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I INTRODUCTION AND

MAIN RESULTS



THE Stochastic HEATEquation

for t o eRd

grouping
constant

fault Duct t p it Ult x
SHE

I ULO 1

it x space time whitenoise 5 correlated Gaussian

GOAL Construct the natural candidate solution ult for d 2
ma CRITICAL 2d STOCHASTIC HEAT FLOW



THE KARDAR PARISI ZHANG EQUATION PRL1986

IL Gitx is regular then hit x loguitix solves

Of hit 1 A hit t The I t p It KPE

sette è

hit a If Gita is Not regular

Uniti SHE can helpmake
x sense of KPE



SHE AND KPE

They are both ill defined due to singularproducts

it Ult IDEE 2

NoBanachspace of functions or distributions to set fixedpoint

We regularize discretize the noise Gelt on scale e 0

Do regularized discretized solutions converge as Edo

uelt.xl uit.tl ho t.xi hlt.nl



THE CASE 4 1

SHE solution vita is classically wellposed lto Walsh

SHE and KPE well understood for del via robust solution
theories for sub critical singular PDEs

REGULARITYSTRUCTURES Hainer

PARAcontrolled Calculus Gubinelli linkeller Perkowski

ENERGYSOLUTIONS Goncalves Java
RENORMALIZATION Kupiainen

This breaks down for SHE KPE higherdimensions 472



she in the Critical Dimension de 2

Formally if vita solves she then ÙIta v18 t sx

OTTIENI D Ex t p 8 ti Jit

As sto the noise term punishes
Idea

staysconstant d 2

diverges d a

d 2 is Critical Dimension for SHE no solutiontheory
no clear physical picture



DISCRETI Zed SHE LINK to directed Polymers

Henceforth we Focus on d 2

We restrict ti in the lattice IN XÉ Nen

OFUNITI EDU ti N Spett Unita D She

time DIFFERENCE LATTICELAPLACIAN I I D RUS SPACEAVERAGE

Nutten VIEN EI.LU t.D UIt.xBYAIanEEIEIxUItN

Solution well defined Uniti 0 with Unio 1



CONVERGENCE

Does Unit converge to a non trivial limit 2 as Neos

Yes but we first need to do

Look for convergence as random distributions on K

fila Uniti dx mia frode de
È

i e Unit e dx d Alt de as random measures on Ira



Restate the couplingconstant B Pn É o

EffenUnit e d e fende

HarfleurUnit e d
o if Icfto if a E

TREFFEN

For fatt Unit e dx dx Lebesgue measure Lin

lege Un ital 1 de Vitti di logcorrelatedGaussian Lt

Far f Ft des Unit converge to a non trivial limita



THEOREM SZ 21

Let Uniti salve d Shel Fix OER and restate

O
p èlite.sn

As Neos we have the convergence to a non trivial limit

Unit delta
F

2 Uffa e o

which we call the Critical 20 STOCHASTICHEATFLOW



SOME FEATURES

E UE de de
logFI

E UffaMIMI KI y dedy Bertini canarini98

21 is random

Watldraxil E a fan

Formula for highermoments Gu Quastel Tsai 21

57 19



Gaussian Multiplicative Chaos Gmc

Considera Gaussian random field In No r

Coulter affrinkksitridedy
I POSSIBLY SINGULAR

Gaussian Multiplicative Chaos Mide is the random measure

M del et dx FORMALLY

Elda de Elaida Aldy e dedy



Is the 21 Stochastic Heat flow Uffa a Gmc Mide

only possible with kein e logKlan laglag Ii

THEOREM MI dx is NOT a GMC SZ 227

This suggests that the solution of critical ad KPE

Iget to be constructed should be non Gaussian

WE CANNOTTAKE logNÉ de



Initial condition Beffe It Ign

We built a candidatesolution of the
Éiticofashe

g Midden
with initial condition No dx e dx that is Un e 1

We actually build a two parameter process

Meldy d asset a

whereNell del corresponds to the initialcondition un ll



I IDEAS AND TECHNIQUES



A LINK WITH DIRECTED POLYMERS

Recall the discretized she in the lattice IN I E
OFUNITI EDU ti N Spett Unita d She

