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α-Renewal Processes

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

Discrete renewal process τ = {0 = τ0 < τ1 < τ2 < . . .} ⊆ N0

Gaps (τi+1 − τi )i≥0 are i.i.d. integer-valued

Polynomial tail with infinite mean

P(τi+1 − τi = n) ∼ C

n1+α
, α ∈ (0, 1)

τ = {n ∈ N0 : Xn = 0} zero level set of a Markov chain on N0
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Bessel random walks

0
prob. 1
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Case α = 1
2  (reflected) simple random walk

I (α < 1
2) drift ≈ 1

x away from the origin (cα > 0)

I (α > 1
2) drift ≈ 1

x toward the origin (cα < 0)

P(τi+1 − τi = n) ∼ C

n1+α
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Pinning model

Quenched disorder: i.i.d. random variables (ω̃n)n∈N, indep. of τ

Gibbs change of measure Pω̃N of the renewal distribution P

dPω̃
N

dP
(τ) :=

1

Z ω̃
N

exp
(
H ω̃

N(τ)
)
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The effect of disorder

I Write ω̃n = βωn + h with E[ω1] = 0, Var[ω1] = 1

Parameters β ≥ 0, h ∈ R tune disorder strength, bias

I Finite exp. moments: E[etω1 ] <∞ for small t

Properties of Pω̃N for N large? Dependence on β, h?

Inspired by recent work of [Alberts, Quastel, Khanin] on DPRE,
we focus on the continuum limit of discrete pinning models

Rescale lattice 1
NN0 and coupling constants β = βN , h = hN :

does Pω̃N converge to a “continuum model” as N →∞?

Francesco Caravenna The Continuum Disordered Pinning Model July 28, 2014 7 / 16



Discrete pinning model The continuum limit Main results

The effect of disorder

I Write ω̃n = βωn + h with E[ω1] = 0, Var[ω1] = 1

Parameters β ≥ 0, h ∈ R tune disorder strength, bias

I Finite exp. moments: E[etω1 ] <∞ for small t

Properties of Pω̃N for N large? Dependence on β, h?

Inspired by recent work of [Alberts, Quastel, Khanin] on DPRE,
we focus on the continuum limit of discrete pinning models

Rescale lattice 1
NN0 and coupling constants β = βN , h = hN :

does Pω̃N converge to a “continuum model” as N →∞?

Francesco Caravenna The Continuum Disordered Pinning Model July 28, 2014 7 / 16



Discrete pinning model The continuum limit Main results

The effect of disorder

I Write ω̃n = βωn + h with E[ω1] = 0, Var[ω1] = 1

Parameters β ≥ 0, h ∈ R tune disorder strength, bias

I Finite exp. moments: E[etω1 ] <∞ for small t

Properties of Pω̃N for N large? Dependence on β, h?

Inspired by recent work of [Alberts, Quastel, Khanin] on DPRE,
we focus on the continuum limit of discrete pinning models

Rescale lattice 1
NN0 and coupling constants β = βN , h = hN :

does Pω̃N converge to a “continuum model” as N →∞?

Francesco Caravenna The Continuum Disordered Pinning Model July 28, 2014 7 / 16



Discrete pinning model The continuum limit Main results

The effect of disorder

I Write ω̃n = βωn + h with E[ω1] = 0, Var[ω1] = 1

Parameters β ≥ 0, h ∈ R tune disorder strength, bias

I Finite exp. moments: E[etω1 ] <∞ for small t

Properties of Pω̃N for N large? Dependence on β, h?

Inspired by recent work of [Alberts, Quastel, Khanin] on DPRE,
we focus on the continuum limit of discrete pinning models

Rescale lattice 1
NN0 and coupling constants β = βN , h = hN :

does Pω̃N converge to a “continuum model” as N →∞?

Francesco Caravenna The Continuum Disordered Pinning Model July 28, 2014 7 / 16



Discrete pinning model The continuum limit Main results

The effect of disorder

I Write ω̃n = βωn + h with E[ω1] = 0, Var[ω1] = 1

Parameters β ≥ 0, h ∈ R tune disorder strength, bias

I Finite exp. moments: E[etω1 ] <∞ for small t

Properties of Pω̃N for N large? Dependence on β, h?

Inspired by recent work of [Alberts, Quastel, Khanin] on DPRE,
we focus on the continuum limit of discrete pinning models

Rescale lattice 1
NN0 and coupling constants β = βN , h = hN :

does Pω̃N converge to a “continuum model” as N →∞?

