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Overview

Consider a homogeneous system, described by a probability measure P
ref

on some configuration space (with “interesting” large scale properties)

Perturb it in a inhomogeneous way, defining a disordered system P
ω

P
ω(dσ) ∝ eH

ω(σ)
P

ref(dσ) disorder ω = “random landscape”

Are large scale properties affected by (a small amount of) disorder?

Is the law P
ω radically different from P

ref?

Disorder relevance vs. irrelevance

We are going to look at this problem in the weak disorder regime

General framework (“model independent”)  Universality
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Overview

General framework ! concrete examples

1. Directed polymer in random environment (perturb. of random walk)

2. Disordered pinning models (perturb. of renewal process)

3. Random-field Ising model

1’. Stochastic Heat Equation

(Inspired by [Alberts, Khanin, Quastel 2014] on directed polymers)

◮ This lecture: general introduction and overview

◮ Next lectures: more specific issues
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Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Sketch of the proof
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1. Random walk

0 n

Sn

P
ref = law of symm. random walk on Z

d

S = (Sn)n≥0

with i.i.d. increments Sn − Sn−1

S attracted to α-stable Lévy process
Brownian motion






E
ref [|S1|2] <∞ if α = 2

P
ref
(

|S1| > x
)

∼ C

xα
if 0 < α < 2

Alternative “language”

Define “spin” variable σn,x in each space-time point

σn,x := 1{Sn=x} ∈ {0, 1}

The random field (σn,x)(n,x)∈N0×Zd is far from independent!
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1. Random walk - large scale properties

Diffusive rescaling Sδ = (
√
δ S t

δ
)t≥0 Tδ := δN0 × (

√
δZ)d

0 1

δ =
1

N

Sδ converges in law to BM as δ → 0 (Donsker)

Francesco Caravenna Scaling Limits of Disordered Systems March 7-11, 2016 8 / 34



Homogeneous systems Disordered systems Main results Proof

2. Renewal process

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

P
ref = law of a renewal process (= RW with positive increments)

P
ref
(

(τi+1 − τi ) = n
)

∼ c

n1+α
tail exponent α ∈ (0, 1)

τ = {0 = τ0 < τ1 < τ2 < . . .} ⊆ N0 viewed as a random subset

“spins” σn := 1{n∈τ} ∈ {0, 1}

Tδ = δN0 δτ
d−−→ α-stable regenerative set (as δ → 0)
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The general setup

Lattice Tδ ⊆ D ⊆ R
d (mesh ≈ δ)

z 7−→ two-valued field σz ∈ {0, 1}

z3

z2

z4

z5
z1

D

◮ S = {0, 1}Tδ space of spin configurations σ = (σz)z∈Tδ

◮ P
ref

δ “interesting” probability on S

Typically P
ref

δ has a non-trivial continuum limit as δ → 0

Assumption: non-trivial correlations

∃γ > 0 :
P

ref

δ

(

σ{z1,z2,...,zk} = 1
)

(δγ)k
−−−−→
δ→0

ψk(z1, . . . , zk)
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Example 1. Random walk

Large-scale correlations on Tδ := δN0 × (
√
δZ)d

0 1

z = (t, x)

z ′ = (t ′, x ′)

δ =
1

N

P
ref

δ

(

σz = 1, σz′ = 1
)

(δ
d
2 )2

−−−−→
δ→0

ψ(z , z ′) =
e−

|x|2

2t

(2πt)
d
2

e
− |x′−x|2

2(t′−t)

(2π(t ′ − t))
d
2
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Example 2. Renewal process

Large-scale correlations on Tδ := δN0

t t ′0 1

E
ref

δ [σt σt′ ]P
ref

δ (t ∈ τ, t ′ ∈ τ)

(δ1−α)2
−−−−→
δ→0

ψ(t, t ′) =
c ′

t1−α

c ′

(t ′ − t)1−α
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Enters disorder

(ωz)z∈Tδ
i.i.d. random variables (e.g. N (0, 1))

E[ωz ] = 0 E[ω2
z ] = 1 λ(β) = logE[eβωz ] <∞

Each site z ∈ Tδ carries a charge ωz that can be

{

> 0 reward

< 0 penalty

Spatial inhomogeneities in P
ref

δ (dσ)  new probability law P
ω
δ (dσ)

