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Overview

In the previous lecture we saw how to build continuum partition functions
w d L . . .
Zy¢ —=— 2" (scaling limits of discrete partition functions)
6—0
In this lecture we present two interesting applications of Z"/
> Scaling limit of the full probability measure P§ 9, pw
. . . . 6%0
constructing a continuum version of the disordered system

We will focus on the DPRE [Alberts, Khanin, Quastel 2014b]
drawing inspiration from the Pinning [C., Sun, Zygouras 2016]

» Sharp asymptotics on the discrete model, in terms of free energy and
critical curve

For this we will focus on Pinning models (rather than DPRE)
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White noise

Outline

1. White noise and Wiener chaos
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White noise

White noise (1 dim.)

We are familiar with (1-dim.) Brownian motion B = (B(t)):>0

We are interested in its derivative “W(t) := £ B(t)" called white noise

Think of W as a stochastic process W = (W(-)) indexed by

Intervals | = [a,b] +— W(I) = B(b) — B(a) ~ N(0,b — a)
Borel sets A€ B(R) +~— W(A) = / La(t)dB(t) ~ N (0, |A])
R

W is a Gaussian process with

E[W(A)] = 0 Cov[W/(A), W(B)] = |AN B
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White noise
White noise

White noise on RY
It is a Gaussian process W = (W(A))acp(re) With

E[W(A)] =0 Cov[W(A), W(B)] = |An B

>V (An)nen disjoint = W( U An> = Z W(A,)
neN neN
Almost a random signed measure on R?... (but not quite!)

We can define single stochastic integrals W(f) := [ f(x

EW(A) =0  EW(f)’] = Iz
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White noise

Multiple stochastic integrals

We can define

Wk (g) = / g(xt, ..oy x) W(dxy) - - W(dx)
(Re)*
For d =1 we can restrict x; < xp < ... < x, ~- iterated lto integrals
For symmetric functions we have
E(W®(g)] =0  E[W*(g)’] = k! [lgll>((goy
Cov[WEK(F), WK (g)] =0 Vk # K’

Wiener chaos expansion
Any r.v. X € L?(Qy) measurable w.r.t. o(/) can be written as

X=3 GWo R with  fi € (R
k=0
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White noise

Discrete sums and stochastic integrals

Consider a lattice Ts € R whose cells have volume vs — 0
Take i.i.d. random variables (X),er, with zero mean and unit variance
Consider the “stochastic Riemann sum” (multi-linear polynomial)

Vo= Yz z) Xy Xy X,

(21,-,26) (T )
zi#z; Vi#j

where f € L2(R9) is (say) continuous.

(W) v —L - gz, 2) W(dz1) - - - W(dz) }

(Check the variance!)
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Continuum partition functions
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2. Continuum partition functions
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Continuum partition functions

Continuum partition function for DPRE

1d rescaled RW S? :=/55,/5 lives on Ts = ([0,1] N dNg) x v/6Z

N
7o — g [exp (Hw)} — B | exp (Z (Bwins,) — A(ﬂ)))]
n=1
=1+ Z Pref(S? = X) Xt,x
(t,x)€Ts
1
ts o D

I:’ref(syiS = X, Sf/ = X/)Xt,x thvxl + ...
(t,x)A(t ,x")ETs

Recall the LLT: P™(S, = x) ~ \%g(\%) with g(z) = &

NN

N

PrCf(Sf =x)= PrCf(S% — %) ~ \/Sgt(x)

N}

x

N

() ==
&t V2rt
Replacing X;, = elBeen=AB) 1~ BY,, with Y, iid. N(0,1)

Francesco Caravenna

Scaling Limits of Disordered Systems

March 7-11, 2016 10 / 43



Continuum partition functions

Continuum partition function for DPRE

v=14 BVE D glx) Yex
(t,X)ETa
g+(x) gt’—t(X/ - Xx) Yix Yo + ...

