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I INTRODUCTION



THE STOCHASTIC HEAT EQUATION

OfUltix DUE β ti UH too end
SHE

ulo 1

β O couplingconstant

te space time whitenoise 5 correlated Gaussian

GOAL Construct the solution Ult for de 2



THE KARDAR PARISI ZHANG EQUATION PRL1986

COLE HOPFTRANSFORMATION formally hit i logultix solves

KPZ of hit I Δ hit hit 112 β te

IFa LEI IE

hit

INNÈE
SHE can help us
make sense of KPZ



SINGULARITY

SHE and KPZ are ill defined due to singularproducts

te Ult hit 2

It x is a distribution me Ultixt and hitxp expected to be

non smooth functions d 1

genuine distributions d 2

Henceforth we focus on SHE



THE ROLE OF DIMENSION

Space time blowup Ùlty U Et Ex solves

Ottitix Δ te β E te Ùltix

vanishes der

As Edo the noise formally staysconstant dea

diverges d 2

d 2 is CRITICALDIMENSION for SHE



DIMENSION 1 1

7980s Ultix wellposed by stochastic integration Ito Walsh

2010s Robust solution theories for sub critical singularPDEs

REGULARITYSTRUCTURES Hairer
PARACONTROLLED CALCULUS Gubinelli Inkeller Perkowski

ENERGYSOLUTIONS Goncalves Jara RENORMALIZATION Kupiainen

DIMENSIONS 473 2015 Results by several authors

Magnen Unterberger Chatterjee Dunlap Gu RyzhikZeitouni Comets Casco

Mukherjee Lygkonis Zygouras Nakajima Nakashima Junk



REGULARIZING SHE VIA DISCRETIZATION

We fix 4 2 and restrict to the lattice
tèAN EEd e MI è

Discretized SHE

DIUnite Unite β N HEN UNITY

DISIR DERIVATIVE DISCR LAPLACIAN I I D RVS

NUHIN Utri IIdulti Ultel EIXIO EHI 1 IExuiti

Well defined solution Uniti 0 it β 1 Untiles



CONVERGENCE

Can we hope that Uniti ma Ultix nontrivial limit

YES But

Convergence as random distributions le Celie

d
YK Uniti di ma Ste Ult di

R2
rantomtreasureonR2

Rescale coupling β PN OCI I



β
Why do we rescale β prua

E eri Un tix dx e fenidx

O if ACE
NAR eri Un tix dx ott if Bee trIIIFion

as if β A

Far β CE Un tix dx di dx Lebesgue measure trivial

For β ti do we have Uniti de Ult dx



II MAIN RESULTS



MAIN THEOREM 65723

Rescale β Ih more precisely

β
O OER

F e.gr

Then Uniti converges to a unique non trivial limit

fdd
Uniti d eo mea

21 UEM ho

2º is a stochastic process of random measures on R

critical 2d STOCHASTICHEATFLOW SHF



SHF SHE

We have built a candidatesolution of the Critical Id SHE

β Inthe SHF 2º 21 0 1

with initial condition 2 dx e dx Ulo E 1

Remark We actually build a two parameter process

CANDIDATE SHE SOLUTION
21 19,01

sete o Fromdo at Times



KEY FEATURES OF THE SHF

E 21 dx da

E Il d 21 dy Kitty dedy Bertini Cancrini98

log 21º non trivial

UE draw È aME Yay

Formula for highermoments Gu QuastelTsai 21
SZ 196



GAUSSIAN MULTIPLICATIVE CHAOS

Random measure M dx e
I EKang

No k generalized Gaussian field

furiere E le y dady If Key Ynien dxdy

GMCs are canonical many explicit features

Elelldx dx ElcMldx Midy e dxdy

Is the SHF Il dx a GMC Mcdx With Key loglog



THEOREM The SHE VIA is NOT a GMC 52237

Recall formally hit x logult solves 1KPZ

Conjecture the critical ad KPE equation shouldhave a
NON GAUSSIAN SOLUTION Selda

KPE solution getto be constructed Cannot take loghi de



FURTHER FEATURES OF THE SHF

THEOREM 65223 1

The SHF Ufdx is as non atomic singular writ Lebesgue

for Leb a e era
E B

o

ÈH 82

U BK.si sNar YE suoIBNSI



SMALL SCALE LOG NORMALITY

We can decrease disorder strength o tokeep variance finite

par UE BK.si
sa I cos

IBK.SI

THEOREM UE BK.si dgNlo loatl Elogta
IBMSI Sto che

Multiplicativedecomposition Monotonicity of
fractionalmoments

c Cottini22 Casco Donadini237
EKG



LONG TIME BEHAVIOUR

We can provethat as time tto the SHF locallyvanishes

RIO UE Blair o mass escapestoinfinity

CONJECTURE NE F
O super diffusivityt

21 Blois O strongdisorder

In progress continuum polymermeasure Rtxdy UE dxdy
UE dx.IR



II IDEAS AND TECHNIQUES



