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Overview

1. Renewal Theory : ultra-heavy tailed renewal processes

2. Disordered Systems : 2d Directed Polymer in Random Environment

3. Stochastic PDEs : 2d Stochastic Heat Equation

Main references:

• [CSZ19] The Dickman subordinator, renewal theorems, and

disordered systems, EJP (2019)

• [CSZ21+] The critical 2d Stochastic Heat Flow, Inventiones Math.
(to appear)



Based on joint works with

Rongfeng Sun (NUS) and Nikos Zygouras (Warwick)



Renewal process

Random walk Sk := X1 + X2 + . . .Xk with positive increments

(Xi ) i.i.d. Xi ∈ N = {1, 2, . . .} aperiodic

0 S1 S2 S3 ...
n

Renewal function u(n) := P(S visits n) =
∑

k≥0

P(Sk = n)

Renewal Theorem (Erdos, Feller, Pollard 1949)

lim
n→∞

u(n) =
1

E[X ]
also when E[X ] = ∞



Heavy tails

When E[X ] = ∞ we have un → 0. At which rate?

Tail Assumption

P(X > n) ∼
n→∞

ℓn

nα
0 < α < 1 ℓ· slowly varying

Theorem [Garsia, Lamperti 1962] [Doney 1997]

u(n) ∼
n→∞

c

E[X ∧ n]
=

cα

ℓn n1−α
with cα := sinπα

π

+ local assumption for α ≤ 1
2 : P(X = n) ≤ C

ℓn

n1+α

Necessary and sufficient conditions are known [Caravenna, Doney 19]



Ultra-heavy tails

We now focus on the extreme case α = 0

P(X = n) = pn ∼ 1

n

This makes sense via truncation at scale N

P(X (N) = n) =
pn 1{1≤n≤N}
p1 + . . .+ pN

∼ 1

n

1{1≤n≤N}
logN

Triangular array of renewal processes

S
(N)
k = X

(N)
1 + . . .+ X

(N)
k

Renewal function (exponentially weighted)

u(N)(n) = P(S (N) visits n) =
∑

k≥0

P(S
(N)
k = n)

(
1 + ϑ

logN

)k



Strong Renewal Theorem

Since E[X (N)] ∼ N

logN
we expect u(N)(n) ≈ logN

N
as n ≈ N → ∞

Theorem [CSZ19]

u(N)(n) ∼ logN

N
Gϑ

(
n
N

)
uniformly for δN ≤ n ≤ N

where Gϑ(t) :=

∫ ∞

0

e
(ϑ−γ)s s ts−1

Γ(s + 1)
ds

▶ Renewal process S (N) = (S
(N)
k )k∈N −→

N→∞
Lévy process Y = (Ys)s≥0

(suitably rescaled) “Dickman subordinator”

▶ Gϑ(t) is the renewal function of Y



The Dickman subordinator

Our renewal process S (N) is attracted to a pure jump Lévy process Y

(
S
(N)
⌊s logN⌋
N

)

s≥0

d−−−−−→
N→∞

Y =
(
Ys

)

s≥0

called the Dickman subordinator

▶ Lévy measure νY (dt) :=
1

t
1(0,1)(t) dt

▶ Explicit density
P(Ys ∈ dt)

dt
=

e
−γs s ts−1

Γ(s + 1)
for t ∈ (0, 1)

Gϑ(t) is the (exponentially weighted) renewal function of Y

Gϑ(t) =

∫ ∞

0

e
ϑs P(Ys ∈ dt)

dt
ds



Directed Polymer in Random Environment

Disordered model in statistical mechanics

“random walk interacting with a random medium” (Gibbs)

Introduced in the 1980s to describe interfaces in Ising model

[Imbrie, Spencer JSP 88] [Bolthausen CMP 89]

A stream of mathematical research in the last 25 years

▶ Localization phenomena

▶ Super-diffusivity

▶ KPZ universality class

St. Flour 2016 Lecture notes by Francis Comets



Partition Functions

sn

N

z

▶ s = (sn)n≥0 simple random walk on Zd

▶ ω(n, z) independent N (0, 1) (disorder)

▶ HN(s, ω) :=

N∑

n=1

ω(n, sn) ∼ N (0,N)

Directed Polymer Partition Functions (N ∈ N, z ∈ Z
d)

Z (N, z) :=
E
[
e
βHN (s,ω)

]

e

1
2β

2N
=

1

(2d)N

∑

s=(s0,...,sN )
s.r.w. path with s0=z

e
βHN (s,ω) e

βHN (s,ω)

e

1
2β

2N

Hidden (but deep) connection to the renewal function u(N)(n) !



Moments

The random variables
(
Z (N, z)

)

z∈Zd depend on disorder ω

▶ They are stationary with unit mean:

E
[
Z (N, z)

]
= 1

▶ They are not independent: explicit covariance

Cov
[
Z (N, z),Z (N, z ′)

]
=

∑

1≤ℓ≤N

β̃2 q(2ℓ, z − z ′) · v(N − ℓ)

q(n, z) := P(sn = z) SRW transition kernel β̃2 := e
β2 − 1

v(n) = 1 +
∑

1≤ℓ≤n

β̃2 q(2ℓ, 0) +
∑

1≤ℓ<m≤n

β̃2 q(2ℓ, 0) β̃2 q(2(m−ℓ), 0) + . . .