DS

(tX)#(t' x")€Ts

Cells in T have volume vs = § V0 = 5% ~ “Stochastic Riemann sums’
converge to stochastic integrals if 5V ~ \/vs

i

A1 B
~ Bt = 2
Pt =0
w 9, ZW o1 4+ B g:(x) W(dtdx)
0—0 [0,1] xR
32
+ 7/ g:(x) gr—+(x' — x) W(dtdx) W(dt'dx")
2 J(o,1xry
11 / 43
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Continuum partition functions

Constrained partition functions

We have constructed Z" = “free” partition function on [0, 1] x R
RW paths starting at (0,0) with no constraint on right endpoint

zZW = 2"((0,0), (1,%)) E[z"] =1
Consider now constrained partition functions: for (s, y), (t,x) € [0,1] x R

Discrete:  Z5((s,y). (t,x)) = E* {exp (7—[“) Tiss—y

S = y]
Divided by v/8, they converge to a continuum limit:

2" ((s,9), (t,x)) E[2" ((s.¥), (£, %))] = ge—s(x — )

This is a function of white noise in the stripe W([s, t] x R)

Four-parameter random process Z"((s,y), (t,x)) ~ regularity? J
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Continuum partition functions

Key properties

Key properties

For a.e. realization of W the following properties hold:

» Continuity: Z"((s,y), (t,x)) is jointly continuous in (s, y, t, x)
(on the domain s < t)

» Positivity: Z"((s,y), (t,x)) > 0 for all (s,y, t, x) satisfying s < t

» Semigroup (Chapman-Kolmogorov): for all s < r <t and x,y € R

ZW((SJ),(EX)):/[RZW((SJ)’(f,Z))ZW((f’Z),(ﬁX))dZ

(Inherited from discrete partition functions: drawing!)

How to prove these properties?
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Continuum partition functions

The 1d Stochastic Heat Equation

The four-parameter field Z"((s, y), (t, x)) solves the 1d SHE
ZW =1nZV 4 Bw ZW
limeys 2% ((s.¥), (£,x)) = 6(y — x)

Checked directly from Wiener chaos expansion (mild solution)

It is known that solutions to the SHE satisfy the properties above

Alternative approach (to check, OK for pinning [C., Sun, Zygouras 2016])
> Prove continuity by Kolmogorov criterion, showing that

2" ((s,y), (t, x))

is continuous also for t = s
gi—s(x —y)

» Use continuity to prove semigroup for all times

> Use continuity to deduce positivity for close times, then bootstrap to
arbitrary times using semigroup
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The continuum DPRE

Outline

3. The continuum DPRE
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The continuum DPRE

A naive approach

Consider DPRE in d =1 (random walk + disorder)
PY(S) o eXns Fu(mSn) pref(g)
Can we define its continuum analogue (BM + disorder)? Naively
PW(dB) o el W(LBdt pref(yp)
Pref = law of BM W(t,x) = white noise on R? (space-time)
> fo (t, B;) dt ill-defined. Regularization?

NO! The problem is more subtle (and interesting!)
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The continuum DPRE

Partition functions and f.d.d.

Start from discrete: distribution of DPRE at two times 0 < t < t' <1

Z5((0,0), (t,x)) Z5 ((t, x), (t',x) Z5 ((t', '), (1, %))
Z%((0,0),(1,%))

(drawing!) Analogous formula for any finite number of times

Pw(55 = X, St’ = /) =

Idea: Replace Z¢ ~~ Z" to define the law of continuum DPRE J

Recall: to define a process (X:)¢co,1 it is enough (Kolmogorov) to assign
finite-dimensional distributions (f.d.d.)

bt (A, AK) " =P(Xy € Apy ol Xy, € Ak) T
that are consistent

Mtla*“vtj:--*vtk(Al’ R Ak) = /’[’t17---»l]‘—17tj+17---atk(A17 s 7A./'—1’ Aj+17 s aAk)

Francesco Caravenna Scaling Limits of Disordered Systems March 7-11, 2016 17 / 43



The continuum DPRE

The continuum 1d DPRE

» Fix € (0,00) (on which Z" depend) [recall that B ~ 353]

> Fix space-time white noise W on [0,1] x R and a realization of
continuum partition functions Z" satisfying the key properties
(continuity, strict positivity, semigroup)

The Continuum DPRE is the process (X:)¢cpo,1) with f.d.d.

PYW(X; € dx, Xv € dx')
dx dx’
L ZW((Ov O)a (t,X)) ZW((t,X), (lJ,X/)) ZW((tJvX,)a (1’*))
B 2"((0,0), (1,%))

» Well-defined by strict positivity of Z"

» Consistent by semigroup property
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The continuum DPRE

Relation with Wiener measure

The law of the continuum DPRE is a random probability

PY(X €-) (quenched law)
for the process X = (X¢)eecp.1] [ Probab. kernel S'(R) — RI®! ]
Define a new law P (mutually absolutely continuous) for disorder W by

dP
E(W) = ZW((Oa 0)7 (17*))
Key Lemma

P"M(X €)= Lo PY(X e-)P(dW)=P(BM € -)

