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1. Motivation



Directed Polymer in Random Environment

A
» S =(S,)n>0 simple random walk on Z¢ S
n
» Independent Gaussians w(n,x) ~ .4#7(0,1) X
N L p
> H(S,0) = Z o(n,S,) ~ A (0,N— k) 0 K N
n=k+1
(keN, ze79)

Partition Functions
BH(S,0)— 1 B2 (N—k)

(constant)

Sk :z} E[Zy ] =1

Zy p(k,z) = Ee



Phase transition

Let us focus on Zy g = Zyp(0,0) = E[eBH(S’m)f%[yN ‘ So= 0]
Key observation [Bolthausen]
Z/’\‘,’J3 >0 is a martingale %) Zo(:ﬁ {> O forf < Pe
= =0 for B> B
Phase transition at 3. = ﬁc(d) >0 [Comets—Yoshida, Junk—Lacoin, . ..]

weak disorder B < B (diffusivity) strong disorder B > B (localization)

Non-trivial critical point 3. > 0 only for d > 3



Intermediate disorder

For d <2 we have 3, =0

VB >0: Zﬁ,’ﬁ T 0 (despite ZI%)B:O =1)
) oo 5

Intermediate disorder

Can we tune 3=y — 0 so that ZKI)BN o %% >0 random?
) —So0

Focus on d = 2 (critical dimension): phase transition on intermediate scale

~

B
Viog N

with critical point e = /7

Bn ~



Gaussian behavior for d =2

Log-normality [C.S.Z. 19]
For f < /T b4 (A Bl TANY) v2=lo
NvBN Nﬁ)oo o g 1_&72
For f > 79 —2, 0
or B>/n Ny o

Refined limit at f = /7T ~ critical 2D Stochastic Heat Flow  [C.5.7. 23]

Link with Stochastic Heat Equation
diu = Au+ Béu & = white noise

Discretized solution u(t,x) = Z/(\’/)Aﬁ(N(l —t),v/Nx)



2. CLTs via Fourth Moment



Polynomial chaos (homogeneous sums)

Partition function is a polynomial chaos: Zl?/)ﬁ =1+ Z 49
k>1

ZW ~ B Y q(m,z) o(n,z)
0<m<N
21€Z2 P(S,,l:zl)

72 ~ ﬁz Z q(n1,z1)q(ny—nm,z—z1) @(n1,z1) ®(ng,z2)
0<ni<m<N
21722622 P(Snlzzh Sn2:z2)
k k k k
7 ~ B Z q(nj—nj_1,zj—zj_1) Ha)(nj,zj)
0<m<..<m<N i=1 j=1

2
Z],...,ZkE€L
’ 7 P(5n12217"'75nk:zk)



Some CLTs

The first order chaos Z(!) is centred Gaussian with diverging variance

1 log N

Var[zW] =~ B2 Y g(n,z)? ~ B2 Y —— ~ B
0<m<N 0<m<nN TN n
21622

Rescaling B2 ~ lgf;, we obtain Z(D) 9, B2 with 2 ~ A(0,1)

The second order chaos Z(?) displays interesting behavior

~ 2— )
z®~ ¥y + Y N £1C2) itk S A

2
m—ny>np  m—m<n 2 v2
independent .#7(0,1)




A hierarchy of CLTs

Each chaos Z(K) yields many terms:  nj—nj_y > n VS. nj—nj_1 < m
Building blocks: dominated sequences

vken:  z® () 4 B

dom k
0<m<...<n <N Vi
ni—nji—1<ni Vi=2,..k independent .4(0,1)
It was our first meeting with the Fourth Moment Theorem [C.S.Z. 19]

We deduce that Z(F) —9 explicit polynomial in {Z7: ¢ < k}

Finally ,‘\‘,’ﬁ = 1—1—;1 FAQEEL Iy Y = ;lé—;gk ~ A (0,v?)
> >



A different (old) approach

Computing fourth moment of Zgﬁzn is quite technical (but it is worth it!)

Simpler approach: Feller-Lindeberg CLT for triangular arrays [C. Cottini 22]

Condition n; —n; 1 < n1 can be replaced by nj—n; 1 < n Vi=2,...,k

~ points {ny,no,...,ng} C[1,N] are clustered around n;
(k)

dom

M
ZO0 ~Y Y () with Bi=((-1, jNnz

J=1 n1,...,nk€B;

~~ We can approximate Z by a sum of independent RVs

Approximation ~ in [? as M — oo (bounds in L?7€ by hypercontractivity)



Reducible CLTs

A related (even simpler) approach to log-normality is [Cosco—Donadini 25]

All known CLTs for 2D directed polymers (and Stochastic Heat Equation, KPZ)

can be deduced from Feller-Lindeberg: we call them reducible CLTs

Can we characterize CLTs which are not reducible?

