

# A Polymer in a Multi-Interface Medium

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Joint work with Nicolas Pétrélis (Nantes)

Universität Bonn ~ December 16, 2010

# Outline

1. Introduction and motivations

2. Definition of the model

3. The free energy

4. Path results

5. Techniques from the proof

# Outline

1. Introduction and motivations

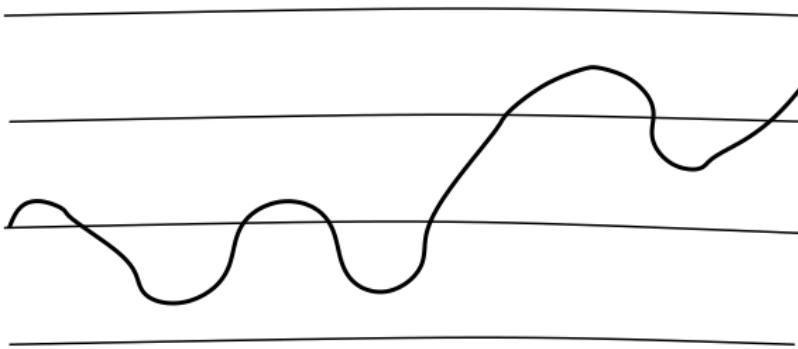
2. Definition of the model

3. The free energy

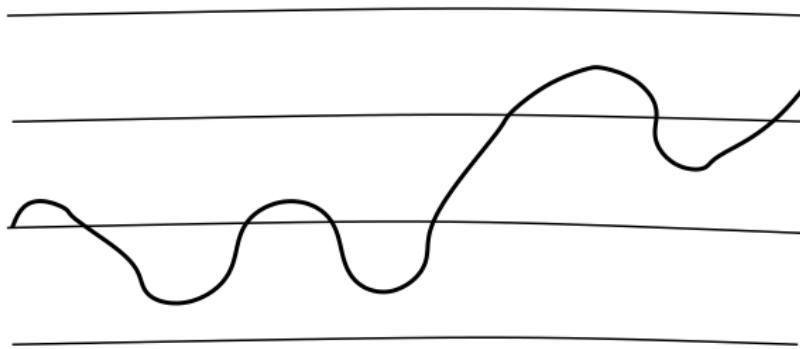
4. Path results

5. Techniques from the proof

# A polymer in a multi-interface medium

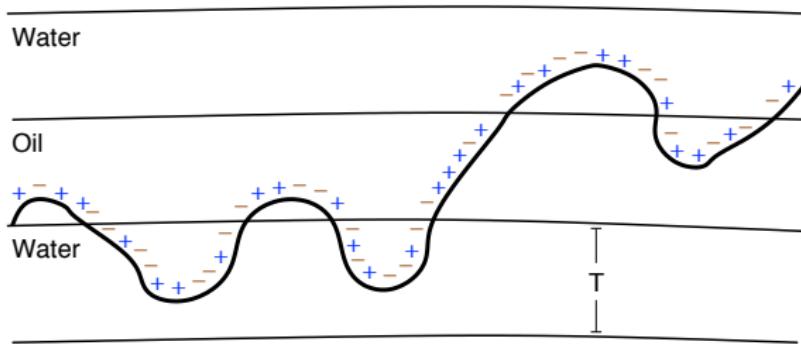


# A polymer in a multi-interface medium



Single interface case is well understood.

# A polymer in a multi-interface medium

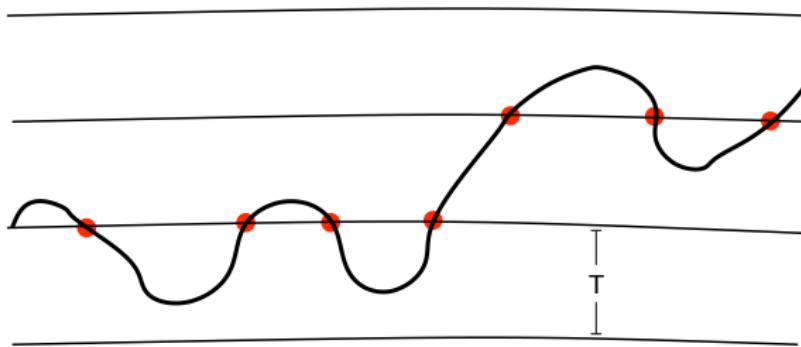


Single interface case is well understood.

Copolymer interaction [den Hollander & Wüthrich JSP 04]

Some path results for  $\log \log N \ll T_N \ll \log N$  ( $N$  = polymer size)

# A polymer in a multi-interface medium



Single interface case is well understood.

Copolymer interaction [den Hollander & Wüthrich JSP 04]

Some path results for  $\log \log N \ll T_N \ll \log N$  ( $N$  = polymer size)

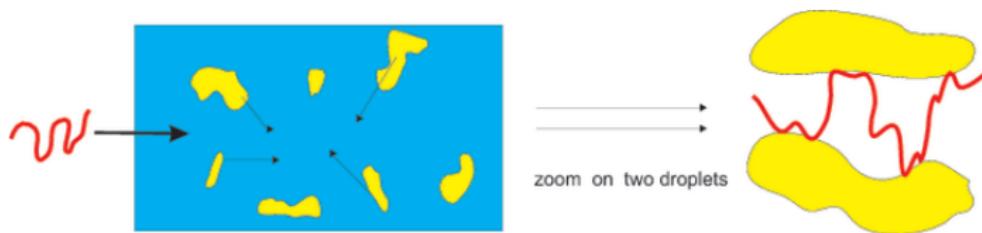
Focus on (homogeneous, attractive/repulsive) pinning interaction.

Path behavior? Interplay between  $N$  and  $T = T_N$ ?

# Stabilization of colloidal dispersions

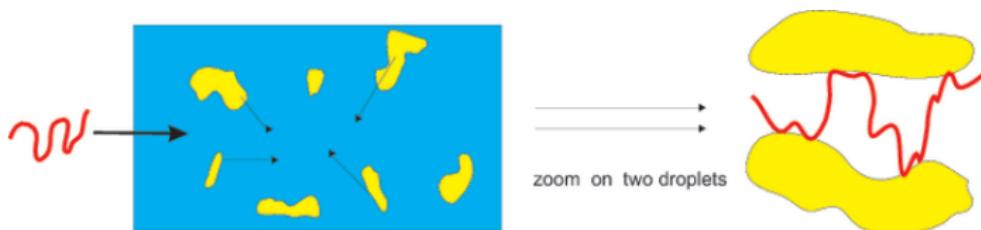
# Stabilization of colloidal dispersions

The addition of polymers into a colloid can prevent the aggregation of droplets via entropic repulsion (steric stabilization of the colloid)



# Stabilization of colloidal dispersions

The addition of polymers into a colloid can prevent the aggregation of droplets via entropic repulsion (steric stabilization of the colloid)

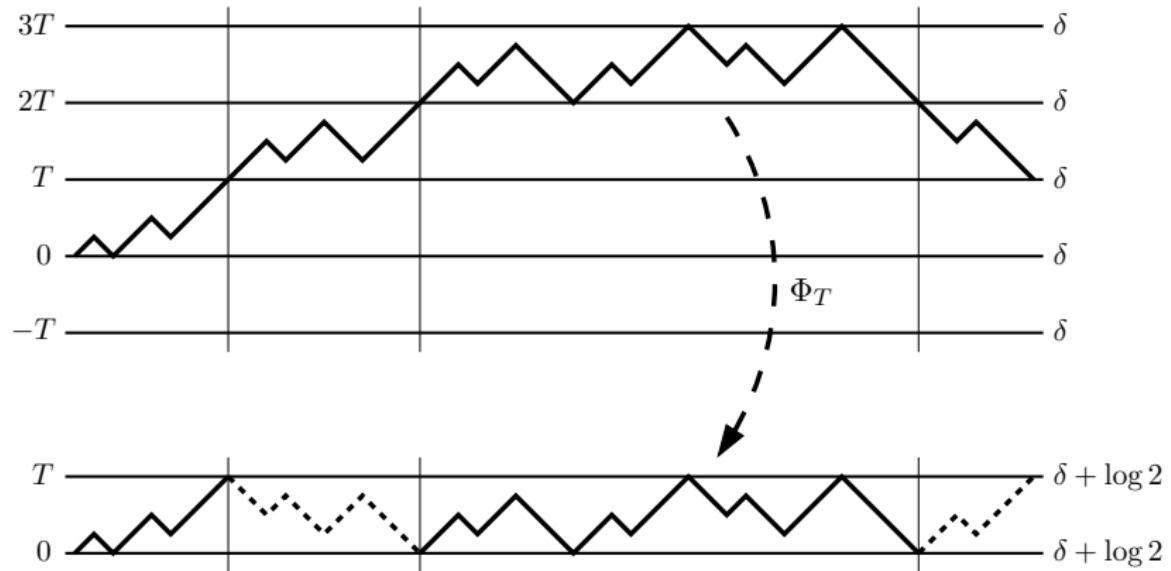


Polymer **confined** between two walls and **interacting** with them:  
(polymer in a **slit**)



Physics literature: [Brak et al. 2005], [Owczarek et al. 2008], ...