Proof. The factor Z" in P cancels the denominator in the f.d.d. for PV

Since E[ZY((s,y),(t,x))] = ge—s(x — y) one gets f.d.d. of BM O
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The continuum DPRE

Absolute continuity properties

Theorem

VACROY: P(BMcA) =1 = PYXeA=1 forP-ae WJ

Any given a.s. property of BM is an a.s. property of continuum DPRE,
for a.e. realization of the disorder W/

Corollary

P (X has Hdlder paths with exp. —) =1 for P-a.e. W
We can thus realize P" as a law on C([0, 1], R), for P-a.e. W

(More precisely: P admits a modification with Holder paths)

One is tempted to conclude that P" is absolutely continuous w.r.t.
Wiener measure, for P-a.e. W ...

NO! "VA" and “for P-a.e. W" cannot be exchanged!
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The continuum DPRE

Singularity properties

Theorem

The law PW is singular w.r.t. Wiener measure, for P-a.e. W.
for P-a.e. W JA=Aw C C([0,1],R) :
PY(XeA) =1 vs. PBMcA=0

Unlike discrete DPRE, there is no continuum Hamiltonian
PY(X e )k’ CIP(BM e -)

Absolute continuity is lost in the scaling limit

In a sense, the laws P" are just barely not absolutely continuous w.r.t.
Wiener measure (“stochastically absolutely continuous™)
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The continuum DPRE

Proof of singularity

Let (X:)tepo,1) be the canonical process on C([0, 1], R) [ Xe(F) = £(t) ]

Let F,:= O'(Xt{w Dt =5, 0<i<2") be the dyadic filtration

1

Fix a typical realization of W. Setting P™f = Wiener measure

dPY| %,

W(X) = — Lo
n ( ) d’])ref|}_"

(X)

The process (R")nen is a martingale w.r.t. Pref (exercise!)

Since RY > 0, the martingale converges: R}’ > RY
n*}oo

» PW < Pt if and only if Ef[RY] =1 (the martingale is Ul)

» PW is singular w.r.t. Pt if and only if RY =0
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The continuum DPRE

Proof of singularity

It suffices to show that R (X) —— 0 in P ® P**!-probability
n—oo

Fractional moment
For Pef_ae. X [E[E[(R,YV(X))’Y] —0 for some ~ € (0,1) J

n— oo

b LTI ), (i X))
B0 = Zeoa e e, - x)

» Switch from E to equivalent law [ to cancel the denominator
> For fixed X, the Z"((t/, Xer), ( tl1s Xer,, ))'s are independent

We need to exploit translation and scale invariance of their laws
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White noise Continuum partition functions The continuum DPRE

Proof of singularity

Lemma 1 (Translation and scale invariance)

n Xti"-%-l B th"

If we set A,- = ————_ we have
i = &
i+1 i

B

on/4

ZW((tianf,-")’ (ti"+17Xf,-"+1)) d ZV\; ((07 0)7 (1’ Af))

g%n(th — Xir) ; g1(A7)

i+1

Lemma 2 (Expansion)
For z€ R and ¢ € [0,1] (say)
z%((0,0),(1,2))
&1(2)

=1+ X, + 52Y672

E[X;]=0 E[X..]=0 E[X3]<C E[YZ,]<C

unif. in g,z

v
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The continuum DPRE

Proof of singularity

By Taylor expansion, for fixed v € (0,1)

: (zm(o,omz)))”] = E[(4 X+ 2Y20) ]

&1(2)

— 1+ +w{e2m[(xx)2]+...}+...

_ 2
=1 —ce® < eg°¢¢

(x) First order terms vanish (%) v(y—1) <0 (%) For some ¢ >0

1

Estimate is uniform over z€ R~ Wecanset z=A? and €=

on/4
2"-1 w n v
N z2((0,0),(1,AmM) 2o oo
E[(RY(X)1=]]E £ ’ <e Y = €2
(o0 - T e | (Z1008 <
which vanishes as n — oo O
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The continuum DPRE

Proof of Lemma 1

Introducing the dependence on i

25 ((s,9), (%) £ Z5((0,0),(t —s,x—y))
1

z4((0,0),(t,x)) = \/;ZEZ% <(0’0)’ (1’ %))

Q

transl. invariance + diffusive rescaling (prefactor, new B) (drawing!)
2Z"((0,0), (t,x)) = g(x) + B o g:(2) gr_s(x — z) W(dsdz) + ...
0,t]xR
1 1 (Bt / i o, W(dsdz)
= —gi(%)+ () g1-s — +
\/fgl(ﬁ) : ( ﬁ) [O,t]xﬂ%gt(ﬁ)gl t(\/;) 3

Francesco Caravenna
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The continuum DPRE

Convergence of discrete DPRE

» PY = law of discrete DPRE (recall that S7 := V/35,5)

“Rescaled RW S° moving in an i.i.d. environment w"

» PW = law of continuum DPRE

“BM moving in a white noise environment W"

Both PY and P" are random probability laws on E := C([0, 1], R)
i.e. RVs (defined on different probab. spaces) taking values in M (E)

Does P§ converge in distribution toward P"' as § — 07?

