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Introduzione Modelli periodici Modelli disordinati Che cos’è un polimero?

Che cos’è un polimero?

Un polimero è una grossa molecola costituita da un gran numero di
molecole più piccole, dette monomeri, unite a formare una catena.

Esempi tipici:

I DNA, RNA

I Proteine

I Materie plastiche

Argomento di ricerca in
chimica, fisica, biologia, . . .
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Che cos’è un polimero?
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Introduzione Modelli periodici Modelli disordinati Polimeri e probabilità

Probabilità: due processi basilari

Passeggiata aleatoria semplice {Sn}n su Zd

S0 = 0 Sn =
n∑

i=1

Xi

Incrementi {Xi}i indipendenti, P(Xi = ±ek) = 1
2d , ∀k = 1, . . . , d

Passeggiata aleatoria auto-evitante su Zd

Condizionata a non visitare alcun sito più di
una volta
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Probabilità: due processi basilari

In che senso questi processi sono legate ai polimeri?

I Esempi di polimeri astratti: incrementi ↔ monomeri

I Ma soprattutto:

Modelli per una descrizione statistica di polimeri
in interazione con l’ambiente (Meccanica Statistica)

Traiettorie del processo ↔ Configurazioni del polimero
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Il problema del copolimero

Esempio: copolimero (= polimero disomogeneo)
vicino a un’interfaccia selettiva

Introduzione Modelli periodici Modelli disordinati Che cos’è un polimero?

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

Monomers: (+) → hydrophobic (−) → hydrophilic
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Monomeri: (+)→ idrofobo (−)→ idrofilo

Transizione di fase:

Localizzazione all’interfaccia vs Delocalizzazione in un solvente

I Comptetizione tra energia e entropia
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Il problema del copolimero

Obiettivo: rendere conto di tali fenomeni mediante
modelli probabilistici basati su passeggiate aleatorie

Passeggiata auto-evitante: modello più realistico. . .
. . . ma molto più difficile! [Madras e Slade, Birkhäuser 93]

Modelli trattabili: basati su passeggiate aleatorie ordinarie
(o passeggiate dirette)

Secondo il tipo di disomogeneità ω = +,−,−, . . . distinguiamo:

1. Modelli periodici: ω è periodica ∼ rilevanti per i polimeri
sintetici e come approssimazione di modelli disordinati

2. Modelli disordinati: ω è la realizzazione di un processo
aleatorio ∼ rilevanti per le applicazioni biologiche
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1. Modelli periodici: ω è periodica ∼ rilevanti per i polimeri
sintetici e come approssimazione di modelli disordinati

2. Modelli disordinati: ω è la realizzazione di un processo
aleatorio ∼ rilevanti per le applicazioni biologiche

Francesco Caravenna Modelli di Polimeri e Passeggiate Aleatorie 26 settembre 2007 8 / 21



Introduzione Modelli periodici Modelli disordinati Polimeri e probabilità
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Definizione del modello

Ricordiamo il problema:

Introduzione Modelli periodici Modelli disordinati Che cos’è un polimero?

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

Monomers: (+) → hydrophobic (−) → hydrophilic
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Definire un modello probabilistico Pλ,h
N,ω per questa situazione.

Ingredienti del modello:
I successione ω ∈ {+1,−1}N periodica dei monomeri
I lunghezza N ∈ N del polimero
I parametri di interazione λ, h ≥ 0
I passeggiata aleatoria semplice

({Sn},P
)

su Z

Definizione del modello Pλ,h
N,ω [Bolthausen e den Hollander, AP 97]

dPλ,h
N,ω

dP
(S) :=

1

Zλ,h
N,ω

· exp
(
Hλ,hN,ω(S)

)

Energia: Hλ,hN,ω(S) := λ
N∑

n=1

(ωn + h) sign(Sn)
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Una traiettoria illustrativa

Introduzione Modelli periodici Modelli disordinati Il modello

A sample path

Sn

N0

+

+

+

+

+

+++

+

++

+

−

−

−

−

−

−

+2 (↑) −2 (↓) +4 (↑) +2 (↓) 0 (↑)

Energy: Hλ,h
N,ω(S) := λ

N
∑

n=1

(ωn + h) sign(Sn) = λ
(

6 + 6h
)

(

if Sn = 0 → sign(Sn) := sign(Sn−1)
)
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Energia: Hλ,hN,ω(S) := λ
N∑

n=1

(ωn + h) sign(Sn) = λ
(
6 + 6h

)

I λ ≥ 0 modula la forza dell’interazione (temperatura−1)

I h descrive l’asimmetria olio-acqua (≥ 0 per conv.)
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Qualche domanda

La misura Pλ,h
N,ω descrive la distribuzione statistica delle

configurazioni del polimero, assegnate le condizioni esterne

Interessati alle proprietà per N →∞ (limite termodinamico).