# Multi-interface medium vs. slit



# Outline

1. Introduction and motivations

2. Definition of the model

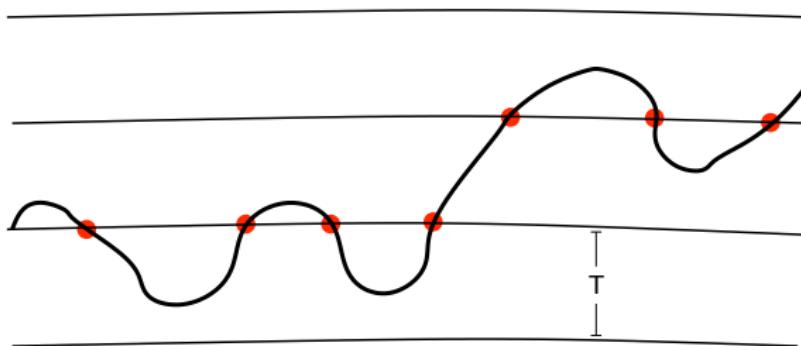
3. The free energy

4. Path results

5. Techniques from the proof

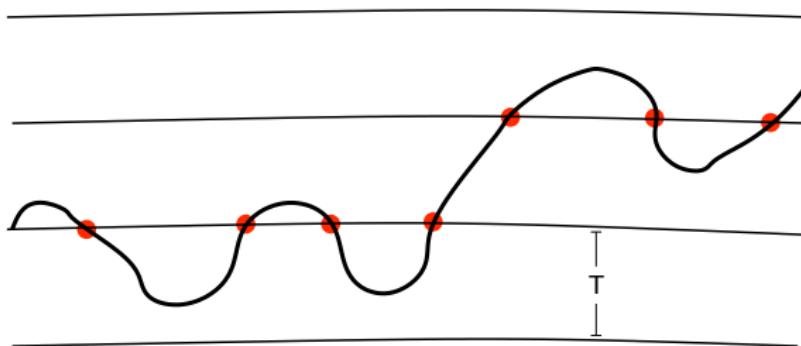
# Definition

Recall the situation we want to model



# Definition

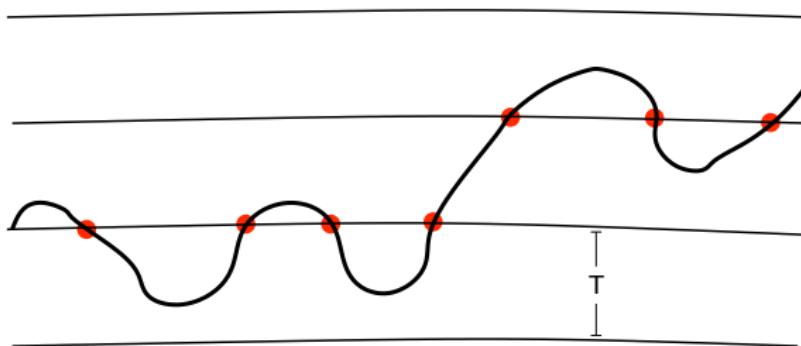
Recall the situation we want to model



Polymer configurations  $\longleftrightarrow$  Trajectories of a random process

# Definition

Recall the situation we want to model

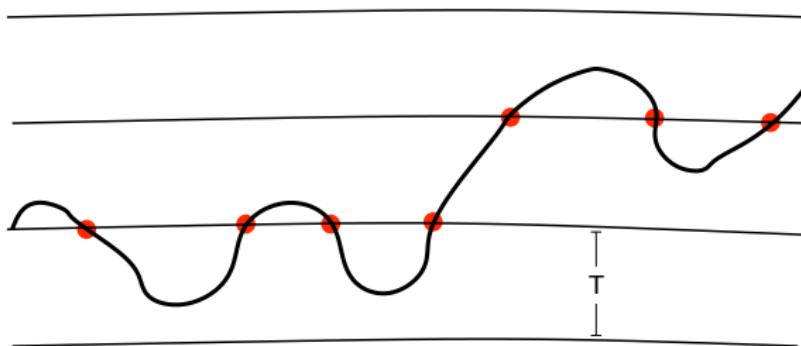


Polymer configurations  $\longleftrightarrow$  Trajectories of a random process

Random polymer model: probability measure  $\mathbf{P}_{N,\delta}^T$  on paths

# Definition

Recall the situation we want to model



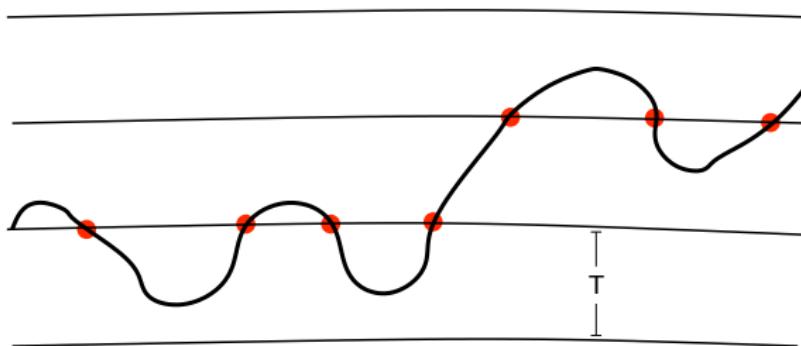
Polymer configurations  $\longleftrightarrow$  Trajectories of a random process

Random polymer model: probability measure  $\mathbf{P}_{N,\delta}^T$  on paths

- ▶ (1 + 1)-dimensional model:  $\{(i, S_i)\}_{i \geq 0}$

# Definition

Recall the situation we want to model



Polymer configurations  $\longleftrightarrow$  Trajectories of a random process

Random polymer model: probability measure  $\mathbf{P}_{N,\delta}^T$  on paths

- ▶ (1 + 1)-dimensionale model:  $\{(i, S_i)\}_{i \geq 0}$
- ▶  $\mathbf{P}_{N,\delta}^T$  absolutely continuous w.r.t. SRW  $\{S_i\}_{i \geq 0}$

# Definition

Ingredients of  $\mathbf{P}_{N,\delta}^T$ :

- ▶ Simple symmetric random walk  $S = \{S_n\}_{n \geq 0}$  on  $\mathbb{Z}$ :

$$S_0 := 0, \quad S_n := X_1 + \dots + X_n,$$

with  $\{X_i\}_i$  i.i.d. and  $P(X_i = +1) = P(X_i = -1) = \frac{1}{2}$ .

# Definition

Ingredients of  $\mathbf{P}_{N,\delta}^T$ :

- ▶ Simple symmetric random walk  $S = \{S_n\}_{n \geq 0}$  on  $\mathbb{Z}$ :

$$S_0 := 0, \quad S_n := X_1 + \dots + X_n,$$

with  $\{X_i\}_i$  i.i.d. and  $P(X_i = +1) = P(X_i = -1) = \frac{1}{2}$ .

- ▶ Polymer size  $N \in 2\mathbb{N}$  (number of monomers)

# Definition

Ingredients of  $\mathbf{P}_{N,\delta}^T$ :

- ▶ Simple symmetric random walk  $S = \{S_n\}_{n \geq 0}$  on  $\mathbb{Z}$ :

$$S_0 := 0, \quad S_n := X_1 + \dots + X_n,$$

with  $\{X_i\}_i$  i.i.d. and  $P(X_i = +1) = P(X_i = -1) = \frac{1}{2}$ .

- ▶ Polymer size  $N \in 2\mathbb{N}$  (number of monomers)
- ▶ Interaction strength  $\delta \in \mathbb{R}$  ( $> 0$  attractive,  $< 0$  repulsive)

# Definition

Ingredients of  $\mathbf{P}_{N,\delta}^T$ :

- ▶ Simple symmetric random walk  $S = \{S_n\}_{n \geq 0}$  on  $\mathbb{Z}$ :

$$S_0 := 0, \quad S_n := X_1 + \dots + X_n,$$

with  $\{X_i\}_i$  i.i.d. and  $P(X_i = +1) = P(X_i = -1) = \frac{1}{2}$ .

- ▶ Polymer size  $N \in 2\mathbb{N}$  (number of monomers)
- ▶ Interaction strength  $\delta \in \mathbb{R}$  ( $> 0$  attractive,  $< 0$  repulsive)
- ▶ Interface distance  $T \in 2\mathbb{N}$  (interfaces  $\equiv T\mathbb{Z}$ )

# Definition

Ingredients of  $\mathbf{P}_{N,\delta}^T$ :

- ▶ Simple symmetric random walk  $S = \{S_n\}_{n \geq 0}$  on  $\mathbb{Z}$ :

$$S_0 := 0, \quad S_n := X_1 + \dots + X_n,$$

with  $\{X_i\}_i$  i.i.d. and  $P(X_i = +1) = P(X_i = -1) = \frac{1}{2}$ .

- ▶ Polymer size  $N \in 2\mathbb{N}$  (number of monomers)
- ▶ Interaction strength  $\delta \in \mathbb{R}$  ( $> 0$  attractive,  $< 0$  repulsive)
- ▶ Interface distance  $T \in 2\mathbb{N}$  (interfaces  $\equiv T\mathbb{Z}$ )

Polymer measure:

$$\frac{d\mathbf{P}_{N,\delta}^T}{dP}(S) := \frac{1}{Z_{N,\delta}^T} \exp(\delta L_N(S))$$

# Definition

Ingredients of  $\mathbf{P}_{N,\delta}^T$ :

- ▶ Simple symmetric random walk  $S = \{S_n\}_{n \geq 0}$  on  $\mathbb{Z}$ :

$$S_0 := 0, \quad S_n := X_1 + \dots + X_n,$$

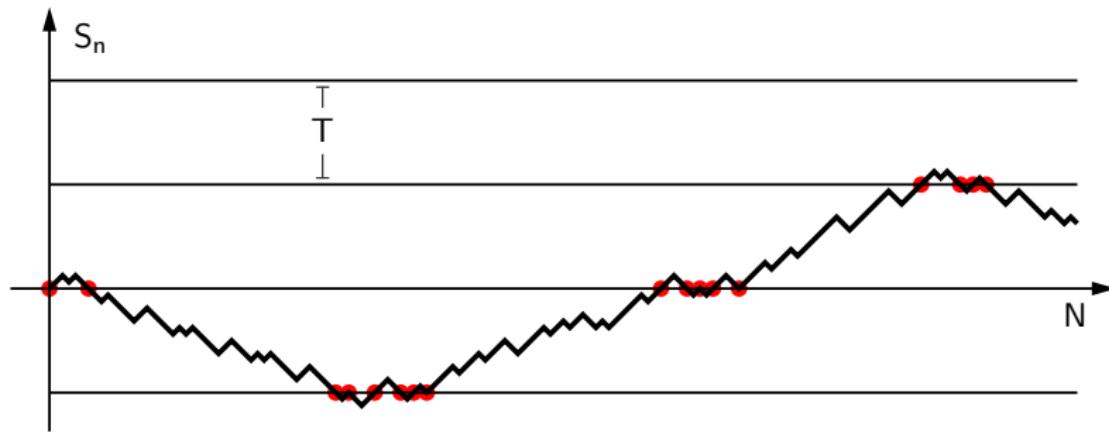
with  $\{X_i\}_i$  i.i.d. and  $P(X_i = +1) = P(X_i = -1) = \frac{1}{2}$ .

