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Directed Polymer in Random Environment

▶ S = (Sn)n≥0 simple random walk on Z
d

▶ Independent Gaussians ω(n,x)∼ N (0,1)

▶ H(S ,ω) :=
N

∑
n=k+1

ω(n,Sn) ∼ N (0,N−k)

Partition Functions (k ∈ N, z ∈ Z
d)

Zω
N,β (k ,z) = E

[

e

βH(S ,ω)− 1
2 β2 (N−k)
(constant)

∣
∣
∣
∣
Sk = z

]

E
[
Zω
N,β

]
= 1



Phase transition

Let us focus on Zω
N,β = Zω

N,β (0,0) = E
[

e
βH(S ,ω)− 1

2 β2N
∣
∣
∣S0 = 0

]

Key observation [Bolthausen]

Zω
N,β ≥ 0 is a martingale

a.s.−−−−→
N→∞

Zω
∞,β

{

> 0 for β ≤ βc

= 0 for β > βc

Phase transition at βc = β
(d)
c ≥ 0 [Comets–Yoshida, Junk–Lacoin, . . . ]

weak disorder β ≤ βc (diffusivity) strong disorder β > βc (localization)

Non-trivial critical point βc > 0 only for d ≥ 3



Intermediate disorder

For d ≤ 2 we have βc = 0

∀β > 0: Zω
N,β −−−−→

N→∞
0 (despite Zω

N,β=0 ≡ 1)

Intermediate disorder

Can we tune β = βN → 0 so that Zω
N,βN

−−−−→
N→∞

Z ξ > 0 random?

Focus on d = 2 (critical dimension): phase transition on intermediate scale

βN ∼ β̂√
logN

with critical point β̂c =
√

π



Gaussian behavior for d = 2

Log-normality [C.S.Z. 19]

For β̂ <
√

π Zω
N,βN

d−−−→
N→∞

e
N (0,v2)− 1

2v
2
> 0 v2 = log 1

1− β̂2

π

For β̂ ≥√
π Zω

N,βN

d−−−→
N→∞

0

Refined limit at β̂ =
√

π ⇝ critical 2D Stochastic Heat Flow [C.S.Z. 23]

Link with Stochastic Heat Equation

∂tu = ∆u + β ξ u ξ = white noise

Discretized solution u(t,x) = Zω
N,β (N(1− t),

√
Nx)
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Polynomial chaos (homogeneous sums)

Partition function is a polynomial chaos: Zω
N,β = 1+ ∑

k≥1

Z (k)

Z (1) ≃ β ∑
0<n1≤N

z1∈Z
2

q(n1,z1)
︸ ︷︷ ︸

P(Sn1
=z1)

ω(n1,z1)

Z (2) ≃ β 2 ∑
0<n1<n2≤N

z1 ,z2∈Z
2

q(n1,z1)q(n2−n1,z2− z1)
︸ ︷︷ ︸

P(Sn1
=z1 , Sn2

=z2)

ω(n1,z1)ω(n2,z2)

Z (k) ≃ β k ∑
0<n1<...<nk≤N

z1 , ... ,zk∈Z
2

k

∏
i=1

q(ni −ni−1 , zi − zi−1)

︸ ︷︷ ︸

P(Sn1
=z1 , ... ,Snk

=zk )

k

∏
j=1

ω(nj ,zj)



Some CLTs

The first order chaos Z (1) is centred Gaussian with diverging variance

Var[Z (1)] ≃ β 2 ∑
0<n1≤N

z1∈Z
2

q(n1,z1)
2 ≃ β 2 ∑

0<n1≤N

1

π n1
∼ β 2 logN

π

Rescaling β 2 ∼ π β̂2

logN we obtain Z (1) d−−−→ β̂ Z1 with Z1 ∼ N
(
0,1

)

The second order chaos Z (2) displays interesting behavior

Z (2) ≃ ∑
n2−n1>n1

+ ∑
n2−n1≤n1

d−−−→ β̂ 2 (Z1)
2−1

2
+ β̂2

√
2

Z2
︸︷︷︸

independent N (0,1)



A hierarchy of CLTs

Each chaos Z (k) yields many terms: ni −ni−1 > n1 VS. ni −ni−1 ≤ n1

Building blocks: dominated sequences

∀k ∈ N : Z
(k)
dom := ∑

0<n1<...<nk≤N

ni−ni−1≤n1 ∀i=2,...,k

(· · ·) d−−−→ β̂ k
√
k

Zk
︸︷︷︸

independent N (0,1)

It was our first meeting with the Fourth Moment Theorem [C.S.Z. 19]

We deduce that Z (k) d−−−→ explicit polynomial in {Zℓ : ℓ≤ k}

Finally Zω
N,β = 1+ ∑

k≥1

Z (k) d−−−→ : e
Y : Y := ∑

k≥1

β̂ k
√
k
Zk ∼ N (0,v2)



A different (old) approach

Computing fourth moment of Z
(k)
dom is quite technical (but it is worth it!)

Simpler approach: Feller-Lindeberg CLT for triangular arrays [C. Cottini 22]

Condition ni −ni−1 ≤ n1 can be replaced by ni −ni−1 ≪ n1 ∀i = 2, . . . ,k

⇝ points {n1,n2, . . . ,nk} ⊆ [1,N ] are clustered around n1

⇝ we can approximate Z
(k)
dom by a sum of independent RVs

Z
(k)
dom ≈

M

∑
j=1

∑
n1,...,nk∈Bj

(. . .) with Bj :=
(
(j −1) NM , j NM

]
∩Z

Approximation ≈ in L2 as M → ∞ (bounds in L2+ε by hypercontractivity)



Reducible CLTs

A related (even simpler) approach to log-normality is [Cosco–Donadini 25]

All known CLTs for 2D directed polymers (and Stochastic Heat Equation, KPZ)

can be deduced from Feller-Lindeberg: we call them reducible CLTs

Can we characterize CLTs which are not reducible?