DIRECTED POLYMER IN RANDOM ENVIRONMENT

Suluzo simple randomwalk on Su

Plon Sus
1 z

O K

curniziluenzee i i d environment

Ela 0 Efa 1 7 β logete cos

PARTITION
zia z ee eIiBwniSn 7lp Sk zFUNCTIONS



FEYNMAN KAC FORMULA

Discretized SHE solution Un tix ZI N 1 t IN

Proof Markovproperty of SRW z.fi

ZiIkzp eBwKZI a PlfIzZI kta z

Ok kt Zi K z Azzilkti z epatiti 7 β 1 Zilati z

time reversed discretizedSHE T.it z 1



SECOND MOMENT AND CRITICAL SCALING OF β

unti Una.nl E ePiIksi si3so xrn si ia
Il

E ZNXIN ZN XVI LA REPLICAOVERLAP

for ex
e NIN v10_ YuExpra ErdisTaylor60

This explains the CRITICAL SCALING β
E

lognt



CORRELATION FUNCTION β TE 1

Kilt E UNA Unit n pa KITT

It solves the 2 body delta Bosegas discretized in

OIKI SPKI where XP Δ β N 1 ex

KE e
tw selfadj.ext.at XP A β da

EXPLICITFORMULA Albeverio Gesztesy HoeghKrohn Holden 87

Y TChen 22 Probabilistic representation as singulardiffusion



HIGHER ORDER CORRELATIONS β TE 1
e

Kilt Xs in i E Un t xa Un t xnl po KIXI n

It solves the n body delta Bosegas discretized in

OIKI fiki where Si Δ β N fini

KE e
tw

selfadj.ext.at 8 A β fai il
EXPLICITFORMULAS

dell'AntonioFigari Teta94 Dimock Rajeev 04 GuQuastelTsai19



MAIN RESULT STRATEGY OF THE PROOF

Uniti de Δ UE dx

Existence of subsequential limits is easy BertiniCancrini98

Non triviality of the limit is non trivial est 19b

Uniqueness is hard est 23

Moments grow too fast to determinethe distribution



HOW TO PROVE UNIQUENESS

We use a Cauchyargument

Uniti dx è Un t dx for large N M

exploiting self similarity ofthemodel

A COARSE GRAINING B RENEWAL STRUCTURE

C LINDEBERG PRINCIPLE d Functional inequalities



A COARSE GRAINING

Polynomialchaosexpansion PSuiza Suk z

N

Uniti 1 β Ʃ 9 insita nata niti
U2Za MkZK

41,221

EI 31 IN
RAYELEE



DIFFUSIVERESCALING E 2

È n
Enfkik

HEATKERNEL h ap

Sharp L'approximation via a coarse grained model

Unit Idx Z t.de En e as Edo

MULTI LINEARPOLYNOMIAL COARSEGRAINED NOISE



B RENEWAL STRUCTURE

Probabilistic interpretation of 2 moment

E Uniti Uniti β Ʃ 9 ns.zal ina.znl
4 1 UsZa MkZk

KEITH 2T ds gen e PCet duNico

52199 HEATKERNEL DICKMAN SUBORDINATOR



C LINDEBERG PRINCIPLE

The distribution of coarse grained model E t da E

is insensitive to the distribution of E

as Edo provided 1 2 moments are fixed Rillin 2013

We can switch E ne to Em and get our goal

Un t dx è Un t dx



D FUNCTIONAL INEQUALITIES

Inequalities for Green's function ofmultiple randomwalks

CRITICAL HARDY LITTLEWOOD SOBOLEV INEQUALITY

fix g y yil
Rap Ix a negli gi

ad dedidydy CI ftp.llglly

Generalizes an inequalityby dell'AntonioFigari Teta 94



CONCLUSIONS

AND PERSPECTIVES



CONCLUSIONS

We introduced the CRITICAL 2D STOCHASTIC Heat Flow da

as the scaling limit of solutions of discretized she

directedpolymer partition functions

Universal process of random measures on È I Gmc

Natural candidate solution for critical ad SHE

Many explicit features



and several interesting open questions

FLOW PROPERTY CHAPMAN KOLMOGOROV

SHF AS A MARKOV PROCESS

CHARACTERIZING PROPERTIES UNIVERSALITY

TAKING LOG MA KPZ

Statistical Mechanics Singular Stochastic PDEs
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MOMENT FORMULAS

E U dx 21 dy 21 da K x y z dady da

figo E UNKN.VN t D UNCtZI

K'IzaZaza
2 f dàdbididy già5 I 5



MOMENT FORMULAS

heatkernel specialfunction

g

I as be as be as by 94 ba t



NON GMC NESS

Consider the 2d stochastic HeatFlow UE for fixed too OER
Let Mcdx be the GMC with matching 1ˢᵗand2ⁿᵈmoments

E Max Midy E 21 ok 21 dy KIMy dady

We prove that highermomentsdo notmatch

3ʳᵈ MOMENT BOUND for any R 0

E 219 BR EMBR



HIGHERMOMENT BOUND there is y o sit for any K 3

fine
1951

1 2

Euro
HEATKERNEL ATTIME5

3ʳᵈMOMENT Bound
explicit diagrammatic expansion

Gaussian calculations

HIGHERMOMENTBOUND via Gaussian Correlation Inequality

inspired by Feng16


