) = "0 — D) H(F(u, Vu) +€) "

- w0 + | [ s =) {050, Vo)) 4 €(50) sy ()
[Rd

e
lx—y|?

nucleo del calore  exp (fm)

Teorema (AA. VV. '70-'80)

> Integrale stocastico per un'ampia classe di funzioni aleatorie

» Esistenza e unicita per f(-) non lineari solo in bassa dimensione d < dj
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PDE stocastiche singolari

Alcune importanti PDE stocastiche singolari sfuggono alla teoria classica

in particolare quando f(u,Vu) & non lineare
Due esempi fondamentali:
» Quantizzazione stocastica (%) per d > 2 [Parisi, Wu (1981)]

Oy = DNu — u° + €

» Dinamica di interfacce (KPZy) per d > 1 [Kardar, Parisi, Zhang (1986)]

Oru = Dxu + |Vu)® + ¢



Parisi, Wu (1981

Kardar, Parisi, Zhang (1986

VOLUME 56, NUMBER 9 PHYSICAL REVIEW LETTERS 3 MARCH 1986

SCIENTIA SINICA April 1981

Vol XXIV No. 4

Dynamic Scaling of Growing Interfaces

Mehran Kardar

Physics Depariment, Harvard University, Cambridge, Massachusetts 02138

PERTURBATION THEORY WITHOUT
GAUGE FIXING

Giorgio Parisi
Physics Depariment, University of Rome, 1-00173 Rome, lialy

and

Yi-Cheng Zhang
Physies Deparimens Boakbaven Natanal Laboatory Upton New York 11973
ved 12 November 1985)

G. Pamst
(Institute of Theoretical Physics, Academia Sinica;
tigh i A model is proposed for the evolution of the profile of a growing interface. The deterministic
ZLaboratori Nazionale, INFN, Frascati, Italy) srowth is solved exactly, and exhibits nontrivial relaxation patterns. The stochastic version is stud-
ied by dynamic renormalization-group techniques and by mappings o Burgers’s equation and 10 &
ANp Wu Yonosur (Siki) fandom problem. The exact
iterface i in excelicnt sgrecment with previous numerical simulations. Predictions are made for
more dimensions.

(Institute of Theoretical Physics, Academia Sinics)

Reeoived July 7, 1980. PACS numbers: 05.70.Ln, 64.60.H1, 68.35.Fx, 81.15J;

ABSTRACT

We propose to formulate the perturbative expansion for field theory starting from the Langevin
equation which deseribos the approach to equilibrium. We show that this formulation ean bo applied
to gauge theories to compute gauge invariant quantities without fixing tho gauge. A very simplo
examplo is worked out in detail. We also discuss the speed of approaching to equilibrium of the
solution of the Langevin equation in the framework of perturbation theory.

Many _challenging problems are associated with
growth patterns in clusters' and solidification rroms'
Several models have been proposed recently to
describe the growth of smoke and colloid aggregaes,
flame fronts, twmors, etc.' I is generally recognized
that the growth process occurs mainly at an “active’
zone on the surface of the cluster, with Imeresing
scaling properties’ However, a system:
treatment of the static and dynamic Nuctuaions o the
growing interface has been lacking so far

The interface profile, suitably coarse-grained, is
described by a height h(x.1). As usual, it is con-
venient to ignore overhangs so that / is a single-valued
function of x. The simplest nonlinear Langevin cqua-
tion for a local growth of the profile is given by'?
%_,,v;,, + 3R ). W
The first term on the right-hand side describes relaxa-
tion of the interface by a surface tension v. The




PDE stocastiche e distribuzioni

[l rumore bianco & = £“ non & una funzione ma solo una distribuzione (aleatoria)
Non & definito puntualmente £(t,x) ma solo “integrato” £(A) = / &(t,x)dtdx”

e £(A) e &(B) indipendenti per AN B = () o &(A) ~N(0,A])

Non sono ben definite operazioni non lineari sulle distribuzioni (ad es. £2, £3) J

Ci aspettiamo la soluzione u un po’ pit regolare di £ ... ma non abbastanza:

