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Antefatto (backstory)

| first met probability 23 years ago in Pisa

“Introduction to SDEs" by Da Prato

Exciting environment around Caracciolo and Flandoli

Gubinelli, F Toninelli, Zambotti (+Faggionato, Montanari, )
| took a (random) path in Paris, Zurich, Padova and then Milano

| witnessed the impressive expansion of the Italian probability community

Collaboration has been the most fundamental aspect



Collaborators

This talk stems from works with

Rongfeng Sun and Nikos Zygouras




In a nuthshell

Stochastic Heat Equation (SHE)

dru(t,x) = Axu(t,x) + Pu(t,x)E(t,x) t>0, x<cRY
Singular random potential &(t,x) “space-time white noise”
Main result

[C.S.Z. Invent. Math. 2023]

We construct a natural candidate solution of SHE in space dimension d =2

the Critical 2d Stochastic Heat Flow



Why is it interesting?

dru(t,x) = Axu(t,x) + Bu(t,x) E(t,x) (SHE)

» Fundamental PDE + universal random potential &(t,x)

white noise = “continuum” i.i.d. random variables
» KPZ equation [Kardar—Parisi-Zhang PRL 86]
Oeh(t,x) = Axh(t,x) + |Vih(t,x)]* + BE(t,x) (KPZ)

Cole-Hopf transformation h(t,x) = logu(t,x)



Why is it difficult?

oru(t,x) = Axu(t,x) + B u(t,x) E(t,x) (SHE)

- th functi d=1
E(t,x) is a distribution  ~»  u(t,x) expected: non s.moo' .unc. on
genuine distribution d >?2

Product u(t,x) &(t,x) unclear: no classical space to solve SHE
Stochastic integral? Yes for d =1 [Ito-Walsh, DaPrato—Zabczyk]

SHE solution u(t,x) >0 “KPZ solution” h(t,x) = logu(t,x)
[Bertini-Giacomin CMP 97|



Why is it difficult?

Revolution in 2010s:  robust solution theories for sub-critical SPDEs

[Hairer Invent. Math. 14] [Gubinelli-Imkeller—Perkowski Forum Math Pi 15] [...]

SHE and KPZ:  only apply for d =1
Role of dimension:  space-time blow-up ii(t,x) := u(&t, ex)
deii(t,x) = Ayii(t,x) + €2 B ii(t,x) E(t,x)

vanishes d<?2
as € | 0 the noise formally { stays constant d =2 ~~ critical dimension
diverges d>?2



What can we do?

Henceforth we fix d =2

Regularized noise &p(t,x) ~o well-defined solution uy/(t,x)

drun(t,x) = Axun(t,x) + B upn(t,x) En(t,x) (reg-SHE)

Fix En(t,x) —— &(t,x) Does up(t,x) converge

e to some interesting limit?

No! Unless some kind of renormalization is performed



Which notion of convergence?

Do not expect pointwise convergence

Space-average 0:R2 =R
d
i(t.0) = [ o()un(tx)dx —L %(t) (7)
R2 N— oo
i.e. convergence as random measure on R? un(t,x) >0
up(t,x) dx NL> U (t,dx) (?)
—>00

Still no interesting limit without renormalization



What is renormalization?

We take 3 = By ~ \/lfw Y- > 0 for specific B € (0,00)
drun(t,x) = Dyupn(t,x) + By upn(t,x t,x
un(t) = Asun(.x) + B (£, %) En(t.) -
un(0,x) =1

Formally Bpnuy &y — 0 but actually not!

Proposition [Bertini—Cancrini J. Phys. A 98] [C.S.Z. EJP 19]

for B =7 Var[un(t, )] = Ki(p,p) >0
—yo0



\YER L

Theorem

Take By ~ more precisely for some ¥ € R

b= S (1 )

Then up converges in law to a unique and non-trivial limit % ?

v
ViogN

(un(t,x) dx)tZO 4, (%ﬂ(t,dx))

N—sco t>0

stochastic process of

%? = critical 2d Stochastic Heat Flow = 5
random measures on R



Intermezzo 1. How does the SHF look like?

