
KPZ and SHE Sub-critical regime Critical regime Directed Polymer

On the 2d KPZ and Stochastic Heat Equation

Francesco Caravenna
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Overview

Two stochastic PDEs on Rd (mainly d = 2)

I Kardar-Parisi-Zhang Equation (KPZ)

I Stochastic Heat Equation (SHE) with multiplicative noise

These are very interesting, yet ill-defined equations

Plan:

1. Consider a regularized version of these equations

2. Study the limit of the solution, when regularisation is removed

Stochastic Analysis ! Statistical Mechanics
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White noise

Space-time white noise ξ = ξ(t, x) on R1+d

Generalized random field: random distribution (Schwartz)

I Centered Gaussian with

Cov[ ξ(t, x), ξ(t ′, x ′) ] = δ(t − t ′) δ(x − x ′)

〈φ, ξ〉 =

∫
R1+d

φ(t, x) ξ(t, x) dt dx ∼ N(0, ‖φ‖2L2)

I ξ = scaling limit of i.i.d. RVs indexed by Z1+d

(approximation of PDEs by discrete models)
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The KPZ equation

KPZ [Kardar Parisi Zhang PRL’86]

∂th = 1
2 ∆xh + 1

2 |∇xh|2 + β ξ (KPZ)

Model for random interface growth

h = h(t, x) = interface height at time t ≥ 0, space x ∈ Rd

ξ = ξ(t, x) = space-time white noise β > 0 noise strength

|∇xh|2 ill-defined

For smooth ξ
u(t, x) := eh(t,x) (Cole-Hopf)
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The multiplicative Stochastic Heat Equation (SHE)

SHE (t > 0, x ∈ Rd)

∂tu = 1
2 ∆xu + β u ξ (SHE)

Product u ξ ill-defined

I (d = 1) Well-posed by Ito integration [Walsh 80’s]

I (d = 1) SHE and KPZ are well-understood in a robust sense

Regularity Structures (Hairer), Paracontrolled Distributions (GIP),
Energy Solutions (Goncalves-Jara), Renormalization (Kupiainen)

I (d ≥ 2) No general theory

Francesco Caravenna 2d KPZ and SHE 24 October 2019



KPZ and SHE Sub-critical regime Critical regime Directed Polymer

(KPZ) and (SHE) in dimensions d ≥ 2

Mollify the white noise ξ(t, x) in space on scale ε > 0

ξε(t, ·) := ξ(t, ·) ∗ %ε

Solutions hε(t, x), uε(t, x) well-defined. Convergence as ε ↓ 0 ?

Renormalize disorder strength β = βε

βε =



β̂ (fixed) d = 1

β̂
1√

log ε−1
d = 2

β̂ ε
d−2
2 d ≥ 3

β̂ ∈ (0,∞)
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Mollified equations

Mollified SHE ∂tu
ε = 1

2∆uε + βε u
ε ξε

uε(0, ·) ≡ 1
(ε-SHE)

Then uε(t, x) ≥ 0 with E[uε(t, x)] ≡ 1

Set hε(t, x) := log uε(t, x)  Ito’s formula

Mollified KPZ∂th
ε = 1

2∆hε + 1
2 |∇h

ε|2 + βε ξ
ε − c β2

ε ε
−d

hε(0, ·) ≡ 0
(ε-KPZ)
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Main results

Space dimension d = 2 βε =
β̂√

log ε−1
β̂ ∈ (0,∞)

I. Phase transition for SHE and KPZ [CSZ 17]

Solutions uε(t, x) and hε(t, x) undergo phase transition at β̂c =
√

2π

II. Sub-critical regime of SHE and KPZ [CSZ 17] [CSZ 18b]

LLN + fluctuations of solutions uε(t, x) and hε(t, x) for all β̂ < β̂c

III. Critical regime of SHE [CSZ 18a]

Moment estimates of SHE solution uε(t, x) for β̂ = β̂c
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Main result I. Phase transition

Space dimension d = 2 βε =
β̂√

log ε−1
β̂ ∈ (0,∞)

Theorem (Phase transition for SHE) [CSZ 17]

I For β̂ <
√

2π uε(t, x)
d−−→
ε↓0

exp
(
σ Z − 1

2 σ
2
)

Z ∼ N(0, 1) σ2 := log
2π

2π − β̂2

uε(t, xi )
d−−→
ε↓0

asympt. independent (for distinct points xi ’s)