- ▶ Polymer size  $N \in 2\mathbb{N}$  (number of monomers)
- ▶ Interaction strength  $\delta \in \mathbb{R}$  ( $> 0$  attractive,  $< 0$  repulsive)
- ▶ Interface distance  $T \in 2\mathbb{N}$  (interfaces  $\equiv T\mathbb{Z}$ )

Polymer measure:

$$\frac{d\mathbf{P}_{N,\delta}^T}{dP}(S) := \frac{1}{Z_{N,\delta}^T} \exp(\delta L_N(S)) = \frac{1}{Z_{N,\delta}^T} \exp \left\{ \delta \sum_{i=1}^N \mathbf{1}_{\{S_i \in T\mathbb{Z}\}} \right\}$$

# Definition



Polymer measure:

$$\frac{d\mathbf{P}_{N,\delta}^T}{dP}(S) := \frac{1}{Z_{N,\delta}^T} \exp(\delta L_N(S)) = \frac{1}{Z_{N,\delta}^T} \exp \left\{ \delta \sum_{i=1}^N \mathbf{1}_{\{S_i \in T\mathbb{Z}\}} \right\}$$

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

We are interested in the properties of  $\mathbf{P}_{N,\delta}^T$  as  $N \rightarrow \infty$  (**thermodynamic limit**), for **fixed**  $\delta \in \mathbb{R}$  and for **arbitrary**  $T = T_N$

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

We are interested in the properties of  $\mathbf{P}_{N,\delta}^T$  as  $N \rightarrow \infty$  (**thermodynamic limit**), for **fixed**  $\delta \in \mathbb{R}$  and for **arbitrary**  $T = T_N$

## Some questions on $\mathbf{P}_{N,\delta}^{T_N}$ for large $N$

- ▶ What is the typical size of  $S_N$ ?

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

We are interested in the properties of  $\mathbf{P}_{N,\delta}^T$  as  $N \rightarrow \infty$  (**thermodynamic limit**), for **fixed**  $\delta \in \mathbb{R}$  and for **arbitrary**  $T = T_N$

## Some questions on $\mathbf{P}_{N,\delta}^{T_N}$ for large $N$

- ▶ What is the typical size of  $S_N$ ?
- ▶ How many monomers touch the interfaces?

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

We are interested in the properties of  $\mathbf{P}_{N,\delta}^T$  as  $N \rightarrow \infty$  (**thermodynamic limit**), for **fixed**  $\delta \in \mathbb{R}$  and for **arbitrary**  $T = T_N$

## Some questions on $\mathbf{P}_{N,\delta}^{T_N}$ for large $N$

- ▶ What is the typical size of  $S_N$ ?
- ▶ How many monomers touch the interfaces?
- ▶ How many different interfaces are visited?

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

We are interested in the properties of  $\mathbf{P}_{N,\delta}^T$  as  $N \rightarrow \infty$  (**thermodynamic limit**), for **fixed**  $\delta \in \mathbb{R}$  and for **arbitrary**  $T = T_N$

## Some questions on $\mathbf{P}_{N,\delta}^{T_N}$ for large $N$

- ▶ What is the typical size of  $S_N$ ?
- ▶ How many monomers touch the interfaces?
- ▶ How many different interfaces are visited?
- ▶ Interplay between the **parameters**  $\delta$  and  $T = \{T_N\}_N$ ?

# Some questions

The law  $\mathbf{P}_{N,\delta}^T$  describes the **statistical distribution** of the configurations of the polymer, given the external conditions

We are interested in the properties of  $\mathbf{P}_{N,\delta}^T$  as  $N \rightarrow \infty$  (**thermodynamic limit**), for **fixed**  $\delta \in \mathbb{R}$  and for **arbitrary**  $T = T_N$

## Some questions on $\mathbf{P}_{N,\delta}^{T_N}$ for large $N$

- ▶ What is the typical size of  $S_N$ ?
- ▶ How many monomers touch the interfaces?
- ▶ How many different interfaces are visited?
- ▶ Interplay between the parameters  $\delta$  and  $T = \{T_N\}_N$ ?

## Penalization of the simple random walk

# Outline

1. Introduction and motivations

2. Definition of the model

3. The free energy

4. Path results

5. Techniques from the proof

# The free energy

The **free energy**  $\phi(\delta, \{T_n\}_n)$  encodes the exponential asymptotic behavior of the **normalization constant**  $Z_{N,\delta}^{T_N}$  (partition function)

# The free energy

The free energy  $\phi(\delta, \{T_n\}_n)$  encodes the exponential asymptotic behavior of the normalization constant  $Z_{N,\delta}^{T_N}$  (partition function)

$$\begin{aligned}\phi(\delta, \{T_n\}_n) &:= \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\delta}^{T_N} \quad (\text{super-additivity} + \dots) \\ &= \lim_{N \rightarrow \infty} \frac{1}{N} \log E[\exp \{\delta L_N\}]\end{aligned}$$

$L_N := \#\{i \leq N : S_i \in T\mathbb{Z}\}$  number of visits to the interfaces

# The free energy

The **free energy**  $\phi(\delta, \{T_n\}_n)$  encodes the exponential asymptotic behavior of the normalization constant  $Z_{N,\delta}^{T_N}$  (**partition function**)

$$\begin{aligned}\phi(\delta, \{T_n\}_n) &:= \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\delta}^{T_N} \quad (\text{super-additivity} + \dots) \\ &= \lim_{N \rightarrow \infty} \frac{1}{N} \log E[\exp \{\delta L_N\}]\end{aligned}$$

$L_N := \#\{i \leq N : S_i \in T\mathbb{Z}\}$  **number of visits to the interfaces**

$\phi$  is a generating function:

$$\frac{\partial}{\partial \delta} \phi(\delta, \{T_n\}_n) = \lim_{N \rightarrow \infty} \mathbf{E}_{N,\delta}^{T_N} \left( \frac{L_N}{N} \right) \quad \rightsquigarrow \quad L_N \sim \frac{\partial \phi}{\partial \delta} \cdot N$$

# The free energy

The **free energy**  $\phi(\delta, \{T_n\}_n)$  encodes the exponential asymptotic behavior of the normalization constant  $Z_{N,\delta}^{T_N}$  (**partition function**)

$$\begin{aligned}\phi(\delta, \{T_n\}_n) &:= \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\delta}^{T_N} \quad (\text{super-additivity} + \dots) \\ &= \lim_{N \rightarrow \infty} \frac{1}{N} \log E[\exp \{\delta L_N\}]\end{aligned}$$

$L_N := \#\{i \leq N : S_i \in T\mathbb{Z}\}$  **number of visits to the interfaces**

$\phi$  is a generating function:

$$\frac{\partial}{\partial \delta} \phi(\delta, \{T_n\}_n) = \lim_{N \rightarrow \infty} \mathbf{E}_{N,\delta}^{T_N} \left( \frac{L_N}{N} \right) \quad \rightsquigarrow \quad L_N \sim \frac{\partial \phi}{\partial \delta} \cdot N$$

$\phi(\delta, \{T_n\}_n)$  non-analytic at  $\delta \longleftrightarrow$  phase transition at  $\delta$

# The free energy: characterization

We assume that  $T_N \rightarrow T \in 2\mathbb{N} \cup \{\infty\}$ , i.e.,

- ▶ either  $T_N \equiv T < \infty$  is constant for  $N$  large
- ▶ or  $T_N \rightarrow \infty$  as  $N \rightarrow \infty$  ( $T = \infty$ )

# The free energy: characterization

We assume that  $T_N \rightarrow T \in 2\mathbb{N} \cup \{\infty\}$ , i.e.,

- ▶ either  $T_N \equiv T < \infty$  is constant for  $N$  large
- ▶ or  $T_N \rightarrow \infty$  as  $N \rightarrow \infty$  ( $T = \infty$ )

Let  $\tau_1^T := \inf \{n > 0 : S_n \in \{\pm T, 0\}\}$  and set

$$Q_T(\lambda) := E(e^{-\lambda \tau_1^T})$$

# The free energy: characterization

We assume that  $T_N \rightarrow T \in 2\mathbb{N} \cup \{\infty\}$ , i.e.,

- ▶ either  $T_N \equiv T < \infty$  is constant for  $N$  large
- ▶ or  $T_N \rightarrow \infty$  as  $N \rightarrow \infty$  ( $T = \infty$ )

Let  $\tau_1^T := \inf \{n > 0 : S_n \in \{\pm T, 0\}\}$  and set

$$Q_T(\lambda) := E(e^{-\lambda \tau_1^T})$$

- ▶ if  $T < \infty$ ,  $Q_T : (-\lambda_T, \infty) \rightarrow (0, \infty)$   $(\lambda_T \sim -\frac{\pi^2}{2T^2})$

# The free energy: characterization

We assume that  $T_N \rightarrow T \in 2\mathbb{N} \cup \{\infty\}$ , i.e.,

- ▶ either  $T_N \equiv T < \infty$  is constant for  $N$  large
- ▶ or  $T_N \rightarrow \infty$  as  $N \rightarrow \infty$  ( $T = \infty$ )

Let  $\tau_1^T := \inf \{n > 0 : S_n \in \{\pm T, 0\}\}$  and set

$$Q_T(\lambda) := E(e^{-\lambda \tau_1^T})$$

- ▶ if  $T < \infty$ ,  $Q_T : (-\lambda_T, \infty) \rightarrow (0, \infty)$   $(\lambda_T \sim -\frac{\pi^2}{2T^2})$
- ▶ if  $T = \infty$ ,  $Q_\infty : [0, \infty) \rightarrow (0, 1]$  (first return to zero of SRW)

# The free energy: characterization

We assume that  $T_N \rightarrow T \in 2\mathbb{N} \cup \{\infty\}$ , i.e.,

- ▶ either  $T_N \equiv T < \infty$  is constant for  $N$  large
- ▶ or  $T_N \rightarrow \infty$  as  $N \rightarrow \infty$  ( $T = \infty$ )

