

Renewal Theory, Disordered Systems, and Stochastic PDEs

Francesco Caravenna

Università degli Studi di Milano-Bicocca

1 June 2023 @ Nantes

Workshop on Polymers and self-avoiding walks

A celebration of Philippe Carmona's career

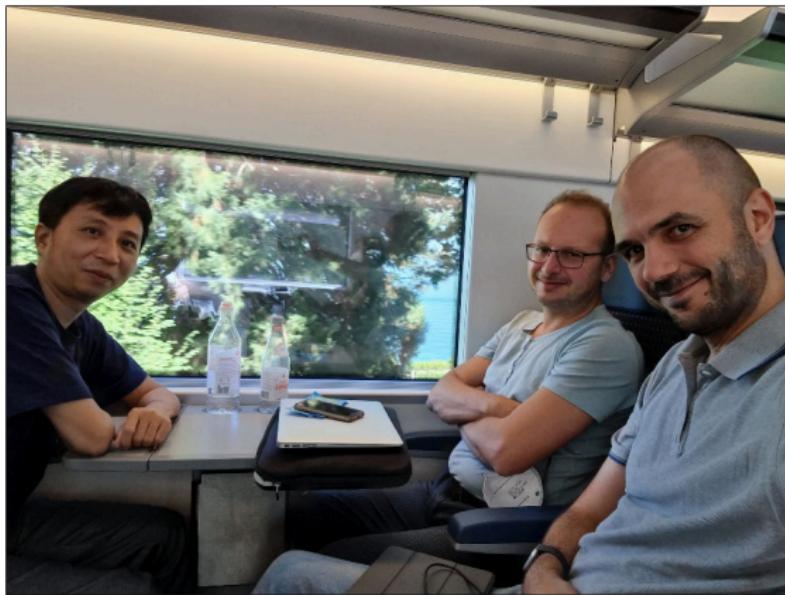
Overview

1. **Renewal Theory**: ultra-heavy tailed renewal processes
2. **Disordered Systems**: $2d$ Directed Polymer in Random Environment
3. **Stochastic PDEs**: $2d$ Stochastic Heat Equation

Main references:

- [CSZ19] *The Dickman subordinator, renewal theorems, and disordered systems*, EJP (2019)
- [CSZ21+] *The critical $2d$ Stochastic Heat Flow*, Inventiones Math. (to appear)

Based on joint works with

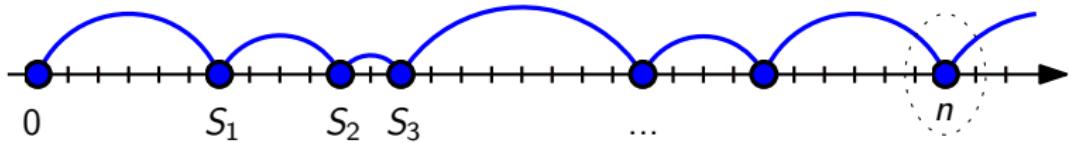


Rongfeng Sun (NUS) and Nikos Zygouras (Warwick)

Renewal process

Random walk $S_k := X_1 + X_2 + \dots + X_k$ with positive increments

(X_i) i.i.d. $X_i \in \mathbb{N} = \{1, 2, \dots\}$ aperiodic



Renewal function

$$u(n) := P(S \text{ visits } n) = \sum_{k \geq 0} P(S_k = n)$$

Renewal Theorem

(Erdos, Feller, Pollard 1949)

$$\lim_{n \rightarrow \infty} u(n) = \frac{1}{E[X]}$$

also when $E[X] = \infty$

Heavy tails

When $E[X] = \infty$ we have $u_n \rightarrow 0$. At which rate?

Tail Assumption

$$P(X > n) \underset{n \rightarrow \infty}{\sim} \frac{\ell_n}{n^\alpha} \quad 0 < \alpha < 1 \quad \ell \text{. slowly varying}$$

Theorem

[Garsia, Lamperti 1962] [Doney 1997]

$$u(n) \underset{n \rightarrow \infty}{\sim} \frac{c}{E[X \wedge n]} = \frac{c_\alpha}{\ell_n n^{1-\alpha}} \quad \text{with } c_\alpha := \frac{\sin \pi \alpha}{\pi}$$

+ local assumption for $\alpha \leq \frac{1}{2}$:

$$P(X = n) \leq C \frac{\ell_n}{n^{1+\alpha}}$$

Necessary and sufficient conditions are known [Caravenna, Doney 19]

