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1 STOCHASTIC PDEs

1 1 KPZ
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Key problem well
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D 1 SHE well posed by Ho stochastic integration

Uit is a function o WalshSos Bertini canarini 95

ma Nation of KPZSolution hit i logult.in

Bertini Giacomini97

INTEGRABLEPROBABILITY Borodin CorwinFerrariQuartetSpahn

da 2 White noise bit too irregularfor Ho integration
REGULARIZATION felt It gg x molliFIER

0NSCALEE O

SHE well posedwith 34Tx Ita ma SHE solution lift
explicit Feynman Kao representation

ma We can define KPZ solution htt x logVIT

Why Ho's formula he solves a nenormalized

KPZQ.lisei t Nei ftp piè
DIVERGINGCONSTANTS

Convergenceof v'It and lilt as Edo



Yes butthings are subtle

We need to rescale the couplingconstant p p as E lo
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There is a phasetransition in f with criticalvalue te
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2 DISORDERED SYSTEMS

2 1 DIRECTED POLYMERS

We now switchto discrete space time IN Ed anddefine
the model of directedpolymer in randomenvironment

Two independent ingredients
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Partition function salve a discretized SHE
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2 2 POLYNOMIALCHAOS

We can express Inizi as an explicitfunction of

modified disorder and random walk transition Kernel
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Polynomial chaos expansion
RANDOMWALK MODIFIED
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Zulu z is a multi linear polynomial in the Ù s

Discrete analogue of Wiener chaos Maurizia's talk

Analogous Feynman Kai formula available for UH
with Wienerchaosexpansion multiple Wiener Ito integrals

Ideal for I approximations
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3 CENTRAL LIMIT THEOREMS

MainTheorem E W fluctuations is a generalized CLT

Weprove it for Zinzi exploiting polynomialchaos
Let us describe some powerful techniques oldand new

3 1 NEW 4th MOMENT THEOREMS

Criterion for polynomial chaos to converge to a Gaussian
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Chaosof differentorders convergeto independentGaussian

Extension of the method ofmoments
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Fourthmoment ofXp is an explicit sum
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On the other hand
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3.2 OLD FELLER LINDEBERG CLT

Fourth moment theorems are optimaltools for general
polynomial and Wiener chaos necessary and sufficient

in the specific setting of SHEIK PZ directedpolymer
a more elementary approach is possible as follows

work in progress with F Cottini
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In our setting Xp is a polynomial chaos
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We partition IN È in disjoint boxes and define
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CONCLUSIONS

We presented clots for singular stochastic PDEs

KPZ SHE in space dimension D 2

Close link with directed polymers

Polynomial Wiener chaos allows for powerful tools

4 Momenttheorem Hypercontractility Concentration

Many results in d 73 and for anisotropic KPZ
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