Let  $\tau_1^T := \inf \{n > 0 : S_n \in \{\pm T, 0\}\}$  and set

$$Q_T(\lambda) := E(e^{-\lambda \tau_1^T})$$

- ▶ if  $T < \infty$ ,  $Q_T : (-\lambda_T, \infty) \rightarrow (0, \infty)$   $(\lambda_T \sim -\frac{\pi^2}{2T^2})$
- ▶ if  $T = \infty$ ,  $Q_\infty : [0, \infty) \rightarrow (0, 1]$  (first return to zero of SRW)

**Theorem ([CP1]).** Let  $T_N \rightarrow T$ .

$$\phi(\delta, \{T_n\}_n) = \phi(\delta, T) = \begin{cases} (Q_T)^{-1}(e^{-\delta}) & \text{if } T < +\infty \\ (Q_\infty)^{-1}(e^{-\delta} \wedge 1) & \text{if } T = +\infty \end{cases}$$

# The free energy: sumup

Case  $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \ \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$
- ▶ Path behavior: diffusive scaling of  $S_N$

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$
- ▶ Path behavior: diffusive scaling of  $S_N$

## Case $T_N \rightarrow \infty$

- ▶ Phase transition (only) at  $\delta = 0$

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \ \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$
- ▶ Path behavior: diffusive scaling of  $S_N$

## Case $T_N \rightarrow \infty$

- ▶ Phase transition (only) at  $\delta = 0$ 
  - ▶ If  $\delta \leq 0$  then  $\phi(\delta, \infty) \equiv \frac{\partial}{\partial \delta} \phi(\delta, \infty) \equiv 0 \rightsquigarrow L_N = o(N)$

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \ \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$
- ▶ Path behavior: diffusive scaling of  $S_N$

## Case $T_N \rightarrow \infty$

- ▶ Phase transition (only) at  $\delta = 0$ 
  - ▶ If  $\delta \leq 0$  then  $\phi(\delta, \infty) \equiv \frac{\partial}{\partial \delta} \phi(\delta, \infty) \equiv 0 \rightsquigarrow L_N = o(N)$
  - ▶ If  $\delta > 0$  then  $\frac{\partial}{\partial \delta} \phi(\delta, \infty) > 0 \rightsquigarrow L_N \sim c \cdot N$

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \ \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$
- ▶ Path behavior: diffusive scaling of  $S_N$

## Case $T_N \rightarrow \infty$

- ▶ Phase transition (only) at  $\delta = 0$ 
  - ▶ If  $\delta \leq 0$  then  $\phi(\delta, \infty) \equiv \frac{\partial}{\partial \delta} \phi(\delta, \infty) \equiv 0 \rightsquigarrow L_N = o(N)$
  - ▶ If  $\delta > 0$  then  $\frac{\partial}{\partial \delta} \phi(\delta, \infty) > 0 \rightsquigarrow L_N \sim c \cdot N$
- ▶ Every  $\{T_N\}_N \rightarrow \infty$  yields the same free energy as if  $T_N \equiv \infty$  (homogeneous pinning model)  $\rightsquigarrow$  same density of visits

# The free energy: sumup

## Case $T_N \equiv T < \infty$

- ▶  $\phi(\delta, T)$  is analytic on  $\mathbb{R}$ : no phase transitions
- ▶  $\frac{\partial}{\partial \delta} \phi(\delta, T) > 0 \ \forall \delta \in \mathbb{R}$ : positive density of contacts  $L_N \sim c \cdot N$
- ▶ Path behavior: diffusive scaling of  $S_N$

## Case $T_N \rightarrow \infty$

- ▶ Phase transition (only) at  $\delta = 0$ 
  - ▶ If  $\delta \leq 0$  then  $\phi(\delta, \infty) \equiv \frac{\partial}{\partial \delta} \phi(\delta, \infty) \equiv 0 \rightsquigarrow L_N = o(N)$
  - ▶ If  $\delta > 0$  then  $\frac{\partial}{\partial \delta} \phi(\delta, \infty) > 0 \rightsquigarrow L_N \sim c \cdot N$
- ▶ Every  $\{T_N\}_N \rightarrow \infty$  yields the same free energy as if  $T_N \equiv \infty$  (homogeneous pinning model)  $\rightsquigarrow$  same density of visits
- ▶ Same path behavior? NO!

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

What if both  $N, T \rightarrow \infty$ ?

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

What if both  $N, T \rightarrow \infty$ ?

For  $\delta < 0$ ,  $\phi(\delta, T) = -\frac{\pi^2}{2T^2} + \frac{c_\delta}{T^3} + o\left(\frac{1}{T^3}\right)$  with  $c_\delta > 0$  explicit.

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

What if both  $N, T \rightarrow \infty$ ?

For  $\delta < 0$ ,  $\phi(\delta, T) = -\frac{\pi^2}{2T^2} + \frac{c_\delta}{T^3} + o\left(\frac{1}{T^3}\right)$  with  $c_\delta > 0$  explicit.

[Owczarek et al. 2008] prove (for the polymer in a slit) that

$$Z_{N,\delta}^T \approx \exp\left(-\frac{\pi^2}{2T^2}N + o\left(\frac{N}{T^2}\right)\right) \quad \text{as } N, T \rightarrow \infty.$$

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

What if both  $N, T \rightarrow \infty$ ?

For  $\delta < 0$ ,  $\phi(\delta, T) = -\frac{\pi^2}{2T^2} + \frac{c_\delta}{T^3} + o\left(\frac{1}{T^3}\right)$  with  $c_\delta > 0$  explicit.

[Owczarek et al. 2008] prove (for the polymer in a slit) that

$$Z_{N,\delta}^T \approx \exp\left(-\frac{\pi^2}{2T^2}N + o\left(\frac{N}{T^2}\right)\right) \quad \text{as } N, T \rightarrow \infty.$$

We show that  $\phi(\delta, T)$  can be developed at wish in  $(*)$ .

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

What if both  $N, T \rightarrow \infty$ ?

For  $\delta < 0$ ,  $\phi(\delta, T) = -\frac{\pi^2}{2T^2} + \frac{c_\delta}{T^3} + o\left(\frac{1}{T^3}\right)$  with  $c_\delta > 0$  explicit.

[Owczarek et al. 2008] prove (for the polymer in a slit) that

$$Z_{N,\delta}^T \approx \exp\left(-\frac{\pi^2}{2T^2}N + o\left(\frac{N}{T^2}\right)\right) \quad \text{as } N, T \rightarrow \infty.$$

We show that  $\phi(\delta, T)$  can be developed at wish in  $(*)$ .

- ▶ Force exerted by the polymer on the confining walls (slit)

# Beyond the free energy

Free energy says that for fixed  $T$

$$Z_{N,\delta}^T \approx \exp(\phi(\delta, T) \cdot N) \quad \text{as } N \rightarrow \infty. \quad (*)$$

What if both  $N, T \rightarrow \infty$ ?

For  $\delta < 0$ ,  $\phi(\delta, T) = -\frac{\pi^2}{2T^2} + \frac{c_\delta}{T^3} + o\left(\frac{1}{T^3}\right)$  with  $c_\delta > 0$  explicit.

[Owczarek et al. 2008] prove (for the polymer in a slit) that

$$Z_{N,\delta}^T \approx \exp\left(-\frac{\pi^2}{2T^2}N + o\left(\frac{N}{T^2}\right)\right) \quad \text{as } N, T \rightarrow \infty.$$

We show that  $\phi(\delta, T)$  can be developed at wish in  $(*)$ .

- ▶ Force exerted by the polymer on the confining walls (slit)
- ▶ Path behavior (multi-interface)

# Outline

1. Introduction and motivations

2. Definition of the model

3. The free energy

4. Path results

5. Techniques from the proof

# The attractive case $\delta > 0$ : heuristics

Henceforth  $T_N \rightarrow \infty$ .

# The attractive case $\delta > 0$ : heuristics

Henceforth  $T_N \rightarrow \infty$ .

For  $\delta > 0 \rightsquigarrow$  positive density of contacts with the interfaces:

$$L_N \sim C_\delta \cdot N \quad \text{with} \quad C_\delta = \frac{\partial \phi}{\partial \delta}(\delta, \infty) > 0.$$

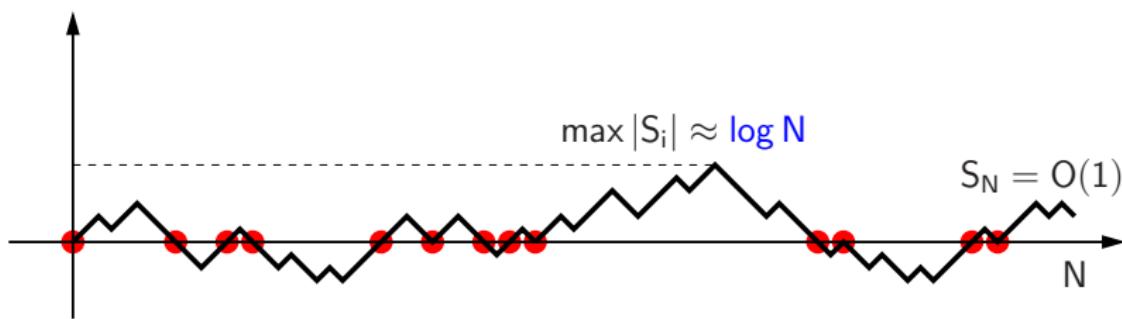
# The attractive case $\delta > 0$ : heuristics

Henceforth  $T_N \rightarrow \infty$ .

