

Polynomial Chaos and Scaling Limits of Disordered Systems

1. Introduction and overview

Francesco Caravenna

Università degli Studi di Milano-Bicocca

YEP XIII, Eurandom ~ March 7-11, 2016

Coworkers

Joint work with Nikos Zygouras (Warwick) and Rongfeng Sun (NUS)

Overview

Consider a **homogeneous system**, described by a probability measure \mathbf{P}^{ref} on some configuration space (*with “interesting” large scale properties*)

Perturb it in a inhomogeneous way, defining a **disordered system** \mathbf{P}^ω

$$\mathbf{P}^\omega(d\sigma) \propto e^{H^\omega(\sigma)} \mathbf{P}^{\text{ref}}(d\sigma) \quad \text{disorder } \omega = \text{“random landscape”}$$

Are large scale properties affected by (a small amount of) disorder?

Is the law \mathbf{P}^ω radically different from \mathbf{P}^{ref} ?

Disorder relevance vs. irrelevance

We are going to look at this problem in the **weak disorder regime**

General framework (“model independent”) \rightsquigarrow **Universality**

Overview

General framework \leadsto concrete examples

1. Directed polymer in random environment (perturb. of random walk)
2. Disordered pinning models (perturb. of renewal process)
3. Random-field Ising model

1'. **Stochastic Heat Equation**

(Inspired by [Alberts, Khanin, Quastel 2014] on directed polymers)

- ▶ This lecture: general introduction and overview
- ▶ Next lectures: more specific issues

Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Sketch of the proof

Outline

1. Homogeneous systems

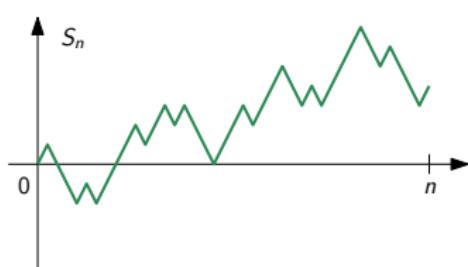
2. Disordered systems

3. Main results

4. Sketch of the proof

1. Random walk

$\mathbf{P}^{\text{ref}} = \text{law of symm. random walk on } \mathbb{Z}^d$



$$S = (S_n)_{n \geq 0}$$

with i.i.d. increments $S_n - S_{n-1}$

S attracted to α -stable Lévy process
Brownian motion

$$\begin{cases} \mathbf{E}^{\text{ref}}[|S_1|^2] < \infty & \text{if } \alpha = 2 \\ \mathbf{P}^{\text{ref}}(|S_1| > x) \sim \frac{C}{x^\alpha} & \text{if } 0 < \alpha < 2 \end{cases}$$

Alternative “language”

Define “spin” variable $\sigma_{n,x}$ in each space-time point

$$\sigma_{n,x} := \mathbb{1}_{\{S_n=x\}} \in \{0, 1\}$$

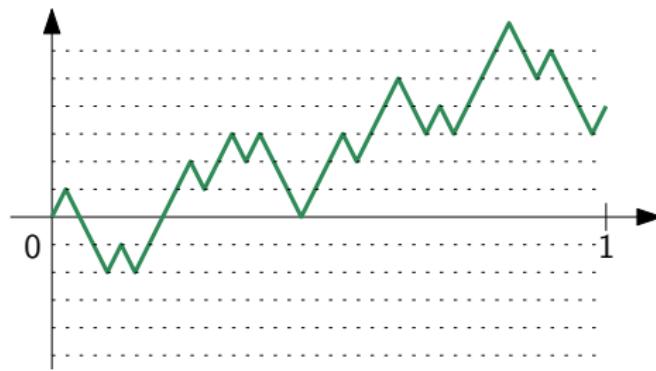
The random field $(\sigma_{n,x})_{(n,x) \in \mathbb{N}_0 \times \mathbb{Z}^d}$ is far from independent!