Ultra-heavy tails

We now focus on the extreme case $\alpha = 0$

$$\mathbb{P}(X = n) = p_n \sim \frac{1}{n}$$

This makes sense via **truncation** at scale N

$$\mathbb{P}(X^{(N)} = n) = \frac{p_n \mathbb{1}_{\{1 \leq n \leq N\}}}{p_1 + \dots + p_N} \sim \frac{1}{n} \frac{\mathbb{1}_{\{1 \leq n \leq N\}}}{\log N}$$

Triangular array of renewal processes

$$S_k^{(N)} = X_1^{(N)} + \dots + X_k^{(N)}$$

Renewal function (exponentially weighted)

$$u^{(N)}(n) = \mathbb{P}(S^{(N)} \text{ visits } n) = \sum_{k \geq 0} \mathbb{P}(S_k^{(N)} = n) \left(1 + \frac{\vartheta}{\log N}\right)^k$$

Strong Renewal Theorem

Since $E[X^{(N)}] \sim \frac{N}{\log N}$ we expect $u^{(N)}(n) \approx \frac{\log N}{N}$ as $n \approx N \rightarrow \infty$

Theorem

[CSZ19]

$$u^{(N)}(n) \sim \frac{\log N}{N} G_\vartheta\left(\frac{n}{N}\right) \quad \text{uniformly for } \delta N \leq n \leq N$$

$$\text{where } G_\vartheta(t) := \int_0^\infty \frac{e^{(\vartheta-\gamma)s} s t^{s-1}}{\Gamma(s+1)} ds$$

- Renewal process $S^{(N)} = (S_k^{(N)})_{k \in \mathbb{N}} \xrightarrow[N \rightarrow \infty]{} \text{Lévy process } Y = (Y_s)_{s \geq 0}$
(suitably rescaled) “Dickman subordinator”
- $G_\vartheta(t)$ is the renewal function of Y

The Dickman subordinator

Our renewal process $S^{(N)}$ is attracted to a pure jump Lévy process Y

$$\left(\frac{S_{\lfloor s \log N \rfloor}^{(N)}}{N} \right)_{s \geq 0} \xrightarrow[N \rightarrow \infty]{d} Y = (Y_s)_{s \geq 0}$$

called the **Dickman subordinator**

- ▶ Lévy measure

$$\nu^Y(dt) := \frac{1}{t} \mathbb{1}_{(0,1)}(t) dt$$

- ▶ Explicit density

$$\frac{P(Y_s \in dt)}{dt} = \frac{e^{-\gamma s} s t^{s-1}}{\Gamma(s+1)} \quad \text{for } t \in (0, 1)$$

$G_\vartheta(t)$ is the (exponentially weighted) renewal function of Y

$$G_\vartheta(t) = \int_0^\infty e^{\vartheta s} \frac{P(Y_s \in dt)}{dt} ds$$

Directed Polymer in Random Environment

Disordered model in statistical mechanics

“random walk interacting with a random medium”

(Gibbs)

Introduced in the 1980s to describe interfaces in Ising model

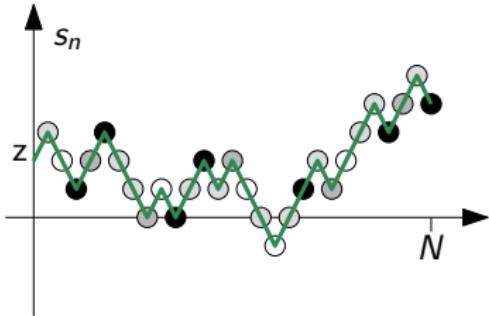
[Imbrie, Spencer JSP 88]

[Bolthausen CMP 89]

A stream of mathematical research in the last 25 years

- ▶ Localization phenomena
- ▶ Super-diffusivity
- ▶ KPZ universality class

Partition Functions



- ▶ $s = (s_n)_{n \geq 0}$ simple random walk on \mathbb{Z}^d
- ▶ $\omega(n, z)$ independent $\mathcal{N}(0, 1)$ (disorder)
- ▶ $H_N(s, \omega) := \sum_{n=1}^N \omega(n, s_n) \sim \mathcal{N}(0, N)$

Directed Polymer Partition Functions $(N \in \mathbb{N}, z \in \mathbb{Z}^d)$

$$Z(N, z) := \frac{\mathbb{E}[e^{\beta H_N(s, \omega)}]}{e^{\frac{1}{2}\beta^2 N}} = \frac{1}{(2d)^N} \sum_{\substack{s=(s_0, \dots, s_N) \\ \text{s.r.w. path with } s_0=z}} e^{\beta H_N(s, \omega)} \frac{e^{\beta H_N(s, \omega)}}{e^{\frac{1}{2}\beta^2 N}}$$

