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The Stochastic Heat Equation

Heat equation with multiplicative singular potential t>0, xeR?
Beu(t,x) = Axu(t,x) + B u(t,x) (t,x) (SHE)

B >0 coupling constant E(t,x) = “space-time white noise”

(d = 1) sub-critical: well-posed Ito-Walsh / Robust solution theories
[Chen—Dalang 15] [Hairer—Pardoux 15]

(d = 2) critical [C.S.Z. 23]

Natural candidate solution: the critical 2D Stochastic Heat Flow (SHF)



Regularisation

How we define a solution of 2D SHE?

Regularized noise En(t,x)  ~»  well-defined solution up(t,x)

(discretization, mollification, ...)

drun(t,x) = Axun(t,x) + B upn(t,x) En(t,x)

(reg-SHE)
un(0,x) =1 (for simplicity)

Convergence of up(t,¢) = /2 un(t,x)p(x)dx as N — o0 ?
R



Renormalisation

Convergence of the mean is easy: E[un(t, )] = /2 o(x)dx
—»o0 R
Convergence of the variance? B~ 3 for B =vr|1+ v
' ViegN log N
Var[un(t, )] - K (p,9) >0 [Bertini—Cancrini 98] [C.S.Z. 19]
—>00
Convergence of all higher moments [C.S.Z. 19] [Gu—Quastel-Tsai 21]

Convergence in law of up(t,@) ? <= of the measure uy(t,x)dx ?



The critical 2D Stochastic Heat Flow

Theorem [C.S.Z. Invent. Math. 23]
Nz )
Tak = — 1+ —— fi v eR
ake B gV + og N or some

Then upy converges in law to a unique and non-trivial limit % ?

(uN(t,X) dx)tZO SN (%ﬂ(t,dx))t

N—soo =0

stochastic process of

%" = critical 2D Stochastic Heat Flow (SHF) = 5
random measures on R



SHF and Stochastic Heat Equation

The SHF is a “candidate solution” of the critical 2d Stochastic Heat Equation

w7 (t,dx) (initial condition 1 at time 0)

We actually build a two-parameter space-time process

(%ﬂ(s,dy; t,dx)) (starting at time s from dy)

0<s<t<eoo

“Flow": Chapman-Kolmogorov property for s <t < u [Clark—Mian 2024+]

%ﬁ(s,dy; u,dz) = / %ﬂ(s,dy; t,dx) 02/19(t,dx ; u,dz)

x€ER2 S "
€ non-trivial “product

of measures



Key properties of the SHF

» as. % Y(t,dx) is singular w.r.t. Lebesgue [C.S.Z. 2024+]

“not a function”

> as. %V (t,dx) € €K forany k>0 (in particular: non atomic)

“barely not a function”

» Formulas for all moments [C.S.Z. 19] [Gu—Quastel-Tsai 21]

» Scaling covariance a2 ! % ?Y(at,d(\/ax)) g 9 Ot1o83(t dx)
» Axiomatic characterization via independence & moments [Tsai 24+]

» Universality w.r.t. approximation scheme [C.S.Z. 23] [Tsai 24+]



0.00294

o
Bt




Noise sensitivity

Consider the following question:
Is the SHF %'V sensitive to small perturbations of the driving noise & ?

Problem: there is no noise & on the space of %Y

Theorem [C.~Donadini 25+]

(En, un) NL) (&, %ﬁ) with & and % ? independent
—yoo

Puzzling: wup is a function of £y ... but dependence is lost in the scaling limit!



Noise sensitivity

Let us rephrase the question:

Is up sensitive to small perturbations of the driving noise & 7

We take &y := discretisation of white noise on the lattice ;N x %22
\V4
En(t,x)=N-w(n,z) iid. for (t,x) = (% ﬁ)

We write up/(t, @) = fy(®) for a suitable function fy(-) = f,\tl"”(-)

fau(+) is the partition function of 2D directed polymer in random environment



Noise sensitivity

Fix i.i.d. random variables @ = (®;)j=12... Elw]=0 Var[w]=1
Take a sequence of functions fy(®) € L? Allim Var[fy(®)] = 62 € (0, )
—>00
©; w. prob. 1 —¢
Define “e-perturbation” ®® = (®%)i=12. . wf =3 P
®; 1L w; w. prob. €