1. Random walk - large scale properties

Diffusive rescaling

$$S^\delta = (\sqrt{\delta} S_{\frac{t}{\delta}})_{t \geq 0}$$

$$\mathbb{T}_\delta := \delta \mathbb{N}_0 \times (\sqrt{\delta} \mathbb{Z})^d$$

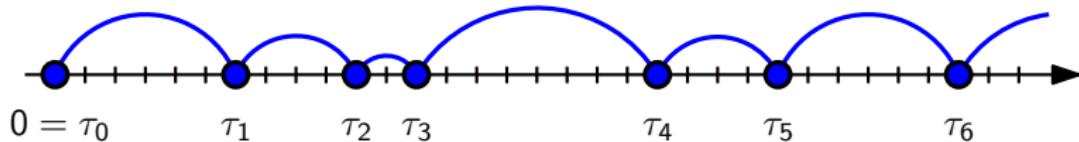


$$\delta = \frac{1}{N}$$

S^δ converges in law to BM as $\delta \rightarrow 0$

(Donsker)

2. Renewal process



$\mathbf{P}^{\text{ref}} = \text{law of a renewal process}$ ($= \text{RW with positive increments}$)

$$\mathbf{P}^{\text{ref}}((\tau_{i+1} - \tau_i) = n) \sim \frac{c}{n^{1+\alpha}} \quad \text{tail exponent } \alpha \in (0, 1)$$

$\tau = \{0 = \tau_0 < \tau_1 < \tau_2 < \dots\} \subseteq \mathbb{N}_0$ viewed as a random subset

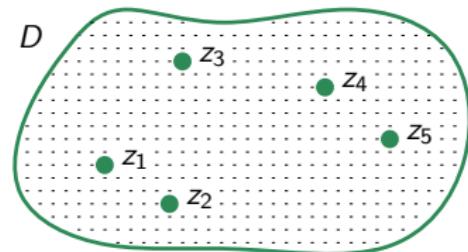
“spins” $\sigma_n := \mathbb{1}_{\{n \in \tau\}} \in \{0, 1\}$

$\mathbb{T}_\delta = \delta \mathbb{N}_0$ $\delta \tau \xrightarrow{d}$ α -stable regenerative set (as $\delta \rightarrow 0$)

The general setup

Lattice $\mathbb{T}_\delta \subseteq D \subseteq \mathbb{R}^d$ (mesh $\approx \delta$)

$z \mapsto$ two-valued field $\sigma_z \in \{0, 1\}$



- ▶ $\mathcal{S} = \{0, 1\}^{\mathbb{T}_\delta}$ space of spin configurations $\sigma = (\sigma_z)_{z \in \mathbb{T}_\delta}$
- ▶ $\mathbf{P}_\delta^{\text{ref}}$ “interesting” probability on \mathcal{S}

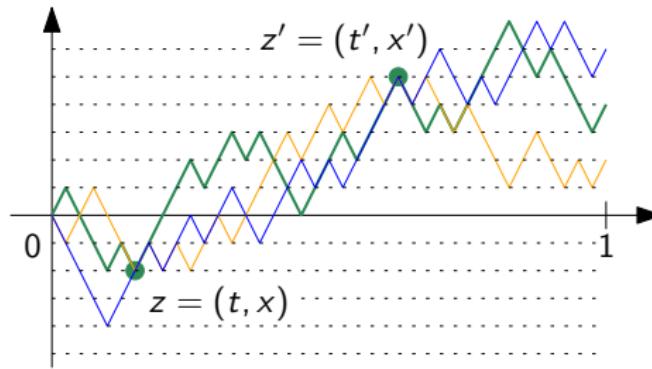
Typically $\mathbf{P}_\delta^{\text{ref}}$ has a non-trivial continuum limit as $\delta \rightarrow 0$

