

On the phase diagram of random copolymers at selective interfaces

Francesco Caravenna

caravenna@math.unipd.it

Università degli Studi di Padova

Eindhoven, June 22, 2007

References

- ▶ [CGG] C., Giacomin and Gubinelli, *A numerical approach to copolymers at selective interfaces*, J. Stat. Phys. (2006)
- ▶ [CG] C. and Giacomin, *On constrained annealed bounds for linear chain pinning models*, Electron. Comm. in Probab. (2005),

Outline of the talk

1. Introduction

Motivations

Definition of the model

The phase diagram: UB and LB on the critical line

2. Numerical investigation

The transfer matrix approach

Beating the LB: a statistical test

Beating the UB: numerical observations

A conjecture (?) on the critical line

3. Theoretical analysis

Improving the UB: the constrained annealing technique

Outline of the talk

1. Introduction

Motivations

Definition of the model

The phase diagram: UB and LB on the critical line

2. Numerical investigation

The transfer matrix approach

Beating the LB: a statistical test

Beating the UB: numerical observations

A conjecture (?) on the critical line

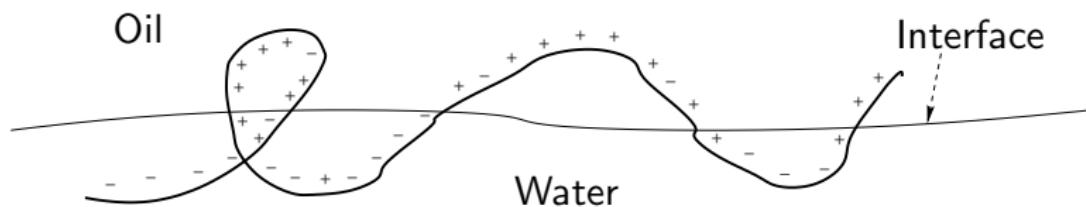
3. Theoretical analysis

Improving the UB: the constrained annealing technique

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

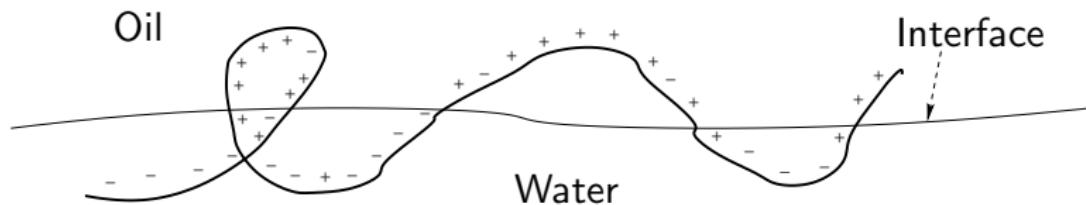
Monomers: $(+)$ \rightarrow hydrophobic $(-)$ \rightarrow hydrophilic



Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

Monomers: $(+)$ \rightarrow hydrophobic $(-)$ \rightarrow hydrophilic



Phenomenon:

localization at the interface vs. delocalization in one solvent

Energy-entropy competition

Definition of the model

Free process: Simple Symmetric Random Walk $\{S_n\}_n$ on \mathbb{Z}

$$S_0 = 0 \quad S_n = \sum_{i=1}^n X_i$$

where $\{X_i\}_i$ are i.i.d. with $\mathbf{P}(X_1 = \pm 1) = 1/2$.

Definition of the model

Free process: Simple Symmetric Random Walk $\{S_n\}_n$ on \mathbb{Z}

$$S_0 = 0 \quad S_n = \sum_{i=1}^n X_i$$

where $\{X_i\}_i$ are i.i.d. with $\mathbf{P}(X_1 = \pm 1) = 1/2$.

Parameters:

- ▶ N (system size) $\lambda, h \geq 0$ (inverse temperature, asymmetry)
- ▶ $\omega = \{\omega_n\}_n \in \{-1, +1\}^{\mathbb{N}}$ (**charges**: hydrophobicity-hydrophilicity)

Definition of the model

Free process: Simple Symmetric Random Walk $\{S_n\}_n$ on \mathbb{Z}

$$S_0 = 0 \quad S_n = \sum_{i=1}^n X_i$$

where $\{X_i\}_i$ are i.i.d. with $\mathbf{P}(X_1 = \pm 1) = 1/2$.

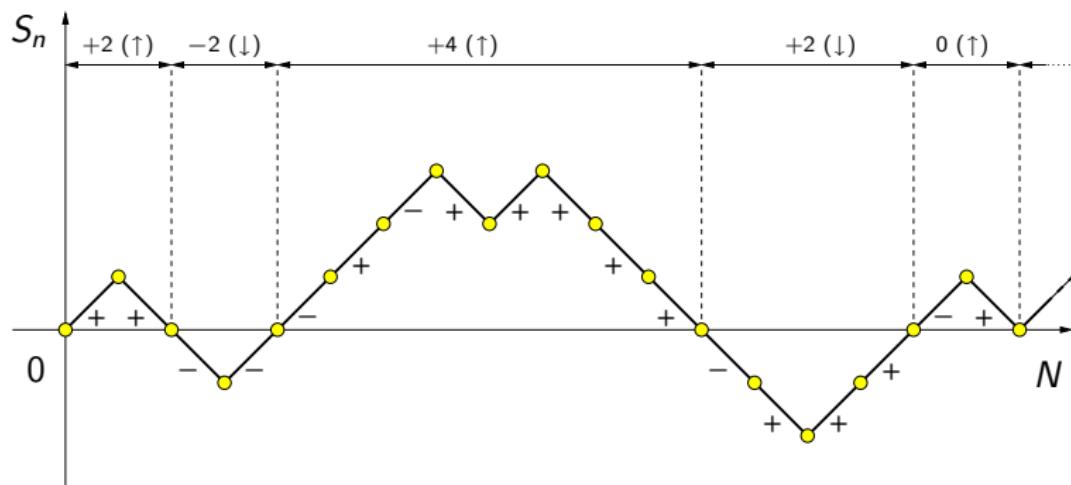
Parameters:

- ▶ N (system size) $\lambda, h \geq 0$ (inverse temperature, asymmetry)
- ▶ $\omega = \{\omega_n\}_n \in \{-1, +1\}^{\mathbb{N}}$ (**charges**: hydrophobicity-hydrophilicity)

Polymer measure $\mathbf{P}_{N,\omega}^{\lambda,h}$ [Bolthausen and den Hollander 97]

$$\frac{d\mathbf{P}_{N,\omega}^{\lambda,h}}{d\mathbf{P}}(S) := \frac{1}{Z_{N,\omega}^{\lambda,h}} \cdot \exp \left(\lambda \sum_{n=1}^N (\omega_n + h) \operatorname{sign}(S_n) \right)$$

A sample path



Energy: $\mathcal{H}_{N,\omega}^{\lambda,h}(S) := \lambda \sum_{n=1}^N (\omega_n + h) \operatorname{sign}(S_n) = \lambda(6 + 6h)$

(if $S_n = 0 \rightarrow \operatorname{sign}(S_n) := \operatorname{sign}(S_{n-1})$)

The choice of the charges

Quenched randomness: $\omega = \{\omega_n\}_n$ is a typical sample from a centered i.i.d. sequence (law \mathbb{P}):

$$\mathbb{E}[\omega_1] = 0 \quad \mathbb{E}[\omega_1^2] = 1$$

$$M(\alpha) := \mathbb{E}[\exp(\alpha\omega_1)] < \infty \quad \forall \alpha \in \mathbb{R}$$

(generalization: $\omega_n \in \{-1, +1\} \rightarrow \omega_n \in \mathbb{R}$)