We call (fy)nen noise sensitive if [Garban—Steif 14]

lim Cov [fy(@?), fy(@)] =0 Ve >0

N—>o0



Noise sensitivity

“ ” . . . . (D + cee + (1)
Usual” functions are not noise sensitive, e.g. fn(w) = L TON

VN
“Parity” is noise sensitive: fn(w)=w1-- oy for symmetric @; = +1
Chaos decomposition fn = E[fn] + Z f,\(,d) Var[fy] = Z ||f,\(,d)H§
d=1 d=1
For instance f,\(/d)(a)) = Z cn(it, ... ig) @ - @;, (polynomial chaos)
{1 yeemsig }

Spectral criterion

Noise sensitivity <= Vd € N: ||f,\(,d)H§ N—> 0
—o0



The BKS Theorem

Boolean setting: binary functions f(®) of binary variables ;

Robust condition for noise sensitivity based on influences

Ii(f) = P(f(0)) # f(o)) W(f) =Y 1i(F)*
Theorem [Benjamini—Kalai-Schramm 99]
(fv) new is noise sensitive if I\Ilim W (fy)=0 [B.K.S. 99]
—>00

Ve > 0: Cov [f(®®), f(w)] < C#/(f)*® [Keller—Kindler 13]



Influences beyond the Boolean setting

Define  6;f :=f —E;[f] with E[]=E[|c(w;:j#i)] [Talagrand 94]
Two notions of influence

) =118 =E[8F] 1) = 1513 = E[(&F)?]

(for Boolean f they coincide up to a factor 2)

It is the L! influence that is relevant for us: W (f):= Z’II-(l)(f)2

L? influence relevant for  [Mossel-O'Donnel-Oleszkiewicz 10] [Kahn—Kalai-Linial 88]



\YER L

We extend BKS in either of the following settings:
» E[|w;|9] < oo for some g >2 & f(®) is a polynomial chaos
> @, take finitely many values &  f(®) is any function in [?

Both ensure a suitable hypercontractivity [2 — L9
Generalized BKS [C.—Donadini 25+]
VdeN:  ||F@]2 < (c)d w(F)

ve>0:  Cov[f(f)f(0)] < CH/(F)%E



Back to SHE

Noise sensitivity of 2D SHE [C.—Donadini 25+]

W (un(t,@)) ~ loctT’(;’v = up(t,@) is noise sensitive

Influences are stable under composition with Lipschitz functions:
P (9(F)) < 41l9"I1Z 7 (f)
Enhanced noise sensitivity [C.~Donadini 25+]

O (un(t,®)) is noise sensitive V Lipschitz ¢ if the @;'s take finitely many values

= upn(t, @) is asymptotically independent of any bounded order chaos



Conclusion

We extended the BKS Theorem beyond the Boolean setting

» Robust conditions for noise sensitivity (stable under composition)
» Quantitative bounds

Our proof generalises Keller-Kindler. . . (large deviations ~» moment bounds)

. and refines it: optimal estimate for binary ®;'s
Cov [f(0f), f(w)] < 7 (f)ze+ol)
The assumption that ®;'s take finitely many values can hopefully be removed

Future direction: black noise a la Tsirelson cf. [Himwich—Parekh 24+]
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Directed Polymer in Random Environment

A
» S =(S,)n>0 simple random walk on Z¢ S
n
» Independent Gaussians w(n,x) ~ .4#7(0,1)
N b p
> H(S,0) = Z o(n,Sp) ~ V(0N —k) ¢ K N
n=k+1
Partition Functions (keN, ze 79

70 5(k,2) = E[CBH(SM)*%W(N%) ‘ S, = z]



Partition functions and SHE

Diff. rescaled partition functions = discretized SHE solutions
ZN g (N(1—1t),VNx) = up(t,x) (time rev.)
Partition functions solve a difference equation: with Ey ~ @
deun(t,x) = Agun(t,x) + BNZ* up(t,x) En(t,x)
(reg-SHE)
un(0,x) =1 BshHE

Discrete analogue of Feynman-Kac

un(tx) ~ E[ el o8

B1 = X]
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