Assumption: non-trivial correlations

$$\exists \gamma > 0 : \frac{\mathbf{P}_\delta^{\text{ref}}(\sigma_{\{z_1, z_2, \dots, z_k\}} = 1)}{(\delta^\gamma)^k} \xrightarrow[\delta \rightarrow 0]{} \psi_k(z_1, \dots, z_k)$$

Example 1. Random walk

Large-scale correlations on $\mathbb{T}_\delta := \delta \mathbb{N}_0 \times (\sqrt{\delta} \mathbb{Z})^d$

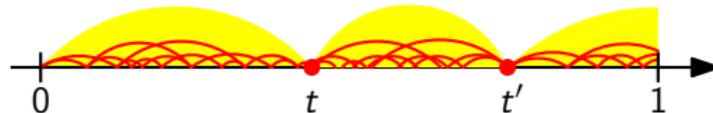


$$\delta = \frac{1}{N}$$

$$\frac{\mathbf{P}_\delta^{\text{ref}}(\sigma_z = 1, \sigma_{z'} = 1)}{(\delta^{\frac{d}{2}})^2} \xrightarrow{\delta \rightarrow 0} \psi(z, z') = \frac{e^{-\frac{|x|^2}{2t}}}{(2\pi t)^{\frac{d}{2}}} \frac{e^{-\frac{|x' - x|^2}{2(t' - t)}}}{(2\pi(t' - t))^{\frac{d}{2}}}$$

Example 2. Renewal process

Large-scale correlations on $\mathbb{T}_\delta := \delta \mathbb{N}_0$



$$\frac{\mathbf{E}_\delta^{\text{ref}}[\sigma_t \sigma_{t'}] \mathbf{P}_\delta^{\text{ref}}(t \in \tau, t' \in \tau)}{(\delta^{1-\alpha})^2} \xrightarrow{\delta \rightarrow 0} \psi(t, t') = \frac{c'}{t^{1-\alpha}} \frac{c'}{(t' - t)^{1-\alpha}}$$

Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Sketch of the proof

Enters disorder

$(\omega_z)_{z \in \mathbb{T}_\delta}$ i.i.d. random variables (e.g. $\mathcal{N}(0, 1)$)

$$\mathbb{E}[\omega_z] = 0 \quad \mathbb{E}[\omega_z^2] = 1 \quad \lambda(\beta) = \log \mathbb{E}[e^{\beta \omega_z}] < \infty$$

Each site $z \in \mathbb{T}_\delta$ carries a **charge** ω_z that can be

$$\begin{cases} > 0 & \text{reward} \\ < 0 & \text{penalty} \end{cases}$$

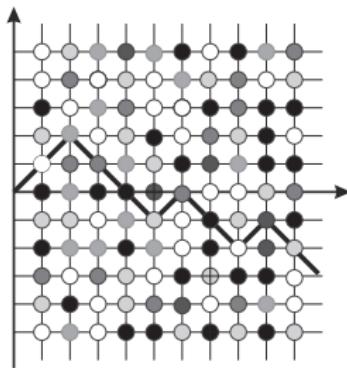
Spatial inhomogeneities in $\mathbf{P}_\delta^{\text{ref}}(d\sigma) \rightsquigarrow$ new probability law $\mathbf{P}_\delta^\omega(d\sigma)$

Gibbs measure: $\mathbf{P}_\delta^\omega(d\sigma) := \frac{1}{Z_\delta^\omega} e^{\mathbf{H}^\omega(\sigma)} \mathbf{P}_\delta^{\text{ref}}(d\sigma)$

(-) Energy: $\sigma \mapsto \mathbf{H}^\omega(\sigma) := \sum_{z \in \mathbb{T}_\delta} (\beta \omega_z + h - \lambda(\beta) + h) \sigma_z$

