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A polymer in a multi-interface medium

Single interface case is well understood.

Copolymer interaction [den Hollander & Wüthrich JSP 04]
Some path results for log logN�TN� logN (N = polymer size)

Focus on (homogeneous, attractive/repulsive) pinning interaction.

Path behavior? Interplay between N and T = TN?
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Stabilization of colloidal dispersions

The addition of polymers into a colloid can prevent the aggregation
of droplets via entropic repulsion (steric stabilization of the colloid)

Polymer confined between two walls and interacting with them:
(polymer in a slit)
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Physics literature: [Brak et al. 2005], [Owkzarek et al. 2008], . . .
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Multi-interface medium vs. slit
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Definition

Recall the situation we want to model

T

Polymer configurations ←→ Trajectories of a random process

Random polymer model: probability measure PT
N,δ on paths

I (1 + 1)-dimensionale model: {(i ,Si )}i≥0

I PT
N,δ absolutely continuous w.r.t. SRW {Si}i≥0
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Definition

Ingredients of PT
N,δ:

I Simple symmetric random walk S = {Sn}n≥0 on Z:

S0 := 0 , Sn := X1 + . . .+ Xn ,

with {Xi}i i.i.d. and P(Xi = +1) = P(Xi = −1) = 1
2 .

I Polymer size N ∈ 2N (number of monomers)

I Interaction strength δ ∈ R (> 0 attractive, < 0 repulsive)

I Interface distance T ∈ 2N (interfaces ≡ TZ)

Polymer measure:

dPT
N,δ

dP
(S) :=

1

ZT
N,δ

exp
(
δLN(S)

)

=
1

ZT
N,δ

exp

{
δ

N∑
i=1

1{Si ∈TZ}

}
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Some questions

The law PT
N,δ describes the statistical distribution of the

configurations of the polymer, given the external conditions

We are interested in the properties of PT
N,δ as N →∞

(thermodynamic limit), for fixed δ ∈ R and for arbitrary T = TN

Some questions on PTN
N,δ for large N

I What is the typical size of SN?

I How many monomers touch the interfaces?

I How many different interfaces are visited?

I Interplay between the parameters δ and T = {TN}N?

Penalization of the simple random walk
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The free energy

The free energy φ(δ, {Tn}n) encodes the exponential asymptotic
behavior of the normalization constant ZTN

N,δ (partition function)

φ(δ, {Tn}n) := lim
N→∞

1

N
log ZTN

N,δ (super-additivity + . . . )

= lim
N→∞

1

N
log E

[
exp

{
δLN

}]
LN := #{i ≤ N : Si ∈ TZ} number of visits to the interfaces

φ is a generating function:

∂

∂δ
φ(δ, {Tn}n) = lim

N→∞
ETN

N,δ

(
LN
N

)
 LN ∼ ∂φ

∂δ · N

φ(δ, {Tn}n) non-analytic at δ ←→ phase transition at δ
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The free energy: characterization

We assume that TN → T ∈ 2N ∪ {∞}, i.e.,

I either TN ≡ T <∞ is constant for N large

I or TN →∞ as N →∞ (T =∞)

Let τT1 := inf
{
n > 0 : Sn ∈ {±T , 0}

}
and set

QT (λ) := E
(
e−λτ

T
1
)

I if T <∞, QT : (−λT ,∞)→ (0,∞) (λT ∼ − π2

2T 2 )

I if T =∞, Q∞ : [0,∞)→ (0, 1] (first return to zero of SRW)

Theorem ([CP1]). Let TN → T .