For  $\delta > 0 \rightsquigarrow$  positive density of contacts with the interfaces:

$$L_N \sim C_\delta \cdot N \quad \text{with} \quad C_\delta = \frac{\partial \phi}{\partial \delta}(\delta, \infty) > 0.$$

Simple homogeneous pinning model (one interface at zero):



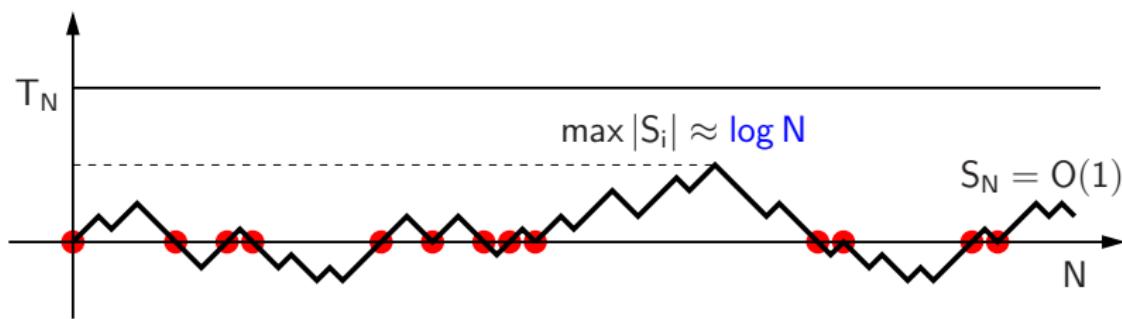
# The attractive case $\delta > 0$ : heuristics

Henceforth  $T_N \rightarrow \infty$ .

For  $\delta > 0 \rightsquigarrow$  positive density of contacts with the interfaces:

$$L_N \sim C_\delta \cdot N \quad \text{with} \quad C_\delta = \frac{\partial \phi}{\partial \delta}(\delta, \infty) > 0.$$

Simple homogeneous pinning model (one interface at zero):



- If  $T_N \gg \log N$  nothing changes: polymer localized at zero

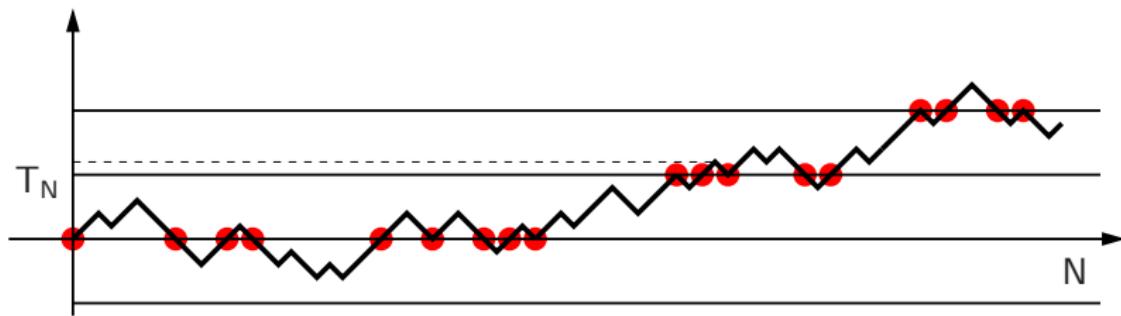
# The attractive case $\delta > 0$ : heuristics

Henceforth  $T_N \rightarrow \infty$ .

For  $\delta > 0 \rightsquigarrow$  positive density of contacts with the interfaces:

$$L_N \sim C_\delta \cdot N \quad \text{with} \quad C_\delta = \frac{\partial \phi}{\partial \delta}(\delta, \infty) > 0.$$

Simple homogeneous pinning model (one interface at zero):



- ▶ If  $T_N \gg \log N$  nothing changes: polymer localized at zero
- ▶ If  $T_N \ll \log N$  different interfaces worth visiting

# The attractive case $\delta > 0$ : heuristics

## Notation

$S_N \asymp \alpha_N$  means  $S_N/\alpha_N$  is tight and  $\mathbf{P}_{N,\delta}^{T_N}(|S_N/\alpha_N| \geq \varepsilon) \geq \varepsilon$

# The attractive case $\delta > 0$ : heuristics

## Notation

$S_N \asymp \alpha_N$  means  $S_N/\alpha_N$  is tight and  $\mathbf{P}_{N,\delta}^{T_N}(|S_N/\alpha_N| \geq \varepsilon) \geq \varepsilon$

Under  $\mathbf{P}_{N,\delta}^{T_N}$  ( $N \gg 1$ ), how long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

# The attractive case $\delta > 0$ : heuristics

## Notation

$S_N \asymp \alpha_N$  means  $S_N/\alpha_N$  is tight and  $\mathbf{P}_{N,\delta}^{T_N}(|S_N/\alpha_N| \geq \varepsilon) \geq \varepsilon$

Under  $\mathbf{P}_{N,\delta}^{T_N}$  ( $N \gg 1$ ), how long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

It turns out that  $\hat{\tau}_1^T \approx e^{c_\delta T}$  with  $c_\delta > 0$ .

# The attractive case $\delta > 0$ : heuristics

## Notation

$S_N \asymp \alpha_N$  means  $S_N/\alpha_N$  is tight and  $\mathbf{P}_{N,\delta}^{T_N}(|S_N/\alpha_N| \geq \varepsilon) \geq \varepsilon$

Under  $\mathbf{P}_{N,\delta}^{T_N}$  ( $N \gg 1$ ), how long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

It turns out that  $\hat{\tau}_1^T \approx e^{c_\delta T}$  with  $c_\delta > 0$ .

- ▶ If  $e^{c_\delta T_N} \ll N$ , there are  $\approx N/e^{c_\delta T_N}$  jumps to a neighboring interface, therefore

$$S_N \asymp T_N \sqrt{\frac{N}{e^{c_\delta T_N}}} = (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$$

# The attractive case $\delta > 0$ : heuristics

## Notation

$S_N \asymp \alpha_N$  means  $S_N/\alpha_N$  is tight and  $\mathbf{P}_{N,\delta}^{T_N}(|S_N/\alpha_N| \geq \varepsilon) \geq \varepsilon$

Under  $\mathbf{P}_{N,\delta}^{T_N}$  ( $N \gg 1$ ), how long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

It turns out that  $\hat{\tau}_1^T \approx e^{c_\delta T}$  with  $c_\delta > 0$ .

- ▶ If  $e^{c_\delta T_N} \ll N$ , there are  $\approx N/e^{c_\delta T_N}$  jumps to a neighboring interface, therefore

$$S_N \asymp T_N \sqrt{\frac{N}{e^{c_\delta T_N}}} = (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$$

- ▶ If  $e^{c_\delta T_N} \approx N$ , there are  $O(1)$  jumps to a neighboring interface, hence  $S_N \approx T_N$ .

# The attractive case $\delta > 0$ : heuristics

## Notation

$S_N \asymp \alpha_N$  means  $S_N/\alpha_N$  is tight and  $\mathbf{P}_{N,\delta}^{T_N}(|S_N/\alpha_N| \geq \varepsilon) \geq \varepsilon$

Under  $\mathbf{P}_{N,\delta}^{T_N}$  ( $N \gg 1$ ), how long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

It turns out that  $\hat{\tau}_1^T \approx e^{c_\delta T}$  with  $c_\delta > 0$ .

- ▶ If  $e^{c_\delta T_N} \ll N$ , there are  $\approx N/e^{c_\delta T_N}$  jumps to a neighboring interface, therefore

$$S_N \asymp T_N \sqrt{\frac{N}{e^{c_\delta T_N}}} = (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$$

- ▶ If  $e^{c_\delta T_N} \approx N$ , there are  $O(1)$  jumps to a neighboring interface, hence  $S_N \approx T_N$ .
- ▶ If  $e^{c_\delta T_N} \gg N$ , there are no jumps to a neighboring interface, hence  $S_N \asymp O(1)$ .

# The attractive case $\delta > 0$ : path results

## Theorem ([CP1])

For every  $\delta > 0$  there exists  $c_\delta > 0$  such that under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow -\infty$  then  $S_N \asymp (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$

# The attractive case $\delta > 0$ : path results

## Theorem ([CP1])

For every  $\delta > 0$  there exists  $c_\delta > 0$  such that under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow -\infty$  then  $S_N \asymp (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$

$$\frac{S_N}{C_\delta (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}} \implies N(0, 1)$$

Note that  $T_N \ll S_N \ll \sqrt{N}$ .

# The attractive case $\delta > 0$ : path results

## Theorem ([CP1])

For every  $\delta > 0$  there exists  $c_\delta > 0$  such that under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow -\infty$  then  $S_N \asymp (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$

$$\frac{S_N}{C_\delta (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}} \implies N(0, 1)$$

Note that  $T_N \ll S_N \ll \sqrt{N}$ .

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow \zeta \in \mathbb{R}$  then  $S_N \asymp T_N$

# The attractive case $\delta > 0$ : path results

## Theorem ([CP1])

For every  $\delta > 0$  there exists  $c_\delta > 0$  such that under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow -\infty$  then  $S_N \asymp (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$

$$\frac{S_N}{C_\delta (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}} \implies N(0, 1)$$

Note that  $T_N \ll S_N \ll \sqrt{N}$ .

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow \zeta \in \mathbb{R}$  then  $S_N \asymp T_N$

$$\frac{S_N}{T_N} \implies S_\Gamma \quad \Gamma \sim \text{Poisson}(f(\delta, \zeta))$$

# The attractive case $\delta > 0$ : path results

## Theorem ([CP1])

For every  $\delta > 0$  there exists  $c_\delta > 0$  such that under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow -\infty$  then  $S_N \asymp (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$

$$\frac{S_N}{C_\delta (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}} \implies N(0, 1)$$

Note that  $T_N \ll S_N \ll \sqrt{N}$ .

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow \zeta \in \mathbb{R}$  then  $S_N \asymp T_N$

$$\frac{S_N}{T_N} \implies S_\Gamma \quad \Gamma \sim \text{Poisson}(f(\delta, \zeta))$$

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow +\infty$  then  $S_N \asymp O(1)$

# The attractive case $\delta > 0$ : path results

## Theorem ([CP1])

For every  $\delta > 0$  there exists  $c_\delta > 0$  such that under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow -\infty$  then  $S_N \asymp (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}$

$$\frac{S_N}{C_\delta (e^{-\frac{c_\delta}{2} T_N} T_N) \sqrt{N}} \implies N(0, 1)$$

Note that  $T_N \ll S_N \ll \sqrt{N}$ .