The choice of the charges

Quenched randomness: $\omega = \{\omega_n\}_n$ is a typical sample from a centered i.i.d. sequence (law \mathbb{P}):

$$\mathbb{E}[\omega_1] = 0 \quad \mathbb{E}[\omega_1^2] = 1$$

$$M(\alpha) := \mathbb{E}[\exp(\alpha\omega_1)] < \infty \quad \forall \alpha \in \mathbb{R}$$

(generalization: $\omega_n \in \{-1, +1\} \rightarrow \omega_n \in \mathbb{R}$)

Typical examples:

- **Binary:** $\mathbb{P}(\omega_1 = \pm 1) = \frac{1}{2} \rightarrow \log M(\alpha) = \log \cosh(\alpha)$
- **Gaussian:** $\omega_1 \sim N(0, 1) \rightarrow \log M(\alpha) = \frac{1}{2}\alpha^2$

The free energy

Interested in the asymptotic properties of the model as $N \rightarrow \infty$
(localization-delocalization)

The free energy

Interested in the **asymptotic properties** of the model as $N \rightarrow \infty$
(localization-delocalization)

Partition function: $Z_{N,\omega}^{\lambda,h} := \mathbf{E}(\exp(\mathcal{H}_{N,\omega}^{\lambda,h}))$

Free energy: rate of exponential growth of Z_N :

$$f_\omega(\lambda, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\omega}^{\lambda,h}$$

The free energy

Interested in the **asymptotic properties** of the model as $N \rightarrow \infty$
(localization-delocalization)

Partition function: $Z_{N,\omega}^{\lambda,h} := \mathbf{E}(\exp(\mathcal{H}_{N,\omega}^{\lambda,h}))$

Free energy: rate of exponential growth of Z_N :

$$f_\omega(\lambda, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\omega}^{\lambda,h}$$

- ▶ The limit exists \mathbb{P} -a.s. (and in $L_1(d\mathbb{P})$) by **superadditivity**
- ▶ Self-averaging property: $f_\omega(\lambda, h) = f(\lambda, h)$ for \mathbb{P} -a.e. ω

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Proof: restrict Z_N on positive trajectories

$$Z_{N,\omega}^{\lambda,h} \geq \mathbf{E} \left[\exp \left(\lambda \sum_{n=1}^N (\omega_n + h) \operatorname{sign}(S_n) \right) ; S_1 > 0, \dots, S_N > 0 \right]$$

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Proof: restrict Z_N on positive trajectories

$$\begin{aligned} Z_{N,\omega}^{\lambda,h} &\geq \mathbf{E} \left[\exp \left(\lambda \sum_{n=1}^N (\omega_n + h) \operatorname{sign}(S_n) \right) ; S_1 > 0, \dots, S_N > 0 \right] \\ &= \exp \left(N \lambda h + \lambda \sum_{n=1}^N \omega_n \right) \cdot \mathbf{P} \left[S_1 > 0, \dots, S_N > 0 \right] \end{aligned}$$

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Proof: restrict Z_N on positive trajectories

$$\begin{aligned} Z_{N,\omega}^{\lambda,h} &\geq \mathbf{E} \left[\exp \left(\lambda \sum_{n=1}^N (\omega_n + h) \operatorname{sign}(S_n) \right) ; S_1 > 0, \dots, S_N > 0 \right] \\ &= \exp \left(N \lambda h + \lambda \sum_{n=1}^N \omega_n \right) \cdot \mathbf{P} \left[S_1 > 0, \dots, S_N > 0 \right] \\ &= \exp \left(N \lambda h + o(N) \right) \cdot \frac{\operatorname{const.} + o(1)}{\sqrt{N}} \end{aligned}$$

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Therefore we split the phase diagram $\{(\lambda, h) : \lambda, h \geq 0\}$ into

- ▶ Localized region $\mathcal{L} = \{(\lambda, h) : f(\lambda, h) > \lambda h\}$
- ▶ Delocalized region $\mathcal{D} = \{(\lambda, h) : f(\lambda, h) = \lambda h\}$

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Therefore we split the phase diagram $\{(\lambda, h) : \lambda, h \geq 0\}$ into

- ▶ Localized region $\mathcal{L} = \{(\lambda, h) : f(\lambda, h) > \lambda h\}$
- ▶ Delocalized region $\mathcal{D} = \{(\lambda, h) : f(\lambda, h) = \lambda h\}$

Two main questions:

1. Study of the phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from $f(\lambda, h)$?

Basic observation:

$$f(\lambda, h) \geq \lambda h$$

Therefore we split the phase diagram $\{(\lambda, h) : \lambda, h \geq 0\}$ into

- ▶ Localized region $\mathcal{L} = \{(\lambda, h) : f(\lambda, h) > \lambda h\}$
- ▶ Delocalized region $\mathcal{D} = \{(\lambda, h) : f(\lambda, h) = \lambda h\}$

Two main questions:

1. Study of the phase diagram
2. Free energy definition of \mathcal{L} and $\mathcal{D} \rightarrow$ path properties?
 - ▶ \mathcal{L} : strong path localization [Sinai 93] [Biskup and den Hollander 99]
 - ▶ \mathcal{D} : many open questions [Giacomin and Toninelli 05]

The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve $h_c : [0, \infty) \rightarrow [0, \infty)$, with $h_c(0) = 0$ and $0 < h'_c(0) < \infty$, such that

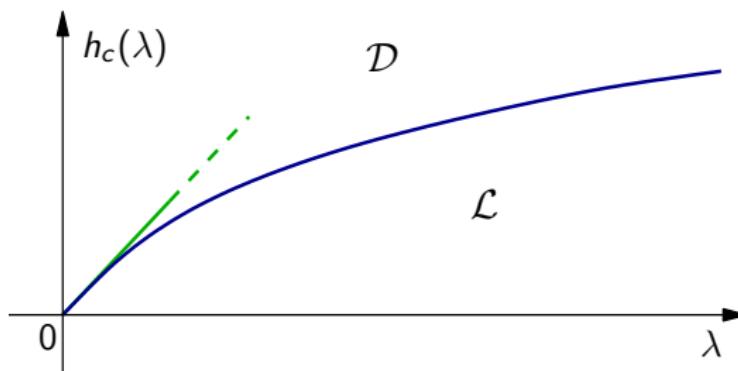
$$\mathcal{L} = \{(\lambda, h) : h < h_c(\lambda)\} \quad \mathcal{D} = \{(\lambda, h) : h \geq h_c(\lambda)\}$$

The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve $h_c : [0, \infty) \rightarrow [0, \infty)$, with $h_c(0) = 0$ and $0 < h'_c(0) < \infty$, such that

$$\mathcal{L} = \{(\lambda, h) : h < h_c(\lambda)\} \quad \mathcal{D} = \{(\lambda, h) : h \geq h_c(\lambda)\}$$

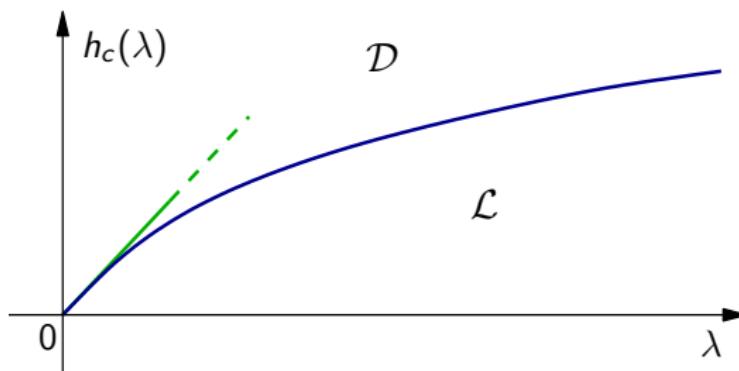


The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve $h_c : [0, \infty) \rightarrow [0, \infty)$, with $h_c(0) = 0$ and $0 < h'_c(0) < \infty$, such that

$$\mathcal{L} = \{(\lambda, h) : h < h_c(\lambda)\} \quad \mathcal{D} = \{(\lambda, h) : h \geq h_c(\lambda)\}$$



