

Polynomial Chaos and Scaling Limits of Disordered Systems

3. Marginally relevant models

Francesco Caravenna

Università degli Studi di Milano-Bicocca

YEP XIII, Eurandom ~ March 7-11, 2016

Overview

In the previous lectures we focused on systems that are disorder relevant (in particular DPRE with $d = 1$ and Pinning model with $\alpha > \frac{1}{2}$)

- ▶ We constructed continuum partition functions \mathcal{Z}^W
- ▶ We used \mathcal{Z}^W to build continuum disordered models \mathcal{P}^W
- ▶ We used \mathcal{Z}^W to get estimates on the free energy $\mathbf{F}(\beta, h)$

In this last lecture we consider the subtle marginally relevant regime (in particular DPRE with $d = 2$, Pinning model with $\alpha = \frac{1}{2}$, 2d SHE)

We present some results on the the continuum partition function

The marginal case

We consider simultaneously different models that are **marginally relevant**:

- ▶ Pinning Models with $\alpha = \frac{1}{2}$
- ▶ DPRE with $d = 2$ (RW attracted to BM)
- ▶ Stochastic Heat Equation in $d = 2$
- ▶ DPRE with $d = 1$ (RW with Cauchy tails: $P(|S_1| > n) \sim \frac{c}{n}$)

All these different models share a crucial feature: **logarithmic overlap**

$$R_N = \begin{cases} \sum_{1 \leq n \leq N} P^{\text{ref}}(n \in \tau)^2 \\ \sum_{1 \leq n \leq N} \sum_{x \in \mathbb{Z}^d} P^{\text{ref}}(S_n = x)^2 \end{cases} \sim C \log N$$

For simplicity, we will perform our computations on the pinning model

The 2d Stochastic Heat Equation

$$\begin{cases} \partial_t u(t, x) = \frac{1}{2} \Delta_x u(t, x) + \beta \mathbf{W}(t, x) u(t, x) \\ u(0, x) \equiv 1 \end{cases} \quad (t, x) \in [0, \infty) \times \mathbb{R}^2$$

where $\mathbf{W}(t, x)$ is (space-time) white noise on $[0, \infty) \times \mathbb{R}^2$

Mollification in space: fix $j \in C_0^\infty(\mathbb{R}^d)$ with $\|j\|_{L^2} = 1$

$$\mathbf{W}_\delta(t, x) := \int_{\mathbb{R}^2} \delta j\left(\frac{x-y}{\sqrt{\delta}}\right) \mathbf{W}(t, y) \, dy$$

Then $\mathbf{u}_\delta(t, x) \stackrel{d}{=} E_{\frac{x}{\sqrt{\delta}}} \left[\exp \left\{ \int_0^{\frac{t}{\delta}} (\beta \mathbf{W}_1(s, B_s) - \frac{1}{2} \beta^2) \, ds \right\} \right]$

By soft arguments $\mathbf{u}_\delta(1, x) \stackrel{d}{\approx} \mathbf{Z}_N^\omega$ (partition function of 2d DPDE)

Pinning in the relevant regime $\alpha > \frac{1}{2}$

Recall what we did for $\alpha > \frac{1}{2}$ (for simplicity $h = 0$)

$$\begin{aligned} Z_N^{\omega} &= \mathbf{E}^{\text{ref}}[e^{H_N^{\omega}}] = \mathbf{E}^{\text{ref}}[e^{\sum_{n=1}^N (\beta \omega_n - \lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}}] \\ &= \mathbf{E}^{\text{ref}}\left[\prod_{n=1}^N e^{(\beta \omega_n - \lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}}\right] = \mathbf{E}^{\text{ref}}\left[\prod_{n=1}^N (1 + \mathbf{X}_n \mathbb{1}_{\{n \in \tau\}})\right] \\ &= 1 + \sum_{n=1}^N \mathbf{P}^{\text{ref}}(n \in \tau) \mathbf{X}_n + \sum_{0 < n < m \leq N} \mathbf{P}^{\text{ref}}(n \in \tau, m \in \tau) \mathbf{X}_n \mathbf{X}_m + \dots \end{aligned}$$

