

On (ir)reducible Central Limit Theorems

Francesco Caravenna

University of Milano-Bicocca

20 Years of the Fourth Moment Theorem

University of Luxembourg ~ 11 December 2025

Collaborators

Nikos Zygouras and Rongfeng Sun

Francesca Cottini

Giovanni Peccati

Outline

1. Motivation

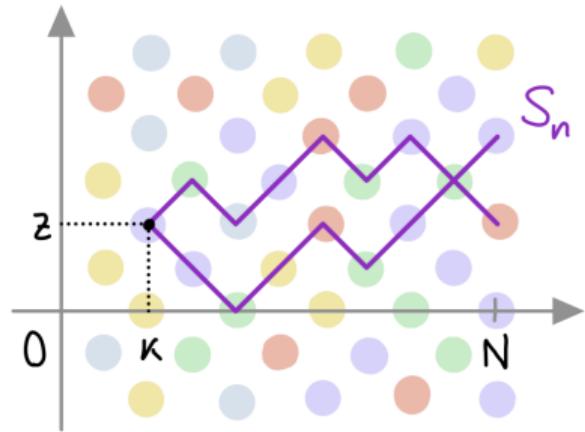
2. CLTs via Fourth Moment

3. Irreducible CLTs

4. Conclusions

Directed Polymer in Random Environment

- ▶ $S = (S_n)_{n \geq 0}$ simple random walk on \mathbb{Z}^d
- ▶ Independent Gaussians $\omega(n, x) \sim \mathcal{N}(0, 1)$
- ▶ $H(S, \omega) := \sum_{n=k+1}^N \omega(n, S_n) \sim \mathcal{N}(0, N-k)$



Partition Functions

$(k \in \mathbb{N}, z \in \mathbb{Z}^d)$

$$Z_{N,\beta}^{\omega}(k, z) = \mathbb{E} \left[e^{\beta H(S, \omega) - \frac{1}{2} \beta^2 (N-k)} \mid S_k = z \right]$$

$$\mathbb{E}[Z_{N,\beta}^{\omega}] = 1$$

Phase transition

Let us focus on

$$Z_{N,\beta}^{\omega} = Z_{N,\beta}^{\omega}(0,0) = \mathbb{E}\left[e^{\beta H(S,\omega) - \frac{1}{2}\beta^2 N} \mid S_0 = 0\right]$$

Key observation

[Bolthausen]

$$Z_{N,\beta}^{\omega} \geq 0 \text{ is a martingale} \xrightarrow[N \rightarrow \infty]{\text{a.s.}} Z_{\infty,\beta}^{\omega} \begin{cases} > 0 & \text{for } \beta \leq \beta_c \\ = 0 & \text{for } \beta > \beta_c \end{cases}$$

Phase transition at $\beta_c = \beta_c^{(d)} \geq 0$

[Comets–Yoshida, Junk–Lacoin, ...]

weak disorder $\beta \leq \beta_c$ (diffusivity) strong disorder $\beta > \beta_c$ (localization)

Non-trivial critical point $\beta_c > 0$ only for $d \geq 3$

Intermediate disorder

For $d \leq 2$ we have $\beta_c = 0$

$$\forall \beta > 0: \quad Z_{N,\beta}^{\omega} \xrightarrow[N \rightarrow \infty]{} 0 \quad (\text{despite } Z_{N,\beta=0}^{\omega} \equiv 1)$$

Intermediate disorder

Can we tune $\beta = \beta_N \rightarrow 0$ so that $Z_{N,\beta_N}^{\omega} \xrightarrow[N \rightarrow \infty]{} \mathcal{L}^{\xi} > 0$ random?

Focus on $d = 2$ (critical dimension): phase transition on intermediate scale

$$\beta_N \sim \frac{\hat{\beta}}{\sqrt{\log N}} \quad \text{with critical point } \hat{\beta}_c = \sqrt{\pi}$$

Gaussian behavior for $d = 2$

Log-normality

[C.S.Z. 19]

For $\hat{\beta} < \sqrt{\pi}$

$$Z_{N,\beta_N}^{\omega} \xrightarrow[N \rightarrow \infty]{d} e^{\mathcal{N}(0, v^2) - \frac{1}{2}v^2} > 0$$

$$v^2 = \log \frac{1}{1 - \frac{\hat{\beta}^2}{\pi}}$$

For $\hat{\beta} \geq \sqrt{\pi}$

$$Z_{N,\beta_N}^{\omega} \xrightarrow[N \rightarrow \infty]{d} 0$$

Refined limit at $\hat{\beta} = \sqrt{\pi}$ \rightsquigarrow critical 2D **Stochastic Heat Flow** [C.S.Z. 23]