» u distribuzione per d > 2 ~» u3 non & definita  ~ CDf, e singolare

» Vu distribuzione per d > 1 ~» |Vu|? non & definita ~» KPZ4 & singolare



Jona-Lasinio, Mitter (1985)

®% per d = 2: soluzioni deboli

Debussche (2003)

soluzioni forti

Communications in
Mathematical

Commun. Math. Phys. 101,409-436 (1985)

© Springer-Verlag 1985

On the Stochastic Quantization of Field Theory

G. Jona-Lasinio"*" and P. K. Mitter*

1* Dipartimento di Fisica, Universiti di Roma “La Sapienza,” Piazzale Aldo Moro 2,
1-00185 Roma, Italy

2 Laboratoire de Physique Théorique et Hautes Energies**, Université Pierre et Marie Curie,
Paris VI, F-75230 Paris Cedex 05, France

Abstract. We give a rigorous construction of a stochastic continuum P(¢),
model in finite Euclidean space-time volume. It is obtained by a weak solution
of a non-linear stochastic differential equation in a space of distributions. The
resulting Markov process has continuous sample paths, and is ergodic with the
finite volume Euclidean P(¢), measure as its unique invariant measure. The
procedure may be called stochastic field quantization.

The Annals of Probabilsy
2003, Vol. 31, No. 4, 1900-1916
© Institute of Mathematical Statistcs, 2003

STRONG SOLUTIONS TO THE STOCHASTIC
QUANTIZATION EQUATIONS

BY GIUSEPPE DA PRATO AND ARNAUD DEBUSSCHE
Scuola Normale Superiore di Pisa and Ecole Normale Supérieure de Cachan
We prove the existence and uniquencss of a strong solution of the
stochastic quantization equation in dimension 2 for almost all initial data with

respect to the invariant measure. The method is based on a fixed point result
in suitable Besov spaces.

1. Introduction. In this article, we consider stochastic quantization equations
ace dimension 2 with periodic boundary conditions. These are reaction—
sion equations driven by a space-time white noise. It is well known that the
solution is not expected to be a smooth process and the nonlinear term is modified
thanks to a renormalization.

More precisely, let G = [0,27]* and H = L*(G). We are concerned with the
equation set

= (AX+:p(X):)dt +dW(1),
X(0)=x,

(1.1




La mappa soluzione

ODE stocastica (SDE) B: = moto browniano in R¢
9 x = o(x) LB, = o(x)e()
dt dt
t
Forma integrale Xe = Xo+ / o(X,)dBy,
0
—_—————

integrale stocastico
» (d > 1) La mappa soluzione B +—— X tipicamente & solo misurabile

» (d =1) La mappa soluzione B —— X & continua Convergenza loc. uniforme

[Doss (1977), Sussmann (1978)]



Uno sviluppo di Taylor aleatorio

X = Xo+ /Ota(Xu) 48, %)

—_————
integrale stocastico

Se () & regolare (C3) possiamo caratterizzare le traiettorie della soluzione X

Teorema (Lyons 1998, Davie 2007)

Per q.0. B, la soluzione di (%) & I'unica funzione X : [0, 00) — R¥ tale che

Xe — Xs = o(Xs) (Be — Bs) + Vo (Xs) o(X:) /t(Bu — B,)®dB, + o(t —s)

loc. uniformemente per 0 < s < t < .




Probabilita e Analisi

Riscriviamo la ODE stocastica (x) come

Xe — Xs = 0(Xs) BL, + Vo (X)) o(Xs) B2 + ot —s) ()
dove .
Bl := B, — B, B2 = / (B, — Bs) ®dB,
integrale stocastico
» B2 = (B2) & un oggetto probabilistico (non canonico: Ito, Stratonovich, ...)

