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I INTRODUCTION



THE Stochastic HEATEquation

Quit Duct t P It Ult
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p o couplingconstant
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GOAL Construct the solution ult for d 2



THE KARDAR PARISI ZHANG EQUATION PRL1986

COLE HOPFTRANSFORMATION formally hit x logUit x solves
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mite SHE can help us
make sense of KPE



SINGULARITY

sue and Kfz are ill defined due to singularproducts

it Ult 10h It 2

it is a distribution ma vital and hitxp expected to be

non smooth functions d 1

genuine distributions d 2

Henceforth we Focus on SHE



THE ROLE OF DIMENSION

Space time blowup Ù tix vie't Ex solves
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Ascuothenoiseformar li IIstaysconstant d 2

d 2 is Critical Dimension for SHE



DIMENSION 4 1
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REGULAR ZING SHE VIA DISCRETIZATION

We fix d 2 and restrict to the lattice
t

tale E.IN EIxE è

Discretized SHE

OFUniti Duplex B N XCHE Unity

DISIR DERIVATIVE DISTR LAPLACIAN I I D RVs
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Well defined solution Uniti 0 it RX 1 Unio 1



CONVERGENCE

Can we hope that Unit.tl ma Uta nontrivial limit

YES But

Convergence as random distributions Pelle

d
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Why do we resale p parrà
E fanUnit e dx e fende

o if Artt
var eri un't.hu fai ffà Tritton

For fatt Unit e dx di dx Lebesgue measure trivial

For B ti do we have Unit e dx d Ult de



II MAIN RESULTS



MAIN THEOREM SZ 23

Resiale Br tf more precisely

p t.la n

Then Uniti converges to a unique non trivial limit

fdd
unita del o no

2 Uffa e o

L'is a stochastic process of random measures on R
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SHE SHE

We have built a candidatesolution of the Critical id she

putthe She I Wide tra

with initial condition No de e da Culo e 1

Remark We actually build a two parameter process

CANDIDATE SHE SOLUTION
tidydel asset o fromdy at times



KET FEATURES OF THE SHE

ELUI de de
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Gaussian Multiplicative Chaos

Random measure M del ehh Ekland

In No r generalized Gaussian field

Panieri E Xhtml dxdy ffkk.gl Yuan dandy

GMCs are canonical many explicit features
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THEOREM The SHE VIA is NOT a GMC 52237

Recall formally hit x logult solves 1KPZ

Conjecture the critical ad KPE equation shouldhave a
NON GAUSSIAN SOLUTION Selda

KPE solution getto be constructed Cannot take loghi de



FURTHER FEATURES OF THE SHE

THEOREM SZ23 7

The suf Uta is as non atomic singular went Lebesgue

UE BK.SI
o di 0

Based on a multiplicative decomposition of the SNF

of c Cattini 22 Casco Donadini 237



II IDEAS AND TECHNIQUES



DIRECTED POLYMER IN RANDOM ENVIRONMENT

Sulu o simple randomwalk on I Sn
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FEYNMAN KAC FORMULA

Discretized SHE solution Unita Zì Nist Fx

Proof Markovproperty of TRW z
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SECOND MOMENT AND CRITICAL SCALING OF

PECUNIA

Una.nl Efep'Iohsi si3So xrn sj ir
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E ZNKTNI.IN x'FI LA REPLICAOVERLAP
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This explains the Critical scaling p Inge



Main result STRATEGY OF THE PROOF

Unit de 0 NÉ de

Existence of subsequential limits is easy Bertini canarini98

Non triviality of the limit is nontrivial test 19b

Uniqueness is hard est 23

Moments grow too fast to determinethe distribution



HOW TO PROVE UNIQUENESS

We use a Cauchyargument

Unit e dx è Unit e de for large N M

exploiting self similarity ofthemodel

A COARSE GRAINING B RENEWAL STRUCTURE

C LINDEBERG PRINCIPLE D FUNCTIONAL INEQUALITIES



A COARSE GRAINING

Polynomialchaosexpansion Pisneza Sun z

Uniti I EpÉ I giusti nata Grifi
MaZal MnZu
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DIFFUSIVERESCALING
E
E 3

tu
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Entrai
HEATKERNELS

Sharp L'approximation via a coarse grained model

Unit e dx e LE t.de En s as Edo

MULTI LINEARPOLYNOMIAL COARSEGRAINED Noise



B RENEWAL STRUCTURE

Probabilistic interpretation of 2 moment

2k I 9 insita IniziUnity Uniti FI Pinza
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C LINDEBERG PRINCIPLE

The distribution of coarse grained model LI t da e
is insensitive to the distribution of E

as Eto provided 1st 2 moments are fixed Rail in 2013

ma We can switch En to Em and get our goal
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D FUNCTIONAL INEQUALITIES

Inequalities for Green's function ofmultiple randomwalks

CRITICAL HARDY LITTLEWOOD SOBOLEV INEQUALITY
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CONCLUSIONS

AND PERSPECTIVES



CONCLUSIONS

We introduced the CRITICAL 2D STOCHASTIC Heat Flow da

as the scaling limit of solutions of discretized she

directedpolymer partition functions

Universal process of random measures on È I Gmc

Natural candidate solution for critical ad SHE

Many explicit features



and several interesting open questions
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MOMENT FORMULAS
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MOMENT FORMULAS
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Non GMC NESS

Consider the 2d stochastic Heat flow Ut for Fixed t 0 Oer

Let Max be the GMC with matching1stand2ndmoments

E MaxiMidy ECHI a UIldy KIAy dedy

We prove that highermomentsdo notmatch

3 dMOMENT BOUND For any R O
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HIGHERMOMENT BOUND there is y o sit for any K 3
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Correlation FUNCTION B Fen stagni

KPH.MN EIUNItxI.Un t xy ma Keith

It solves the 2 body delta Basegas discretized in f
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HIGHER ORDER CORRELATIONS
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