Vo€ Co(MI(E) = R):  E[g(P§)] —— E[¢(P")]

The answer is positive. .. almost surely ;-)
Statement for Pinning model proved in [C., Sun, Zygouras 2016]
Details need to be checked for DPRE (stronger assumptions on RW 7)
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The continuum DPRE

Universality

The convergence of P¥§ toward P is an instance of universality
There are many discrete DPRE:
» any RW S (zero mean, finite variance + technical assumptions)
» any (i.i.d.) disorder w (finite exponential moments)

In the continuum (& — 0) and weak disorder (5 — 0) regime, all these
microscopic models P§ give rise to a unique macroscopic model pwW

Tomorrow we will see how the continuum model P"' can tell
quantitative information on discrete models P§ (free energy estimates)
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The continuum DPRE

Convergence

e d
How to prove convergence in distribution P¥ Y PW2
—

Prove a.s. convergence through a suitable coupling of (w, W)

Assume we have convergence in distribution of discrete partition functions
to continuum ones, in the space of continuum functions of (s, y), (t, x)

Z§((s:3).(6.0) =5 27 ((s9). (£.))

§—0

By Skorokhod representation theorem, there is a coupling of (w, W)
under which this convergence holds a.s.

Fix such a coupling: for a.e. (w, W) the f.d.d. of P§ converge weakly to
those of P It only remains to prove tightness of P¥(-).
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Pinning models

Outline

4. Pinning models
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Pinning models

Ingredients: renewal process & disorder

N NN s

0:7'0 T1 T2 T3 T4 Ts5 To

Discrete renewal process T={0=70 <711 <72 < ...} CNp
Gaps (Tit1 — Ti)i>o are i.i.d. with polynomial-tail distribution:

r C
P ef(’rl = n) ~ Tl—}:u , ck >0, ae (O’ ]_)

T={n€Ny: S, =0} zero level set of a Markov chain S = (S,)n>0 J

Disorder w = (w;);jen: i.i.d. real random variables with law P

A(B) := log E[e?*1] < o0 Elwi] =0 Varfwi] =1
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Pinning models

Bessel random walks

For o € (0,1) the a-Bessel random walk is defined as follows:

“5,7 < prob. %( %)
X 1
R Cai=5—
IS b. 1(1 - &
. ’b.rob. 1 prob- 31~ %)
0/( 2 -
\ prob. %

» (e =1) nodrift (c, =0) ~» simple random walk
» (a < 3) drift away from the origin (co > 0)
» (a> 1) drift toward the origin (c, < 0)
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Pinning models

Disordered pinning model

Pinning model rewards penalti <0

0 N

N € N (system size) /5> 0, h € R (disorder strength, bias)

The pinning model

Gibbs change of measure P = Py 5, of the renewal distribution pref

dPy, 1
dprﬁlf (1) = b7 exp (Z(ﬂwn +h—X(B))Liner} ]l{sn_o}>
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Pinning models

The phase transition

How are the typical paths 7 of the pinning model P%7? )

Contact number Cp = ’7’ N (0, N]’ = Z,,:I:1 Tinery = Z,’Y:l Tys,—o0y

Theorem (phase transition)

3 continuous, non decreasing, deterministic critical curve h.(f3):
> Localized regime: for h > h.(3) one has Cy =~ N

C
dp = pg,p>0: P“,(,(‘WN—M‘>€>N—>O w=—a.s.
—00

» Deocalized regime: for h < h.(8) one has Cy = O(log N)

C
dJA = A,B,h >0: Pfl(logNN > A) m 0 w—a.s.
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Pinning models

Estimates on the critical curve

For 8 = 0 (homogeneous pinning, no disorder) one has h.(0) =0

What is the behavior of h.(3) for § > 0 small ? J

Theorem (P(my = n) ~ &5

> (o < 3) disorder is irrelevant: he(8) =0 for 3 > 0 small
[Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]

> (a > 1) disorder is relevant: hc(8) >0 for all B> 0

» (@>1) he(B) ~ Cp* with explicit C = %5 5

[Berger, C., Poisat, Sun, Zygouras]

> (A<a<1) GB=T <h(B) < GA™T he(p) ~ € pr
using continuum part. funct.!