We can efficiently simulate the SHF via up/(t,x) time O(N?)

Some not-so-randomly picked realizations [M. Mucciconi, N. Zygouras]

KPZ =~ |Og UN(t,X) A|pS, Italy (vecteezy.com)


https://it.vecteezy.com/foto/11642267-inverno-paesaggio-visualizza

Back to business

The SHF is a “candidate solution” of the critical 2d Stochastic Heat Equation

w7 (t,dx)

“initial condition 1 at time 0"

We actually build the SHF as a two-parameter space-time process

(%ﬁ(s,dy; t,dx))

0<s<t<

“starting at time s from dy”

Why “flow"? Chapman-Kolmogorov property for s < u <t [Clark 2024+

U7 (s,dy; t,dx)

/ %ﬁ(s,dy; u,dz) @/’9(u,dz; t,dx)

R2 — "
z€ non-trivial “product

of measures



Key properties of the SHF

> as. %V (t,dx) is singular w.r.t. Lebesgue [C.S.Z. in preparation]

“not a function”

> as. % Y(t,dx) € €% forany k>0 (in particular: non atomic)

“barely not a function”
» Diffusive rescaling a ' %?(at,d(y/ax)) 4 Ot 1o83(t dx)

> E[%7(t,dx)] =dx E[% 7 (t,dx)% " (t,dy)] = K (x—y) dxdy
~ log|x—y|~1

» Formulas for higher moments [C.S.Z. CMP 19] [Gu—Quastel-Tsai PMP 21]



Gaussian Multiplicative Chaos?

Much studied class of random measures: Gaussian Multiplicative Chaos (GMC)

A (dx) = X () =3VarlX()] g » X(-) generalized Gaussian field

Theorem [C.S.Z. AoP 23]
The critical 2d Stochastic Heat Flow % V(t,dx) is not a GMC
Not the usual GMC: U? log-correlated ~ X log-log-correlated

Conjecture hn(t,x) = log up(t,x)

The critical 2d KPZ solution (yet to be found) may be non Gaussian?



Further properties

Long time behavior

VR : %tﬁ(B(O, R)) —2 50 “mass escapes to infinity”

t—>o0

Conjectures
% (B(0,v/t
: ( ( ’\/_)) ¢ 50 “superdiffusivity”
t t—roo
= 62/119(8(0,1)) —2 50 “strong disorder”



Related models

Stochastic Heat Equation with Lévy noise [Berger—Chong—Lacoin CMP 23]

dru(t,x) = Axu(t,x) + B u(t,x)&(t,x) P& >t)~t @

Well-posedness (+ intermittency) under optimal assumptions

Anisotropic KPZ equation [Cannizzaro—Erhard—Toninelli CPAM 23, Duke 23]

Beh(t,x) = Ach(t,x) + B{ (D h(t.X))? = (Dh(t. X))} + &(t.x)

> Suitable regularization + By ~ (logN)~1/2 ~s non trivial Gaussian limit

» Fixed B >0 ~- logarithmic superdiffusivity



Intermezzo 2. Let's play again with the SHF

Simulation of the SHF % % (1,dx) ~ up(1,x) for N =50000



0.00294

o
Bt




Directed Polymer in Random Environment

A
» S =(S,)n=0 simple random walk on 72 <
n
» Independent standard Gaussians @(n,x) 5
N e
> H(S,®):= Y o(nSy) ~ V(O0N—k 0o =« N
n=k+1
Partition Functions (keN, z e 7?)