We investigated this question in the recent paper |C. Cottini Peccati 25]



3. Irreducible CLTs



Reducible CLTs

Reducible CLTs

Consider polynomial chaos of fixed order d € N

ZN — Z V17 -5 Vi Ha)v,
{Vl,...,vd}gVN
Assume E[Z3] — 02 € (0,0) and
» there are disjoint By,...,Bp C Vp such that

AC B,' AC Bi

Then Zy -2 4(0,62)



Our setting

We focus on qy(vi,...,vg) = 1g,(v1,...,vq)
Eny C Vyx---xVy symmetric, finite with |En| — o0
—_———
d times

Normalized polynomial chaos E[Z2] =1

1

v = Y Ly (va,. va,
d! ‘EN’ ViF... Vg€V
Reducible if there are disjoint BZ{N),...,B,(V/,V) C Vy s.t. (as N — oo, M — o)

M
'Z|ENQ(Bi>< X B,’)| ~ |EN| ) maxM|ENﬂ(B,-><...>< B,‘)| = O(|EN|)



Irreducible CLT

We call the sequence Zp irreducible if it is not reducible

Polynomial chaos Zy — Symmetric sets Ey C (Vy)¢

We provide sufficient conditions for irreducibility in terms of

» a notion of combinatorial dimension [Blei 79]

» spectral properties of the (hyper)graph V) with edges Ey

Recall: Zy satisfiesa CLT <= [E[Z}]—3  [Nourdin, Peccati, Reinert 10|

Combining these conditions we obtain irreducible CLTs



Combinatorial dimension

Definition [Blei 79]
A sequence of sets Ey C (V)9 has combinatorial dimension (d >2)
ae€(l,d] (possibly non-integer)
if there are 0 < ¢ < C < oo such that VN e N
> [En| = c|Vn|®

> [EnN (AL x - x Ag)| < Cmaxj=1___ q|Ail* VAL...,Ad € Wy



Irreducibility via combinatorial dimension

Theorem [C. Cottini Peccati 25]

For d > 2, let the sets Ey C (V)9 have combinatorial dimension a > 1

Then the corresponding polynomial chaos Zy is irreducible

Moreover, for any d >3 and b€ {2,...,d — 1}, we can build sets Ep with
combinatorial dimension J
o = E € (1,d)

such that Zy N A4(0,1) (~ irreducible CLT)



Some ideas from the proof

M
» Assume ) |EyN(Bix...xBj)| ~|Ey| and comb. dim. Ey is ot >1
i=1

Then max |EyN(Bjx...xBj)] > c|Ey| ~» irreducibility

i=1,...,

» Construction of Ey with a = % is obtained with Vy = {1,..., N}?

Explicit Ey C Vp: “fractional cartesian product”

» Random construction available for d =2 [Blei, Kdrner 84]



Irriducibility via spectral graph properties

Fix d = 2 and symmetric sets Ey C Viy x Vy ~» undirected graphs (Vy, én)

Normalized Laplacian Ly =1 — D&l/z 1g, 0&1/2 Dy = j\/‘ii'dn;;;zs

adjacency matrix

Eigenvalues 0= #{N) < NéN) S s 'u\(cl/\?\ <2

Theorem [C. Cottini Peccati 25]

Assume that for some k > 2 Iil{lninf ,u,((N) >0
—o0

Then the corresponding polynomial chaos Zy is irreducible



Some ideas from the proof

Edge expansion of a subset S C V)

(S) = E(S,5°)  # edges connecting S and S¢
oL = Vol(S) 4 edges starting from S

Connected to reducibility via Cheeger’s inequalities

» Easy direction: for any disjoint By,..., By C Vy

(V) < .
He ' < j:rrlwffkfp(Bj)

» Difficult direction: 3 partition By,...,Bx C Vy [Lee, Gharan, Trevisan 14]

) < 4 (N)
max @(Bj) < Choy/



4. Conclusions



Conclusion

We presented some CLTs for polynomial chaos from 2D directed polymers

Originally proved via Fourth Moment Theorem

Then shown to be reducible to Feller-Lindeberg CLT

We recently investigated irreducibile CLTs [C. Cottini Peccati 25]

Sufficient conditions via combinatorial dimension and spectral graph properties

Many interesting examples, but necessary conditions still open



Happy birthday, 4th Moment Theorem!
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