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3. Stochastic PDEs: 2d Stochastic Heat Equation

Main references:

e [CSZ19] The Dickman subordinator, renewal theorems, and
disordered systems, EJP (2019)

o [CSZ21+] The critical 2d Stochastic Heat Flow, Inventiones Math.
(to appear)



Based on joint works with

Rongfeng Sun (NUS) and Nikos Zygouras (Warwick)



Renewal process

Random walk Sy := X1 + X5 + ... Xk with positive increments

(Xi) i.i.d. Xie N={1,2,...} aperiodic

0 51 52 53 n
Renewal function u(n) := P(S visits n) = Z P(Sk = n)
k>0
Renewal Theorem (Erdos, Feller, Pollard 1949)

lim u(n) = also when E[X] = co

1
n—00 E[X]




Heavy tails

When E[X] = oo we have u, — 0. At which rate?

Tail Assumption

ln ,
P(X>n) ~ — 0<ax<l £. slowly varying
n—oo n%
V.
Theorem [Garsia, Lamperti 1962] [Doney 1997]
c . _ i
"~ = th ¢, = sinma
u(n) n—oo E[XAn]  {,nl—« e i
local ion for a < 1: P(X = n) < C_tn
+ local assumption for o < 3: (X=n) < Tra

Necessary and sufficient conditions are known [Caravenna, Doney 19]



Ultra-heavy tails

We now focus on the extreme case av = 0
1
P(X=n)=p, ~ =
n
This makes sense via truncation at scale V

Pn L {1<n<ny N 1 Tacneny
p1+...+pn n logN

P(XM) = n) =

Triangular array of renewal processes
S = x4 XY
Renewal function (exponentially weighted)

uM(n) = P(S™ visits n) Z P(S 1+ |og/v)k
k>0




Strong Renewal Theorem

. N log N
EXM] ~ —— M(n) ~ ~
Since E[ ] log NV we expect u'"/(n) o ash N = 0o
Theorem [CSZ19]
(N) |Og N - i
u™(n) ~ N Gg(ﬁ) uniformly for 6N < n< N
€9 e(ﬂ_’\/)s s ts_l
h Gy(t) ;== P
where o (t) /O ot 1) ds
v

» Renewal process S(V) = (S,EN));(% e Lévy process Y = (Ys)s>0

(suitably rescaled) “Dickman subordinator”

» Gy(t) is the renewal function of Y



The Dickman subordinator

Our renewal process S(V) is attracted to a pure jump Lévy process Y

S(N)

|slog N ) d _
—_ — Y = (Y.
( N Jeso Moo (%2) 20
called the Dickman subordinator
1

> Lévy measure vY(dt) = R T(0,1)(t)dt

P(Ys € dt sl
» Explicit density ( Sdf ) = er(sj— ) for t € (0,1)

Gy(t) is the (exponentially weighted) renewal function of Y

Gy(t) = / eV —P(stf d) 4
0




Directed Polymer in Random Environment

Disordered model in statistical mechanics

“random walk interacting with a random medium” (Gibbs)

Introduced in the 1980s to describe interfaces in Ising model

[Imbrie, Spencer JSP 88| [Bolthausen CMP 89]

A stream of mathematical research in the last 25 years

» Localization phenomena
» Super-diffusivity

» KPZ universality class

St. Flour 2016 Lecture notes by Francis Comets



Partition Functions

» 5= (s,)n>0 simple random walk on z4

» w(n,z) independent N(0,1) (disorder)

n=1
Directed Polymer Partition Functions (NeN, zez9
E [eBHn(s,w) 1 BHn(s,w)
Z(N,z) = [el I _ > efHn(sw) &~
ez/N (2d)V e3F°N
s=(0,--,5n)

s.r.w. path with sp=z

Hidden (but deep) connection to the renewal function u")(n)!