Gibbs measure: P
ω
δ (dσ) :=

1

Z
ω
δ

eH
ω(σ)

P
ref

δ (dσ)

(−) Energy: σ 7→ H
ω(σ) :=

∑

z∈Tδ

(

β ωz + h − λ(β) + h
)

σz

β ≥ 0 disorder strength h ∈ R disorder bias
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1. Directed Polymer in Random Environment (random walk)

◮ Symmetric random walk S = (Sn)n≥0 on Z
d

attracted to BM (finite variance)

◮ ωn,x > 0 reward ωn,x < 0 penalty

◮ “spin” σn,x := 1{Sn=x} ∈ {0, 1}

Directed polymer in random environment (N = 1/δ steps)

P
ω(S) =

1

Z
ω
δ

e
∑N

n=1(βωn,Sn−λ(β)+h)
P

ref(S)

RW paths in corridors of large ω > 0 have high probability (energy gain)

. . . but such paths are few! (entropy loss)  Who wins?
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1. Directed Polymer in Random Environment (random walk)

◮ [d ≥ 3, β > 0 small] P
ω “similar” to P

ref (entropy wins)

SN√
N

under P
ω d−−−−→

N→∞
N (0, 1) (P(dω)-a.s.)

i.e. the same under Pref
[Imbrie, Spencer 1988] [Bolthausen 1989]

◮ [d ≤ 2, any β > 0] P
ω “different” from P

ref (energy wins)

max
x∈Zd

P
ω
(

SN = x
)

≥ c > 0 (P(dω)-a.s.)

unlike P
ref(SN = x) = O

(

1√
N

)

= o(1) [Carmona, Hu 2002]

[Comets, Shiga, Yoshida 2003]

[Vargas 2007]

For DPRE disorder is irrelevant for d ≥ 3 and relevant for d ≤ 2

(d = 2 is actually marginally relevant, cf. below)
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Disorder Relevance vs. Irrelevance

Does arbitrarily small (but fixed!) disorder affect large scale properties?

Is P
ω
δ qualitatively different from P

ref

δ ?

[ δ → 0 (N → ∞) with fixed β > 0 ]

YES: model is disorder relevant NO: model is disorder irrelevant

2. Disordered Pinning Model (renewal process + disorder)

P
ref(τ1 = n) ∼ c

n1+α

[

α > 1
2

]

disorder relevant
[

α < 1
2

]

disorder irrelevant
[

α = 1
2

]

marginal: (ir)relevance depends on finer details

(cf. free energy and critical exponents) [References: . . . ]
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What are we going to do?

We focus on models P
ω
δ which are disorder relevant

Any fixed disorder strength β > 0 , no matter how small, has dramatic
effects in the large scale regime δ → 0 (i.e. N → ∞)

Weak disorder regime

Can we tune β → 0 as δ → 0 and still see interesting effects on P
ω
δ ?

(For instance, does P
ω
δ converge to a random limit law PW ?)

YES! This is the goal of our course

Very robust approach ! Universality
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Key assumption (disorder relevant vs. marginal)

◮ Lattice Tδ ⊆ D ⊆ R
d (mesh ≈ δ)

Two-valued field σ = (σz)z∈Tδ

◮ P
ref

δ interesting probability for σ

z3

z2

z4

z5
z1

D

∃γ > 0 :
E
ref

δ

[

σz1 σz2 · · ·σzk
]

(δγ)k
−−−−→

δ→0

L2(D)−−−−→
δ→0

ψk(z1, . . . , zk) (⋆)

L2 characterizes disorder relevant regime! (Harris criterion)

1. DPRE. ψ(t, x) =
e−

|x|2

2t

(2πt)
d
2

L2([0, 1]× R
d)  d < 2

2. Pinning. ψ(t) =
c ′

t1−α
L2([0, 1])  α > 1

2 marginal!
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The partition function

Recall the definition of the disordered system

P
ω
δ (dσ) :=

1

Zω
δ

eH
ω(σ)

P
ref

δ (dσ)

We focus on the normalizing constant Z
ω
δ called partition function

Z
ω
δ = E

ref

[

eH
ω(σ)

]

= E
ref

[

exp

(

∑

z∈Tδ

(βωz−λ(β)+h)σz
∑

1≤n≤N

(

βω(n,Sn)−λ(β)