» Assegnato B2, I'equazione (%) diventa puramente analitica

» La mappa soluzione (B',B?) — X & ora continua (topologia Halder)



Rough paths

Abbiamo fattorizzato la mappa soluzione B —— X isolandone la parte “singolare”

(B, B%)
(probabiilta) (analisi)
misurabile continua

misurabile

B—— X

La coppia (B!, B?) & un esempio di rough path (Lyons 1998) (analisi + algebra)

La soluzione X & un esempio di path controllato da B (Gubinelli 2004)

(B, BZ) — (B, B) Xe = X
convergenza del rough path convergenza della soluzione




Lyons (1998)

Gubinelli (2004)

REVISTA MATEMATICA 1
Vor. 14, N.° 2, 1998

caNA

Differential equations

driven by rough signals

Terry J. Lyons

1. Preliminaries.
1.1. Introduction.

1.1.1. differential

(or ) systems of
equations are often treated rather formally as extensions of the homo-
geneous (or autonomous) case by adding an extra parameter to the
system; however this can be a travesty. Consider an equation of the
kind

(1.1 dye =Y [ (ue) daf

Available online at i lirect.com
.c...“@n.“m. JOURKAL OF
Functional
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ELSEVIER Journal of Functional Analysis 216 (2004) 86-140 —_—
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Controlling rough paths
M. Gubinelli

Dipartimento di Matematica Applicata "U. Dini"" Via Bonanno Pisano, 25 BIS-56125, Pisa, Italy
Received 1 October 2003; accepted 23 January 2004

Communicated by D. Stroock

Abstract

We formulate indefinite integration with respect to an irregular function as an algebraic
problem which has a unique solution under some analytic constraints. This allows us to define
a good notion of integral with respect to irregular paths with Holder exponent greater than
1/3 (e.g. samples of Brownian motion) and study the problem of the existence, uniqueness and
continuity of solution of differential equations driven by such paths. We recover Young's
theory of integration and the main results of Lyons’ theory of rough paths in Holder topology.




Rough paths e PDE singolari

Si possono applicare le tecniche dei rough paths alle PDE stocastiche singolari?

Sl : esistenza, unicita, continuitd per KPZ; (Hairer 2013)

Annals of Mathematics 178 (2013), 559-664
http://dx.doi.org/10.4007/annals.2013.178.2.4

Solving the KPZ equation
By MARTIN HAIRER (U(t, X))(t,X)G[O,OO)XRd

Abstract \L

We introduce a new concept of solution to the KPZ equation which is
shown to extend the classical Cole-Hopf solution. This notion provides a
factorisation of the Cole-Hopf solution map into a “universal” measurable
map from the probability space into an explicitly described auxiliary metric ( U t) dove U t = ( U( t,x )) J
space, composed with a new solution map that has very good continuity t>0 x€R
propertics. The advantage of such a formulation is that it essentially provides
a pathwise notion of a solution, together with a very detailed approximation
theory. In particular, our construction completely bypasses the Cole-Hopf
transform, thus laying the groundwork for proving that the KPZ equation
describes the fluctuations of systems in the KPZ universality class.




Le Strutture di Regolarita

Teoria genuinamente multi-dimensionale: Strutture di Regolarita (Hairer 2014)

Permette di definire un’ampia classe di PDE stocastiche singolari “sotto-critiche”

4 KPZ; e molte altre
Per questi contributi Martin Hairer ha ricevuto la Medaglia Fields 2014 J
Parallelamente sono stati sviluppati approcci alternativi, in particolare (non solo)

» Calcolo Paracontrollato (Gubinelli, Imkeller, Perkowski 2015)

Descrivero alcune delle idee cruciali alla base delle Strutture di Regolarita



Hairer (2014)

Gubinelli, Imkeller, Perkowski (2015)

Invent. math. (2014) 198:269-504
DOI 10.1007/500222-014-0505-4

A theory of regularity structures

M. Hairer

Received: 1 October 2013 / Accepted: 21 January 2014 / Published online: 14 March 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract We introduce a new notion of “regularity structure” that provides an
algebraic framework allowing to describe functions and/or distributions via a
kind of “jet’” or local Taylor expansion around each point. The main novel idea
is to replace the classical polynomial model which is suitable for describing
smooth functions by arbitrary models that are purpose-built for the problem
at hand. In particular, this allows to describe the local behaviour not only of
functions but also of large classes of distributions. We then build a calculus
allowing to perform the various operations (multiplication, composition with
smooth functions, integration against singular kernels) necessary to formulate
fixed point equations for a very large class of semilinear PDEs driven by some
very singular (typically random) input. This allows, for the first time, to give a