- $\mathbf{X}_n = e^{\beta \omega_n - \lambda(\beta)} - 1 \approx \beta \mathbf{Y}_n$ with $\mathbf{Y}_n \sim \mathcal{N}(0, 1)$
- $\mathbf{P}^{\text{ref}}(n \in \tau) \sim \frac{c}{n^{1-\alpha}}$

Pinning in the relevant regime $\alpha > \frac{1}{2}$

$$\begin{aligned}
 Z_N^{\omega} &= 1 + \beta \sum_{0 < n \leq N} \frac{Y_n}{n^{1-\alpha}} + \beta^2 \sum_{0 < n < m \leq N} \frac{Y_n Y_m}{n^{1-\alpha} (m-n)^{1-\alpha}} + \dots \\
 &= 1 + \frac{\beta}{N^{1-\alpha}} \sum_{t \in (0,1] \cap \frac{\mathbb{Z}}{N}} \frac{Y_t}{t^{1-\alpha}} + \left(\frac{\beta}{N^{1-\alpha}} \right)^2 \sum_{s < t \in (0,1] \cap \frac{\mathbb{Z}}{N}} \frac{Y_s Y_t}{s^{1-\alpha} (t-s)^{1-\alpha}} + \dots
 \end{aligned}$$

Lattice $\frac{\mathbb{Z}}{N}$ has cells with volume $\frac{1}{N}$, hence if $\frac{\beta}{N^{1-\alpha}} \approx \sqrt{\frac{1}{N}}$ that is

$$\beta = \frac{\hat{\beta}}{N^{\alpha-\frac{1}{2}}}$$

We obtain

$$Z_N^{\omega} \xrightarrow[N \rightarrow \infty]{d} 1 + \hat{\beta} \int_0^1 \frac{dW_t}{t^{1-\alpha}} + \hat{\beta}^2 \int_{0 < s < t < 1} \frac{dW_s dW_t}{s^{1-\alpha} (t-s)^{1-\alpha}} + \dots$$

What happens for $\alpha = \frac{1}{2}$? Stochastic integrals ill-defined: $\frac{1}{\sqrt{t}} \notin L^2_{\text{loc}}$...

The marginal regime $\alpha = \frac{1}{2}$

$$Z_N^{\omega} = 1 + \beta \sum_{0 < n \leq N} \frac{Y_n}{\sqrt{n}} + \beta^2 \sum_{0 < n < m \leq N} \frac{Y_n Y_m}{\sqrt{n} \sqrt{m-n}} + \dots$$

Goal: find the joint limit in distribution of all these sums

Linear term is easy ($Y_n \sim \mathcal{N}(0, 1)$ by Lindeberg): asympt. $\mathcal{N}(0, \sigma^2)$

$$\sigma^2 = \beta^2 \sum_{0 < n \leq N} \frac{1}{n} \sim \beta^2 \log N$$

We then rescale

$$\beta = \beta_N \sim \frac{\hat{\beta}}{\sqrt{\log N}}$$

Other terms converge?

Interestingly, every sum gives contribution 1 to the variance!

$$\text{Var}[Z_N^{\omega}] = 1 + \hat{\beta}^2 + \hat{\beta}^4 + \dots = \frac{1}{1 - \hat{\beta}^2} \quad \text{blows up at} \quad \hat{\beta} = 1!$$

Scaling limit of marginal partition function

Theorem 1. [C., Sun, Zygouras '15b]

Consider DPRE $d = 2$ or Pinning $\alpha = \frac{1}{2}$ or 2d SHE
(or long-range DPRE with $d = 1$ and Cauchy tails)

Rescaling $\beta := \frac{\hat{\beta}}{\sqrt{\log N}}$ (and $h \equiv 0$) the partition function converges in

law to an explicit limit: $\mathcal{Z}_N^{\omega} \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}^W = \begin{cases} \text{log-normal} & \text{if } \hat{\beta} < 1 \\ 0 & \text{if } \hat{\beta} \geq 1 \end{cases}$

$$\mathcal{Z}^W \stackrel{d}{=} \exp \left\{ \sigma_{\hat{\beta}} W_1 - \frac{1}{2} \sigma_{\hat{\beta}}^2 \right\} \quad \text{with} \quad \sigma_{\hat{\beta}} = \log \frac{1}{1 - \hat{\beta}^2}$$