We investigated this question in the recent paper [C. Cottini Peccati 25]
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Reducible CLTs

Reducible CLTs [C. Cottini 22]

Consider polynomial chaos of fixed order d ∈ N (for simplicity)

ZN = ∑
{v1,...,vd}⊆VN

qN(v1, . . . ,vd)
d

∏
i=1

ωvi

Assume E[Z 2
N ]−−→ σ2 ∈ (0,∞) and (as N → ∞)

▶ there are disjoint B1, . . . ,BM ⊆ VN such that (as N → ∞, M → ∞)

M

∑
i=1

{

∑
A⊆Bi

qN(A)
2

}

−−→ σ2 max
i=1,...,M

{

∑
A⊆Bi

qN(A)
2

}

−−→ 0

Then ZN
d−−→ N (0,σ2) (reduce to Feller-Lindeberg CLT)



Our setting

We focus on qN(v1, . . . ,vd) = 1EN
(v1, . . . ,vd)

EN ⊆ VN ×·· ·×VN
︸ ︷︷ ︸

d times

symmetric, finite with |EN | −−→ ∞

Normalized polynomial chaos E[Z 2
N ] = 1

ZN =
1

√

d ! |EN |
∑

v1 ̸=... ̸=vd∈VN

1EN
(v1, . . . ,vd)

d

∏
i=1

ωvi

Reducible if there are disjoint B
(N)
1 , . . . ,B

(N)
M ⊆ VN s.t. (as N → ∞, M → ∞)

M

∑
i=1

|EN ∩ (Bi × . . .×Bi )| ∼ |EN | max
i=1,...,M

|EN ∩ (Bi × . . .×Bi )| = o(|EN |)



Irreducible CLT

We call the sequence ZN irreducible if it is not reducible

Polynomial chaos ZN ⇐⇒ Symmetric sets EN ⊆ (VN)
d

We provide sufficient conditions for irreducibility in terms of

▶ a notion of combinatorial dimension [Blei 79]

▶ spectral properties of the (hyper)graph VN with edges EN

Recall: ZN satisfies a CLT ⇐⇒ E[Z 4
N ]→ 3 [Nourdin, Peccati, Reinert 10]

Combining these conditions we obtain irreducible CLTs



Combinatorial dimension

Definition [Blei 79]

A sequence of sets EN ⊆ (VN)
d has combinatorial dimension (d ≥ 2)

α ∈ [1,d ] (possibly non-integer)

if there are 0< c < C < ∞ such that ∀N ∈ N

▶ |EN | ≥ c |VN |α

▶ |EN ∩ (A1×·· ·×Ad)| ≤ C maxi=1,...,d |Ai |α ∀A1, . . . ,Ad ⊆ VN



Irreducibility via combinatorial dimension

Theorem [C. Cottini Peccati 25]

For d ≥ 2, let the sets EN ⊆ (VN)
d have combinatorial dimension α > 1

Then the corresponding polynomial chaos ZN is irreducible

Moreover, for any d ≥ 3 and b ∈ {2, . . . ,d −1}, we can build sets EN with

combinatorial dimension

α =
d

b
∈ (1,d)

such that ZN
d−−→ N (0,1) (⇝ irreducible CLT)



Some ideas from the proof

▶ Assume
M

∑
i=1

|EN ∩ (Bi × . . .×Bi )| ∼ |EN | and comb. dim. EN is α > 1

Then max
i=1,...,M

|EN ∩ (Bi × . . .×Bi )| ≥ c |EN | ⇝ irreducibility

▶ Construction of EN with α = d
b is obtained with VN = {1, . . . ,N}b

Explicit EN ⊆ VN : “fractional cartesian product”

▶ Random construction available for d = 2 [Blei, Körner 84]



Irriducibility via spectral graph properties

Fix d = 2 and symmetric sets EN ⊆ VN ×VN ⇝ undirected graphs (VN , EN)

Normalized Laplacian LN := I − D
−1/2
N 1EN

︸︷︷︸

adjacency matrix

D
−1/2
N DN =

diag. matrix
with degrees

Eigenvalues 0 = µ
(N)
1 ≤ µ

(N)
2 ≤ ·· · ≤ µ

(N)
|VN | ≤ 2

Theorem [C. Cottini Peccati 25]

Assume that for some k ≥ 2 liminf
N→∞

µ
(N)
k > 0

Then the corresponding polynomial chaos ZN is irreducible



Some ideas from the proof

Edge expansion of a subset S ⊆ VN

ϕ(S) :=
E (S ,Sc)

Vol(S)
=

# edges connecting S and Sc

# edges starting from S

Connected to reducibility via Cheeger’s inequalities

▶ Easy direction: for any disjoint B1, . . . ,Bk ⊆ VN

µ
(N)
k ≤ max

j=1,...,k
ϕ(Bj)

▶ Difficult direction: ∃ partition B1, . . . ,Bk ⊆ VN [Lee, Gharan, Trevisan 14]

max
j=1,...,k

ϕ(Bj) ≤ C k4
√

µ
(N)
k
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Conclusion

We presented some CLTs for polynomial chaos from 2D directed polymers

Originally proved via Fourth Moment Theorem

Then shown to be reducible to Feller-Lindeberg CLT

We recently investigated irreducibile CLTs [C. Cottini Peccati 25]

Sufficient conditions via combinatorial dimension and spectral graph properties

Many interesting examples, but necessary conditions still open



Happy birthday, 4th Moment Theorem!
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