A priori due possibili scenari per le traiettorie di Pλ,h
N,ω:

I Localizzazione: le traiettorie restano vicine all’interfaccia, per
massimizzare l’energia Hλ,hN,ω

I Delocalizzazione: le traiettorie preferiscono fluttuare nell’olio,
per massimizzare l’entropia di P

Qual è lo scenario corretto? La risposta dipende da λ, h?
Come definire precisamente L e D? → vedremo dopo
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I Delocalizzazione: le traiettorie preferiscono fluttuare nell’olio,
per massimizzare l’entropia di P

Qual è lo scenario corretto? La risposta dipende da λ, h?

Come definire precisamente L e D? → vedremo dopo
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Introduzione Modelli periodici Modelli disordinati La transizione di fase

Qualche risposta

Teorema [Bolthausen e Giacomin, AAP 05]

I C’è una transizione di fase non banale tra un regime
Localizzato e un regime Delocalizzato

I Nel piano (λ, h) le regioni L e D sono separate da una
curva critica crescente λ 7→ hc(λ) (→ formula “esplicita”)Programma

λ

h

0

D

L

hc(λ)

Figure: Write caption.

Francesco Caravenna Modelli di Polimeri e Passeggiate Aleatorie 26 settembre 2007 2 / 2

Asintotica:

hc(λ) ∼ λ3

per λ→ 0
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Introduzione Modelli periodici Modelli disordinati Il comportamento delle traiettorie

Risultati traiettoriali

In che senso nella regione L (risp. D) le traiettorie

del modello Pλ,h
N,ω sono localizzate (risp. delocalizzate)?

Riscalamento diffusivo di Pλ,h
N,ω: XN(t) :=

SbNtc√
N
, t ∈ [0, 1]

Teorema [C., Giacomin e Zambotti, AAP 07]

Il risc. diffusivo di Pλ,h
N,ω converge deb. in C ([0, 1]) per N →∞:

I in L verso il processo banale X (t) ≡ 0 (infatti SN = O(log N))

I in D verso il meandro browniano X (t) = Bt |{Bs ≥ 0 : ∀s ≤ 1}
I sulla curva critica verso il moto browniano riflesso X (t) = |Bt |.

Tecniche: Grandi Deviazioni [BG], Teoria di Rinnovo [CGZ]
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Introduzione Modelli periodici Modelli disordinati

Programma

1. Introduzione
Che cos’è un polimero?
Polimeri e probabilità

2. Modelli periodici
Definizione
La transizione di fase
Il comportamento delle traiettorie

3. Modelli disordinati
Definizione
La transizione di fase
Risultati e tecniche
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Introduzione Modelli periodici Modelli disordinati Definizione

Definizione del modello disordinato

Il modello è formalmente lo stesso del caso periodico:

dPλ,h
N,ω

dP
(S) :=

1

Zλ,h
N,ω

· exp
(
Hλ,hN,ω(S)

)

Energia: Hλ,hN,ω(S) := λ

N∑
n=1

(ωn + h) sign(Sn)

Cambia la disomogeneità ω = +,−, . . ., non più deterministica:

ω ∈ {+1,−1}N è la realizzazione di un processo aleatorio

{ωn}n∈N i.i.d. con P(ω1 = +1) = P(ω1 = −1) = 1
2

Due diversi tipi di alea nel sistema (P “quenched randomness”)
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Introduzione Modelli periodici Modelli disordinati La transizione di fase

Localizzazione e Delocalizzazione: l’energia libera

Come definire precisamente le regioni L e D?

Funzione di partizione: Zλ,h
N,ω := E

(
exp(Hλ,hN,ω)

)
Energia libera: tasso di crescita esponenziale di ZN :

fω(λ, h) := lim
N→∞

1

N
log Zλ,h

N,ω

[Il limite esiste P-q.c. e in L1(P) e non dipende da ω: fω(λ, h) = f (λ, h)]

Traiettorie Sn ≥ 0 che fluttuano nell’olio −→ f (λ, h) ≥ λh

Definizione:
I L =

{
(λ, h) : f (λ, h) > λ h

}
I D =

{
(λ, h) : f (λ, h) = λ h

}
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Introduzione Modelli periodici Modelli disordinati La transizione di fase

La curva critica

Teorema [Bolthausen e den Hollander, AP 97]

I C’è una transizione di fase non banale tra un regime
Localizzato e un regime Delocalizzato

I Nel piano (λ, h) le regioni L e D sono separate da una
curva critica crescente λ 7→ hc(λ) (→ no formula esplicita)