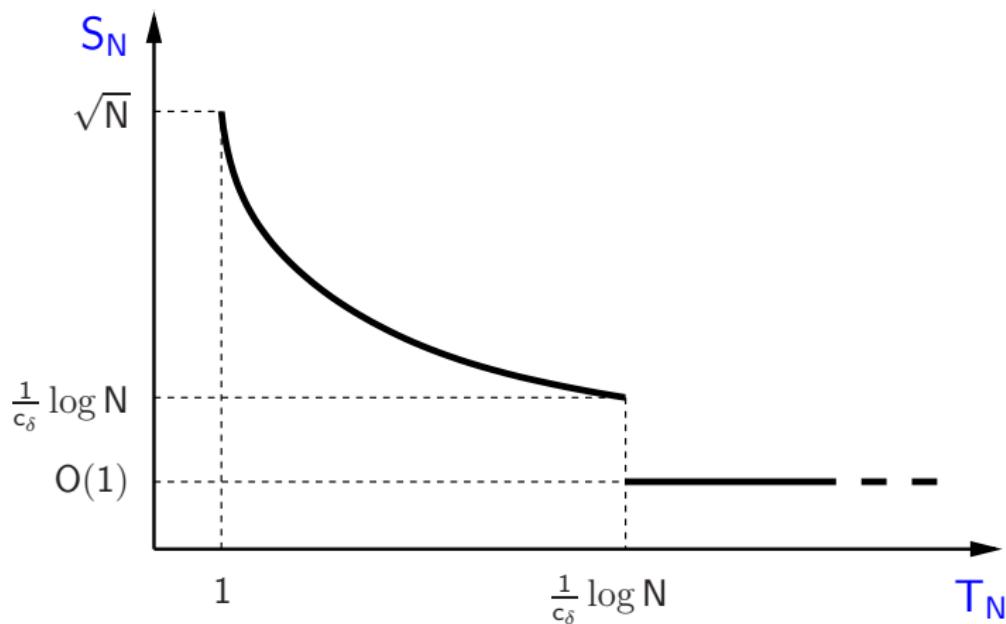
- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow \zeta \in \mathbb{R}$  then  $S_N \asymp T_N$

$$\frac{S_N}{T_N} \implies S_\Gamma \quad \Gamma \sim \text{Poisson}(f(\delta, \zeta))$$

- If  $T_N - \frac{1}{c_\delta} \log N \rightarrow +\infty$  then  $S_N \asymp O(1)$

$$\lim_{L \rightarrow \infty} \sup_{N \in 2\mathbb{N}} \mathbf{P}_{N,\delta}^{T_N} (|S_N| > L) = 0$$

# The attractive case $\delta > 0$ : path results



- Sub-diffusive scaling ( $T_N \rightarrow \infty$ )
- Transition at  $T_N \approx \log N$

# The repulsive case $\delta < 0$ : heuristics

Again  $T_N \rightarrow \infty$ .

# The repulsive case $\delta < 0$ : heuristics

Again  $T_N \rightarrow \infty$ .

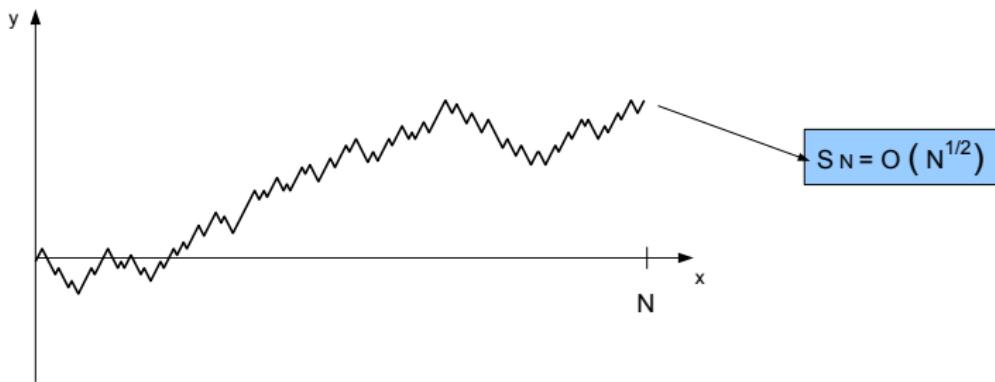
For  $\delta < 0$ , zero density of contacts with the interfaces:  $L_N = o(N)$ .

# The repulsive case $\delta < 0$ : heuristics

Again  $T_N \rightarrow \infty$ .

For  $\delta < 0$ , zero density of contacts with the interfaces:  $L_N = o(N)$ .

Simple homogeneous pinning model (one interface at zero):

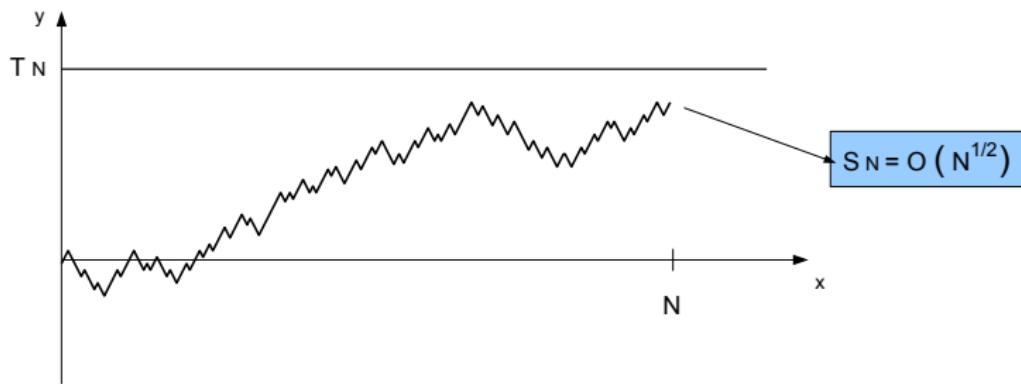


# The repulsive case $\delta < 0$ : heuristics

Again  $T_N \rightarrow \infty$ .

For  $\delta < 0$ , zero density of contacts with the interfaces:  $L_N = o(N)$ .

Simple homogeneous pinning model (one interface at zero):



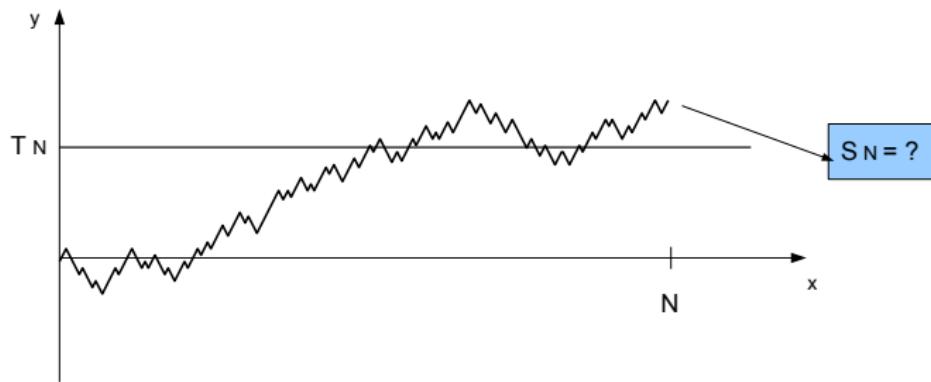
- If  $T_N \gg \sqrt{N}$  nothing changes:  $S_N \asymp \sqrt{N}$

# The repulsive case $\delta < 0$ : heuristics

Again  $T_N \rightarrow \infty$ .

For  $\delta < 0$ , zero density of contacts with the interfaces:  $L_N = o(N)$ .

Simple homogeneous pinning model (one interface at zero):



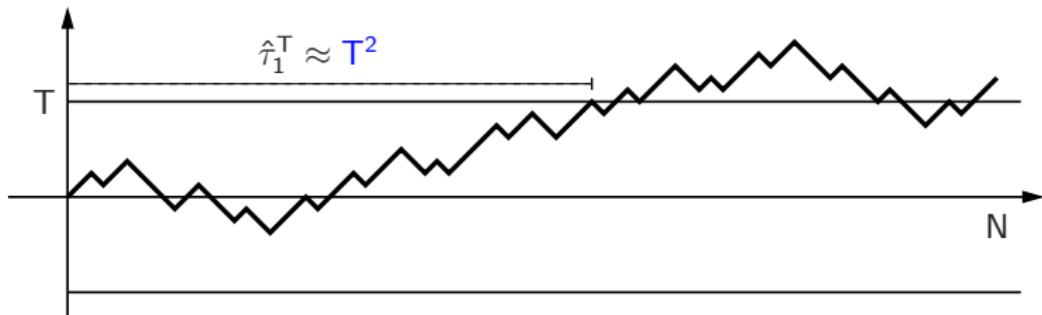
- ▶ If  $T_N \gg \sqrt{N}$  nothing changes:  $S_N \asymp \sqrt{N}$
- ▶ If  $T_N \ll \sqrt{N}$  does the polymer visit other interfaces?

# The repulsive case $\delta < 0$ : heuristics

How long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

# The repulsive case $\delta < 0$ : heuristics

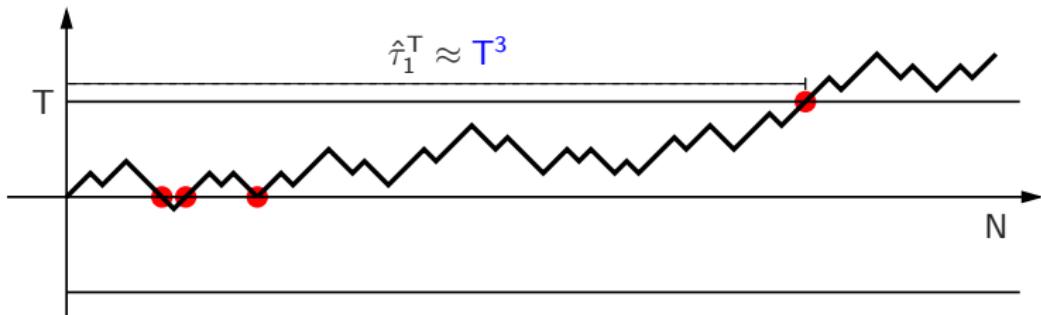
How long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?



