

# Noise sensitivity for the 2D Stochastic Heat Equation and directed polymers

**Francesco Caravenna**

University of Milano-Bicocca

Workshop on Irregular Stochastic Analysis

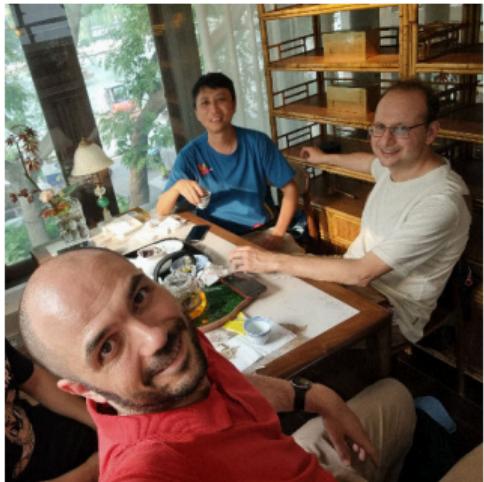
INdAM Meeting at Palazzone di Cortona ~ 24 June 2025

# Collaborators



Joint work with  
**Anna Donadini**

Previous works with  
**Rongfeng Sun (NUS)**  
**Nikos Zygouras (Warwick)**



# Outline

1. The critical 2D SHF
2. Which equation for the SHF?
3. Noise sensitivity

# The Stochastic Heat Equation

Heat equation with multiplicative singular potential

$t \geq 0, x \in \mathbb{R}^d$

$$\partial_t u(t, x) = \Delta_x u(t, x) + \beta u(t, x) \xi(t, x) \quad (\text{SHE})$$

$\beta \geq 0$  coupling constant

$\xi(t, x)$  = “space-time white noise”

$(d = 1)$  sub-critical: well-posed

Ito-Walsh / Robust solution theories

[Chen–Dalang 15] [Hairer–Pardoux 15]

$(d = 2)$  critical

[C.S.Z. 23]

Natural candidate solution: the critical 2D Stochastic Heat Flow (SHF)

# Regularisation

How we define a solution of 2D SHE?

Regularized noise  $\xi_N(t, x)$   $\rightsquigarrow$  well-defined solution  $u_N(t, x)$   
(discretization, mollification, ...)

$$\begin{cases} \partial_t u_N(t, x) = \Delta_x u_N(t, x) + \beta u_N(t, x) \xi_N(t, x) \\ u_N(0, x) \equiv 1 \text{ (for simplicity)} \end{cases} \quad (\text{reg-SHE})$$

Convergence of  $u_N(t, \varphi) = \int_{\mathbb{R}^2} u_N(t, x) \varphi(x) dx$  as  $N \rightarrow \infty$  ?

# Renormalisation

Mean convergence

$$\mathbb{E}[u_N(t, \varphi)] \xrightarrow[N \rightarrow \infty]{} \int_{\mathbb{R}^2} \varphi(x) dx \quad (\text{easy})$$

Variance convergence?

$$\boxed{\text{for } \beta \sim \frac{\hat{\beta}}{\sqrt{\log N}} \text{ with } \hat{\beta} = \sqrt{\pi} \left( 1 + \frac{\vartheta}{\log N} \right)}$$

$$\mathbb{V}\text{ar}[u_N(t, \varphi)] \xrightarrow[N \rightarrow \infty]{} K_t^{\vartheta}(\varphi, \varphi) > 0$$

[Bertini–Cancrini 98] [C.S.Z. 19]

Higher moments convergence

[C.S.Z. 19] [Gu–Quastel–Tsai 21]

Convergence in law of  $u_N(t, \varphi)$  ?  $\iff$  of the measure  $u_N(t, x) dx$  ?