Multi-scale correlations for $\hat{\beta} < 1$

Define $\mathbf{Z}_N^\omega(t, x)$ as partition function for **rescaled** RW starting at (t, x)

$$\mathbf{Z}_N^\omega(t, x) = \mathbf{E}^{\text{ref}} \left[e^{H^\omega(S)} \mid S_t^\delta = x \right]$$

where $\{S_t^\delta = x\} = \{S_{Nt} = \sqrt{N}x\}$ $[\delta = \frac{1}{N}]$

Multi-scale correlations for $\hat{\beta} < 1$

Theorem 2. [C., Sun, Zygouras '15b]

Consider DPRE with $d = 2$ or 2d SHE (fix $\hat{\beta} < 1$)

$\mathbf{Z}_N^\omega(X)$ and $\mathbf{Z}_N^\omega(X')$ are asymptotically independent for fixed $X \neq X'$

More generally, if $X = (t_N, x_N)$ and $X' = (t'_N, x'_N)$ are such that

$$d(X, X') := |t_N - t'_N| + |x_N - x'_N|^2 \sim \frac{1}{N^{1-\zeta}} \quad \zeta \in [0, 1]$$

then $(\mathbf{Z}_N^\omega(X), \mathbf{Z}_N^\omega(X')) \xrightarrow[N \rightarrow \infty]{d} (e^{Y - \frac{1}{2}\text{Var}[Y]}, e^{Y' - \frac{1}{2}\text{Var}[Y']})$

Y, Y' joint $\mathcal{N}(0, \sigma_{\hat{\beta}}^2)$ with $\text{Cov}[Y, Y'] = \log \frac{1 - \zeta \hat{\beta}^2}{1 - \hat{\beta}^2}$

Multi-scale correlations for $\hat{\beta} < 1$

We can integrate \mathbf{Z}_N^ω against a test function $\phi \in C_0([0, 1] \times \mathbb{R}^2)$

$$\begin{aligned}\langle \mathbf{Z}_N^\omega, \phi \rangle &:= \int_{[0,1] \times \mathbb{R}^2} \phi(t, x) \mathbf{Z}_N^\omega(t, x) dt dx \\ &\simeq \frac{1}{N^2} \sum_{t \in [0,1] \cap \frac{\mathbb{Z}}{N}, x \in (\frac{\mathbb{Z}}{\sqrt{N}})^2} \phi(t, x) \mathbf{Z}_N^\omega(t, x)\end{aligned}$$

Corollary

$$\langle \mathbf{Z}_N^\omega, \phi \rangle \rightarrow \langle 1, \phi \rangle \text{ in probability as } N \rightarrow \infty$$

Fluctuations for $\hat{\beta} < 1$

Theorem 3. [C., Sun, Zygouras '15b]

Consider DPRE with $d = 2$ or 2d SHE (fix $\hat{\beta} < 1$)

$$Z_N^{\omega}(t, x) \approx 1 + \frac{1}{\sqrt{\log N}} G(t, x) \quad (\text{in } \mathcal{S}')$$

where $G(t, x)$ is a generalized Gaussian field on $[0, 1] \times \mathbb{R}^2$ with

$$\text{Cov}[G(X), G(X')] \sim C \log \frac{1}{\|X - X'\|}$$

The regime $\hat{\beta} = 1$ (in progress)

For $\hat{\beta} = 1$: $\mathbf{Z}_N^\omega(t, x) \rightarrow 0$ in law $\mathbb{V}\text{ar}[\mathbf{Z}_N^\omega(t, x)] \rightarrow \infty$

However, covariances are finite:

cf. [Bertini, Cancrini 95]

$$\mathbb{C}\text{ov}[\mathbf{Z}_N^\omega(t, x), \mathbf{Z}_N^\omega(t', x')] \underset{N \rightarrow \infty}{\sim} K((t, x), (t', x')) < \infty$$

where

$$K((t, x), (t', x')) \approx \frac{1}{\log |(t, x) - (t', x')|}$$

Then

$$\mathbb{V}\text{ar}[\langle \mathbf{Z}_N^\omega, \phi \rangle] \rightarrow (\phi, K\phi) < \infty$$