Slope at the origin:

- Brownian scaling
- Universality

Upper and Lower Bound on the critical line

Family of increasing curves indexed by $m > 0$:

$$h^{(m)}(\lambda) := \frac{1}{2m\lambda} \log M(-2m\lambda) \quad \left(\frac{dh^{(m)}}{d\lambda}(0) = m \right)$$

Binary: $h^{(m)}(\lambda) = \frac{\log \cosh(2m\lambda)}{2m\lambda}$ Gaussian: $h^{(m)}(\lambda) = m\lambda$

Upper and Lower Bound on the critical line

Family of increasing curves indexed by $m > 0$:

$$h^{(m)}(\lambda) := \frac{1}{2m\lambda} \log M(-2m\lambda) \quad \left(\frac{dh^{(m)}}{d\lambda}(0) = m \right)$$

Binary: $h^{(m)}(\lambda) = \frac{\log \cosh(2m\lambda)}{2m\lambda}$ Gaussian: $h^{(m)}(\lambda) = m\lambda$

Physical literature:

- ▶ $h_c(\cdot) = h^{(1)}(\cdot)$ [Garel et al. '89, Maritan and Trovato '99]
- ▶ $h_c(\cdot) = h^{(2/3)}(\cdot)$ [Monthus '00, Stepanov et al. '98]

Upper and Lower Bound on the critical line

Family of increasing curves indexed by $m > 0$:

$$h^{(m)}(\lambda) := \frac{1}{2m\lambda} \log M(-2m\lambda) \quad \left(\frac{dh^{(m)}}{d\lambda}(0) = m \right)$$

Binary: $h^{(m)}(\lambda) = \frac{\log \cosh(2m\lambda)}{2m\lambda}$ Gaussian: $h^{(m)}(\lambda) = m\lambda$

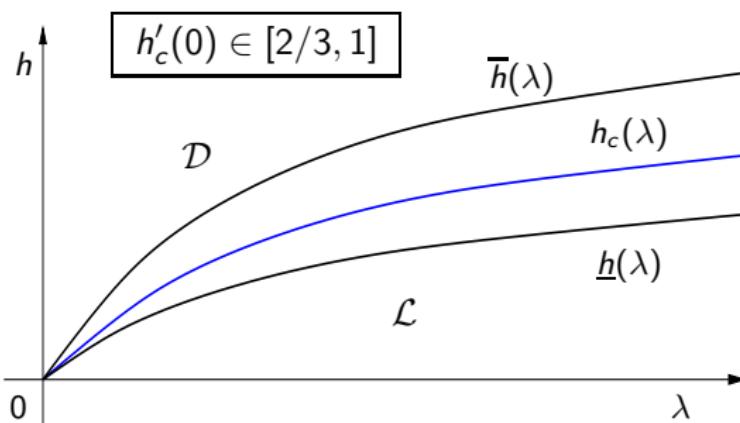
Physical literature:

- ▶ $h_c(\cdot) = h^{(1)}(\cdot)$ [Garel et al. '89, Maritan and Trovato '99]
- ▶ $h_c(\cdot) = h^{(2/3)}(\cdot)$ [Monthus '00, Stepanov et al. '98]

Theorem ([BdH 97], [Bodineau and Giacomin 04])

$$\underline{h}(\cdot) := h^{(2/3)}(\cdot) \leq h_c(\cdot) \leq h^{(1)}(\cdot) =: \overline{h}(\cdot)$$

Upper and Lower Bound on the critical line



Theorem ([BdH 97], [Bodineau and Giacomin 04])

$$h(\cdot) := h^{(2/3)}(\cdot) \leq h_c(\cdot) \leq h^{(1)}(\cdot) =: \bar{h}(\cdot)$$

Outline of the talk

1. Introduction

Motivations

Definition of the model

The phase diagram: UB and LB on the critical line

2. Numerical investigation

The transfer matrix approach

Beating the LB: a statistical test

Beating the UB: numerical observations

A conjecture (?) on the critical line

3. Theoretical analysis

Improving the UB: the constrained annealing technique

A preliminary transformation

Reduced free energy: $F(\lambda, h) := f(\lambda, h) - \lambda h$

$$\mathcal{L} = \{(\lambda, h) : F(\lambda, h) > 0\} \quad \mathcal{D} = \{(\lambda, h) : F(\lambda, h) = 0\}$$

A preliminary transformation

Reduced free energy: $F(\lambda, h) := f(\lambda, h) - \lambda h$

$$\mathcal{L} = \{(\lambda, h) : F(\lambda, h) > 0\} \quad \mathcal{D} = \{(\lambda, h) : F(\lambda, h) = 0\}$$

$F(\lambda, h)$ corresponds to the new partition function

$$\mathcal{Z}_N = Z_N \cdot \exp \left(-\lambda h N \right)$$

A preliminary transformation

Reduced free energy: $F(\lambda, h) := f(\lambda, h) - \lambda h$

$$\mathcal{L} = \{(\lambda, h) : F(\lambda, h) > 0\} \quad \mathcal{D} = \{(\lambda, h) : F(\lambda, h) = 0\}$$

$F(\lambda, h)$ corresponds to the new partition function

$$\mathcal{Z}_N = Z_N \cdot \exp \left(-\lambda h N - \lambda \sum_{i=1}^N \omega_i \right)$$

A preliminary transformation

Reduced free energy: $F(\lambda, h) := f(\lambda, h) - \lambda h$

$$\mathcal{L} = \{(\lambda, h) : F(\lambda, h) > 0\} \quad \mathcal{D} = \{(\lambda, h) : F(\lambda, h) = 0\}$$

$F(\lambda, h)$ corresponds to the new partition function

$$\begin{aligned} \mathcal{Z}_N &= Z_N \cdot \exp \left(-\lambda h N - \lambda \sum_{i=1}^N \omega_i \right) \\ &= \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^N (\omega_n + h) \mathbf{1}_{\{\text{sign}(S_n) = -1\}} \right) \right] \end{aligned}$$

A preliminary transformation

Reduced free energy: $F(\lambda, h) := f(\lambda, h) - \lambda h$

$$\mathcal{L} = \{(\lambda, h) : F(\lambda, h) > 0\} \quad \mathcal{D} = \{(\lambda, h) : F(\lambda, h) = 0\}$$

$F(\lambda, h)$ corresponds to the new partition function

$$\begin{aligned} \mathcal{Z}_N &= Z_N \cdot \exp \left(-\lambda h N - \lambda \sum_{i=1}^N \omega_i \right) \\ &= \mathbf{E} \left[\exp \left(-2\lambda \sum_{n=1}^N (\omega_n + h) \mathbf{1}_{\{\text{sign}(S_n) = -1\}} \right) \right] \end{aligned}$$

$(\lambda, h) \in \mathcal{L}$ iff $\mathcal{Z}_{N,\omega}^{\lambda,h}$ grows exponentially in N .

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

Problem: how far can we push N ? (\mathcal{Z}_N is the sum of 2^N terms. . .)

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

Problem: how far can we push N ? (\mathcal{Z}_N is the sum of 2^N terms. . .)

Transfer Matrix approach: compute \mathcal{Z}_N exactly in $O(N^2)$ steps!

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

Problem: how far can we push N ? (\mathcal{Z}_N is the sum of 2^N terms. . .)