# The critical 2D Stochastic Heat Flow

Theorem

[C.S.Z. *Invent. Math.* 23]

Take

$$\beta = \frac{\sqrt{\pi}}{\sqrt{\log N}} \left( 1 + \frac{\vartheta}{\log N} \right) \quad \text{for some } \vartheta \in \mathbb{R}$$

Then  $u_N$  converges in law to a **unique** and **non-trivial limit**  $\mathcal{U}^\vartheta$

$$(u_N(t, x) dx)_{t \geq 0} \xrightarrow[N \rightarrow \infty]{d} (\mathcal{U}^\vartheta(t, dx))_{t \geq 0}$$

$\mathcal{U}^\vartheta$  = critical 2D **Stochastic Heat Flow (SHF)** = stochastic process of random measures on  $\mathbb{R}^2$

# SHF and Stochastic Heat Equation

The SHF is a “candidate solution” of the **critical** 2d Stochastic Heat Equation

$$\mathcal{U}^{\vartheta}(t, dx) \quad (\text{initial condition 1 at time 0})$$

We actually build a **two-parameter space-time process**

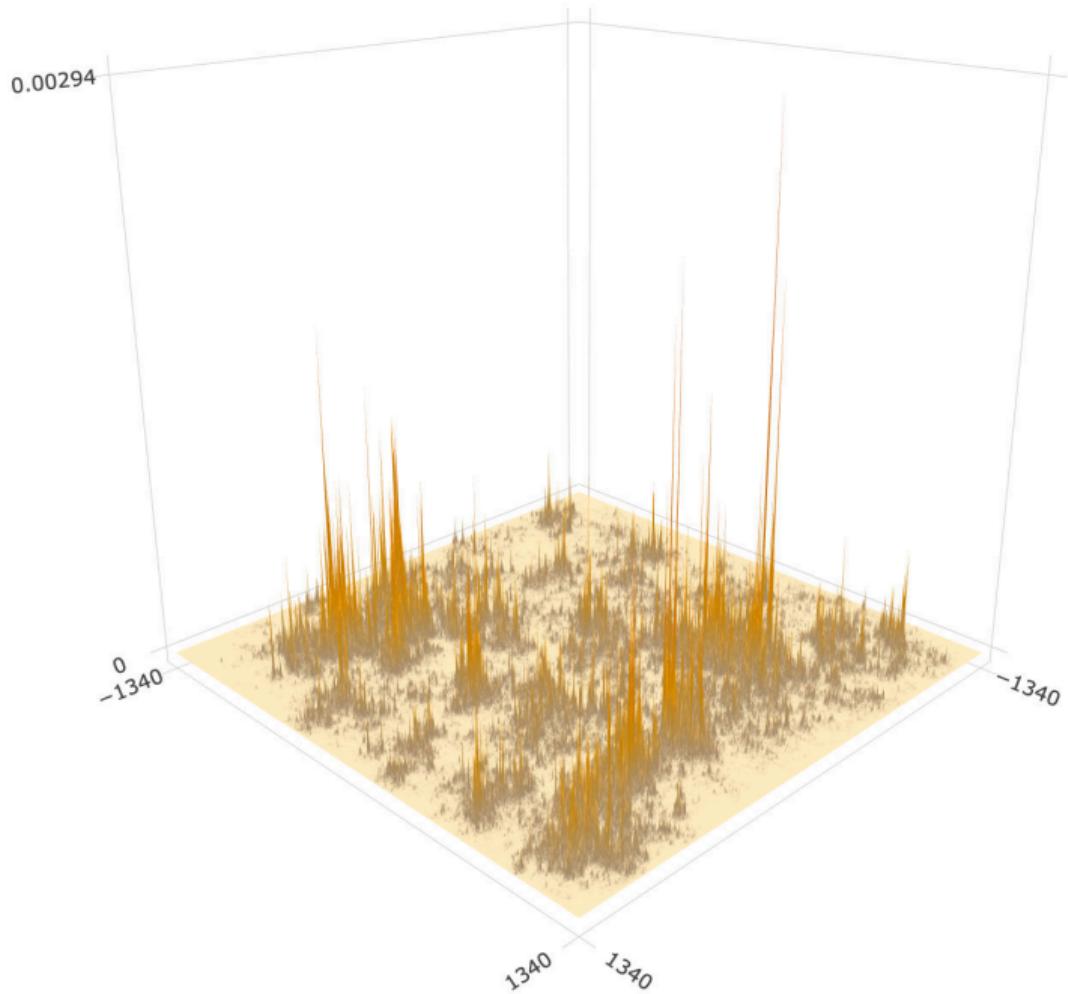
$$(\mathcal{U}^{\vartheta}(s, dy; t, dx))_{0 \leq s \leq t < \infty} \quad (\text{starting at time } s \text{ from } dy)$$