DPRE: sample ω’s along a RW path (Sn)n≥0, then average their exp

The partition function Z
ω
δ encodes the key properties of P

ω
δ

◮ Z
ω
δ is simpler than P

ω
δ (dσ) (random number vs. random measure)

◮ It is still a complicated function of i.i.d. random variables (ωx)x∈Tδ
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Plan of the course

Key Result (scaling limit of Z
ω

δ )

The partition function Z
ω
δ has a non-trivial limit in distribution ZW

(continuum partition function) when β, h → 0 at suitable rates as δ ↓ 0

A. disorder relevant systems B. marginal systems

◮ Lecture I. Key Result A
◮ Sketch of the proof
◮ Lindeberg principle for polynomial chaos

◮ Lecture II. Some consequences of Key Result A

◮ Disordered continuum model
◮ Free energy estimates

◮ Lecture III. Key Result B

◮ DPRE d = 2, Pinning α = 1
2
, 2d Stochastic Heat Equation
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Key Result A (disorder relevant systems)

Theorem A [C., Sun, Zygouras ’15+]

Let Pref

δ satisfy (⋆) with exponent γ and dimension d .

If we scale β, h → 0 appropriately:

β := β̂ δd/2−γ h := ĥ δd−γ (β̂, ĥ fixed)

the partition function has a non-trivial limit in law: Z
ω
δ

d−−→
δ↓0

ZW

The limit ZW is explicit function of W (dx) := white noise on R
d

ZW :=

∞
∑

k=0

1

k!

∫

· · ·
∫

Ωk

ψk(z1, . . . , zk)

k
∏

i=1

(

β̂W (dzi ) + ĥ dzi
)

(Wiener chaos expansion)
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The partition function

Let us take a breath. . . Forget about P
ω
δ (dσ)

Just look at the partition function Z
ω
δ from a probabilistic viewpoint:

Z
ω
δ = E

ref

[

exp

(

∑

z∈Tδ

(βωz−λ(β)+h)σz
∑

1≤n≤N

(

βω(n,Sn)−λ(β)+h
)

)]

DPRE: sample ω’s along a RW path (Sn)n≥0, then average their exp

Problem

Z
ω
δ is a complicated function of i.i.d. random variables (ωx)x∈Tδ

How to study its convergence in law as δ → 0 ?

Solution

Z
ω
δ is a simpler function of other i.i.d. random variables (X x)x∈Tδ
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Sketch of the approach: Polynomial Chaos

1. Linearization. Since σx ∈ {0, 1}, every function of σx is linear

Z
ω
δ = E

ref

δ

[

e
∑

x∈Tδ
(βωx−λ(β)+h)σx

]

= E
ref

δ

[

∏

x∈Tδ

e(βωx−λ(β)+h)σx

]

= E
ref

δ

[

∏

x∈Tδ

(

1+

where X x := eβωx−λ(β)+h − 1. New random variables (X x) with

E[X x ] ≃ h Var[X x ] ≃ β2

2. High-temperature expansion. By a binomial expansion of the product

Z
ω
δ =

|Tδ|
∑

k=0

1

k!

∑

(x1,...,xk )∈(Tδ)k

E
ref

δ

[

σx1 · · ·σxk
]

X x1 · · ·X xk

Multilinear polynomial of random variables X x ’s  Decoupling !

Formally replace
∑

 

∫

and X xi  W (dxi ) . Justification ?
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A concrete example: Disordered Pinning Model

Pinning Models with α > 1
2 (disorder relevant) [ δ = 1

N
]

Z
ω
δ ≈ 1 +

∑

0<n≤N

X n

n1−α
+

∑

0<m<n≤N

Xm X n

m1−α(n −m)1−α
+ . . .

Rescaling β ∼ δα−
1
2 (h ≡ 0 for simplicity)

d−−−→
δ→0

1 +

∫

0<t<1

dW t

t1−α
+

∫

0<s<t<1

dW s dW t

s1−α(t − s)1−α
+ . . .

Intriguing question: what happens for α = 1
2 ?