$\mathcal{Z}_N(x) := \{\mathcal{Z}_N \text{ restricted to path ending at } x \in \mathbb{Z}\}$

Markov property + Additivity of the Hamiltonian give:

$$\mathcal{Z}_{M+2}(y) = \begin{cases} \frac{1}{4}\mathcal{Z}_M(y+2) + \frac{1}{2}\mathcal{Z}_M(y) + \frac{1}{4}\mathcal{Z}_M(y-2) & y > 0 \\ \frac{1}{4}[\mathcal{Z}_M(2) + \mathcal{Z}_M(0)] + \frac{1}{4}\alpha_M[\mathcal{Z}_M(0) + \mathcal{Z}_M(-2)] & y = 0 \\ \alpha_M \left[\frac{1}{4}\mathcal{Z}_M(y+2) + \frac{1}{2}\mathcal{Z}_M(y) + \frac{1}{4}\mathcal{Z}_M(y-2) \right] & y < 0 \end{cases}$$

where $\alpha_M := \exp(-2\lambda(\omega_{2M+1} + \omega_{2M+2} + 2h))$.

□

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

Problem: how far can we push N ? (\mathcal{Z}_N is the sum of 2^N terms. . .)

Transfer Matrix approach: compute \mathcal{Z}_N exactly in $O(N^2)$ steps!

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

Problem: how far can we push N ? (\mathcal{Z}_N is the sum of 2^N terms. . .)

Transfer Matrix approach: compute \mathcal{Z}_N exactly in $O(N^2)$ steps!

Accessible values: $N \sim 10^7$

Approximate computation (LB) in $O(N^{3/2})$ steps $\Rightarrow N \sim 10^8$

The transfer matrix approach

Naïve idea: for fixed (λ, h) and typical ω , **compute** numerically $\mathcal{Z}_{N,\omega}^{\lambda,h}$ as a function of N , to decide between \mathcal{L} and \mathcal{D}

Problem: how far can we push N ? (\mathcal{Z}_N is the sum of 2^N terms. . .)

Transfer Matrix approach: compute \mathcal{Z}_N exactly in $O(N^2)$ steps!

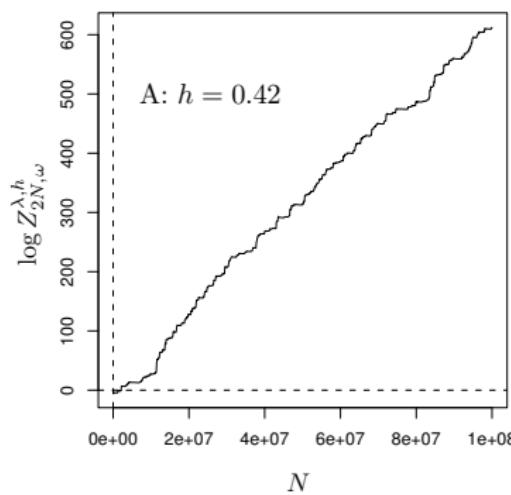
Accessible values: $N \sim 10^7$

Approximate computation (LB) in $O(N^{3/2})$ steps $\Rightarrow N \sim 10^8$

Computations in the case $\omega_n \in \{-1, +1\}$ (tried also Gaussian, . . .)

Qualitative results ($\lambda = 0.6$, $\underline{h} = 0.36$, $\overline{h} = 0.49$)

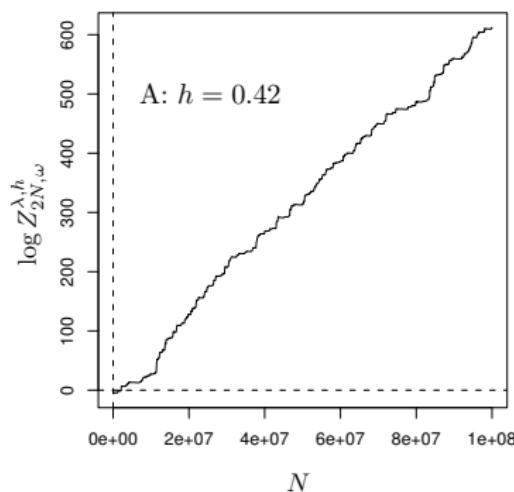
Dichotomy for the asymptotics of $\{\mathcal{Z}_{N,\omega}^{\lambda,h}\}_N$:



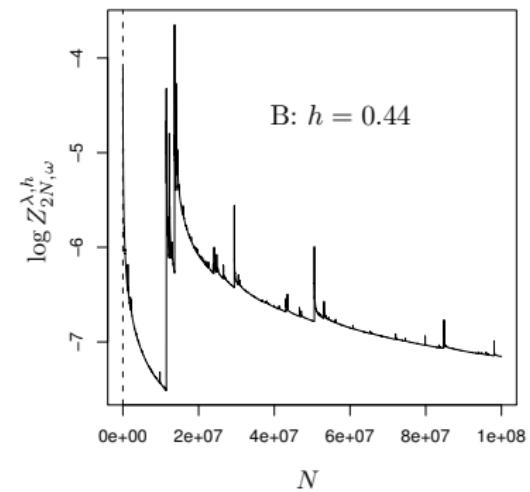
it diverges exponentially...

Qualitative results ($\lambda = 0.6$, $\underline{h} = 0.36$, $\overline{h} = 0.49$)

Dichotomy for the asymptotics of $\{\mathcal{Z}_{N,\omega}^{\lambda,h}\}_N$:



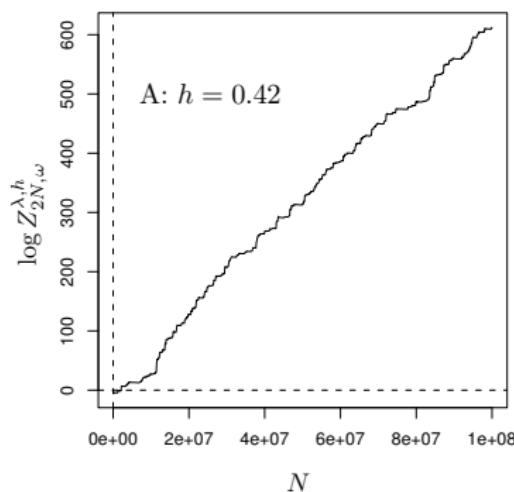
it diverges exponentially...



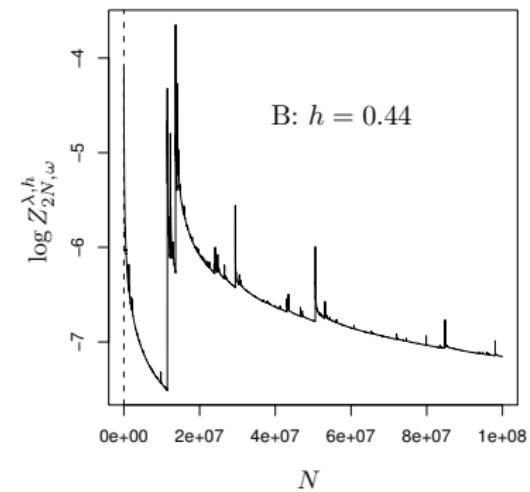
or it vanishes!

Qualitative results ($\lambda = 0.6$, $\underline{h} = 0.36$, $\overline{h} = 0.49$)

Dichotomy for the asymptotics of $\{\mathcal{Z}_{N,\omega}^{\lambda,h}\}_N$:



it diverges exponentially...



or it vanishes!

(outside of the “critical” region... come back after)

Qualitative results

It is numerically rather evident that the true critical line $h_c(\lambda)$ lies strictly in between $\underline{h}(\lambda)$ and $\overline{h}(\lambda)$, i.e.:

- ▶ for some $h > \underline{h}(\lambda)$ we see an exponential growth of \mathcal{Z}_N
- ▶ for some $h < \overline{h}(\lambda)$ we see a vanishing behavior of \mathcal{Z}_N

Qualitative results

It is numerically rather evident that the true critical line $h_c(\lambda)$ lies strictly in between $\underline{h}(\lambda)$ and $\overline{h}(\lambda)$, i.e.:

- ▶ for some $h > \underline{h}(\lambda)$ we see an exponential growth of \mathcal{Z}_N
- ▶ for some $h < \overline{h}(\lambda)$ we see a vanishing behavior of \mathcal{Z}_N

How to give more confidence to these observations?