“Flow”: Chapman-Kolmogorov property for  $s < t < u$  [Clark–Mian 2024+]

$$\mathcal{U}^{\vartheta}(s, dy; u, dz) = \int_{x \in \mathbb{R}^2} \mathcal{U}^{\vartheta}(s, dy; t, dx) \underbrace{\mathcal{U}^{\vartheta}(t, dx; u, dz)}_{\text{non-trivial “product” of measures}}$$

# Key properties of the SHF

- ▶ a.s.  $\mathcal{U}^\vartheta(t, dx)$  is **singular** w.r.t. Lebesgue  
"not a function" [C.S.Z. arXiv 25]
- ▶ a.s.  $\mathcal{U}^\vartheta(t, dx) \in \mathcal{C}^{-\kappa}$  for any  $\kappa > 0$  (in particular: non atomic)  
"barely not a function"
- ▶ **Formulas** for all moments [C.S.Z. 19] [Gu–Quastel–Tsai 21]
- ▶ Scaling covariance  $a^{-1} \mathcal{U}^\vartheta(a t, d(\sqrt{a} x)) \stackrel{d}{=} \mathcal{U}^{\vartheta + \log a}(t, dx)$
- ▶ **Axiomatic characterization** via independence & moments [Tsai 24+]
- ▶ Universality w.r.t. approximation scheme [C.S.Z. 23] [Tsai 24+]



# Outline

1. The critical 2D SHF
2. Which equation for the SHF?
3. Noise sensitivity

# SHF and the white noise

Does SHF  $\mathcal{U}^{\vartheta}(t, dx)$  satisfy a SPDE driven by white noise  $\xi(t, x)$ ?

- SHF  $\mathcal{U}^{\vartheta}(t, dx)$  is the limit of regularised SHE solutions  $u_N(t, x) dx$

$$\begin{cases} \partial_t u_N(t, x) = \Delta_x u_N(t, x) + \beta u_N(t, x) \xi_N(t, x) \\ u_N(0, x) \equiv 1 \quad (\text{for simplicity}) \end{cases} \quad (\text{reg-SHE})$$

- White noise  $\xi(t, x)$  is the limit of regularised noise  $\xi_N(t, x)$

$$\langle \xi, \psi \rangle = \lim_{N \rightarrow \infty} \int \xi_N(t, x) \psi(t, x) dx \quad \text{in distribution} \quad \psi \in C_c^\infty(\mathbb{R}^{1+2})$$

# No equation for the SHF

## Theorem

[C.-Donadini 25+]

$$(\xi_N, u_N) \xrightarrow[N \rightarrow \infty]{d} (\xi, \mathcal{U}^{\vartheta}) \quad \xi \text{ and } \mathcal{U}^{\vartheta} \text{ independent}$$

Puzzling:  $u_N$  is a **function** of  $\xi_N$  yet dependence is lost in the limit!

This suggests that

$\mathcal{U}^{\vartheta}$  cannot solve a SPDE driven by  $\xi$

Recently proved:  $\mathcal{U}^{\vartheta}$  is a “black noise” (à la Tsirelson)

[Gu-Tsai arXiv 25]

# Noise sensitivity

We prove independence of  $\mathcal{U}^\vartheta$  and  $\xi$  showing that (see next slides)

$u_N$  is **sensitive** to small perturbations of the driving noise  $\xi_N$

We take  $\xi_N :=$  discretisation of white noise on the lattice  $\frac{1}{N}\mathbb{N} \times \frac{1}{\sqrt{N}}\mathbb{Z}^2$

$$\xi_N(t, x) = N \cdot \omega(n, z) \text{ i.i.d.} \quad \text{for } (t, x) = \left(\frac{n}{N}, \frac{z}{\sqrt{N}}\right)$$

We have  $u_N(t, \varphi) = f_N(\omega)$  for a suitable function  $f_N(\cdot) = f_N^{t, \varphi}(\cdot)$

(partition function of 2D directed polymer in random environment)