$\beta \geq 0$ disorder strength $h \in \mathbb{R}$ disorder bias

1. Directed Polymer in Random Environment (random walk)



- ▶ Symmetric random walk $S = (S_n)_{n \geq 0}$ on \mathbb{Z}^d attracted to BM (finite variance)
- ▶ $\omega_{n,x} > 0$ reward $\omega_{n,x} < 0$ penalty
- ▶ “spin” $\sigma_{n,x} := \mathbb{1}_{\{S_n=x\}} \in \{0, 1\}$

Directed polymer in random environment ($N = 1/\delta$ steps)

$$\mathbf{P}^\omega(S) = \frac{1}{Z_\delta^\omega} e^{\sum_{n=1}^N (\beta \omega_{n,S_n} - \lambda(\beta) + h)} \mathbf{P}^{\text{ref}}(S)$$

RW paths in corridors of large $\omega > 0$ have high probability (energy gain)
 ... but such paths are few! (entropy loss) \rightsquigarrow Who wins?

1. Directed Polymer in Random Environment (random walk)

- ▶ $[d \geq 3, \beta > 0 \text{ small}] \quad \mathbf{P}^{\omega} \text{ "similar" to } \mathbf{P}^{\text{ref}} \quad (\text{entropy wins})$

$$\frac{S_N}{\sqrt{N}} \text{ under } \mathbf{P}^{\omega} \xrightarrow[N \rightarrow \infty]{d} \mathcal{N}(0, 1) \quad (\mathbb{P}(d\omega)\text{-a.s.})$$

i.e. the same under \mathbf{P}^{ref} [Imbrie, Spencer 1988] [Bolthausen 1989]

- ▶ $[d \leq 2, \text{ any } \beta > 0] \quad \mathbf{P}^{\omega} \text{ "different" from } \mathbf{P}^{\text{ref}} \quad (\text{energy wins})$

$$\max_{x \in \mathbb{Z}^d} \mathbf{P}^{\omega}(S_N = x) \geq c > 0 \quad (\mathbb{P}(d\omega)\text{-a.s.})$$

unlike $\mathbf{P}^{\text{ref}}(S_N = x) = O\left(\frac{1}{\sqrt{N}}\right) = o(1)$ [Carmona, Hu 2002]

[Comets, Shiga, Yoshida 2003]
[Vargas 2007]

For DPRE disorder is **irrelevant** for $d \geq 3$ and **relevant** for $d \leq 2$
($d = 2$ is actually **marginally relevant**, cf. below)

Disorder Relevance vs. Irrelevance

Does arbitrarily small (but fixed!) disorder affect large scale properties?

Is \mathbf{P}_δ^ω qualitatively different from $\mathbf{P}_\delta^{\text{ref}}$?

$[\delta \rightarrow 0 \ (N \rightarrow \infty) \text{ with fixed } \beta > 0]$

YES: model is disorder **relevant**

NO: model is disorder **irrelevant**

2. Disordered Pinning Model (renewal process + disorder)

$$\mathbf{P}^{\text{ref}}(\tau_1 = n) \sim \frac{c}{n^{1+\alpha}}$$

$[\alpha > \frac{1}{2}]$ disorder **relevant**

$[\alpha < \frac{1}{2}]$ disorder **irrelevant**

$[\alpha = \frac{1}{2}]$ **marginal**: (ir)relevance depends on finer details

(cf. **free energy** and **critical exponents**)

[References: ...]

What are we going to do?

We focus on models P_δ^ω which are disorder relevant

Any fixed disorder strength $\beta > 0$, no matter how small, has dramatic effects in the large scale regime $\delta \rightarrow 0$ (i.e. $N \rightarrow \infty$)

Weak disorder regime

Can we tune $\beta \rightarrow 0$ as $\delta \rightarrow 0$ and still see interesting effects on P_δ^ω ?
(For instance, does P_δ^ω converge to a random limit law P^W ?)