φ(δ, {Tn}n) = φ(δ,T ) =

{(
QT

)−1
(e−δ) if T < +∞(

Q∞
)−1

(e−δ ∧ 1) if T = +∞
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The free energy: sumup

Case TN ≡ T <∞
I φ(δ,T ) is analytic on R: no phase transitions

I ∂
∂δφ(δ,T ) > 0 ∀δ ∈ R: positive density of contacts LN ∼ c ·N

I Path behavior: diffusive scaling of SN

Case TN →∞
I Phase transition (only) at δ = 0

I If δ ≤ 0 then φ(δ,∞) ≡ ∂
∂δφ(δ,∞) ≡ 0  LN = o(N)

I If δ > 0 then ∂
∂δφ(δ,∞) > 0  LN ∼ c · N

I Every {TN}N →∞ yields the same free energy as if TN ≡ ∞
(homogeneous pinning model)  same density of visits

I Same path behavior? NO!
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I Phase transition (only) at δ = 0

I If δ ≤ 0 then φ(δ,∞) ≡ ∂
∂δφ(δ,∞) ≡ 0  LN = o(N)

I If δ > 0 then ∂
∂δφ(δ,∞) > 0  LN ∼ c · N

I Every {TN}N →∞ yields the same free energy as if TN ≡ ∞
(homogeneous pinning model)  same density of visits

I Same path behavior? NO!
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Introduction The Model Free Energy Path Behavior The Proof

Beyond the free energy

Free energy says that for fixed T

ZT
N,δ ≈ exp

(
φ(δ,T ) · N

)
as N →∞ . (?)

What if both N,T →∞?

For δ < 0, φ(δ,T ) = − π2

2T 2
+

cδ
T 3

+ o

(
1

T 3

)
with cδ > 0 explicit.

[Owczarek et al. 2008] prove (for the polymer in a slit) that

ZT
N,δ ≈ exp

(
− π2

2T 2
N + o

(
N

T 2

))
as N,T →∞ .

We show that φ(δ,T ) can be developed at wish in (?).

I Force exerted by the polymer on the confining walls (slit)

I Path behavior (multi-interface)
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Introduction The Model Free Energy Path Behavior The Proof

Outline

1. Introduction and motivations

2. Definition of the model

3. The free energy

4. Path results

5. Techniques from the proof
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Introduction The Model Free Energy Path Behavior The Proof

The attractive case δ > 0: heuristics

Henceforth TN →∞.

For δ > 0  positive density of contacts with the interfaces:
LN ∼ Cδ · N with Cδ = ∂φ

∂δ (δ,∞) > 0.

Simple homogeneous pinning model (one interface at zero):

I If TN � logN nothing changes: polymer localized at zero

I If TN � logN different interfaces worth visiting
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Introduction The Model Free Energy Path Behavior The Proof

The attractive case δ > 0: heuristics

Notation

SN � αN means SN/αN is tight and PTN
N,δ(|SN/αN | ≥ ε) ≥ ε

Under PTN
N,δ (N � 1), how long is the time τ̂T1 to reach level ±T?

It turns out that τ̂T1 ≈ ecδT with cδ > 0.

I If ecδTN � N, there are ≈ N/ecδTN jumps to a neighboring
interface, therefore

SN � TN

√
N

ecδTN
= (e−

cδ
2
TNTN)

√
N

I If ecδTN ≈ N, there are O(1) jumps to a neighboring interface,
hence SN ≈ TN .

I If ecδTN � N, there are no jumps to a neighboring interface,
hence SN � O(1).
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Introduction The Model Free Energy Path Behavior The Proof

The attractive case δ > 0: path results

Theorem ([CP1])

For every δ > 0 there exists cδ > 0 such that under PTN
N,δ:

I If TN − 1
cδ

logN → −∞ then SN � (e−
cδ
2
TN TN)

√
N

SN

Cδ (e−
cδ
2
TNTN)

√
N

=⇒ N(0, 1)

Note that TN � SN �
√
N.