Renewal theory

Now fix d = 2

v(n) = 1 +
∑

1≤ℓ≤n

β̃2 q(2ℓ, 0) +
∑

1≤ℓ<m≤n

β̃2 q(2ℓ, 0) β̃2 q(2(m−ℓ), 0) + . . .

▶ Local CLT: q(2ℓ, 0) ∼ 1

π

1

ℓ
▶ Critical rescaling: β̃2 =

π

logN

Renewal theory interpretation: P(X (N) = ℓ) := β̃2 q(2ℓ, 0)

v(n) = 1 + P(S
(N)
1 ≤ n) + P(S

(N)
2 ≤ n) + . . . =

n∑

m=0

u(N)(m)

The renewal function u(N)(·) sheds light on directed polymers



Stochastic Heat Equation

Singular stochastic PDE on Rd

∂tu(t, x) = ∆u(t, x) + β u(t, x) ξ(t, x) (SHE)

u(0, x) ≡ 1 for simplicity

ξ(t, x) = space-time white noise

ξ is very irregular ⇝ product u ξ is classically ill-defined

▶ (d = 1) Well-posed via stochastic integration (Ito-Walsh 1980s)

Also pathwise, via Regularity Structures or Paracontrolled Calculus

▶ (d ≥ 2) No solution theory



Critical 2d Stochastic Heat Equation

Now fix d = 2. We regularize the noise

▶ mollification in space: ξδ = ξ ∗ gδ δ > 0

▶ discretization in space-time: ξ(t, x) ⇝ ω( n
N
, z√

N
) i.i.d. N (0, 1)

⇝ (SHE) becomes a difference equation on the rescaled lattice N

N
× Z√

N

Solution uN(t, x) of discretized SHE is . . .

. . . the Directed Polymer Partition Function Z (⌊tN⌋, ⌊x
√
N⌋) !

Dicrete Feynman-Kac formula (up to time reversal)

Does Z (⌊tN⌋, ⌊x
√
N⌋) admit a non-trivial limit as N → ∞ ?



Yes, but

▶ We must look at Z (⌊tN⌋, ⌊x
√
N⌋) as a distribution in x

Z (⌊tN⌋, φ) :=
∫

R2

Z (⌊tN⌋, ⌊x
√
N⌋)φ(x) dx φ ∈ Cc(R

2)

▶ To ensures convergence of mean and variance of Z (⌊tN⌋, φ)

we critically rescale β2 ∼ π

logN

(

1 +
ϑ

logN

)

⇝ renewal theory interpretation



Main result

Theorem [CSZ21]

With the critical rescaling

β2 =
π

logN

(

1 +
ϑ

logN

)

for ϑ ∈ R

we have the joint convergence in distribution over t ≥ 0, φ ∈ Cc(R
2)

Z (tN, φ)
d−−−−→

N→∞
Z

ϑ(t, φ) =

∫

R2

φ(x)Z
ϑ(t, dx)

The limiting process Z ϑ(t, dx) is called critical 2d Stochastic Heat Flow

⇝ It is the natural candidate solution of the critical 2d (SHE)



Conclusions

Renewal Theory is remarkably useful in a variety of different contexts

(also with seemingly exotic ultra heavy tails!)

Non-obvious application to 2d Directed Polymers, where renewal theory

sheds light on the covariance of the Partition Functions Z (N, z)

These solve of a discretized critical 2d (SHE) ⇝ their scaling limits yield

the critical 2d Stochastic Heat Flow (Z ϑ(t, dx))t≥0

Universal process of random measures on R2 with many explicit features

(but several open questions)



Conclusions

The measure Z ϑ(t, dx) is a.s. singular w.r.t. Lebesgue, i.e. not a function

This is unlike what happens in the 1d case [Alberts, Khanin, Quastel 14]

or for heavy-tailed disorder [Berger, Chong, Lacoin 21] [Viveros 21]

We actually build scaling limits of point-to-point partition functions

√
N Z (tN, x

√
N, y

√
N) dx dy

d−−−−→
N→∞

Z
ϑ(t, dx , dy)

Polymer endpoint distribution (with averaged initial condition)

for critical intermediate disorder β2 = π
logN : diffusive, but non Brownian

For subcritical β2 = (1− ε) π
logN : Brownian, but random LLT [Gabriel 21]



Merci



Polynomial chaos

▶ Simple random walk kernel on Z2 q(n, z) = P(sn = z)

▶ New i.i.d. centred random variables ω̃(n, z) :=
e
βω(n,x)− 1

2β
2 − 1

β̃

Polynomial chaos

Equivalent rewriting of the partition function

Z (N, z) = 1 + β̃
∑

1≤ℓ≤N

x∈Z
2

q(ℓ, x) ω̃(ℓ, x)

+β̃2
∑

1≤ℓ<m≤N

x,y∈Z
2

q(ℓ, x) q(m − ℓ, y − x) ω̃(ℓ, x) ω̃(m, y) + . . .



Variance

Scaling limit of the variance

Var[Z (N, φ)] ≈
∫

R2×R2

φ(x)KN(x , y)φ(y) dx dy

Explicit kernel

KN(x , y) = β̃2
∑

1≤m<n≤N

P(sm =
√
N(x − y)) · u(N)(n −m)

u(N)(·) = renewal function (ultra-heavy tailed renewal process)

lim
N→∞

KN(x , y) = π

∫∫

0<s<t<1

gs(x − y)
︸ ︷︷ ︸

heat kernel on R
2

· Gϑ(t − s)
︸ ︷︷ ︸

renewal function of the
Dickman subordinator

ds dt
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