Qualitative results

It is numerically rather evident that the true critical line $h_c(\lambda)$ lies strictly in between $\underline{h}(\lambda)$ and $\overline{h}(\lambda)$, i.e.:

- ▶ for some $h > \underline{h}(\lambda)$ we see an exponential growth of \mathcal{Z}_N
- ▶ for some $h < \overline{h}(\lambda)$ we see a vanishing behavior of \mathcal{Z}_N

How to give more confidence to these observations?

Beating the LB: $h_c(\lambda) > \underline{h}(\lambda)$

Rigorous statistical test for Localization with explicit error bound
(superadditivity + concentration of measure)

Qualitative results

It is numerically rather evident that the true critical line $h_c(\lambda)$ lies strictly in between $\underline{h}(\lambda)$ and $\overline{h}(\lambda)$, i.e.:

- ▶ for some $h > \underline{h}(\lambda)$ we see an exponential growth of \mathcal{Z}_N
- ▶ for some $h < \overline{h}(\lambda)$ we see a vanishing behavior of \mathcal{Z}_N

How to give more confidence to these observations?

Beating the LB: $h_c(\lambda) > \underline{h}(\lambda)$

Rigorous statistical test for Localization with explicit error bound (superadditivity + concentration of measure)

Beating the UB: $h_c(\lambda) < \overline{h}(\lambda)$

Quantitative criterion to measure the convergence under diffusive rescaling to the Brownian meander

Localization in a finite volume

Markov property of $S \Rightarrow$ for $N, M \in 2\mathbb{N}$

$$\mathcal{Z}_{N+M,\omega}(0) \geq \mathcal{Z}_{N,\omega}(0) \cdot \mathcal{Z}_{M,\theta^N\omega}(0) \quad [(\theta^N\omega)_n := \omega_{N+n}]$$

\Rightarrow the sequence $N \mapsto \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)]$ is superadditive

Localization in a finite volume

Markov property of $S \Rightarrow$ for $N, M \in 2\mathbb{N}$

$$\mathcal{Z}_{N+M,\omega}(0) \geq \mathcal{Z}_{N,\omega}(0) \cdot \mathcal{Z}_{M,\theta^N\omega}(0) \quad [(\theta^N\omega)_n := \omega_{N+n}]$$

\Rightarrow the sequence $N \mapsto \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)]$ is superadditive

Since $\mathcal{Z}_N(0) \asymp \mathcal{Z}_N$ we have the basic formula:

$$F(\lambda, h) = \sup_{N \in \mathbb{N}} \frac{1}{N} \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)]$$

In a suggestive way:

$$(\lambda, h) \in \mathcal{L} \iff \exists N \in \mathbb{N} : \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)] > 0$$

Localization in a finite volume

Markov property of $S \Rightarrow$ for $N, M \in 2\mathbb{N}$

$$\mathcal{Z}_{N+M,\omega}(0) \geq \mathcal{Z}_{N,\omega}(0) \cdot \mathcal{Z}_{M,\theta^N\omega}(0) \quad [(\theta^N\omega)_n := \omega_{N+n}]$$

\Rightarrow the sequence $N \mapsto \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)]$ is superadditive

Since $\mathcal{Z}_N(0) \asymp \mathcal{Z}_N$ we have the basic formula:

$$F(\lambda, h) = \sup_{N \in \mathbb{N}} \frac{1}{N} \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)]$$

In a suggestive way:

$$(\lambda, h) \in \mathcal{L} \iff \exists N \in \mathbb{N} : \mathbb{E}[\log \mathcal{Z}_{N,\omega}(0)] > 0$$

Localization can be proven by looking at *finite systems*

Statistical test for Localization

To prove $(\lambda, h) \in \mathcal{L}$ it suffices to find N s.t. $\mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}(0)] > 0$

Statistical test for Localization

To prove $(\lambda, h) \in \mathcal{L}$ it suffices to find N s.t. $\mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}(0)] > 0$

Drawback: \mathbb{E} means sum over 2^N possible charges ...

Statistical test for Localization

To prove $(\lambda, h) \in \mathcal{L}$ it suffices to find N s.t. $\mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}(0)] > 0$

Drawback: \mathbb{E} means sum over 2^N possible charges ...

Could small values of N suffice? **No**: back to this later

Statistical test for Localization

To prove $(\lambda, h) \in \mathcal{L}$ it suffices to find N s.t. $\mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}(0)] > 0$

Drawback: \mathbb{E} means sum over 2^N possible charges ...

Could small values of N suffice? **No**: back to this later

Problem: N large \longrightarrow we can sample only a **small** number of ω

Statistical test for Localization

To prove $(\lambda, h) \in \mathcal{L}$ it suffices to find N s.t. $\mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}(0)] > 0$

Drawback: \mathbb{E} means sum over 2^N possible charges ...

Could small values of N suffice? **No**: back to this later

Problem: N large \longrightarrow we can sample only a small number of ω

Solution: Concentration of Measure – few ω may suffice!

Statistical test for Localization

To prove $(\lambda, h) \in \mathcal{L}$ it suffices to find N s.t. $\mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}(0)] > 0$

Drawback: \mathbb{E} means sum over 2^N possible charges ...

Could small values of N suffice? **No**: back to this later

Problem: N large \longrightarrow we can sample only a small number of ω

Solution: Concentration of Measure – few ω may suffice!

Lipschitz function $G : \{-1, +1\}^N \rightarrow \mathbb{R}$ with Lipschitz constant C_{Lip} :

$$\mathbb{P}[G > \mathbb{E}(G) + u] \leq \exp\left(-\frac{u^2}{4C_{Lip}^2}\right)$$

More generally for an i.i.d. family $\{G_i\}_i$:

$$\mathbb{P}\left[\frac{\sum_{i=1}^n G_i}{n} > \mathbb{E}(G_1) + u\right] \leq \exp\left(-\frac{n u^2}{4C_{Lip}^2}\right)$$

Statistical test for Localization

By direct computation for $G := \log \mathcal{Z}_{N,\omega}$ we get $C_{Lip} = 2\lambda\sqrt{N}$

Statistical test for Localization

By direct computation for $G := \log \mathcal{Z}_{N,\omega}$ we get $C_{Lip} = 2\lambda\sqrt{N}$

Statistical test for \mathcal{L}

- ▶ Null hypothesis: $H_0 : \mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}] \leq 0$

Statistical test for Localization

By direct computation for $G := \log \mathcal{Z}_{N,\omega}$ we get $C_{Lip} = 2\lambda\sqrt{N}$

Statistical test for \mathcal{L}

- ▶ Null hypothesis: $H_0 : \mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}] \leq 0$
- ▶ $\hat{u}_n :=$ average of a sample of n independent realizations of $\log \mathcal{Z}_{N,\omega}^{\lambda,h}$.

Statistical test for Localization

By direct computation for $G := \log \mathcal{Z}_{N,\omega}$ we get $C_{Lip} = 2\lambda\sqrt{N}$

Statistical test for \mathcal{L}

- ▶ Null hypothesis: $H_0 : \mathbb{E}[\log \mathcal{Z}_{N,\omega}^{\lambda,h}] \leq 0$
- ▶ $\hat{u}_n :=$ average of a sample of n independent realizations of $\log \mathcal{Z}_{N,\omega}^{\lambda,h}$.
- ▶ If $\hat{u}_n > 0$ then we refuse H_0 (that is $(\lambda, h) \in \mathcal{L}!$) with a level of error not larger than

$$p := \exp\left(-\frac{\hat{u}_n^2 n}{16\lambda^2 N}\right)$$

Statistical test for Localization

Numerical results: the LB is strict

λ	0.3	0.6	1
h	0.22	0.41	0.58
$\underline{h}(\lambda)$	0.195	0.363	0.530
$\bar{h}(\lambda)$	0.286	0.495	0.662
p -value	1.5×10^{-6}	9.5×10^{-3}	1.6×10^{-5}
N	300000	500000	160000
n	225000	330000	970000

$$p := \exp\left(-\frac{\hat{u}_n^2 n}{16\lambda^2 N}\right)$$

Computer-assisted proof?