Francesco Caravenna The Continuum Disordered Pinning Model July 28, 2014 7 / 16



Discrete pinning model The continuum limit Main results

Outline

1. Discrete pinning model

2. The continuum limit

3. Main results

Francesco Caravenna The Continuum Disordered Pinning Model July 28, 2014 8 / 16



Discrete pinning model The continuum limit Main results

Continuum limit of α-renewal processes

C :=
{

closed subsets of [0,∞)
}

compact Polish space

(Hausdorff distance  Fell-Matheron topology)

Renewal process τ = {τ0, τ1, . . .}  random subset of N0 ⊆ C

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

Rescaled renewal τ
N = { τ0N , τ1N , . . .}  random subset of 1

NN0 ⊆ C

Theorem

Consider any α-renewal processes: P(τi+1 − τi = n) ∼ C
n1+α

The law P(dτN ) of the rescaled renewal τ
N converges weakly on C

to a universal limit: the law P of α-stable regenerative set τ
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α-Stable Regenerative Set

τ is a random closed subset of [0,∞) (C-valued random variable)

• Scale invariance: cτ
d
= τ ∀c > 0 • dimH(τ ) = α a.s.

I α = 1
2 : rescaled simple RW converges to BM (Bt)t≥0

τ = {t ≥ 0 : Bt = 0} is the zero level set of BM

I α ∈ (0, 1): rescaled Bessel RWs converge to Bessel(δ) process

dXt = dBt +
cα
Xt

dt cα = 1
2 − α, δ = 2(1− α)

τ = {t ≥ 0 : Xt = 0} is the zero level set of (Xt)t≥0
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Continuum limit of pinning models?

Rescaled renewal law P(dτN ) is a probability on C, converges to P

The rescaled pinning model Pω̃N(dτN ) is a random probability on C

Does it converge to some random probability PW̃ on C ?

dPω̃N
dP

(dτ) ∝ exp
(
H ω̃
N(τ)

)

?
 

dPW̃

dP
(dτ ) ∝ exp

(
H W̃ (τ )

)

H ω̃
N(τ) =

N∑

n=1

1{n∈τ} ω̃n

?
 H W̃ (τ ) =

∫ 1

0
1{t∈τ} dW̃ t

where dW̃ t = β dW t + h dt and (W t)t≥0 standard BM

Leb(τ ) = 0 a.s. =⇒ integral is ill-defined!
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Continuum Disordered Pinning Model (CDPM)

Fix α ∈ (12 , 1) [Rescale βN = β̂N
1
2−α, hN = ĥN−α − 1

2β
2
N ]

Theorem (existence and universality of CDPM)

Pω̃N(dτN ) converges in distrib. to a random law PW̃ , called CDPM

Theorem (a.s. properties)

The CDPM has any a.s. property of α-stable regenerative set P

A ⊆ C, P(A) = 1 =⇒ PW̃ (A) = 1 , P(dW̃ )-a.s.

Example: A =
{
C ⊆ [0,∞) : dimH(C ) = α

}

Theorem (singularity)

The CDPM PW̃ is singular w.r.t. regenerative set P for P-a.e. W̃
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Sketch of the proof

Z ω̃N := E
[
eH

ω̃
N (τ)

]
(free) Ẑ ω̃N := E

[
eH

ω̃
N (τ) 1{N∈τ}

]
(constrained)

A :=

{

tx y0 N

}

Discrete pinning model

Pω̃N
(
A
)

=

Ẑ ω̃[0,x]
C

(y − x)1+α
Z ω̃[y ,N]

Z ω̃[0,N]

Probability determined by partition functions Ẑ and Z

(that have continuum limits Ẑ and Z . . . )
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Further observations

The CDPM yields sharp asymptotic predictions on free energy and
critical curve, for α ∈ (12 , 1), in the weak coupling regime β, h→ 0

What happens for α ∈ (0, 12)? There is no CDPM!

Conjecture

Fix β > 0 small (and h = 0, for simplicity): the rescaled pinning
model Pω̃N(dτN ) converges to the law P of α-stable regenerative set

Disorder relevance α ∈ (12 , 1) vs. disorder irrelevance α ∈ (0, 12)

Marginal case α = 1
2 is under investigation. . .
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Thanks
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