Conjecture

For $\hat{\beta} = 1$ the partition function $\mathbf{Z}_N^\omega(t, x)$ has a non-trivial limit in law, viewed as a random Schwartz distribution in (t, x)

Proof of Theorem 1. for pinning

$$\begin{aligned} Z_N^{\omega} &= \sum_{k=0}^N \beta^k \sum_{0 < n_1 < \dots < n_k \leq N} \frac{Y_{n_1} Y_{n_2} \cdots Y_{n_k}}{\sqrt{n_1} \sqrt{n_2 - n_1} \cdots \sqrt{n_k - n_{k-1}}} \\ &= 1 + \frac{\hat{\beta}}{\sqrt{\log N}} \sum_{0 < n \leq N} \frac{Y_n}{\sqrt{n}} + \left(\frac{\hat{\beta}}{\sqrt{\log N}} \right)^2 \sum_{0 < n < n' \leq N} \frac{Y_n Y_{n'}}{\sqrt{n} \sqrt{n' - n}} + \dots \end{aligned}$$

Goal: find the joint limit in distribution of all these sums

~ blackboard!

Fourth moment theorem

4th Moment Theorem

[de Jong 90] [Nualart, Peccati, Reinert 10]

Consider **homogeneous** (deg. ℓ) polynomial chaos $Y_N = \sum_{|I|=\ell} \psi_N(I) \prod_{i \in I} Y_i$

- ▶ $\max_i \psi_N(i) \xrightarrow[N \rightarrow \infty]{} 0$ (in case $\ell = 1$) [Small influences!]
- ▶ $\mathbb{E}[(Y_N)^2] \xrightarrow[N \rightarrow \infty]{} \sigma^2$
- ▶ $\mathbb{E}[(Y_N)^4] \xrightarrow[N \rightarrow \infty]{} 3\sigma^4$

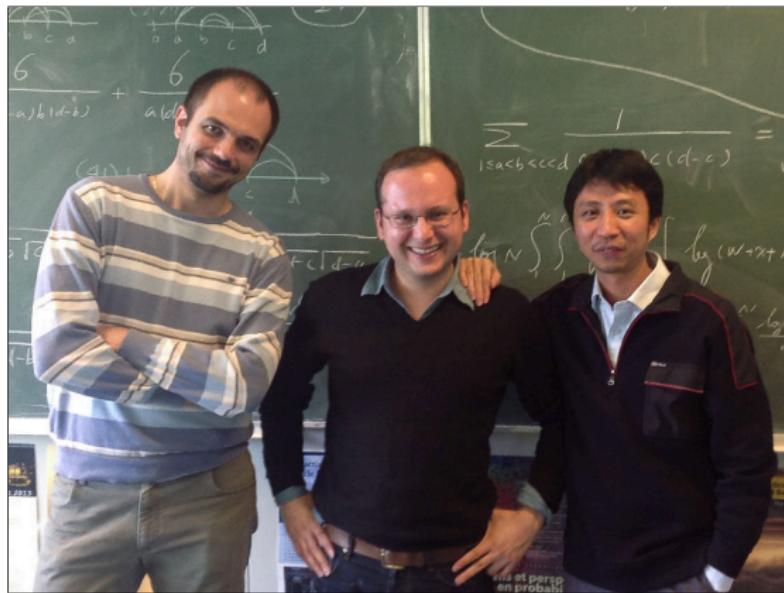
Then

$$Y_N \xrightarrow[N \rightarrow \infty]{d} \mathcal{N}(0, \sigma^2)$$

References

- ▶ L. Bertini, N. Cancrini
The two-dimensional stochastic heat equation: renormalizing a multiplicative noise
J. Phys. A: Math. Gen. **31** (1998) 615–622
- ▶ F. Caravenna, R. Sun, N. Zygouras
Universality in marginally relevant disordered systems
preprint (2015)
- ▶ P. de Jong
A central limit theorem for generalized multilinear forms
J. Multivariate Anal. **34** (1990), 275–289
- ▶ I. Nourdin, G. Peccati, G. Reinert
Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos
Ann. Probab. **38** (2010) 1947–1985

Collaborators



Nikos Zygouras (Warwick) and Rongfeng Sun (NUS)