Back to naïve idea: can we hope that

$$\mathbb{E}[\log Z_{N,\omega}^{\lambda,h}] > 0 \quad \text{for small values of } N \quad (\text{up to } N \approx 20)$$

for $h > \underline{h}(\lambda)$, to perform an explicit computation?

Computer-assisted proof?

Back to naïve idea: can we hope that

$$\mathbb{E}[\log Z_{N,\omega}^{\lambda,h}] > 0 \quad \text{for small values of } N \quad (\text{up to } N \approx 20)$$

for $h > \underline{h}(\lambda)$, to perform an explicit computation?

NO!

λ	0.05(*)	0.1	0.2	0.4	0.6	1	2(*)	4(**)
N_+	750000	190000	40000	9500	4250	1800	900	800
N_-	600000	130000	33000	7500	3650	1550	750	700

$$p = 10^{-5} \sim 10^{-6} \quad (*) \quad p = 10^{-2} \sim 10^{-3} \quad (**) \quad \text{limit model } (\lambda \rightarrow \infty)$$

With the stated p -value and for $h = h^{(2/3)}(\lambda)$, both

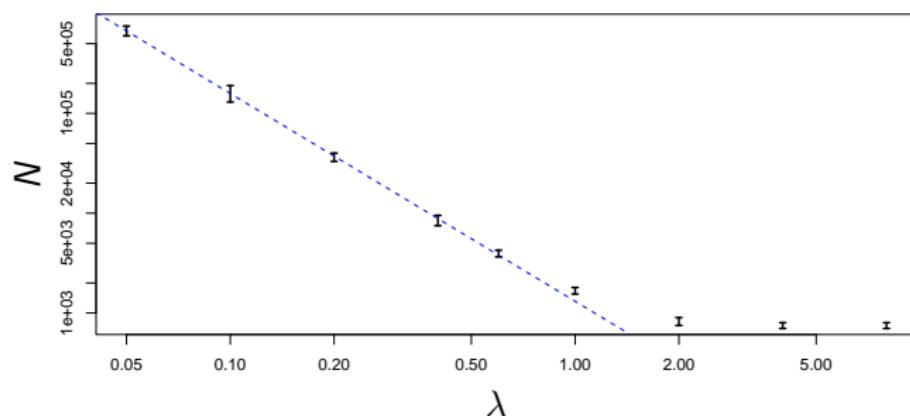
$$\mathbb{E}[\log Z_{N_+,\omega}^{\lambda,h}] > 0 \quad \mathbb{E}[\log Z_{N_-,\omega}^{\lambda,h}] < 0$$

Computer-assisted proof?

Back to naïve idea: can we hope that

$$\mathbb{E}[\log Z_{N,\omega}^{\lambda,h}] > 0 \quad \text{for small values of } N \quad (\text{up to } N \approx 20)$$

for $h > \underline{h}(\lambda)$, to perform an explicit computation?



\mathcal{D} elocalized observations

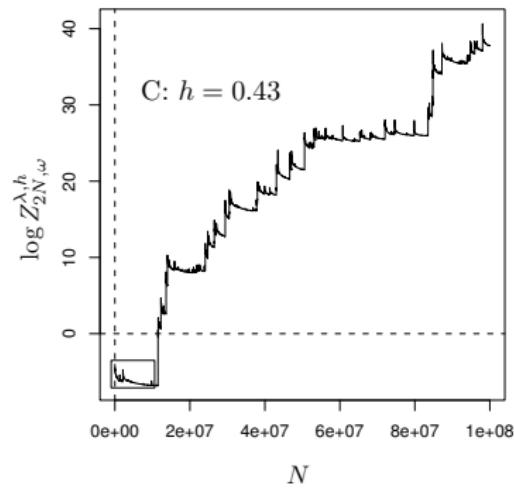
Difficult to make rigorous numerical claims on \mathcal{D} :

\mathcal{D} elocalization is not a finite-volume issue

Delocalized observations

Difficult to make rigorous numerical claims on \mathcal{D} :

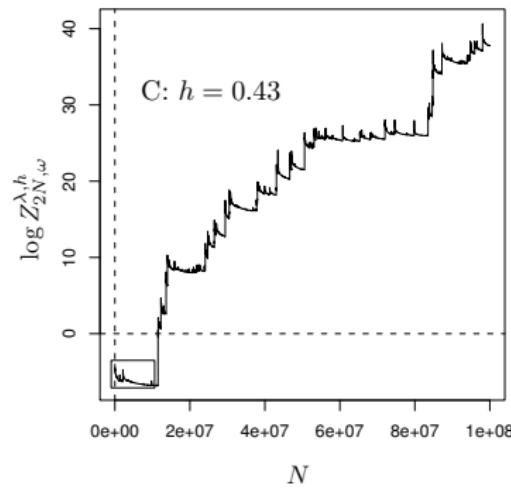
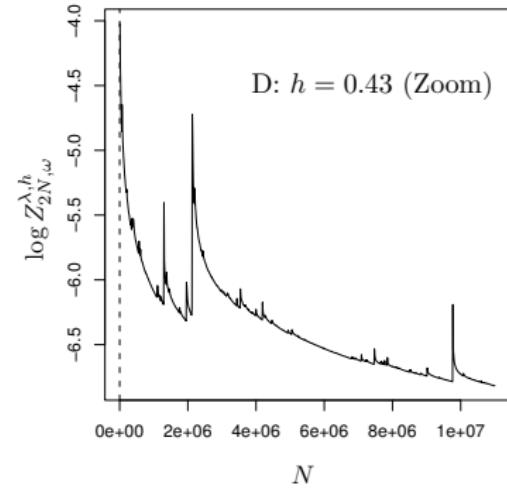
Delocalization is not a finite-volume issue



Delocalized observations

Difficult to make rigorous numerical claims on \mathcal{D} :

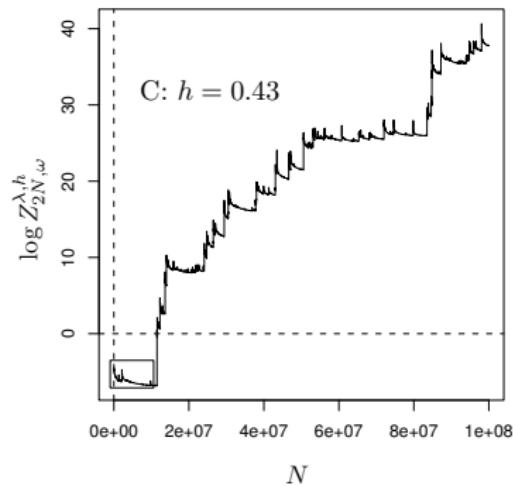
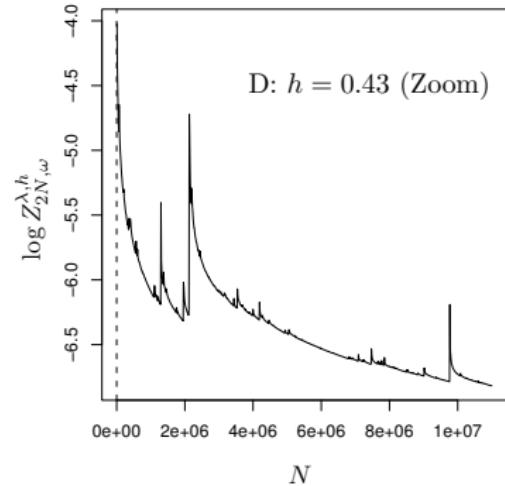
Delocalization is not a finite-volume issue