Link with **Stochastic Heat Equation**

$$\partial_t u = \Delta u + \beta \xi u$$

ξ = white noise

Discretized solution $u(t, x) = Z_{N,\beta}^{\omega}(N(1-t), \sqrt{N}x)$

Outline

1. Motivation
2. CLTs via Fourth Moment
3. Irreducible CLTs
4. Conclusions

Polynomial chaos (homogeneous sums)

Partition function is a polynomial chaos:

$$Z_{N,\beta}^{\omega} = 1 + \sum_{k \geq 1} Z^{(k)}$$

$$Z^{(1)} \simeq \beta \sum_{\substack{0 < n_1 \leq N \\ z_1 \in \mathbb{Z}^2}} \underbrace{q(n_1, z_1)}_{P(S_{n_1} = z_1)} \omega(n_1, z_1)$$

$$Z^{(2)} \simeq \beta^2 \sum_{\substack{0 < n_1 < n_2 \leq N \\ z_1, z_2 \in \mathbb{Z}^2}} \underbrace{q(n_1, z_1) q(n_2 - n_1, z_2 - z_1)}_{P(S_{n_1} = z_1, S_{n_2} = z_2)} \omega(n_1, z_1) \omega(n_2, z_2)$$

$$Z^{(k)} \simeq \beta^k \sum_{\substack{0 < n_1 < \dots < n_k \leq N \\ z_1, \dots, z_k \in \mathbb{Z}^2}} \underbrace{\prod_{i=1}^k q(n_i - n_{i-1}, z_i - z_{i-1})}_{P(S_{n_1} = z_1, \dots, S_{n_k} = z_k)} \prod_{j=1}^k \omega(n_j, z_j)$$

Some CLTs

The first order chaos $Z^{(1)}$ is centred Gaussian with **diverging variance**

$$\mathbb{V}\text{ar}[Z^{(1)}] \simeq \beta^2 \sum_{\substack{0 < n_1 \leq N \\ z_1 \in \mathbb{Z}^2}} q(n_1, z_1)^2 \simeq \beta^2 \sum_{0 < n_1 \leq N} \frac{1}{\pi n_1} \sim \beta^2 \frac{\log N}{\pi}$$

Rescaling $\beta^2 \sim \frac{\pi \hat{\beta}^2}{\log N}$ we obtain $Z^{(1)} \xrightarrow{d} \hat{\beta} \mathcal{Z}_1$ with $\mathcal{Z}_1 \sim \mathcal{N}(0, 1)$

The second order chaos $Z^{(2)}$ displays **interesting behavior**

$$Z^{(2)} \simeq \sum_{n_2 - n_1 > n_1} + \sum_{n_2 - n_1 \leq n_1} \xrightarrow{d} \hat{\beta}^2 \frac{(\mathcal{Z}_1)^2 - 1}{2} + \frac{\hat{\beta}^2}{\sqrt{2}} \underbrace{\mathcal{Z}_2}_{\text{independent } \mathcal{N}(0, 1)}$$

A hierarchy of CLTs

Each chaos $Z^{(k)}$ yields many terms: $n_i - n_{i-1} > n_1$ VS. $n_i - n_{i-1} \leq n_1$

Building blocks: dominated sequences

$$\forall k \in \mathbb{N}: \quad Z_{\text{dom}}^{(k)} := \sum_{\substack{0 < n_1 < \dots < n_k \leq N \\ n_i - n_{i-1} \leq n_1 \ \forall i=2,\dots,k}} (\dots) \xrightarrow{d} \frac{\hat{\beta}^k}{\sqrt{k}} \underbrace{\mathcal{Z}_k}_{\text{independent } \mathcal{N}(0,1)}$$

It was our first meeting with the **Fourth Moment Theorem**

[C.S.Z. 19]

We deduce that $Z^{(k)} \xrightarrow{d}$ explicit **polynomial** in $\{\mathcal{Z}_\ell: \ell \leq k\}$

Finally $Z_{N,\beta}^{\omega} = 1 + \sum_{k \geq 1} Z^{(k)} \xrightarrow{d} :e^{\mathcal{Y}}:$ $\mathcal{Y} := \sum_{k \geq 1} \frac{\hat{\beta}^k}{\sqrt{k}} \mathcal{Z}_k \sim \mathcal{N}(0, v^2)$

A different (old) approach

Computing fourth moment of $Z_{\text{dom}}^{(k)}$ is quite technical (but it is worth it!)