I For β̂ ≥
√

2π uε(t, x)
d−−→
ε↓0

0

Francesco Caravenna 2d KPZ and SHE 24 October 2019



KPZ and SHE Sub-critical regime Critical regime Directed Polymer

Main result I. Phase transition

Space dimension d = 2 βε =
β̂√

log ε−1
β̂ ∈ (0,∞)

Theorem (Phase transition for KPZ) [CSZ 17]

I For β̂ <
√

2π hε(t, x)
d−−→
ε↓0

σ Z − 1
2 σ

2

Z ∼ N(0, 1) σ2 := log
2π

2π − β̂2

hε(t, xi )
d−−→
ε↓0

asympt. independent (for distinct points xi ’s)

I For β̂ ≥
√

2π hε(t, x)
d−−→
ε↓0

−∞
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Law of large numbers

Consider the sub-critical regime β̂ <
√

2π

I as ε ↓ 0: E[uε(t, x)] ≡ 1 E[hε(t, x)] ≡ − 1
2σ

2 + o(1)

I uε(t, x) and hε(t, x) asymptotically independent for distinct x ’s

Corollary: LLN (β̂ <
√
2π)

uε(t, ·) d−−−→
ε↓0

1 hε(t, ·) d−−−→
ε↓0

− 1
2 σ

2 as distributions on R2

e.g.

∫
R2

hε(t, x)φ(x) dx
d−−−→
ε↓0

− 1
2 σ

2

∫
R2

φ(x) dx
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Main result II. Fluctuations for SHE

Rescaled SHE solution Uε(t, x) :=
(
uε(t, x)− 1

)
/βε

Theorem (Fluctuations for SHE) [CSZ 17]

for β̂ <
√

2π Uε(t, ·) d−−−→
ε↓0

v(t, ·) as a distrib.

v = solution of Edwards-Wilkinson equation

∂tv = 1
2∆xv + γ ξ where γ =

√
2π

2π−β̂2
> 1

∂t Uε = 1
2 ∆x Uε + ξε + βε Uε ξε

Remarkably βε Uε ξε 6→ 0 (while βε → 0, Uε → v , ξε → ξ)
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Fluctuations for KPZ ?

Proof based on Wiener Chaos expansions, not available for KPZ

hε(t, x) = log uε(t, x) (Cole-Hopf)

We might hope that

hε(t, ·) = log
(
1 + (uε(t, ·)− 1)

)
≈
(
uε(t, ·)− 1

)
?

NO, because uε(t, x) is not close to 1 pointwise

Correct comparison (non trivial!)

hε(t, ·)− E[hε] ≈
(
uε(t, ·)− 1

)
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Main result II. Fluctuations for KPZ

Rescaled KPZ solution Hε(t, x) :=
(
hε(t, x)− E[hε]

)
/βε

Theorem (Fluctuations for KPZ) [CSZ 18b]

for β̂ <
√

2π Hε(t, ·) d−−−→
ε↓0

v(t, ·) as a distrib.

v = solution of Edwards-Wilkinson equation

∂tv = 1
2∆xv + γ ξ where γ =

√
2π

2π−β̂2
> 1

∂t Hε = 1
2 ∆x Hε + ξε + βε (|∇Hε|2 − c ε−2)

Term βε (|∇Hε|2 − c ε−2) responsible for “extra” white noise
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Sketch of the proof

We approximate uε(t, x) by “local version” ũε(t, x) which samples noise
ξ in a tiny region around (t, x)

Then we approximate KPZ solution hε(t, x) by Taylor expansion

hε = log uε = log ũε + log

(
1 +

uε − ũε

ũε

)
≈ log ũε +

uε − ũε

ũε
+ Rε

I Remainder is small
(
Rε(t, ·)− E[Rε]

)
/βε

d−−→ 0

I Local dependence
(

log ũε(t, ·)− E[log ũε]
)
/βε

d−−→ 0

I Crucial approximation
uε(t, ·)− ũε(t, ·)

ũε(t, ·)
≈ uε(t, ·)− 1
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Some Comments

Key tools in our approach are

I Wiener chaos + Renewal Theory arguments

I 4th Moment Theorems to prove Gaussianity

I Hypercontractivity + Concentration of Measure

Alternative proof by [Gu 18] via Malliavin calculus (only for small β̂)

[Chatterjee and Dunlap 18] first considered fluctuations for KPZ

They proved tightness of Hε (only for small β̂)