# Outline

1. The critical 2D SHF
2. Which equation for the SHF?
3. Noise sensitivity

# Noise sensitivity

Fix i.i.d. random variables  $\omega = (\omega_i)_{i=1,2,\dots}$

$$\mathbb{E}[\omega_i] = 0 \quad \text{Var}[\omega_i] = 1$$

Take a sequence of functions  $f_N(\omega) \in L^2$

$$\lim_{N \rightarrow \infty} \text{Var}[f_N(\omega)] = \sigma^2 \in (0, \infty)$$

Define “ $\varepsilon$ -perturbation”  $\omega^\varepsilon = (\omega_i^\varepsilon)_{i=1,2,\dots}$

$$\omega_i^\varepsilon := \begin{cases} \omega_i & \text{w. prob. } 1 - \varepsilon \\ \tilde{\omega}_i \perp \omega_i & \text{w. prob. } \varepsilon \end{cases}$$

We call  $(f_N)_{N \in \mathbb{N}}$  noise sensitive if

[Garban–Steif 14] [O’Donnel 14]

$$\forall \varepsilon > 0 \quad \lim_{N \rightarrow \infty} \text{Cov}[f_N(\omega^\varepsilon), f_N(\omega)] = 0$$

# Noise sensitivity

“Usual” functions are **not** noise sensitive, e.g.

$$f_N(\omega) = \frac{\omega_1 + \dots + \omega_N}{\sqrt{N}}$$

“Parity” is noise sensitive:

$$f_N(\omega) = \omega_1 \cdots \omega_N \quad \text{for symmetric } \omega_i = \pm 1$$

Chaos decomposition

$$f_N = \mathbb{E}[f_N] + \sum_{d=1}^{\infty} f_N^{(d)} \quad \text{Var}[f_N] = \sum_{d=1}^{\infty} \|f_N^{(d)}\|_2^2$$

For instance

$$f_N^{(d)}(\omega) = \sum_{\{i_1, \dots, i_d\}} c_N(i_1, \dots, i_d) \omega_{i_1} \cdots \omega_{i_d} \quad (\text{polynomial chaos})$$

## Spectral criterion

$$\text{Noise sensitivity} \iff \forall d \in \mathbb{N}: \|f_N^{(d)}\|_2^2 \xrightarrow{N \rightarrow \infty} 0$$

# The BKS Theorem

Boolean setting: binary functions  $f(\omega)$  of binary variables  $\omega_i$

Robust condition for noise sensitivity based on influences

$$I_i(f) := \mathbb{P}(f(\omega_+^i) \neq f(\omega_-^i)) \quad \mathcal{W}(f) := \sum_i I_i(f)^2$$

Theorem

[Benjamini–Kalai–Schramm 99]

$$(f_N)_{N \in \mathbb{N}} \text{ is noise sensitive if} \quad \lim_{N \rightarrow \infty} \mathcal{W}(f_N) = 0 \quad [\text{B.K.S. 99}]$$

$$\forall \varepsilon > 0: \quad \text{Cov}[f(\omega^\varepsilon), f(\omega)] \leq C \mathcal{W}(f)^{\alpha \varepsilon} \quad [\text{Keller–Kindler 13}]$$

# Influences beyond the Boolean setting

Define  $\delta_i f := f - \mathbb{E}_i[f]$  with  $\mathbb{E}_i[\cdot] = \mathbb{E}[\cdot | \sigma(\omega_j : j \neq i)]$  [Talagrand 94]

## Two notions of influence

$$I_i^{(1)}(f) := \|\delta_i f\|_1 = \mathbb{E}[|\delta_i f|] \quad I_i^{(2)}(f) := \|\delta_i f\|_2^2 = \mathbb{E}[(\delta_i f)^2]$$

(for Boolean  $f$  they coincide up to a factor 2)

It is the  $L^1$  influence that is relevant for us:  $\mathcal{W}(f) := \sum_i I_i^{(1)}(f)^2$

# Main result

We extend BKS in either of the following settings:

- ▶  $\omega_i$  take finitely many values &  $f(\omega)$  is any function in  $L^2$
- ▶  $\mathbb{E}[|\omega_i|^q] < \infty$  for some  $q > 2$  &  $f(\omega)$  is a polynomial chaos or ...