Hidden (but deep) connection to the renewal function $u^{(N)}(n)!$

Moments

The random variables $(Z(N, z))_{z \in \mathbb{Z}^d}$ depend on **disorder ω**

- ▶ They are **stationary** with unit mean:

$$\mathbb{E}[Z(N, z)] = 1$$

- ▶ They are **not independent**: explicit covariance

$$\text{Cov}[Z(N, z), Z(N, z')] = \sum_{1 \leq \ell \leq N} \tilde{\beta}^2 \, \textcolor{blue}{q}(2\ell, z - z') \cdot \textcolor{violet}{v}(N - \ell)$$

$$\textcolor{blue}{q}(n, z) := \mathbb{P}(\textcolor{blue}{s}_n = z) \text{ SRW transition kernel} \qquad \qquad \tilde{\beta}^2 := e^{\beta^2} - 1$$

$$\textcolor{violet}{v}(n) = 1 + \sum_{1 \leq \ell \leq n} \tilde{\beta}^2 \, \textcolor{blue}{q}(2\ell, 0) + \sum_{1 \leq \ell < m \leq n} \tilde{\beta}^2 \, \textcolor{blue}{q}(2\ell, 0) \, \tilde{\beta}^2 \, \textcolor{blue}{q}(2(m - \ell), 0) + \dots$$

Renewal theory

Now fix $d = 2$

$$v(n) = 1 + \sum_{1 \leq \ell \leq n} \tilde{\beta}^2 q(2\ell, 0) + \sum_{1 \leq \ell < m \leq n} \tilde{\beta}^2 q(2\ell, 0) \tilde{\beta}^2 q(2(m-\ell), 0) + \dots$$

► Local CLT: $q(2\ell, 0) \sim \frac{1}{\pi} \frac{1}{\ell}$ ► Critical rescaling: $\tilde{\beta}^2 = \frac{\pi}{\log N}$

Renewal theory interpretation: $P(X^{(N)} = \ell) := \tilde{\beta}^2 q(2\ell, 0)$

$$v(n) = 1 + P(S_1^{(N)} \leq n) + P(S_2^{(N)} \leq n) + \dots = \sum_{m=0}^n u^{(N)}(m)$$

The renewal function $u^{(N)}(\cdot)$ sheds light on directed polymers

Stochastic Heat Equation

Singular stochastic PDE on \mathbb{R}^d

$$\partial_t u(t, x) = \Delta u(t, x) + \beta u(t, x) \xi(t, x) \quad (\text{SHE})$$

$u(0, x) \equiv 1$ for simplicity

$\xi(t, x)$ = space-time white noise

ξ is very irregular \rightsquigarrow product $u \xi$ is classically ill-defined

- ▶ $(d = 1)$ Well-posed via stochastic integration (Ito-Walsh 1980s)
Also pathwise, via Regularity Structures or Paracontrolled Calculus
- ▶ $(d \geq 2)$ No solution theory

Critical 2d Stochastic Heat Equation

Now fix $d = 2$. We **regularize the noise**

- ▶ **mollification** in space: $\xi_\delta = \xi * g_\delta$ $\delta > 0$
- ▶ **discretization** in space-time: $\xi(t, x) \rightsquigarrow \omega\left(\frac{n}{N}, \frac{z}{\sqrt{N}}\right)$ i.i.d. $\mathcal{N}(0, 1)$

\rightsquigarrow (SHE) becomes a **difference equation** on the rescaled lattice $\frac{\mathbb{N}}{N} \times \frac{\mathbb{Z}}{\sqrt{N}}$

Solution $u_N(t, x)$ of **discretized** SHE is ...

... the **Directed Polymer Partition Function** $Z(\lfloor tN \rfloor, \lfloor x\sqrt{N} \rfloor)$!

Discrete Feynman-Kac formula (up to time reversal)

Does $Z(\lfloor tN \rfloor, \lfloor x\sqrt{N} \rfloor)$ admit a **non-trivial limit** as $N \rightarrow \infty$?