Delocalized observations

Difficult to make rigorous numerical claims on \mathcal{D} :

Delocalization is not a finite-volume issue



Jumps correspond to atypical stretches in the environment ω

Delocalized path analysis

Assume the convergence to Brownian meander in $\overset{\circ}{\mathcal{D}}$:

$$\text{under } \mathbf{P}_{N,\omega} \quad \frac{S_N}{\sqrt{N}} \implies x e^{-x^2/2} dx =: \varphi^+(x) dx$$

Delocalized path analysis

Assume the convergence to Brownian meander in $\overset{\circ}{\mathcal{D}}$:

$$\text{under } \mathbf{P}_{N,\omega} \quad \frac{S_N}{\sqrt{N}} \implies x e^{-x^2/2} dx =: \varphi^+(x) dx$$

The law of S_N under $\mathbf{P}_{N,\omega}$ is computed in terms of $\{\mathcal{Z}_{N,\omega}(x)\}_x$:

$$\mathbf{P}_{N,\omega}[S_N = x] = \frac{\mathcal{Z}_{N,\omega}(x)}{\mathcal{Z}_{N,\omega}}.$$

Delocalized path analysis

Assume the convergence to Brownian meander in $\overset{\circ}{\mathcal{D}}$:

$$\text{under } \mathbf{P}_{N,\omega} \quad \frac{S_N}{\sqrt{N}} \implies x e^{-x^2/2} dx =: \varphi^+(x) dx$$

The law of S_N under $\mathbf{P}_{N,\omega}$ is computed in terms of $\{\mathcal{Z}_{N,\omega}(x)\}_x$:

$$\mathbf{P}_{N,\omega}[S_N = x] = \frac{\mathcal{Z}_{N,\omega}(x)}{\mathcal{Z}_{N,\omega}}.$$

Quantitative measure of Delocalization (ℓ_1 distance)

$$\Delta_N^{\lambda,h}(\omega) := \sum_{x \in \mathbb{Z}} \left| \mathbf{P}_{N,\omega}^{\lambda,h}[S_N = x] - \frac{1}{\sqrt{N}} \varphi^+ \left(\frac{x}{\sqrt{N}} \right) \right|$$

Delocalized path analysis

We work at $\lambda = 0.6$ $[\underline{h} = 0.36, \ h_{test} = 0.41, \ \bar{h} = 0.49]$

- ▶ $(\omega^r)_n := \omega_{N-n}$ environment attached backwards
(fluctuations)

Delocalized path analysis

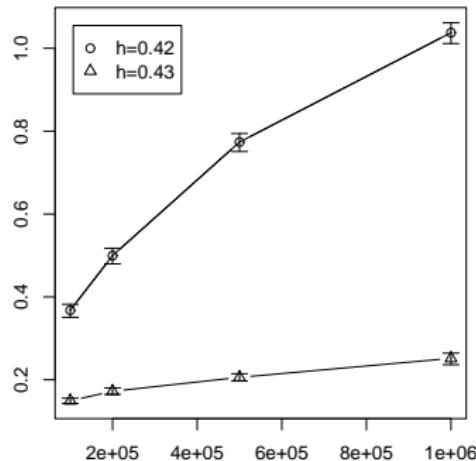
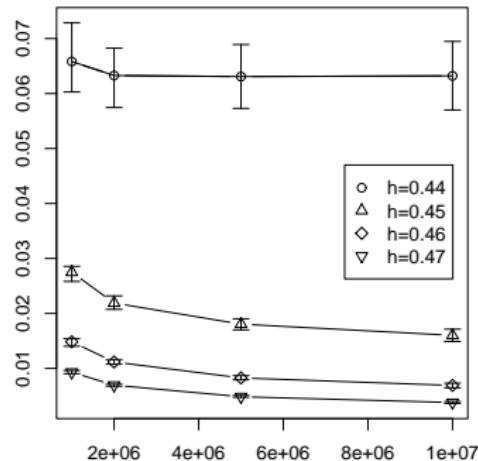
We work at $\lambda = 0.6$ $[\underline{h} = 0.36, \ h_{test} = 0.41, \ \bar{h} = 0.49]$

- ▶ $(\omega^r)_n := \omega_{N-n}$ environment attached backwards (fluctuations)
- ▶ Plot: 95% C.I. for the median of a sample $\{\Delta_N^{\lambda, h}(\omega^r)\}$

Delocalized path analysis

We work at $\lambda = 0.6$ $[h = 0.36, \ h_{test} = 0.41, \ \bar{h} = 0.49]$

- ▶ $(\omega^r)_n := \omega_{N-n}$ environment attached backwards (fluctuations)
- ▶ Plot: 95% C.I. for the median of a sample $\{\Delta_N^{\lambda, h}(\omega^r)\}$



A conjecture (?) on the true critical line

How to define a **finite volume critical line**?

A conjecture (?) on the true critical line

How to define a **finite volume critical line**?

Possible criteria: for fixed N and λ , take the value of h s.t.

- ▶ $\mathcal{Z}_{N,\omega}^{\lambda,h}(0) = 1$ (monotonicity in h)
- ▶ $\Delta_N^{\lambda,h}(\omega) = 0.1$ (empirical monotonicity in h)

Changing the (rather arbitrary) threshold does not affect the results.

A conjecture (?) on the true critical line

How to define a **finite volume critical line**?

Possible criteria: for fixed N and λ , take the value of h s.t.

- ▶ $\mathcal{Z}_{N,\omega}^{\lambda,h}(0) = 1$ (monotonicity in h)
- ▶ $\Delta_N^{\lambda,h}(\omega) = 0.1$ (empirical monotonicity in h)

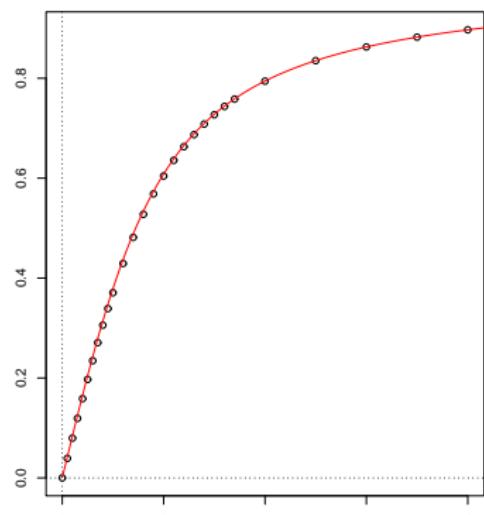
Changing the (rather arbitrary) threshold does not affect the results.

Numerical computations show that

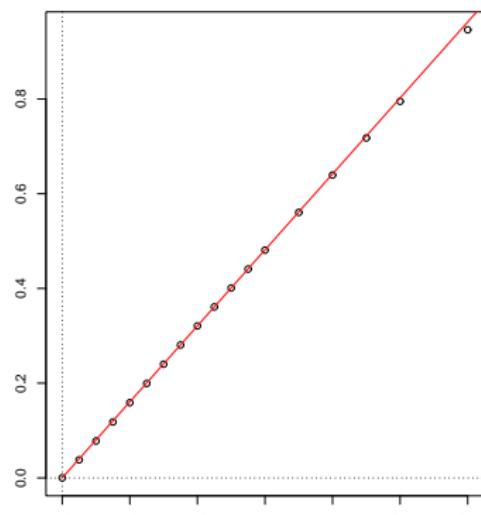
$$h_c(\cdot) \simeq h^{(m)}(\cdot) \quad m = 0.82 - 0.83$$

with **remarkable precision** (value of m somewhat criterion dependent)