YES! This is the goal of our course
Very robust approach \longleftrightarrow Universality

Outline

1. Homogeneous systems

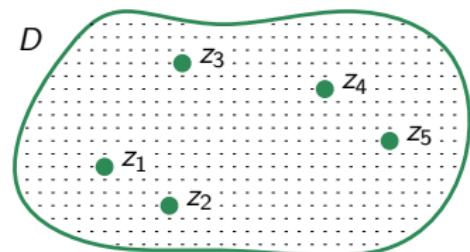
2. Disordered systems

3. Main results

4. Sketch of the proof

Key assumption (disorder relevant vs. marginal)

- ▶ Lattice $\mathbb{T}_\delta \subseteq D \subseteq \mathbb{R}^d$ (mesh $\approx \delta$)
- Two-valued field $\sigma = (\sigma_z)_{z \in \mathbb{T}_\delta}$
- ▶ $\mathbf{P}_\delta^{\text{ref}}$ interesting probability for σ



$$\exists \gamma > 0 : \quad \frac{\mathbf{E}_\delta^{\text{ref}} [\sigma_{z_1} \sigma_{z_2} \cdots \sigma_{z_k}]}{(\delta^\gamma)^k} \xrightarrow[\delta \rightarrow 0]{} \frac{L^2(D)}{\delta \rightarrow 0} \rightarrow \psi_k(z_1, \dots, z_k) \quad (*)$$

L^2 characterizes disorder relevant regime! (Harris criterion)

1. DPRE. $\psi(t, x) = \frac{e^{-\frac{|x|^2}{2t}}}{(2\pi t)^{\frac{d}{2}}}$ $L^2([0, 1] \times \mathbb{R}^d) \rightsquigarrow d < 2$

2. Pinning. $\psi(t) = \frac{c'}{t^{1-\alpha}}$ $L^2([0, 1]) \rightsquigarrow \alpha > \frac{1}{2}$ marginal!

The partition function

Recall the definition of the disordered system

$$\mathbf{P}_\delta^\omega(d\sigma) := \frac{1}{Z_\delta^\omega} e^{\mathbf{H}^\omega(\sigma)} \mathbf{P}_\delta^{\text{ref}}(d\sigma)$$

We focus on the normalizing constant Z_δ^ω called partition function

$$Z_\delta^\omega = \mathbf{E}^{\text{ref}} \left[e^{\mathbf{H}^\omega(\sigma)} \right] = \mathbf{E}^{\text{ref}} \left[\exp \left(\sum_{z \in \mathbb{T}_\delta} (\beta \omega_z - \lambda(\beta) + h) \sigma_z \right) \sum_{1 \leq n \leq N} (\beta \omega_{(n, S_n)} - \lambda(\beta)) \right]$$

DPRE: sample ω 's along a RW path $(S_n)_{n \geq 0}$, then average their exp

The partition function Z_δ^ω encodes the key properties of \mathbf{P}_δ^ω

- ▶ Z_δ^ω is simpler than $\mathbf{P}_\delta^\omega(d\sigma)$ (random number vs. random measure)
- ▶ It is still a complicated function of i.i.d. random variables $(\omega_x)_{x \in \mathbb{T}_\delta}$

Plan of the course

Key Result (scaling limit of Z_δ^ω)

The partition function Z_δ^ω has a non-trivial limit in distribution Z^W (continuum partition function) when $\beta, h \rightarrow 0$ at suitable rates as $\delta \downarrow 0$

- A. disorder relevant systems
- B. marginal systems

- ▶ Lecture I. Key Result A
 - ▶ Sketch of the proof
 - ▶ Lindeberg principle for polynomial chaos
- ▶ Lecture II. Some consequences of Key Result A
 - ▶ Disordered continuum model
 - ▶ Free energy estimates
- ▶ Lecture III. Key Result B
 - ▶ DPRE $d = 2$, Pinning $\alpha = \frac{1}{2}$, 2d Stochastic Heat Equation

Key Result A (disorder relevant systems)

Theorem A [C., Sun, Zygouras '15+]

Let $\mathbf{P}_\delta^{\text{ref}}$ satisfy (\star) with exponent γ and dimension d .