[Derrida, Giacomin, Lacoin, Toninelli] [Alexander, Zygouras] [C., Torri, Toninelli]
_ cto(1)
> (a = %) hc(,ﬁ) —e @ [Giacomin, Lacoin, Toninelli] [Berger, Lacoin]
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Pinning models

Discrete free energy and critical curve

Partition function Zy = [ H’V(T)] = E{eZ =1 (h+Bwn— (ﬁ))ﬂ{neT}] J

Consider first the regime of N — oo with fixed 3, h
> Free energy F(B,h) = Nlim LlogZy >0 P(dw)-a.s
— 00
Zy 2 E[e MO om= @}} = P(r N (0,N] = ) ~ (et

» Critical curve  h.(8) =sup{h € R: F(8,h) =0} non analiticity!

>0 if h>h
(convexity) OF (5. h) = lim Ey {CN} (%)
oh N—o0 N =0 if h< h(B)
F(8, h) and h.(5) depend on the law of 7 and w
Universality as B, h — 07 YES, connected to continuum model J
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Pinning models

Continuum partition functions

Build continuum partition functions for Pinning Model with o € (% 1)
(disorder relevant) following “usual” approach [C, Sun, Zygouras 2015+]

We need to rescale

N

B

Na—1/2 h=hy =

5= = -

One has Zjy —9 5 2V with
N— oo

, 3,h 3,h
1+C/ dwbh c2/ dWo dw?h .
o<t<1 T o<t<r<1 () — t)ie

where Wﬁh .= AW, +ht and C = 2sinlam)

T cK
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Pinning models

Continuum free energy

In analogy with the discrete model, define
Continuum free energy .F(B, /A7) = I|m - IogZ 3(0,t) as.

(existence and self-averaging need some work)

Again F(j3,h) >0 and define

Continuum critical curve H(B) = sup {h eR: F(B,h)= =0}

Scaling relations

Ve >0: Zé/t/i,(c t) £l Z:Z_%B,Co‘fv(t) (Wiener chaos exp.)
F(etBch) = cF(BB) | He(B) = He(1) pro=
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Pinning models

Interchanging the limits

Can we relate continuum free energy to the discrete one?

By construction of continuum partition functions

d "
Zgj;,(t) = N'i“oo Z35, ny(NE)

Assuming uniform integrability of log Z“ (OK)

Ao 1 : , w
F(B,h) = tlngo?ﬁ[|ogzgfﬂ(t)} = Jim — A)Toom[mgzﬁmm(/\/t)}

Assuming we can interchange the limits N — oo and t — o0

. _ _ 1 . _
F(B,h) = lim N lim F[E[Iogzﬁth(Nt)] = Nlinoo NF(Bn, hn)

N—oco t—oc0 t

Setting § = % for clarity, we arrive at. ..

March 7-11, 2016
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Pinning models

Interchanging the limits

Conjecture

F(B5%~%, ho®)

F(B.h) = gi—n:o 0

Theorem [C., Toninelli, Torri 2015]
For all B >0, heR and 7 > 0 there is §g > 0 such that Vd < dg

- F(B6~z, ho>
Fph—n) < FE0)

< 5 < F(B,h+n)

This implies Conj. and he(B) ~ He(B) ~ He(1l) BT

For any discrete Pinning model with a € (1, 1), the free energy F(3, h)
and the critical curve h () have a universal shape in the regime 5, h — 0
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Pinning models

Interchanging the limits

Very delicate result. How to prove it?
» Assume that there is a continuum Hamiltonian:
) w w
Z¥ = E[eM] ZV =¢gleM |

» Couple H}, and H}V on the same probability space in such a way
that the difference Ay, := Hy, — H}V is “small”

» Deduce that
E[log Z¥] < [E[IogZW] + log [EE[eA"’rf]
and show that the last term is “negligible”

Problem: there is no continuum Hamiltonian!

Solution: perform coarse-graining and define an “effective” Hamiltonian
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Pinning models

The DPRE case

What about the DPRE?
We can still define discrete F(3) and continuum F(j) free energy
Since F(B) ~ F(1)3* we can hope that

F(B) ~ F(1)pB* as 3 —0

provided the “interchanging of limits” is justified

N. Torri is currently working on this problem. A finer coarse-graining is
needed, together with sharper estimates on continuum partition functions
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Pinning models
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