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THE STOCHASTIC HEAT EQUATION
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THE KARDAR PARISI ZHANG EQUATION PRL1986
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WHITE NOISE
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WHITE NOISE
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SHE and KPZ Difficult YET INTERESTING

They are both ill defined PDEs due to singularproducts

There is no classicalBanachspaceof functions distributions st

a singular products are well defined continuous operators
the Poe can besolved as a fixedpoint via contraction

Yet we can regularize lor discretize the noise Gelt
Do the corresponding solutions converge as Edo
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THE CASE 4 1

Breakthroughs obtained in the 2010s for sub critical Pdes
ma including SHE and KPE for d 1
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SHE and KPE for del well understood in a robust way
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The case 4 1 Haver 13 14 Haniver Pardoux 15

SHE solution ult x for del wellposedby lto Walsh integration
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The Critical Dimension de 2
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Discretized Stochastic Heat Equation
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Discretized Stochastic Heat Equation

Can we hope that as Neos Unit has a limit ult x

ViewUn as a random distribution in fact measure on R
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MAIN RESULT SZ 21

Fix de R and pirnas in Let Uniti solve d Shel
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The Critical 21 Stochastic Heat Flow

Wehave built a candidatesolution of the Critical 24 SHE

limit of discretizedsolutions D SHENo_ Uta 5 with critical rescuing of period
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The Critical 21 Stochastic Heat Flow

Despite the Fact that pa o the limit n'is random
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Several features are known
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The Critical 21 Stochastic Heat Flow

Finally we recently proved that test 227
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The Stochastic HeatFlow is a new classofrandom measures

It suggests that the solution of the critical ad KPE

getto beconstructed should be a non Gaussian process

we cannot take loghi de



II IDEAS AND TECHNIQUES



A LINK WITH DIRECTED POLYMERS
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A LINK WITH DIRECTED POLYMERS
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SECOND MOMENT AND CRITICAL SCALING OF
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POLYNOMIAL CHAOS AND PHASE TRANSITION
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The Stochastic Heat Flow

Existence of subsequential limits is easy tightness

Unit de 0 NÉ de

Non triviality of the limit is harder est 19b

Uniqueness of the limit is verydifficult est 22

Formulas for all moments of UÈ are available Gat 22
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THE Stochastic Heat flow

We do not have a characterization ofthe limit

ma We prove uniqueness by a Cauchyargument
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We prove
closeness in law by coarse Grainina techniques

exploiting self similarity ofthemodel moment bounds



GENERALIZED HIS INEQUALITY
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CONCLUSIONS
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CONCLUSIONS

We introduced the CRITICAL 2D STOCHASTIC Heat Flow
as a scaling limit of directedpolymer partition functions

It is a universal process of random measures on It
a natural candidate for the solution of the critical ad
Stochastic HeatEquation

It hasmany explicitfeatures



PERSPECTIVES

Many interesting questions are still open

SINGULARITY WRT LEBESGUEMEASURE

FLOW PROPERTY

CHARACTERIZING Properties

TAKING LOG MA KPZ
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MOMENT FORMULAS
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