This is marginal! Like 2d DPRE and 2d Stochastc Heat Equation
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Justification

General problem: convergence in law for random variables of the form

Polynomial chaos

Z = Ψ(X ) = ψ(∅) +
∑

i∈T

ψ(i)Xi +
1

2

∑

i 6=j∈T

ψ(i , j)Xi Xj + . . .

=
∑

I⊆T

ψ(I )
∏

i∈I

Xi

X = (Xi )i∈T independent (possibly non i.d.) random variables in L2

◮ Can we pretend that Xi ’s are i.i.d. Gaussians?
YES, thanks to a Lindeberg principle that we now discuss

◮ Can we replace Gaussian Xi ’s by white noise W (dxi )?
YES, by coupling + L2 estimates
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Variance and influences

Fix a multi-linear polynomial

Ψ(x) =
∑

I⊆T

ψ(I ) x I with x I :=
∏

i∈I

xi

CΨ :=
∑

I⊆T, I 6=∅
ψ(I )2 = Var[Ψ(X )]

Inf i [Ψ] :=
∑

I⊆T, I∋i

ψ(I )2 = E

[

Var
[

Ψ(X )
∣

∣XT\{i}
]

]

For any family of r.v.’s X = (Xi )i∈T with E[Xi ] = 0 Var[Xi ] = 1

Inf i [Ψ] quantifies how much Ψ(x) depends on the variable xi

Noise sensitivity [Benjaimini, Kalai, Schramm 2001] [Garban, Steif 2012]
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Lindeberg Principle

If influences Inf i (Ψ) are small, the law of Ψ(X ) is insensitive

to the details of the laws of the individual Xi ’s

◮ Fix a multi-linear polynomial Ψ(x) =
∑

I⊆T, |I |≤ℓ

ψ(I ) x I of degree ℓ

◮ X = (Xi )i∈T , X ′ = (X ′
i )i∈T indep. with zero mean, unit variance

m3 := max
i∈T

(

E[|Xi |3] ∨ E[|X ′
i |3]
)

<∞

Theorem [Mossel, O’Donnel, Oleszkiewicz 2010]

dist
(

Ψ(X ),Ψ(X ′)
)

:= sup

f∈C 3: ‖f ′‖∞,‖f ′′‖∞,‖f ′′′‖∞≤1

∣

∣E
[

f (Ψ(X ))
]

− E
[

f (Ψ(X ′))
]∣

∣

≤ 30ℓ CΨ m3
ℓ
√

max
i∈T

(

Inf i [Ψ]
)
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Lindeberg Principle

We can go beyond finite 3rd moment. Define the truncated moments

m>M
2 := sup

X∈{Xi ,X ′
i
}
E
[

X 2
1{|X |>M}

]

m
≤M
3 := sup

X∈{Xi ,X ′
i
}
E
[

|X |3 1{|X |≤M}
]

Theorem [C., Sun, Zygouras 2015+]

dist
(

Ψ(X ),Ψ(X ′)
)

≤ 70ℓ+1 CΨ

{

m>M
2 +

(

m
≤M
3

)ℓ
√

max
i∈T

(

Inf i [Ψ]
)

}

≤ e
2
ε

∑

◮ Explicit, non-asymptotic estimate!

◮ Extension to the case E[Xi ] = E[X ′
i ] = µi 6= 0

Ψε(x) =
∑

I⊆T

(1 + ε)|I | ψ(I ) x I
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Lindeberg Principle

dist
(

Ψ(X ),Ψ(X ′)
)

≤ 70ℓ+1 CΨ

{

m>M
2 +

(

m
≤M
3

)ℓ
√

max
i∈T

(

Inf i [Ψ]
)

}

Corollary

Consider a family (Ψδ)δ>0 of multi-linear polynomials

◮ Assume sup
δ>0

CΨδ
<∞ max

i∈Tδ

(

Inf i [Ψδ]
)

−−−→
δ→0

0

◮ Take (Xδ,i ), (X ′
δ,i ) with zero mean, unit variance and u.i. squares

lim
M→∞

m>M
2 := sup

X∈{Xδ,i ,X ′
δ,i

}
E
[

X 2
1{|X |>M}

]

= 0

Then dist
(

Ψδ(Xδ),Ψδ(X
′
δ)
)

−−−→
δ→0

0

Does ΨN(Xδ) have a limit in law as δ → 0? Check it for Gaussian Xδ’s !
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