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SHE AND KP2
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DISCRETIZED SHE (— LINK TO DIRECTED PalLYMERS )
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CONVERGENCE
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THeEOREM
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SOME FEATURES
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GAUSSIAN MULTIPLICATI\/E Craos (GHC)
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A Link wiTH Directed PoLyrers
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MAIN RESULT : STRATEGY OF THE PROOF
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How To PROVE UNIQUENESS
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B RENEwWAL STRUCTURE
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¢. LINDEBERG PRINCIPLE
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D. FuNcTIONAL INEQUALITIES
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NoN GHC-NEsS
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CoNCLUSIONS
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HOMENT Foam ULAS

E[M\Z (JX) Ui(%) ' Uf(di) ] = K(B)(x, 9,2 dx dy Jz

- -0/
JNZ;,M E [ Uy (E) - Uy (£,9) - uN(t,a]
(3) T G B
|’< (21,%;1?;3) = Z g—g <ld\ c”o J\Xcltb %,_,CO‘"O’K' )
wmZ 2 z

0<a<b <...<cam<hn<t
Xi, 91, <o Xan, Yan € R



MOMENT FORM ULAS

I/\EO\'I' Kewv\el
4

SPe,cio»\ FuncTian
A

(b41 y4)