Z8(k,z) = E[eﬁH(s,w)—%ﬁ%N—k) ‘ S, = Z]



Partition functions = discretized SHE solutions
Z2(Nt,VNx) = upy(l—t,x)
They solve a difference equation with Ey ~ @

{8tuN(t,X) = Dyup(t,x) + Py un(t,x) En(t, x) (reg-SHE)

uy(0,x) =1
Discrete analogue of Feynman-Kac

u(l—t,x) = E[eftlﬁé(s,ss)—% 2(1-t)

Bt:x}



Phase transition

We look at un(1,x) = Z3g (0,v/Nx) for B~ P

Vi6og N
Theorem (log-normality) [C.S.Z. AAP 17]
> for f < /7 up(1,x) %) oA (01)—30°
—>00
ith 0% = log—+—
Wi (02 og 1_([32/”)
> for f > /7 un(1,x) NL> 0
—»00

Alternative proofs of log-normality [C.—Cottini EJP 22] [Cosco—Donadini 24+]



Random walk insight

N
B2 Y T

[E|:UN(1,X) uN(l,y)] = E{e i=1

SOZX\/N,S(’):y\/N}

d .
For x = 1 —— Exp(1 Erdés—Taylor 60
y oo {Z 5,_5’} —— Exp(1) [ ylor 60]
Recent generalizations [Lygkonis—Zygouras 24] [Cosco—Zeitouni 21-24]

~

p . 5
with critical value S =./7
Vl9og N

Explains scaling f3 ~



Sub-critical regime <

Averaged solution up(t, @)= [ ¢(x) un(t,x)dx has vanishing variance ~ @
R2

Edwards-Wilkinson fluctuations for SHE [C.S.Z. AAP 17]
A Vl9og N
(B<va) ‘l’f {un(t.0) = E[un(t,0)] } —== v(9)

solution of additive Stochastic Heat Equation with additional independent noise

orv(t,x) = Dxv(t,x) + E(t,x) + L5’(t,x) (EW)

A

n—p?



Sub-critical regime = <

Same result for averaged KPZ solution hy(t, @) = [ @(x) hy(t,x) dx
R2

Edwards-Wilkinson fluctuations for KPZ [C.S.Z. AoP 20]
A Vl9og N
(B<vr) ‘[’f {An(t.0) - E[bn(t,0)]} —Z— v(9)

Intense research [Chatterjee-Dunlop AoP 20] [Gu SPDE 20] [Dunlap—Gu AoP 20]
[Tao SPDE 22] [Nakajima—Nakashima EJP 23] [Tao 23+] [Dunlap—Graham 23+]

Higher dimensions & related [Comets—Cosco—Mukerjee, Lygkonis—Zygouras,

Cosco—Zeitouni, Junk, Junk-Lacoin, ...]



Quasi-critical regime

A

Interpolate between sub-critical regime B <+/m and critical regime =/

O
BN:%(l_ﬁ> for 1 < ¥y < logN

Quasi-critical regime  «~  behavior of the SHF % ?(t,dx) as ¥ — —oo

» Edwards-Wilkinson fluctuations hold for uy(t,¢)  [C.—Cottini-Rossi 2023+]

» Currently investigating log-normality of up(t,x)  [Berger—C.~Turchi 2024+



Directed polymers give us a probabilistic handle on the SHE solution up/(t,x)

Correlation of upy(t,x) ~» overlap of random walks ~»  renewal theory

Key tools: polynomial chaos, hypercontractivity, concentration inequalities

(some fail in the quasi-critical and critical regimes)

For the SHF di/ﬂ(t,dx) we exploit coarse-graining 4+ Lindeberg priciple



To conclude

We introduced the critical 2d Stochastic Heat Flow % 7(t,dx)

Scaling limit of regularized solutions of 2d Stochastic Heat Equation

<= directed polymer partition functions

Universal process of random measures on R? with many explicit features,

yet several open questions



Future challenges

» Finer regularity properties

» Intrinsic characterization of the SHF to please Massimiliano :-)
» SHF as a Markov process, e.g. martingale problem [M. Nakashimal]
» Sensitivity and black noise features [Himwich—Parekh 24+]
» Universality for directed polymers cf. [C.—Toninelli-Torri AoP 17]

» Critical 2d KPZ? How to take log of 7 ?
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