II D RVS MEANZEROVarianceE

Assume 1 mia le era
Elena

I attinge

Then Uniti admits a Feynman Kar representation formula



For ti III with inizi e Axe

Uniti ZNAZ E eFifa i E
so z

S SIMPLE RANDOMWALKON E

Partition function of the

DIRECTED POLYMER E

IN RANDOM ENVIRONMENT
a n IN



SECOND MOMENT AND CRITICAL SCALING OF

PECUNIAUniti E eri So z SJ z

LN REPLICAOVERLAP

Classical result
e olandese YnExpel feudisTaylor60

This explains the Critical SCALING of B Bn

Pnf
E

me
with f f sto In



Main result STRATEGY OF THE PROOF

Existence of subsequential limits tightness is easy

Unit di a NÉIde BertiniCanarini98

Non triviality of the limit is harder est 19b

Uniqueness is verydifficult est 22

formulas for all moments of UÈ are available Gat 22

butmoments grow too fast to determinethe law



HOW TO PROVE UNIQUENESS

Problem we do not have a characterization ofthe limit

Solution we use a Cauchyargument

Unit e dx è Unit e di for large N M

exploiting self similarity ofthemodel Four main pillars

A COARSE GRAINING B RENEWAL STRUCTURE

C LINDEBERG PRINCIPLE D FUNCTIONAL INEQUALITIES



A COARSE GRAINING

Polynomial chaos P Sneeze Sun za

Uniti L
a

è 91ms.tn sina.tn Simili
MaZal MnZu

2,221 G 3,231

ÉTÉ TazunaKERNELS



DIFFUSIVERESCALING
E
E 3

se

Entra
HERNE

Sharp L'approximation via a coarse grained model

Unit dx e LE t.de En e as Edo

6
multi LINEAR

POLYNÉMIAL
COARSEGRAINED Noise



B RENEWAL STRUCTURE

Probabilistic interpretation of 2 momentcalculations

Unity Unita I q insita unita

t

2T fdsgfx xilfedPIY.at duNaas

HEAT
KERNEL L

DICKMAN SUBORDINATOR

SZ19a



C LINDEBERG PRINCIPLE

The distribution of coarse grainedmodel È It da e

is insensitive to the distribution of E

as Eto provided 1st 2 moments are fixed

ma We can change En to Em to get our goal

Unit e dx è UnCt dx

Coarse grained variables I are dependent Rail in 2013



D FUNCTIONAL INEQUALITIES

Lindeberg requires highermomentbounds on CG model

ma Inequalities for Green's function ofmultiple randomwalks

f f fk.nl 919,9 dedidydy'ICliffe light
RadRad Ix y Aig x y 12

CRITICAL HARDY LITTLEWOOD SOBOLEV INEQUALITY

Generalizes an inequalityby dell'AntonioFigari Teta 94



Non GMC NESS

Consider the 2d stochastic Heat flow Ut for Fixed t 0 Oer

Let Max be the GMC with matching1stand2ndmoments

E MaxiMidy ECHI a UIldy KIAy dedy

We prove that highermomentsdo notmatch

3 dMOMENT BOUND For any R 0

EHI BRI SEMBRI



HIGHERMOMENT BOUND there is y o sit for any K 3

EHI 981
1 2È c

Elmas
HEATKERNEL ATTIME8

3rdMOMENT BOUND based on explicit diagrammatic expansion
for the 3rdmoment Gaussian calculations

HIGHERMOMENT BOUND based on the Gaussian Correlation

Inequality inspired by an argument in Feng16



CONCLUSIONS

AND PERSPECTIVES



CONCLUSIONS

We introduced the CRITICAL 2D STOCHASTIC Heat Flow da

as the scaling limit of solutions of discretized she
directedpolymer partition functions

Universal process of random Measures on K I Gmc

Natural candidate solution for critical ad SHE

Many explicit features



but several interesting questions are open

SINGULARITY WRT LEBESGUEMEASURE

FLOW PROPERTY

CHARACTERIZING Properties

UNIVERSALITY

TAKING LOG MA KPE

Interesting connections

Statistical Mechanics e Singular Stochastic Pdes

also for heavy tailed disorder Berger Chong Lacoin
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MOMENT FORMULAS

EIUIldy.LI rdyl.UIdzlI krIx y zidxdydz

Ling E Uniti Unity Unit ti

KolzaZaza I p doidbdidy già5 i 5
ora b r amo burt

Si Xm IMER



MOMENT FORMULAS
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