If we scale $\beta, h \rightarrow 0$ appropriately:

$$\beta := \hat{\beta} \delta^{d/2-\gamma} \quad h := \hat{h} \delta^{d-\gamma} \quad (\hat{\beta}, \hat{h} \text{ fixed})$$

the partition function has a non-trivial limit in law: $\mathbf{Z}_\delta^\omega \xrightarrow[\delta \downarrow 0]{d} \mathcal{Z}^W$

The limit \mathcal{Z}^W is explicit function of $W(dx) := \text{white noise on } \mathbb{R}^d$

$$\mathcal{Z}^W := \sum_{k=0}^{\infty} \frac{1}{k!} \int \cdots \int_{\Omega^k} \psi_k(z_1, \dots, z_k) \prod_{i=1}^k (\hat{\beta} W(dz_i) + \hat{h} dz_i)$$

(Wiener chaos expansion)

Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Sketch of the proof

The partition function

Let us take a breath... Forget about $P_\delta^\omega(d\sigma)$

Just look at the **partition function** Z_δ^ω from a probabilistic viewpoint:

$$Z_\delta^\omega = \mathbf{E}^{\text{ref}} \left[\exp \left(\sum_{z \in \mathbb{T}_\delta} (\beta \omega_z - \lambda(\beta) + h) \sigma_z \sum_{1 \leq n \leq N} (\beta \omega_{(n, S_n)} - \lambda(\beta) + h) \right) \right]$$

DPRE: sample ω 's along a RW path $(S_n)_{n \geq 0}$, then average their exp

Problem

Z_δ^ω is a **complicated function** of i.i.d. random variables $(\omega_x)_{x \in \mathbb{T}_\delta}$

How to study its convergence in law as $\delta \rightarrow 0$?

Solution

Z_δ^ω is a **simpler function** of **other** i.i.d. random variables $(X_x)_{x \in \mathbb{T}_\delta}$

Sketch of the approach: Polynomial Chaos

1. **Linearization.** Since $\sigma_x \in \{0, 1\}$, every function of σ_x is linear

$$Z_\delta^\omega = \mathbf{E}_\delta^{\text{ref}} \left[e^{\sum_{x \in \mathbb{T}_\delta} (\beta \omega_x - \lambda(\beta) + h) \sigma_x} \right] = \mathbf{E}_\delta^{\text{ref}} \left[\prod_{x \in \mathbb{T}_\delta} e^{(\beta \omega_x - \lambda(\beta) + h) \sigma_x} \right] = \mathbf{E}_\delta^{\text{ref}} \left[\prod_{x \in \mathbb{T}_\delta} (1 + (\beta \omega_x - \lambda(\beta) + h) \sigma_x) \right]$$

where $X_x := e^{\beta \omega_x - \lambda(\beta) + h} - 1$. **New random variables** (X_x) with

$$\mathbb{E}[X_x] \simeq h \quad \mathbb{V}\text{ar}[X_x] \simeq \beta^2$$

2. **High-temperature expansion.** By a binomial expansion of the product

$$Z_\delta^\omega = \sum_{k=0}^{|\mathbb{T}_\delta|} \frac{1}{k!} \sum_{(x_1, \dots, x_k) \in (\mathbb{T}_\delta)^k} \mathbf{E}_\delta^{\text{ref}} [\sigma_{x_1} \cdots \sigma_{x_k}] X_{x_1} \cdots X_{x_k}$$

Multilinear polynomial of random variables X_x 's \rightsquigarrow Decoupling!

Formally replace $\sum \rightsquigarrow \int$ and $X_{x_i} \rightsquigarrow W(dx_i)$. Justification?