Introduction Numerical investigation Theoretical analysis The phase diagram

The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve hc : [0,∞) → [0,∞) ,
with hc(0) = 0 and 0 < h′c(0) < ∞, such that

L =
{
(λ, h) : h < hc(λ)

} D =
{
(λ, h) : h ≥ hc(λ)

}

0

hc(λ)

λ

L

D
Slope at the origin:

◮ Brownian scaling

◮ Universality

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 11 / 32

Asintotica per λ→ 0:

hc(λ) ∼ mλ, m > 0

I Riscal. browniano

I Universalità
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Francesco Caravenna Modelli di Polimeri e Passeggiate Aleatorie 26 settembre 2007 18 / 21



Introduzione Modelli periodici Modelli disordinati Risultati e tecniche

Individuare la curva critica

Famiglia di curve indicizzata da q > 0: h(q)(λ) :=
log cosh(2qλ)

2qλ

Congetture
fisiche:

I hc(·) = h(1)(·) [Garel et al. 89; Maritan et al. 99]

I hc(·) = h(2/3)(·) [Monthus 00; Stepanov et al. 98]

Teorema [BdH, AP 97], [Bodineau e Giacomin, JSP 04]

h(2/3)(·) ≤ hc(·) ≤ h(1)(·)

Introduction Numerical investigation Theoretical analysis The phase diagram

Upper and Lower Bound on the critical line

0

h

λ

L

D
h(1)(λ)

h( 2
3
)(λ)

hc(λ)

h′c (0) ∈ [
2

3
, 1]

Theorem ([BdH 97], [Bodineau and Giacomin 04])

h(·) := h(2/3)(·) ≤ hc(·) ≤ h(1)(·) =: h(·)

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 12 / 32
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Individuare la curva critica

Famiglia di curve indicizzata da q > 0: h(q)(λ) :=
log cosh(2qλ)

2qλ

Congetture
fisiche:

I hc(·) = h(1)(·) [Garel et al. 89; Maritan et al. 99]

I hc(·) = h(2/3)(·) [Monthus 00; Stepanov et al. 98]

Teorema [BdH, AP 97], [Bodineau e Giacomin, JSP 04]

h(2/3)(·) ≤ hc(·) ≤ h(1)(·)
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Migliorare le stime sulla curva critica

Forse hc(·) = h(2/3)(·)?

NO(?) [C., Giacomin e Gubinelli, JSP 06]

I Test statistico per l’ipotesi H0 : hc(λ) = h(2/3)(λ)

I Super-additività + Disuguaglianze di concentrazione:
stima rigorosa della probabilità di errore

I Uso del computer solo per simulare le variabili ωn

Il p-value del test è < 10−5 !
Forti evidenze che hc(λ) > h(2/3)(λ)

Forse hc(·) = h(1)(·)? NO(?): evidenze numeriche [CGG, JSP 06]

I Dimostrazione per λ grande [Toninelli 07]
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Forti evidenze che hc(λ) > h(2/3)(λ)

Forse hc(·) = h(1)(·)? NO(?): evidenze numeriche [CGG, JSP 06]

I Dimostrazione per λ grande [Toninelli 07]

Francesco Caravenna Modelli di Polimeri e Passeggiate Aleatorie 26 settembre 2007 20 / 21



Introduzione Modelli periodici Modelli disordinati Risultati e tecniche

Migliorare le stime sulla curva critica

Forse hc(·) = h(2/3)(·)? NO(?) [C., Giacomin e Gubinelli, JSP 06]

I Test statistico per l’ipotesi H0 : hc(λ) = h(2/3)(λ)
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Forti evidenze che hc(λ) > h(2/3)(λ)

Forse hc(·) = h(1)(·)? NO(?): evidenze numeriche [CGG, JSP 06]

I Dimostrazione per λ grande [Toninelli 07]

Francesco Caravenna Modelli di Polimeri e Passeggiate Aleatorie 26 settembre 2007 20 / 21



Introduzione Modelli periodici Modelli disordinati Risultati e tecniche

Migliorare le stime sulla curva critica

Forse hc(·) = h(2/3)(·)? NO(?) [C., Giacomin e Gubinelli, JSP 06]

I Test statistico per l’ipotesi H0 : hc(λ) = h(2/3)(λ)
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Conclusioni

Energia libera e curva critica:

I Buona comprensione generale

I Punti da chiarire:
I Individuare la curva critica (o almeno la tangente in zero)
I Regolarità della transizione

(almeno secondo ordine, [Giacomin e Toninelli, CMP 06])

Risultati traiettoriali:

I Risultati forti in L (Sinai, Biskup, den Hollander, Giacomin, Toninelli)

I Molte domande aperte in D [Giacomin e Toninelli, PTRF 05]

G. Giacomin, Random Polymer Models, Imperial College Press 07
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