I If TN − 1
cδ

logN → ζ ∈ R then SN � TN

SN
TN

=⇒ SΓ Γ ∼ Poisson(f (δ, ζ))

I If TN − 1
cδ

logN → +∞ then SN � O(1)

lim
L→∞

sup
N∈2N

PTN
N,δ

(
|SN | > L

)
= 0
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Introduction The Model Free Energy Path Behavior The Proof

The attractive case δ > 0: path results

SN
√
N

1
cδ
logN

1
cδ
logN

O(1)

1 TN

• Sub-diffusive scaling (TN →∞) • Transition at TN ≈ logN
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Introduction The Model Free Energy Path Behavior The Proof

The repulsive case δ < 0: heuristics

Again TN →∞.

For δ < 0, zero density of contacts with the interfaces: LN = o(N).

Simple homogeneous pinning model (one interface at zero):

I If TN �
√
N nothing changes: SN �

√
N

I If TN �
√
N does the polymer visit other interfaces?
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The repulsive case δ < 0: path results

Theorem ([CP2])

For every δ < 0 we have under PTN
N,δ:

I If TN � N1/3 then SN �
√
N/TN � TN

c1 P
(
a < Z ≤ b

)
≤ PTN

N,δ

(
a <

SN

Cδ

√
N
TN

≤ b

)
≤ c2 P

(
a < Z ≤ b

)
with Z ∼ N(0, 1)

I If TN ∼ (const.)N1/3 then SN � TN

I If (const.)N1/3 ≤ TN ≤ (const.)
√
N then SN � TN and

∀ε∃L : PTN
N,δ

(
0 < |Sn| < TN , ∀n ∈ {L, . . . ,N}

)
≥ 1− ε

I If TN �
√
N then SN �

√
N

Francesco Caravenna A Polymer in a Multi-Interface Medium December 16, 2010



Introduction The Model Free Energy Path Behavior The Proof

The repulsive case δ < 0: path results

Theorem ([CP2])

For every δ < 0 we have under PTN
N,δ:

I If TN � N1/3 then SN �
√
N/TN � TN

c1 P
(
a < Z ≤ b

)
≤ PTN

N,δ

(
a <

SN

Cδ

√
N
TN

≤ b

)
≤ c2 P

(
a < Z ≤ b

)
with Z ∼ N(0, 1)

I If TN ∼ (const.)N1/3 then SN � TN

I If (const.)N1/3 ≤ TN ≤ (const.)
√
N then SN � TN and

∀ε∃L : PTN
N,δ

(
0 < |Sn| < TN , ∀n ∈ {L, . . . ,N}

)
≥ 1− ε

I If TN �
√
N then SN �

√
N

Francesco Caravenna A Polymer in a Multi-Interface Medium December 16, 2010



Introduction The Model Free Energy Path Behavior The Proof

The repulsive case δ < 0: path results

Theorem ([CP2])

For every δ < 0 we have under PTN
N,δ:

I If TN � N1/3 then SN �
√
N/TN � TN

c1 P
(
a < Z ≤ b

)
≤ PTN

N,δ

(
a <

SN

Cδ

√
N
TN

≤ b

)
≤ c2 P

(
a < Z ≤ b

)
with Z ∼ N(0, 1)

I If TN ∼ (const.)N1/3 then SN � TN

I If (const.)N1/3 ≤ TN ≤ (const.)
√
N then SN � TN and

∀ε∃L : PTN
N,δ

(
0 < |Sn| < TN , ∀n ∈ {L, . . . ,N}

)
≥ 1− ε

I If TN �
√
N then SN �

√
N

Francesco Caravenna A Polymer in a Multi-Interface Medium December 16, 2010



Introduction The Model Free Energy Path Behavior The Proof

The repulsive case δ < 0: path results

Theorem ([CP2])

For every δ < 0 we have under PTN
N,δ:

I If TN � N1/3 then SN �
√
N/TN � TN

c1 P
(
a < Z ≤ b

)
≤ PTN

N,δ

(
a <

SN

Cδ

√
N
TN

≤ b

)
≤ c2 P

(
a < Z ≤ b

)
with Z ∼ N(0, 1)