A concrete example: Disordered Pinning Model

Pinning Models with $\alpha > \frac{1}{2}$ (disorder relevant)

$[\delta = \frac{1}{N}]$

$$Z_\delta^\omega \approx 1 + \sum_{0 < n \leq N} \frac{X_n}{n^{1-\alpha}} + \sum_{0 < m < n \leq N} \frac{X_m}{m^{1-\alpha}} \frac{X_n}{(n-m)^{1-\alpha}} + \dots$$

Rescaling $\beta \sim \delta^{\alpha - \frac{1}{2}}$ ($h \equiv 0$ for simplicity)

$$\xrightarrow[\delta \rightarrow 0]{} 1 + \int_{0 < t < 1} \frac{dW_t}{t^{1-\alpha}} + \int_{0 < s < t < 1} \frac{dW_s}{s^{1-\alpha}} \frac{dW_t}{(t-s)^{1-\alpha}} + \dots$$

Intriguing question: what happens for $\alpha = \frac{1}{2}$?

This is **marginal!** Like 2d DPRE and 2d Stochastic Heat Equation

Justification

General problem: convergence in law for random variables of the form

Polynomial chaos

$$\begin{aligned} Z = \Psi(X) &= \psi(\emptyset) + \sum_{i \in \mathbb{T}} \psi(i) X_i + \frac{1}{2} \sum_{i \neq j \in \mathbb{T}} \psi(i, j) X_i X_j + \dots \\ &= \sum_{I \subseteq \mathbb{T}} \psi(I) \prod_{i \in I} X_i \end{aligned}$$

$X = (X_i)_{i \in \mathbb{T}}$ independent (possibly non i.d.) random variables in L^2

- ▶ Can we pretend that X_i 's are i.i.d. Gaussians?
YES, thanks to a **Lindeberg principle** that we now discuss
- ▶ Can we replace Gaussian X_i 's by white noise $W(dx_i)$?
YES, by coupling + L^2 estimates

Variance and influences

Fix a multi-linear polynomial

$$\Psi(x) = \sum_{I \subseteq \mathbb{T}} \psi(I) x^I \quad \text{with} \quad x^I := \prod_{i \in I} x_i$$

$$\text{C}_\Psi := \sum_{I \subseteq \mathbb{T}, I \neq \emptyset} \psi(I)^2 = \text{Var}[\Psi(X)]$$

$$\text{Inf}_i[\Psi] := \sum_{I \subseteq \mathbb{T}, I \ni i} \psi(I)^2 = \mathbb{E}[\text{Var}[\Psi(X) | X_{\mathbb{T} \setminus \{i\}}]]$$

For any family of r.v.'s $X = (X_i)_{i \in \mathbb{T}}$ with $\mathbb{E}[X_i] = 0$ $\text{Var}[X_i] = 1$

$\text{Inf}_i[\Psi]$ quantifies how much $\Psi(x)$ depends on the variable x_i

Noise sensitivity [Benjamini, Kalai, Schramm 2001] [Garban, Steif 2012]

Lindeberg Principle

If influences $\text{Inf}_i(\Psi)$ are small, the law of $\Psi(X)$ is insensitive to the details of the laws of the individual X_i 's

- ▶ Fix a multi-linear polynomial $\Psi(x) = \sum_{I \subseteq \mathbb{T}, |I| \leq \ell} \psi(I) x^I$ of degree ℓ
- ▶ $X = (X_i)_{i \in \mathbb{T}}$, $X' = (X'_i)_{i \in \mathbb{T}}$ indep. with zero mean, unit variance

$$m_3 := \max_{i \in \mathbb{T}} (\mathbb{E}[|X_i|^3] \vee \mathbb{E}[|X'_i|^3]) < \infty$$

Theorem [Mossel, O'Donnell, Oleszkiewicz 2010]

$$\begin{aligned} \text{dist}(\Psi(X), \Psi(X')) &:= \sup_{f \in C^3: \|f'\|_\infty, \|f''\|_\infty, \|f'''\|_\infty \leq 1} |\mathbb{E}[f(\Psi(X))] - \mathbb{E}[f(\Psi(X'))]| \\ &\leq 30^\ell C_\Psi m_3^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])} \end{aligned}$$