Simpler approach: Feller-Lindeberg CLT for triangular arrays [C. Cottini 22]

Condition $n_i - n_{i-1} \leq n_1$ can be replaced by $n_i - n_{i-1} \ll n_1 \quad \forall i = 2, \dots, k$

~ points $\{n_1, n_2, \dots, n_k\} \subseteq [1, N]$ are clustered around n_1

~ we can approximate $Z_{\text{dom}}^{(k)}$ by a sum of independent RVs

$$Z_{\text{dom}}^{(k)} \approx \sum_{j=1}^M \sum_{n_1, \dots, n_k \in B_j} (\dots) \quad \text{with} \quad B_j := \left((j-1) \frac{N}{M}, j \frac{N}{M} \right] \cap \mathbb{Z}$$

Approximation \approx in L^2 as $M \rightarrow \infty$ (bounds in $L^{2+\varepsilon}$ by hypercontractivity)

Reducible CLTs

A related (even simpler) approach to log-normality is [Cosco–Donadini 25]

All known CLTs for 2D directed polymers (and Stochastic Heat Equation, KPZ) can be deduced from Feller-Lindeberg: we call them **reducible CLTs**

Can we characterize CLTs which are **not** reducible?

We investigated this question in the recent paper [C. Cottini Peccati 25]

Outline

1. Motivation

2. CLTs via Fourth Moment

3. Irreducible CLTs

4. Conclusions

Reducible CLTs

Reducible CLTs

[C. Cottini 22]

Consider polynomial chaos of fixed order $d \in \mathbb{N}$ (for simplicity)

$$Z_N = \sum_{\{v_1, \dots, v_d\} \subseteq V_N} q_N(v_1, \dots, v_d) \prod_{i=1}^d \omega_{v_i}$$

Assume $\mathbb{E}[Z_N^2] \rightarrow \sigma^2 \in (0, \infty)$ and (as $N \rightarrow \infty$)

► there are disjoint $B_1, \dots, B_M \subseteq V_N$ such that (as $N \rightarrow \infty, M \rightarrow \infty$)

$$\sum_{i=1}^M \left\{ \sum_{A \subseteq B_i} q_N(A)^2 \right\} \rightarrow \sigma^2 \quad \max_{i=1, \dots, M} \left\{ \sum_{A \subseteq B_i} q_N(A)^2 \right\} \rightarrow 0$$

Then $Z_N \xrightarrow{d} \mathcal{N}(0, \sigma^2)$ (reduce to Feller-Lindeberg CLT)

Our setting

We focus on $q_N(v_1, \dots, v_d) = \mathbb{1}_{E_N}(v_1, \dots, v_d)$

$$E_N \subseteq \underbrace{V_N \times \dots \times V_N}_{d \text{ times}} \quad \text{symmetric, finite with} \quad |E_N| \rightarrow \infty$$

Normalized polynomial chaos

$$\mathbb{E}[Z_N^2] = 1$$

$$Z_N = \frac{1}{\sqrt{d! |E_N|}} \sum_{v_1 \neq \dots \neq v_d \in V_N} \mathbb{1}_{E_N}(v_1, \dots, v_d) \prod_{i=1}^d \omega_{v_i}$$

Reducible if there are **disjoint** $B_1^{(N)}, \dots, B_M^{(N)} \subseteq V_N$ s.t. (as $N \rightarrow \infty, M \rightarrow \infty$)

$$\sum_{i=1}^M |E_N \cap (B_i \times \dots \times B_i)| \sim |E_N| \quad \max_{i=1, \dots, M} |E_N \cap (B_i \times \dots \times B_i)| = o(|E_N|)$$

Irreducible CLT

We call the sequence Z_N **irreducible** if it is not reducible

$$\text{Polynomial chaos } Z_N \iff \text{Symmetric sets } E_N \subseteq (V_N)^d$$

We provide **sufficient conditions for irreducibility** in terms of

- ▶ a notion of **combinatorial dimension** [Blei 79]
- ▶ spectral properties of the (hyper)graph V_N with edges E_N

