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O OUTLINE

PRESENTAN ENHANCED VERSIONOF THE RECONSTRUCTIONTHEOREM

OPTIMAL ASSUMPTIONS ELEMENTARYAPPROACH

NO REFERENCETOREGULARITY STRUCTURES

DISCUSS A COUPLEOF APPLICATIONS

SKETCH THEMAIN IDEASOFTHE PROOF



1 INTRODUCTION
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2 UNIQUENESS
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3 COHERENCE
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COHERENCE Is a PRECISE WAYTOREQUIRETHAT
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4 RECONSTRUCTIONTHEOREM

THEOREM RECONSTRUCTION LET File BE 8 COHERENT re IR
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THEFAMILYOFCOHERENTGERMS IS A VECTORSpace Y ANY ED
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5 COMMENTS

THE RT WAS FIRST PROVEDBY MARTINHAMER 2014 INTHE FRAMEWORK

OFHISTHEORYOF REGULARITY STRUCTURES

IT IS ANEXTENSIONINRd ANDTODISTRIBUTIONS OFTHE SEWINGLEMMA

BY M GUBINELLI 2004 and D FEYEL A DELAPRADELLE 2006

ORIGINAL MOTIVATION THETHEORYOF ROUGHPATHSBYT LYONS 1998

HaiRER'SORIGINALPROOF IS BASEDON WAVELETS AN ALTERNATIVE

PROOFUSING SEMIGROUPSWASGIVENBY F OTTOAND hWEBER 2019

OUR PROOF ISBASEDON ARBITRARYTESTFUNCTION TED WITHS4
WE WILL EXPLAIN THE KEY Ideas



EXAMPLE a KEYCLASS OF o COHERENTGERMS F Fx
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G NEGATIVEHÓLDERSPACES
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7 YOUNGPRODUCT
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8 SKETCHOFTHEPROOFOFTHE RT Bo
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CONERENE
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THE CHOICE 9 92 9 ALLOWS US TO COMPARE EFFICIENTLY
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