Lindeberg Principle

We can go beyond finite 3rd moment. Define the truncated moments

$$m_2^{>M} := \sup_{X \in \{X_i, X'_i\}} \mathbb{E}[X^2 \mathbb{1}_{\{|X| > M\}}] \quad m_3^{\leq M} := \sup_{X \in \{X_i, X'_i\}} \mathbb{E}[|X|^3 \mathbb{1}_{\{|X| \leq M\}}]$$

Theorem [C., Sun, Zygouras 2015+]

$$\text{dist}(\Psi(X), \Psi(X'))$$

$$\leq 70^{\ell+1} C_\Psi \left\{ m_2^{>M} + \left(m_3^{\leq M} \right)^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])} \right\} \leq e^{\frac{2}{\varepsilon}} \Sigma$$

- ▶ Explicit, non-asymptotic estimate!
- ▶ Extension to the case $\mathbb{E}[X_i] = \mathbb{E}[X'_i] = \mu_i \neq 0$

$$\Psi^\varepsilon(x) = \sum_{I \subseteq \mathbb{T}} (1 + \varepsilon)^{|I|} \psi(I) x^I$$

Lindeberg Principle

$$\text{dist}(\Psi(X), \Psi(X')) \leq 70^{\ell+1} C_\Psi \left\{ m_2^{>M} + \left(m_3^{\leq M} \right)^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])} \right\}$$

Corollary

Consider a **family** $(\Psi_\delta)_{\delta > 0}$ of multi-linear polynomials

- ▶ Assume $\sup_{\delta > 0} C_{\Psi_\delta} < \infty$ $\max_{i \in \mathbb{T}_\delta} (\text{Inf}_i[\Psi_\delta]) \xrightarrow[\delta \rightarrow 0]{} 0$
- ▶ Take $(X_{\delta,i}), (X'_{\delta,i})$ with zero mean, unit variance and **u.i. squares**

$$\lim_{M \rightarrow \infty} m_2^{>M} := \sup_{X \in \{X_{\delta,i}, X'_{\delta,i}\}} \mathbb{E}[X^2 \mathbb{1}_{\{|X| > M\}}] = 0$$

Then

$$\boxed{\text{dist}(\Psi_\delta(X_\delta), \Psi_\delta(X'_\delta)) \xrightarrow[\delta \rightarrow 0]{} 0}$$

Does $\Psi_N(X_\delta)$ have a limit in law as $\delta \rightarrow 0$? Check it for Gaussian X_δ 's !

References

- ▶ T. Alberts, K. Khanin, J. Quastel
The intermediate disorder regime for directed polymers in dimension 1 + 1
Ann. Probab. 42 (2014), 1212–1256
- ▶ T. Alberts, K. Khanin, J. Quastel
The Continuum Directed Random Polymer
J. Stat. Phys. 154 (2014), 305–326
- ▶ E. Bolthausen
A note on diffusion of directed polymers in a random environment
Commun. Math. Phys. 123 (1989), 529534.
- ▶ F. Caravenna, R. Sun, N. Zygouras
Polynomial chaos and scaling limits of disordered systems
J. Eur. Math. Soc. (JEMS), to appear

References

- ▶ F. Caravenna, R. Sun, N. Zygouras
Universality in marginally relevant disordered systems
preprint (2015)
- ▶ P. Carmona, Y. Hu
On the partition function of a directed polymer in a random environment
Probab. Theory Related Fields 124 (2002), 431–457
- ▶ F. Comets, T. Shiga, N. Yoshida
Directed Polymers in Random Environment: Path Localization and Strong Disorder
Bernoulli 9 (2003), 705–723
- ▶ J.Z. Imbrie, T. Spencer
Diffusion of directed polymer in a random environment
J. Stat. Phys. 52 (1988), 609–626