Under the simple random walk law  $\hat{\tau}_1^T \approx T^2$  (diffusivity)

# The repulsive case $\delta < 0$ : heuristics

How long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?

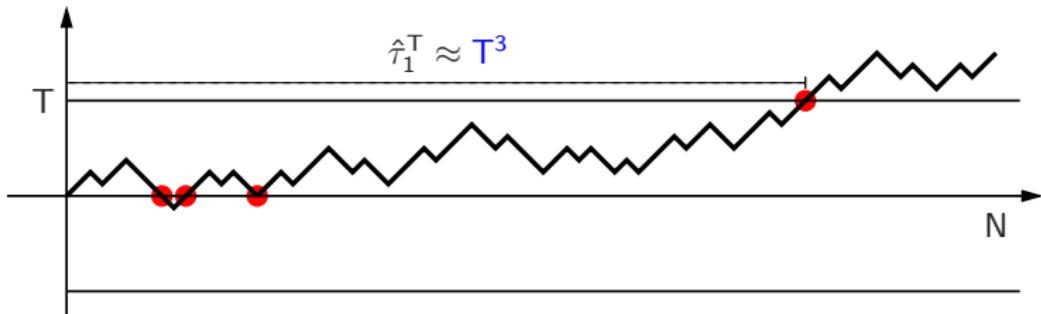


Under the simple random walk law  $\hat{\tau}_1^T \approx T^2$  (diffusivity)

Under the polymer measure  $P_{N,\delta}^T$  with  $\delta < 0$   $\hat{\tau}_1^T \approx T^3$  (repulsion)

# The repulsive case $\delta < 0$ : heuristics

How long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?



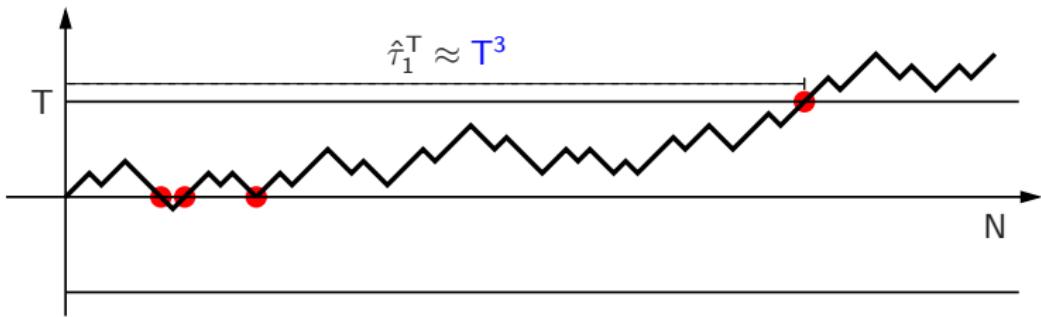
Under the simple random walk law  $\hat{\tau}_1^T \approx T^2$  (diffusivity)

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  with  $\delta < 0$   $\hat{\tau}_1^T \approx T^3$  (repulsion)

- if  $T_N \ll N^{1/3}$ , there are  $\approx N/T_N^3 \gg 1$  jumps to a neighboring interface, hence  $S_N \approx T_N \sqrt{N/T_N^3} = \sqrt{N/T_N}$

# The repulsive case $\delta < 0$ : heuristics

How long is the time  $\hat{\tau}_1^T$  to reach level  $\pm T$ ?



Under the simple random walk law  $\hat{\tau}_1^T \approx T^2$  (diffusivity)

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  with  $\delta < 0$   $\hat{\tau}_1^T \approx T^3$  (repulsion)

- ▶ if  $T_N \ll N^{1/3}$ , there are  $\approx N/T_N^3 \gg 1$  jumps to a neighboring interface, hence  $S_N \approx T_N \sqrt{N/T_N^3} = \sqrt{N/T_N}$
- ▶ if  $N^{1/3} \ll T_N \ll \sqrt{N}$ , there are no jumps to a neighboring interface  $\rightsquigarrow$  confinement:  $S_N \asymp T_N$

# The repulsive case $\delta < 0$ : path results

## Theorem ([CP2])

For every  $\delta < 0$  we have under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N \ll N^{1/3}$  then  $S_N \asymp \sqrt{N/T_N} \gg T_N$

# The repulsive case $\delta < 0$ : path results

## Theorem ([CP2])

For every  $\delta < 0$  we have under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N \ll N^{1/3}$  then  $S_N \asymp \sqrt{N/T_N} \gg T_N$

$$c_1 P(a < Z \leq b) \leq \mathbf{P}_{N,\delta}^{T_N} \left( a < \frac{S_N}{C_\delta \sqrt{\frac{N}{T_N}}} \leq b \right) \leq c_2 P(a < Z \leq b)$$

with  $Z \sim N(0, 1)$

# The repulsive case $\delta < 0$ : path results

## Theorem ([CP2])

For every  $\delta < 0$  we have under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- ▶ If  $T_N \ll N^{1/3}$  then  $S_N \asymp \sqrt{N/T_N} \gg T_N$

$$c_1 P(a < Z \leq b) \leq \mathbf{P}_{N,\delta}^{T_N} \left( a < \frac{S_N}{C_\delta \sqrt{\frac{N}{T_N}}} \leq b \right) \leq c_2 P(a < Z \leq b)$$

with  $Z \sim N(0, 1)$

- ▶ If  $T_N \sim (\text{const.})N^{1/3}$  then  $S_N \asymp T_N$

# The repulsive case $\delta < 0$ : path results

## Theorem ([CP2])

For every  $\delta < 0$  we have under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N \ll N^{1/3}$  then  $S_N \asymp \sqrt{N/T_N} \gg T_N$

$$c_1 P(a < Z \leq b) \leq \mathbf{P}_{N,\delta}^{T_N} \left( a < \frac{S_N}{C_\delta \sqrt{\frac{N}{T_N}}} \leq b \right) \leq c_2 P(a < Z \leq b)$$

with  $Z \sim N(0, 1)$

- If  $T_N \sim (\text{const.})N^{1/3}$  then  $S_N \asymp T_N$
- If  $(\text{const.})N^{1/3} \leq T_N \leq (\text{const.})\sqrt{N}$  then  $S_N \asymp T_N$  and

$$\forall \epsilon \exists L : \mathbf{P}_{N,\delta}^{T_N} (0 < |S_n| < T_N, \forall n \in \{L, \dots, N\}) \geq 1 - \epsilon$$

# The repulsive case $\delta < 0$ : path results

## Theorem ([CP2])

For every  $\delta < 0$  we have under  $\mathbf{P}_{N,\delta}^{T_N}$ :

- If  $T_N \ll N^{1/3}$  then  $S_N \asymp \sqrt{N/T_N} \gg T_N$

$$c_1 P(a < Z \leq b) \leq \mathbf{P}_{N,\delta}^{T_N} \left( a < \frac{S_N}{C_\delta \sqrt{\frac{N}{T_N}}} \leq b \right) \leq c_2 P(a < Z \leq b)$$

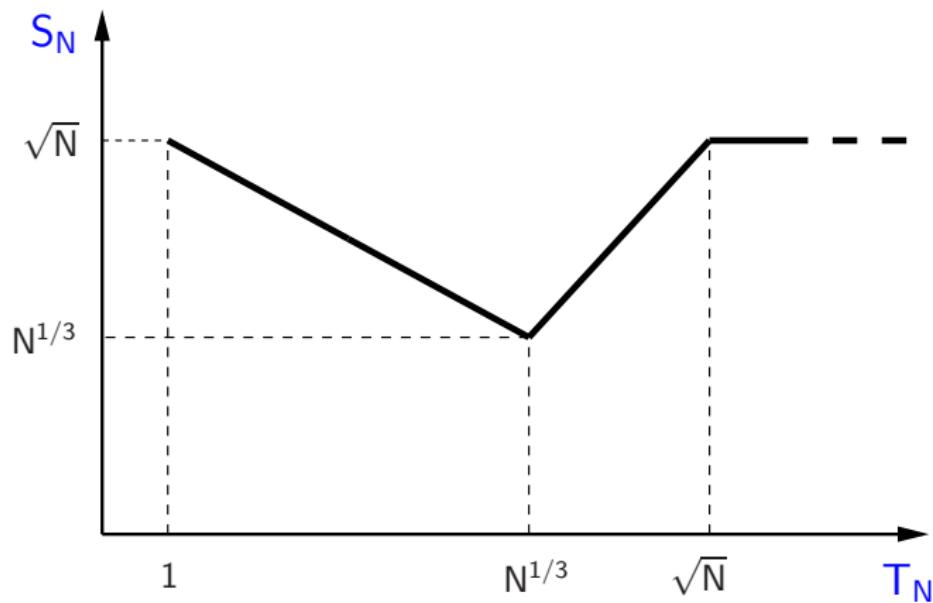
with  $Z \sim N(0, 1)$

- If  $T_N \sim (\text{const.})N^{1/3}$  then  $S_N \asymp T_N$
- If  $(\text{const.})N^{1/3} \leq T_N \leq (\text{const.})\sqrt{N}$  then  $S_N \asymp T_N$  and

$$\forall \epsilon \exists L : \mathbf{P}_{N,\delta}^{T_N} (0 < |S_n| < T_N, \forall n \in \{L, \dots, N\}) \geq 1 - \epsilon$$

- If  $T_N \gg \sqrt{N}$  then  $S_N \asymp \sqrt{N}$

# The repulsive case $\delta < 0$ : path results



- Sub-diffusive if  $1 \ll T_N \ll \sqrt{N}$
- Transitions  $T_N \approx N^{1/3}, \sqrt{N}$

# Outline

1. Introduction and motivations

2. Definition of the model

3. The free energy

4. Path results

5. Techniques from the proof

# A renewal theory approach

Let  $\tau_1^T, \tau_2^T, \tau_3^T \dots$  be the points at which  $S_n$  visits an interface

$$\tau_{k+1}^T := \inf \{n > \tau_k^T : S_n - S_{\tau_k^T} \in \{-T, 0, T\}\} \quad (T \text{ is fixed})$$