Recall: Z_N satisfies a CLT $\iff \mathbb{E}[Z_N^4] \rightarrow 3$ [Nourdin, Peccati, Reinert 10]

Combining these conditions we obtain **irreducible CLTs**

Combinatorial dimension

Definition

[Blei 79]

A sequence of sets $E_N \subseteq (V_N)^d$ has **combinatorial dimension** $(d \geq 2)$

$$\alpha \in [1, d] \quad (\text{possibly non-integer})$$

if there are $0 < c < C < \infty$ such that

$\forall N \in \mathbb{N}$

- ▶ $|E_N| \geq c |V_N|^\alpha$
- ▶ $|E_N \cap (A_1 \times \cdots \times A_d)| \leq C \max_{i=1, \dots, d} |A_i|^\alpha \quad \forall A_1, \dots, A_d \subseteq V_N$

Irreducibility via combinatorial dimension

Theorem

[C. Cottini Peccati 25]

For $d \geq 2$, let the sets $E_N \subseteq (V_N)^d$ have combinatorial dimension $\alpha > 1$

Then the corresponding polynomial chaos Z_N is irreducible

Moreover, for any $d \geq 3$ and $b \in \{2, \dots, d-1\}$, we can build sets E_N with combinatorial dimension

$$\alpha = \frac{d}{b} \in (1, d)$$

such that $Z_N \xrightarrow{d} \mathcal{N}(0, 1)$ (\rightsquigarrow irreducible CLT)

Some ideas from the proof

- ▶ Assume $\sum_{i=1}^M |E_N \cap (B_i \times \dots \times B_i)| \sim |E_N|$ and comb. dim. E_N is $\alpha > 1$
Then $\max_{i=1, \dots, M} |E_N \cap (B_i \times \dots \times B_i)| \geq c |E_N| \rightsquigarrow \text{irreducibility}$
- ▶ Construction of E_N with $\alpha = \frac{d}{b}$ is obtained with $V_N = \{1, \dots, N\}^b$
Explicit $E_N \subseteq V_N$: “fractional cartesian product”
- ▶ Random construction available for $d = 2$ [Blei, Körner 84]

Irriducibility via spectral graph properties

Fix $d = 2$ and symmetric sets $E_N \subseteq V_N \times V_N \rightsquigarrow$ undirected graphs (V_N, \mathcal{E}_N)

Normalized Laplacian $L_N := I - D_N^{-1/2} \underbrace{\mathbb{1}_{E_N}}_{\text{adjacency matrix}} D_N^{-1/2}$ $D_N =$ diag. matrix with degrees

Eigenvalues $0 = \mu_1^{(N)} \leq \mu_2^{(N)} \leq \dots \leq \mu_{|V_N|}^{(N)} \leq 2$

Theorem

[C. Cottini Peccati 25]

Assume that for some $k \geq 2$

$$\liminf_{N \rightarrow \infty} \mu_k^{(N)} > 0$$

Then the corresponding polynomial chaos Z_N is irreducible

Some ideas from the proof

Edge expansion of a subset $S \subseteq V_N$

$$\varphi(S) := \frac{E(S, S^c)}{\text{Vol}(S)} = \frac{\# \text{ edges connecting } S \text{ and } S^c}{\# \text{ edges starting from } S}$$

Connected to **reducibility** via **Cheeger's inequalities**

- ▶ Easy direction: for any disjoint $B_1, \dots, B_k \subseteq V_N$

$$\mu_k^{(N)} \leq \max_{j=1, \dots, k} \varphi(B_j)$$

- ▶ Difficult direction: \exists partition $B_1, \dots, B_k \subseteq V_N$ [Lee, Gharan, Trevisan 14]

$$\max_{j=1, \dots, k} \varphi(B_j) \leq C k^4 \sqrt{\mu_k^{(N)}}$$

Outline

1. Motivation

2. CLTs via Fourth Moment

3. Irreducible CLTs

4. Conclusions

Conclusion

We presented some **CLTs for polynomial chaos** from 2D directed polymers

Originally proved via **Fourth Moment Theorem**

Then shown to be **reducible** to Feller-Lindeberg CLT

We recently investigated **irreducible CLTs**

[C. Cottini Peccati 25]

Sufficient conditions via **combinatorial dimension** and **spectral graph properties**

Many interesting examples, but **necessary conditions** still open

Happy birthday, 4th Moment Theorem!