Forum of Mathematics, Pi (2015), Vol. 3, e6, 75 pages
doi:10.1017/fmp.2015.2

RACONTROLLED DISTRIBUTIONS AND
SINGULAR PDES

MASSIMILIANO GUBINELLI', PETER IMKELLER? and
NICOLAS PERKOWSKI®
! CEREMADE & CNRS UMR 7534, Université Paris-Dauphine and
Institut Universitaire de France, France;
email: gubinelli@ceremade.dauphine. fr
2 Institut fiir Mathematik, Humboldt-Universitiit zu Berlin, Germany;
email: imkeller@math.hu-berlin.de
# CEREMADE & CNRS UMR 7534, Université P: Dauphine, France;
email: perkowski@ceremade.dauphine.fr

Received 24 July 2014; accepted 10 April 2015

Abstract

We introduce an approach to study certain singular partial differential equations (PDEs) which
is based on techniques from paradifferential calculus and on ideas from the theory of controlled
rough paths. We illustrate its applicability on some model problems such as differential equations
driven by fractional Brownian motion, a fractional Burgers-type stochastic PDE (SPDE) driven
by space-time white noise, and a nonlinear version of the parabolic Anderson model with a white
noise potential.




1. Arricchire il rumore

Messaggio dei rough paths: “arricchire il rumore” (per guadagnare continuita)

t
B PUSY [B = ([Bit7 [Bgt) = (Bt - BS 3 / (Bu - Bs)dBu)
s

PDE stocastiche singolari sotto-critiche: numero finito di arricchimenti

rumore bianco & ~»  “"modello” = = (E%&y)(-), E%S7y)(~) e E?g,y)(')>
——

()

=(s,)(+): distribuzioni che descrivono funzioni non-lineari di £(-) in prossimita di (s, y)

(costruzione probabilistica non banale)



2. Distribuzioni modellate

Supponiamo di avere il “modello” == (=(, () )1,y Per la nostra PDE stocastica

Descriviamo la soluzione u(-) con uno “sviluppo di Taylor” rispetto a =

M
u(-) = Uy (1) = Zc;(s,y) Eé&y)(') + polinomio vicino a (s, y)
i=1
Teorema di Ricostruzione (Hairer 2014)

Imponendo condizioni di “coerenza” sui coefficienti, la famiglia

U= (U(SJ)('))(s,y) “distribuzione modellata”

determina un'unica distribuzione u(-) su [0, 00) x R9.




3. Sollevare e risolvere la PDE

Operazioni non lineari su & (ad es. prodotti): descritte dal modello = = (=[_ ()

~» ben definite per distribuzioni modellate U = (Us ("))

Stime di Schauder multi-livello (Hairer 2014)

L'integrazione € ben definita e regolarizzante per distribuzioni modellate U

La PDE si “solleva” ed & ben posta (PDE sollevata)
continua
—>

c

in uno spazio di distribuzioni modellate U

(ricostruzione)
continua

U=K(f(U,VU)+=")

T
o




4. La rinormalizzazione

=i

La parte probabilistica & confinata alla costruzione del modello = = (:(s_y)(-))1<i<M

Operazioni non lineari su ¢ richiedono spesso forme di rinormalizzazione
In concreto: regolarizzando & = lif(} &: le soluzioni corrispondenti u. non convergono
&
Per aver convergenza u. — u occorre modificare le equazioni
Orue = Dyue — (13 — cou.) + & Orue = Dyue + |[Vu?2 — & + &

per opportune costanti ¢., C. — 00

Solo in questo modo il modello converge: =, — = J




Conclusione

Le Strutture di Regolarita permettono di formulare PDE stocastiche singolari
Per domare le singolarita aleatorie si definisce una nuova nozione di regolarita aleatoria:

sviluppi di Taylor con “monomi aleatori” costruiti sul rumore &

La teoria generale, molto bella e complessa, si intreccia con diverse aree matematiche

(algebre di Hopf, analisi numerica, ...)

| risultati cruciali (Ricostruzione, Schauder) si possono formulare indipendentemente

[C., Zambotti, EMS Survey (2020)] [Broux, C., Zambotti, preprint (2023)]

Le idee profonde possono essere utili in altri ambiti della matematica



Grazie
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