# A renewal theory approach

Let  $\tau_1^T, \tau_2^T, \tau_3^T \dots$  be the points at which  $S_n$  visits an interface

$$\tau_{k+1}^T := \inf \{n > \tau_k^T : S_n - S_{\tau_k^T} \in \{-T, 0, T\}\} \quad (T \text{ is fixed})$$

Under the simple random walk law  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is a classical renewal process with explicit law

$$q_T(n) := P(\tau_1^T = n) \approx \frac{1}{(\min\{n, T^2\})^{3/2}} e^{-\frac{\pi^2}{2T^2} n}$$

# A renewal theory approach

Let  $\tau_1^T, \tau_2^T, \tau_3^T \dots$  be the points at which  $S_n$  visits an interface

$$\tau_{k+1}^T := \inf \{n > \tau_k^T : S_n - S_{\tau_k^T} \in \{-T, 0, T\}\} \quad (T \text{ is fixed})$$

Under the simple random walk law  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is a classical renewal process with explicit law

$$q_T(n) := P(\tau_1^T = n) \approx \frac{1}{(\min\{n, T^2\})^{3/2}} e^{-\frac{\pi^2}{2T^2} n}$$

Note that under  $P$

$$\tau_1^T \approx \begin{cases} O(1) \text{ with probab. } 1 - \frac{1}{T} & [q_T(n) \approx \frac{1}{n^{3/2}}] \end{cases}$$

# A renewal theory approach

Let  $\tau_1^T, \tau_2^T, \tau_3^T \dots$  be the points at which  $S_n$  visits an interface

$$\tau_{k+1}^T := \inf \{n > \tau_k^T : S_n - S_{\tau_k^T} \in \{-T, 0, T\}\} \quad (T \text{ is fixed})$$

Under the simple random walk law  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is a classical renewal process with explicit law

$$q_T(n) := P(\tau_1^T = n) \approx \frac{1}{(\min\{n, T^2\})^{3/2}} e^{-\frac{\pi^2}{2T^2} n}$$

Note that under  $P$

$$\tau_1^T \approx \begin{cases} O(1) \text{ with probab. } 1 - \frac{1}{T} & \left[ q_T(n) \approx \frac{1}{n^{3/2}} \right] \\ O(T^2) \text{ with probab. } \frac{1}{T} & \left[ q_T(n) \approx \frac{1}{T^3} e^{-\frac{\pi^2}{2T^2} n} \right] \end{cases}$$

# A renewal theory approach

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  the process  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is not even time-homogeneous . . .

# A renewal theory approach

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  the process  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is not even time-homogeneous . . . however for large  $N$  it is nearly a renewal process with a different law  $\mathcal{P}_{\delta,T}$ : for both  $\delta > 0$  and  $\delta < 0$

$$K_{\delta,T}(n) := \mathcal{P}_{\delta,T}(\tau_1^T = n) = e^\delta P(\tau_1^T = n) e^{-\phi(\delta,T)n}$$

# A renewal theory approach

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  the process  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is not even time-homogeneous . . . however for large  $N$  it is nearly a renewal process with a different law  $\mathcal{P}_{\delta,T}$ : for both  $\delta > 0$  and  $\delta < 0$

$$K_{\delta,T}(n) := \mathcal{P}_{\delta,T}(\tau_1^T = n) = e^\delta P(\tau_1^T = n) e^{-\phi(\delta,T)n}$$

For  $\delta > 0$ , we have  $\phi(\delta, T) \rightarrow \phi(\delta, \infty) > 0$  as  $T \rightarrow \infty$ , hence

$$K_{\delta,T}(n) \approx e^{-\phi(\delta,\infty)n}$$

# A renewal theory approach

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  the process  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is not even time-homogeneous . . . however for large  $N$  it is nearly a renewal process with a different law  $\mathcal{P}_{\delta,T}$ : for both  $\delta > 0$  and  $\delta < 0$

$$K_{\delta,T}(n) := \mathcal{P}_{\delta,T}(\tau_1^T = n) = e^\delta P(\tau_1^T = n) e^{-\phi(\delta,T)n}$$

For  $\delta > 0$ , we have  $\phi(\delta, T) \rightarrow \phi(\delta, \infty) > 0$  as  $T \rightarrow \infty$ , hence

$$K_{\delta,T}(n) \approx e^{-\phi(\delta,\infty)n}$$

For  $\delta < 0$ , we have  $\phi(\delta, T) \approx -\frac{\pi^2}{2T^2} + \frac{C_\delta}{T^3}$  as  $T \rightarrow \infty$ , hence

$$\tau_1^T \approx \begin{cases} O(1) \text{ with probab. } e^\delta & \left[ K_{\delta,T}(n) \approx \frac{1}{n^{3/2}} \right] \end{cases}$$

# A renewal theory approach

Under the polymer measure  $\mathbf{P}_{N,\delta}^T$  the process  $\{\tau_n^T\}_{n \in \mathbb{N}}$  is not even time-homogeneous . . . however for large  $N$  it is nearly a renewal process with a different law  $\mathcal{P}_{\delta,T}$ : for both  $\delta > 0$  and  $\delta < 0$

$$K_{\delta,T}(n) := \mathcal{P}_{\delta,T}(\tau_1^T = n) = e^\delta P(\tau_1^T = n) e^{-\phi(\delta,T)n}$$

For  $\delta > 0$ , we have  $\phi(\delta, T) \rightarrow \phi(\delta, \infty) > 0$  as  $T \rightarrow \infty$ , hence

$$K_{\delta,T}(n) \approx e^{-\phi(\delta,\infty)n}$$

For  $\delta < 0$ , we have  $\phi(\delta, T) \approx -\frac{\pi^2}{2T^2} + \frac{C_\delta}{T^3}$  as  $T \rightarrow \infty$ , hence

$$\tau_1^T \approx \begin{cases} O(1) \text{ with probab. } e^\delta & \left[ K_{\delta,T}(n) \approx \frac{1}{n^{3/2}} \right] \\ O(T^3) \text{ with probab. } 1 - e^\delta & \left[ K_{\delta,T}(n) \approx \frac{1}{T^3} e^{-\frac{C_\delta}{T^3}n} \right] \end{cases}$$

# Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot \mid N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot \mid N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \implies \mathcal{P}_{\delta,T}$

# Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot \mid N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot \mid N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \implies \mathcal{P}_{\delta,T}$

However we want to study  $\mathbf{P}_{N,\delta}^{T_N}$  with  $T_N$  varying with  $N$

# Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot \mid N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot \mid N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \implies \mathcal{P}_{\delta,T}$

However we want to study  $\mathbf{P}_{N,\delta}^{T_N}$  with  $T_N$  varying with  $N$

1. Study  $\tau^{T_N} \cap [0, N]$  under  $\mathcal{P}_{\delta,T_N}$

## Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot \mid N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot \mid N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \implies \mathcal{P}_{\delta,T}$

However we want to study  $\mathbf{P}_{N,\delta}^{T_N}$  with  $T_N$  varying with  $N$

1. Study  $\tau^{T_N} \cap [0, N]$  under  $\mathcal{P}_{\delta,T_N}$
2. Transfer the results to  $\mathcal{P}_{\delta,T_N}(\cdot \mid N \in \tau^{T_N})$  (hard part)  
In this way we control  $\mathbf{P}_{N,\delta}^{T_N}(\cdot \mid N \in \tau^{T_N})$

# Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot \mid N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot \mid N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \implies \mathcal{P}_{\delta,T}$

However we want to study  $\mathbf{P}_{N,\delta}^{T_N}$  with  $T_N$  varying with  $N$

1. Study  $\tau^{T_N} \cap [0, N]$  under  $\mathcal{P}_{\delta,T_N}$
2. Transfer the results to  $\mathcal{P}_{\delta,T_N}(\cdot \mid N \in \tau^{T_N})$  (hard part)  
In this way we control  $\mathbf{P}_{N,\delta}^{T_N}(\cdot \mid N \in \tau^{T_N})$
3. Remove the conditioning on  $\{N \in \tau^{T_N}\}$

# Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot \mid N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot \mid N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \implies \mathcal{P}_{\delta,T}$

However we want to study  $\mathbf{P}_{N,\delta}^{T_N}$  with  $T_N$  varying with  $N$

1. Study  $\tau^{T_N} \cap [0, N]$  under  $\mathcal{P}_{\delta,T_N}$
2. Transfer the results to  $\mathcal{P}_{\delta,T_N}(\cdot \mid N \in \tau^{T_N})$  (hard part)  
In this way we control  $\mathbf{P}_{N,\delta}^{T_N}(\cdot \mid N \in \tau^{T_N})$
3. Remove the conditioning on  $\{N \in \tau^{T_N}\}$

- Good estimates on  $q_T(n)$  and on the free energy  $\phi(\delta, T)$

# Strategy of the proof

For fixed  $T$ , the law of  $\tau^T \cap [0, N] = \{\tau_1^T, \dots, \tau_{L_N}^T\}$  is the same

under  $\mathbf{P}_{N,\delta}^T(\cdot | N \in \tau^T)$  and  $\mathcal{P}_{\delta,T}(\cdot | N \in \tau^T)$

- $\mathcal{P}_{\delta,T}$  does not depend explicitly on  $N$
- $\mathbf{P}_{N,\delta}^T \Rightarrow \mathcal{P}_{\delta,T}$

However we want to study  $\mathbf{P}_{N,\delta}^{T_N}$  with  $T_N$  varying with  $N$

1. Study  $\tau^{T_N} \cap [0, N]$  under  $\mathcal{P}_{\delta,T_N}$
2. Transfer the results to  $\mathcal{P}_{\delta,T_N}(\cdot | N \in \tau^{T_N})$  (hard part)  
In this way we control  $\mathbf{P}_{N,\delta}^{T_N}(\cdot | N \in \tau^{T_N})$
3. Remove the conditioning on  $\{N \in \tau^{T_N}\}$

- Good estimates on  $q_T(n)$  and on the free energy  $\phi(\delta, T)$
- Uniform renewal theorems

Thanks.

# References

- ▶ [CP1] F. Caravenna and N. Pétrélis  
*A polymer in a multi-interface medium*  
AAP (2009)
- ▶ [CP2] F. Caravenna and N. Pétrélis  
*Depinning of a polymer in a multi-interface medium*  
EJP (2009)