Both settings ensure a suitable hypercontractivity  $L^2 \rightarrow L^q$

## Generalized BKS

[C.-Donadini 25+]

$$\forall d \in \mathbb{N}: \quad \|f^{(d)}\|_2^2 \leq (c_q)^d \mathcal{W}(f)^{1-\frac{2}{q}}$$

$$\forall \varepsilon > 0: \quad \text{Cov} [f(\omega^\varepsilon), f(\omega)] \leq C \mathcal{W}(f)^{\alpha_q \varepsilon}$$

# Back to SHE

## Noise sensitivity of 2D SHE

[C.-Donadini 25+]

$$\mathcal{W}(u_N(t, \varphi)) \sim \frac{c_{t, \varphi}}{\log N} \implies u_N(t, \varphi) \text{ is noise sensitive}$$

Influences are **stable** under composition with Lipschitz functions:

$$\mathcal{W}(\phi(f)) \leq 4 \|\phi'\|_\infty^2 \mathcal{W}(f)$$

## Enhanced noise sensitivity

[C.-Donadini 25+]

$\phi(u_N(t, \varphi))$  is noise sensitive  $\forall$  Lipschitz  $\phi$  if the  $\omega_i$ 's take finitely many values

$\implies u_N(t, \varphi)$  is asymptotically **independent** of any bounded order chaos

# Conclusion

We extended the BKS Theorem beyond the Boolean setting

- ▶ Robust conditions for noise sensitivity (stable under composition)
- ▶ Quantitative bounds

Our proof refines Keller-Kindler: optimal estimate for binary  $\omega_i$ 's

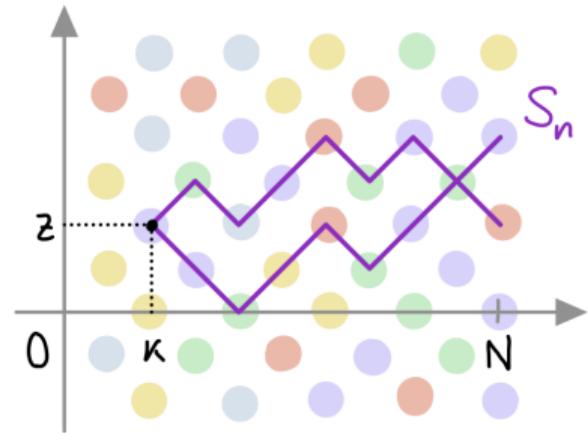
$$\text{Cov} [f(\omega^\varepsilon), f(\omega)] \leq \mathcal{W}(f)^{\frac{\varepsilon}{2-\varepsilon} + o(1)}$$

The assumption that  $\omega_i$ 's take finitely many values can hopefully be removed

Grazie

# Directed Polymer in Random Environment

- ▶  $S = (S_n)_{n \geq 0}$  simple random walk on  $\mathbb{Z}^d$
- ▶ Independent Gaussians  $\omega(n, x) \sim \mathcal{N}(0, 1)$
- ▶  $H(S, \omega) := \sum_{n=k+1}^N \omega(n, S_n) \sim \mathcal{N}(0, N-k)$



## Partition Functions

$(k \in \mathbb{N}, z \in \mathbb{Z}^d)$

$$Z_{N,\beta}^{\omega}(k, z) = \mathbb{E} \left[ e^{\beta H(S, \omega) - \frac{1}{2} \beta^2 (N-k)} \mid S_k = z \right]$$

# Partition functions and SHE

Diff. rescaled partition functions = discretized SHE solutions

$$Z_{N,\beta}^{\omega}(N(1-t), \sqrt{N}x) = u_N(t, x) \quad (\text{time rev.})$$

Partition functions solve a difference equation:

with  $\xi_N \approx \omega$

$$\begin{cases} \partial_t u_N(t, x) = \Delta_x u_N(t, x) + \underbrace{\beta N^{\frac{2-d}{4}}}_{\beta_{\text{SHE}}} u_N(t, x) \xi_N(t, x) \\ u_N(0, x) \equiv 1 \end{cases} \quad (\text{reg-SHE})$$

Discrete analogue of Feynman-Kac

$$u_N(t, x) \approx \mathbb{E} \left[ e^{\beta_{\text{SHE}} \int_{1-t}^1 \xi(s, B_s) - \frac{1}{2} \beta_{\text{SHE}}^2 t} \mid B_{1-t} = x \right]$$