I If TN ∼ (const.)N1/3 then SN � TN

I If (const.)N1/3 ≤ TN ≤ (const.)
√
N then SN � TN and

∀ε∃L : PTN
N,δ

(
0 < |Sn| < TN , ∀n ∈ {L, . . . ,N}

)
≥ 1− ε

I If TN �
√
N then SN �

√
N

Francesco Caravenna A Polymer in a Multi-Interface Medium December 16, 2010



Introduction The Model Free Energy Path Behavior The Proof

The repulsive case δ < 0: path results

Theorem ([CP2])

For every δ < 0 we have under PTN
N,δ:

I If TN � N1/3 then SN �
√
N/TN � TN

c1 P
(
a < Z ≤ b

)
≤ PTN

N,δ

(
a <

SN

Cδ

√
N
TN

≤ b

)
≤ c2 P

(
a < Z ≤ b

)
with Z ∼ N(0, 1)

I If TN ∼ (const.)N1/3 then SN � TN

I If (const.)N1/3 ≤ TN ≤ (const.)
√
N then SN � TN and

∀ε∃L : PTN
N,δ

(
0 < |Sn| < TN , ∀n ∈ {L, . . . ,N}

)
≥ 1− ε

I If TN �
√
N then SN �

√
N

Francesco Caravenna A Polymer in a Multi-Interface Medium December 16, 2010



Introduction The Model Free Energy Path Behavior The Proof

The repulsive case δ < 0: path results

SN

√
N

√
NN1/3

N1/3

1 TN

• Sub-diffusive if 1� TN �
√
N • Transitions TN ≈ N1/3,

√
N
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2. Definition of the model

3. The free energy

4. Path results

5. Techniques from the proof
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A renewal theory approach

Let τT1 , τ
T
2 , τ

T
3 . . . be the points at which Sn visits an interface

τTk+1 := inf
{
n > τTk : Sn − SτTk

∈ {−T , 0,T}
}

(T is fixed)

Under the simple random walk law {τTn }n∈N is a classical renewal
process with explicit law

qT (n) := P(τT1 = n) ≈ 1

(min{n,T 2})3/2
e−

π2

2T2 n

Note that under P

τT1 ≈


O(1) with probab. 1− 1

T

[
qT (n) ≈ 1

n3/2

]
O(T 2) with probab. 1

T

[
qT (n) ≈ 1

T 3 e
− π2

2T2 n
]
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A renewal theory approach

Under the polymer measure PT
N,δ the process {τTn }n∈N is not even

time-homogeneous . . .

however for large N it is nearly a renewal
process with a different law Pδ,T : for both δ > 0 and δ < 0

Kδ,T (n) := Pδ,T (τT1 = n) = eδ P(τT1 = n) e−φ(δ,T )n

For δ > 0, we have φ(δ,T )→ φ(δ,∞) > 0 as T →∞, hence

Kδ,T (n) ≈ e−φ(δ,∞)n

For δ < 0, we have φ(δ,T ) ≈ − π2

2T 2 + Cδ
T 3 as T →∞, hence

τT1 ≈


O(1) with probab. eδ

[
Kδ,T (n) ≈ 1

n3/2

]
O(T 3) with probab. 1− eδ

[
Kδ,T (n) ≈ 1

T 3 e
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T3 n
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Strategy of the proof

For fixed T , the law of τT ∩ [0,N] = {τT1 , . . . , τTLN} is the same

under PT
N,δ

(
·
∣∣N ∈ τT ) and Pδ,T

(
·
∣∣N ∈ τT )

• Pδ,T does not depend explicitly on N • PT
N,δ =⇒ Pδ,T

However we want to study PTN
N,δ with TN varying with N

1. Study τTN ∩ [0,N] under Pδ,TN

2. Transfer the results to Pδ,TN
( · |N ∈ τTN ) (hard part)

In this way we control PTN
N,δ( · |N ∈ τTN )

3. Remove the conditioning on {N ∈ τTN}

I Good estimates on qT (n) and on the free energy φ(δ,T )

I Uniform renewal theorems
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Thanks.
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