We identify the limit (EW) in the entire sub-critical regime β̂ <
√

2π

Analogous results in dimensions d ≥ 3 by many authors
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A variation on KPZ

Chatterjee and Dunlap [CD 18] looked at a different KPZ

∂t h̃
ε = 1

2∆h̃ε + 1
2 βε |∇h̃

ε|2 + ξε

where βε tunes the strength of the non-linearity

In our setting, βε tunes the strength of the noise

∂th
ε = 1

2∆hε + 1
2 |∇h

ε|2 + βε ξ
ε − c β2

ε ε
−d

The two equations have the same fluctuations

h̃ε(t, x)− E[h̃ε] =
1

βε

(
hε(t, x)− E[hε]

)
= Hε(t, x)
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The critical regime

What about the critical point β̂ =
√

2π ?

More generally, critical window [Bertini Cancrini 98]

βε =

√
2π

log ε−1

(
1 +

ϑ

log ε−1

)
with ϑ ∈ R

Key conjecture for critical SHE

uε(t, ·) d−−−→
ε↓0

U(t, ·) (random distribution on R2)

Nothing known for KPZ solution hε(t, ·)
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Second moment

Known results [Bertini Cancrini 98]

E
[
〈uε(t, ·), φ〉

]
≡
〈
1, φ
〉

sup
ε>0

E
[
〈uε(t, ·), φ〉2

]
< ∞

E
[
〈uε(t, ·), φ〉2

]
−−−→
ε↓0

〈
φ, Kφ

〉
K
(
x , x ′

)
∼ C log 1

|x−x′|

Corollary: tightness

∃ subseq. limits uεk (t, ·) d−−−−→
k→∞

U(t, ·) as random distributions

Could the limit be trivial U(t, ·) ≡ 1 ?
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Main result III. Third moment in the critical window

We computed the sharp asymptotics of third moment

Theorem [CSZ 18a]

lim
ε↓0

E
[
〈uε(t, ·), φ〉3

]
= C (φ) <∞

Corollary

Any subseq. limit uεk (t, ·) d−→ U(t, ·) has the same covariance K (x , x ′)

 U(t, ·) 6≡ 1 is non-trivial

Recently [Gu Quastel Tsai 19] proved convergence of all moments
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Directed Polymer in Random Environment

Sn

N

z

I (Sn)n≥0 simple random walk on Zd

I Disorder: i.i.d. random variables ω(n, x)

zero mean, unit variance

λ(β) := log E[eβω(n,x)] <∞

I (-) Hamiltonian HN,β(ω,S) := β

N∑
n=1

ω(n,Sn) − λ(β)N

Partition Functions (N ∈ N, z ∈ Zd)

ZN,β(z) = Erw
[
eHN,β(ω,S)

∣∣∣S0 = z
]

=
1

(2d)N

∑
(s0,...,sN ) n.n.: s0=z

eHN,β(ω,s)
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Directed Polymer and SHE

Partition functions ZN,β(z) are discrete analogues of uε(t, x)

I They solve a lattice SHE

ZN+1(z)− ZN(z) = ∆ZN(z) + β ω̃(N + 1, z) Z̃N(z)

Alternative way of regularizing SHE (discretize vs. mollify)

I Quantitative analogy via Feynman-Kac formula for SHE

We can use partition functions ZN(z) to approximate uε(t, x)
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Feynman-Kac for SHE

Recall the mollified SHE

∂tu
ε = 1

2∆uε + βε u
ε ξε

uε(0, ·) ≡ 1

A stochastic Feynman-Kac formula holds

uε(t, x)
d
= Eε−1x

[
exp

(
βε ε

− d−2
2

∫ ε−2t

0

∫
R2

%(Bs − y) ξ(ds, dy) − q.v.

)]

where % ∈ C∞c (Rd) is the mollifier and B = (Bs)s≥0 is Brownian motion

We can identify uε(t, x) ≈ ZN,β(z) with

N = ε−2t z = ε−1x βε = ε
d−2
2 β
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In conclusion

Directed Polymers provides a friendly framework for SHE

All mentioned tools have “discrete stochastic analysis” analogues

Polynomial Chaos, Concentration Inequalities, Hypercontractivity, . . .

Probabilistic arguments (e.g. renewal theory) are often more transparent
for Directed Polymers than for SHE

Our results are first proved for Directed Polymer, then for SHE and KPZ

Robustness + Universality
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Thanks.
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