Yes, but

- We must look at $Z(\lfloor tN \rfloor, \lfloor x\sqrt{N} \rfloor)$ as a **distribution** in x

$$Z(\lfloor tN \rfloor, \varphi) := \int_{\mathbb{R}^2} Z(\lfloor tN \rfloor, \lfloor x\sqrt{N} \rfloor) \varphi(x) dx \quad \varphi \in C_c(\mathbb{R}^2)$$

- To ensures convergence of mean and variance of $Z(\lfloor tN \rfloor, \varphi)$

we **critically rescale** $\beta^2 \sim \frac{\pi}{\log N} \left(1 + \frac{\vartheta}{\log N}\right)$

\rightsquigarrow renewal theory interpretation

Main result

Theorem

[CSZ21]

With the critical rescaling

$$\beta^2 = \frac{\pi}{\log N} \left(1 + \frac{\vartheta}{\log N} \right) \quad \text{for } \vartheta \in \mathbb{R}$$

we have the joint convergence in distribution over $t \geq 0$, $\varphi \in C_c(\mathbb{R}^2)$

$$Z(tN, \varphi) \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}^\vartheta(t, \varphi) = \int_{\mathbb{R}^2} \varphi(x) \mathcal{Z}^\vartheta(t, dx)$$

The limiting process $\mathcal{Z}^\vartheta(t, dx)$ is called **critical 2d Stochastic Heat Flow**

~~> It is the natural candidate solution of the critical 2d (SHE)

Conclusions

Renewal Theory is remarkably useful in a variety of different contexts
(also with seemingly exotic ultra heavy tails!)

Non-obvious application to *2d Directed Polymers*, where renewal theory
sheds light on the covariance of the Partition Functions $Z(N, z)$

These solve of a discretized critical *2d (SHE)* \rightsquigarrow their scaling limits yield

the critical *2d Stochastic Heat Flow* $(\mathcal{L}^\vartheta(t, dx))_{t \geq 0}$

Universal process of random measures on \mathbb{R}^2 with many explicit features
(but several open questions)

Conclusions

The measure $\mathcal{Z}^\vartheta(t, dx)$ is a.s. singular w.r.t. Lebesgue, i.e. **not a function**

This is unlike what happens in the **1d case** [Alberts, Khanin, Quastel 14]
or for **heavy-tailed disorder** [Berger, Chong, Lacoin 21] [Viveros 21]

We actually build scaling limits of **point-to-point partition functions**

$$\sqrt{N} Z(tN, x\sqrt{N}, y\sqrt{N}) dx dy \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}^\vartheta(t, dx, dy)$$

Polymer endpoint distribution (with **averaged** initial condition)

for critical intermediate disorder $\beta^2 = \frac{\pi}{\log N}$: **diffusive**, but **non Brownian**

For subcritical $\beta^2 = (1 - \varepsilon) \frac{\pi}{\log N}$: **Brownian**, but **random LLT** [Gabriel 21]

Merci

Polynomial chaos

- ▶ Simple random walk kernel on \mathbb{Z}^2
- ▶ New i.i.d. centred random variables

$$q(n, z) = P(\textcolor{blue}{s}_n = z)$$

$$\tilde{\omega}(n, z) := \frac{e^{\beta \omega(n, x) - \frac{1}{2} \beta^2} - 1}{\tilde{\beta}}$$

Polynomial chaos

Equivalent rewriting of the partition function

$$\begin{aligned} Z(N, z) &= 1 + \tilde{\beta} \sum_{\substack{1 \leq \ell \leq N \\ x \in \mathbb{Z}^2}} q(\ell, x) \tilde{\omega}(\ell, x) \\ &+ \tilde{\beta}^2 \sum_{\substack{1 \leq \ell < m \leq N \\ x, y \in \mathbb{Z}^2}} q(\ell, x) q(m - \ell, y - x) \tilde{\omega}(\ell, x) \tilde{\omega}(m, y) + \dots \end{aligned}$$

Variance

Scaling limit of the variance

$$\mathbb{V}\text{ar}[Z(N, \varphi)] \approx \int_{\mathbb{R}^2 \times \mathbb{R}^2} \varphi(x) K_N(x, y) \varphi(y) dx dy$$

Explicit kernel

$$K_N(x, y) = \tilde{\beta}^2 \sum_{1 \leq m < n \leq N} \mathbb{P}(\textcolor{teal}{s}_m = \sqrt{N}(x - y)) \cdot u^{(\textcolor{red}{N})}(n - m)$$

$u^{(\textcolor{red}{N})}(\cdot)$ = renewal function (ultra-heavy tailed renewal process)

$$\lim_{N \rightarrow \infty} K_N(x, y) = \pi \iint_{0 < s < t < 1} \underbrace{g_s(x - y)}_{\text{heat kernel on } \mathbb{R}^2} \cdot \underbrace{G_\vartheta(t - s)}_{\substack{\text{renewal function of the} \\ \text{Dickman subordinator}}} ds dt$$