The random variables (Z(N, z)) depend on disorder w

zezd

» They are stationary with unit mean:
[E[Z(N,Z)] =
» They are not independent: explicit covariance

Cov [Z(N,z),Z(N,Z)] = Y P q(2t,z—2) v(N-1¢)
1<e<N

q(n,z) :=P(s, = z) SRW transition kernel B2i=ef —1

vin) =1+ > B2q20.00+ Y B2q(20,0) F g(2(m—1),0) +

1<¢/<n 1<tl<m<n




Renewal theory

Now fix d = 2

1<¢<n 1<é<m<n

vin) =1+ Y 3q(20,00+ Y 3°q(2£,0) 5 q(2(m—¢),0) + J

> Local CLT: ¢(2¢,0) ~ %% > Critical rescaling: [ = Io;N
Renewal theory interpretation: P(XM) =¢) .= $2q(2¢,0)
n
vin) =1+ PSM<n)y+PSM <)+ ... =S u™(m)

m=0

The renewal function u(N)(~) sheds light on directed polymers



Stochastic Heat Equation

Singular stochastic PDE on RY
Qeu(t, x) = Au(t,x) + Bu(t,x)&(t,x) (SHE)

u(0, x) = 1 for simplicity

&(t, x) = space-time white noise

& is very irregular  ~~  product u¢ is classically ill-defined

» (d =1) Well-posed via stochastic integration (Ito-Walsh 1980s)

Also pathwise, via Regularity Structures or Paracontrolled Calculus

» (d >2) No solution theory



Critical 2d Stochastic Heat Equation

Now fix d = 2. We regularize the noise

» mollification s

> discretization in space-time:  {(t,x) ~ w(§, %) iid. N(0,1)

~+ (SHE) becomes a difference equation on the rescaled Iattlce & X T

Solution up(t, x) of discretized SHE is ...
. the Directed Polymer Partition Function Z([tN |, [xv/N]) !

Dicrete Feynman-Kac formula (up to time reversal)

Does Z([tN],|xv/N|) admit a non-trivial limit as N — oo ? J




> We must look at Z([tN|, [xv/N|) as a distribution in x

Z(eN). )= [ ZUN) VA edx g€ GRY

R2

> To ensures convergence of mean and variance of Z([tN], )

¥
we critically rescale (2 ~ ﬁ <1 + I : N>
og og

~> renewal theory interpretation



Main result

Theorem [CSZ21]
With the critical rescaling
5 71' )
= 1 f R
P IogN( +IogN> orv €

we have the joint convergence in distribution over t > 0, ¢ € C.(R?)

2(tN, ) -2 2%(t9) = / o(x) 2, dx)

The limiting process 2V (t, dx) is called critical 2d Stochastic Heat Flow

~ It is the natural candidate solution of the critical 2d (SHE)



Conclusions

Renewal Theory is remarkably useful in a variety of different contexts

(also with seemingly exotic ultra heavy tails!)

Non-obvious application to 2d Directed Polymers, where renewal theory
sheds light on the covariance of the Partition Functions Z(N, z)

These solve of a discretized critical 2d (SHE) ~~ their scaling limits yield
the critical 2d Stochastic Heat Flow (2°V(t,dx))>0

Universal process of random measures on R? with many explicit features

(but several open questions)



Conclusions

The measure 2°(t,dx) is a.s. singular w.r.t. Lebesgue, i.e. not a function

This is unlike what happens in the 1d case [Alberts, Khanin, Quastel 14]
or for heavy-tailed disorder [Berger, Chong, Lacoin 21] [Viveros 21]

We actually build scaling limits of point-to-point partition functions
VN Z(tN,xV'N, yV'N) dx dy %} ZV(t,dx, dy)
—00

Polymer endpoint distribution (with averaged initial condition)

for critical intermediate disorder ﬁz = IOgLN: diffusive, but non Brownian

For subcritical 32 = (1 —€)iogm: Brownian, but random LLT [Gabriel 21]



Merci



Polynomial chaos

» Simple random walk kernel on 72 q(n,z) = P(s, = z)
.. ] eBw(nx)=38° _ 1
> New i.i.d. centred random variables &(n, z) = — 7
Polynomial chaos
Equivalent rewriting of the partition function
Z(N,Z) = 1+B Z q(gax)(:)(&X)
1<e<N
xEZ2
+62 Y qlt,x)q(m =ty — x) &, x)B(m,y) + ...
1<l<m<N
X.V\/L:,;T:
V,




Variance

Scaling limit of the variance
VarlZ(W, o) & [ 000 Kulx.y) () dxdy
R2 x R2

Explicit kernel

Kn(y) =5 > Plsn=VN(x—y))-u"(n—m)

1<m<n<N

uM) () = renewal function (ultra-heavy tailed renewal process)

Nlim Kn(x,y) =« // g(x—y) - Gy(t—s) dsdt
—00

R2 renewal function of the
Dickman subordinator

0<s<t<1
heat kernel on
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