A conjecture (?) on the true critical line

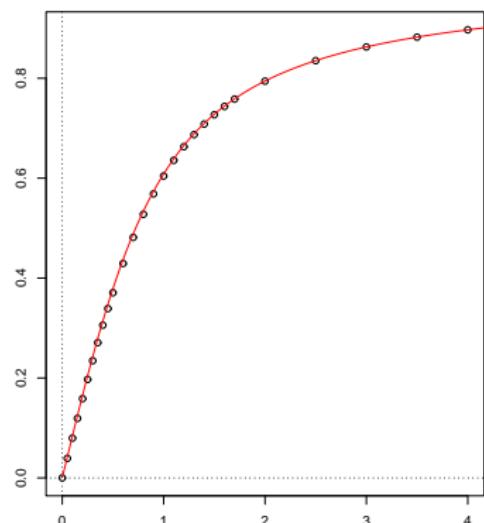


Binary case

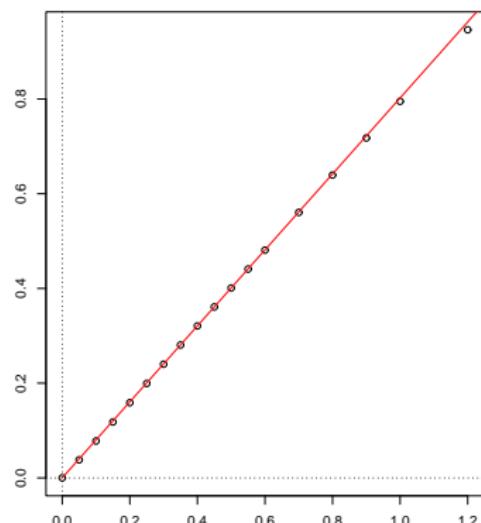


Gaussian case

A conjecture (?) on the true critical line



Binary case



Gaussian case

Plotted points are obtained for one fixed realization of ω

Outline of the talk

1. Introduction

Motivations

Definition of the model

The phase diagram: UB and LB on the critical line

2. Numerical investigation

The transfer matrix approach

Beating the LB: a statistical test

Beating the UB: numerical observations

A conjecture (?) on the critical line

3. Theoretical analysis

Improving the UB: the constrained annealing technique

The constrained annealing technique

Annealed bound on $Z_{N,\omega}$ (old partition function):

$$f(\lambda, h) = \lim_{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N,\omega}^{\lambda, h} \leq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z_{N,\omega}^{\lambda, h} =: f_a(\lambda, h)$$

The constrained annealing technique

Annealed bound on $Z_{N,\omega}$ (old partition function):

$$f(\lambda, h) = \lim_{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N,\omega}^{\lambda, h} \leq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z_{N,\omega}^{\lambda, h} =: f_a(\lambda, h)$$

Useless: $f^a(\lambda, h) > \lambda h$ for every λ, h .

The constrained annealing technique

Annealed bound on $Z_{N,\omega}$ (old partition function):

$$f(\lambda, h) = \lim_{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N,\omega}^{\lambda, h} \leq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z_{N,\omega}^{\lambda, h} =: f_a(\lambda, h)$$

Useless: $f^a(\lambda, h) > \lambda h$ for every λ, h .

Constrained annealing (Morita approximation): replace $Z_{N,\omega}$ by

$$Z'_{N,\omega} := Z_{N,\omega} \exp(A_N(\omega)) \quad \mathbb{E}(A_N(\omega)) = 0$$

The constrained annealing technique

Annealed bound on $Z_{N,\omega}$ (old partition function):

$$f(\lambda, h) = \lim_{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N,\omega}^{\lambda, h} \leq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z_{N,\omega}^{\lambda, h} =: f_a(\lambda, h)$$

Useless: $f_a(\lambda, h) > \lambda h$ for every λ, h .

Constrained annealing (Morita approximation): replace $Z_{N,\omega}$ by

$$Z'_{N,\omega} := Z_{N,\omega} \exp(A_N(\omega)) \quad \mathbb{E}(A_N(\omega)) = 0$$

- New annealed free energy $f'_a(\lambda, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z'_{N,\omega}$

The constrained annealing technique

Annealed bound on $Z_{N,\omega}$ (old partition function):

$$f(\lambda, h) = \lim_{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N,\omega}^{\lambda, h} \leq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z_{N,\omega}^{\lambda, h} =: f_a(\lambda, h)$$

Useless: $f^a(\lambda, h) > \lambda h$ for every λ, h .

Constrained annealing (Morita approximation): replace $Z_{N,\omega}$ by

$$Z'_{N,\omega} := Z_{N,\omega} \exp(A_N(\omega)) \quad \mathbb{E}(A_N(\omega)) = 0$$

- ▶ New annealed free energy $f'_a(\lambda, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z'_{N,\omega}$
- ▶ Same quenched free energy $\frac{1}{N} \mathbb{E} \log Z'_{N,\omega} \rightarrow f(\lambda, h)$

The constrained annealing technique

Annealed bound on $Z_{N,\omega}$ (old partition function):

$$f(\lambda, h) = \lim_{N \rightarrow \infty} \frac{1}{N} \mathbb{E} \log Z_{N,\omega}^{\lambda, h} \leq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z_{N,\omega}^{\lambda, h} =: f_a(\lambda, h)$$

Useless: $f^a(\lambda, h) > \lambda h$ for every λ, h .

Constrained annealing (Morita approximation): replace $Z_{N,\omega}$ by

$$Z'_{N,\omega} := Z_{N,\omega} \exp(A_N(\omega)) \quad \mathbb{E}(A_N(\omega)) = 0$$

- ▶ New annealed free energy $f'_a(\lambda, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} Z'_{N,\omega}$
- ▶ Same quenched free energy $\frac{1}{N} \mathbb{E} \log Z'_{N,\omega} \rightarrow f(\lambda, h)$

Therefore $f(\lambda, h) \leq f'_a(\lambda, h)$

The constrained annealing technique

New partition function $\mathcal{Z}_{N,\omega}$ corresponds to $A_N(\omega) = -\lambda \sum_{n=1}^N \omega_n$ (a part from $-\lambda h$).

The constrained annealing technique

New partition function $\mathcal{Z}_{N,\omega}$ corresponds to $A_N(\omega) = -\lambda \sum_{n=1}^N \omega_n$ (a part from $-\lambda h$). Direct computation

$$F'_a(\lambda, h) = \min\{\log M(-2\lambda) - 2\lambda h, 0\}$$

The constrained annealing technique

New partition function $\mathcal{Z}_{N,\omega}$ corresponds to $A_N(\omega) = -\lambda \sum_{n=1}^N \omega_n$ (a part from $-\lambda h$). Direct computation

$$F(\lambda, h) \leq F'_a(\lambda, h) = \min\{\log M(-2\lambda) - 2\lambda h, 0\}$$

The constrained annealing technique

New partition function $\mathcal{Z}_{N,\omega}$ corresponds to $A_N(\omega) = -\lambda \sum_{n=1}^N \omega_n$ (a part from $-\lambda h$). Direct computation

$$F(\lambda, h) \leq F'_a(\lambda, h) = \min\{\log M(-2\lambda) - 2\lambda h, 0\}$$

Hence we prove the UB:

$$F(\lambda, h) = 0 \quad \text{if} \quad h \geq \frac{1}{2\lambda} \log M(-2\lambda) =: \bar{h}(\lambda)$$

The constrained annealing technique

New partition function $\mathcal{Z}_{N,\omega}$ corresponds to $A_N(\omega) = -\lambda \sum_{n=1}^N \omega_n$ (a part from $-\lambda h$). Direct computation

$$F(\lambda, h) \leq F'_a(\lambda, h) = \min\{\log M(-2\lambda) - 2\lambda h, 0\}$$

Hence we prove the UB:

$$F(\lambda, h) = 0 \quad \text{if} \quad h \geq \frac{1}{2\lambda} \log M(-2\lambda) =: \bar{h}(\lambda)$$

Natural idea: could we improve $\bar{h}(\lambda)$ with some smarter choice of $A_N(\omega) = \sum_{n=1}^N B(\theta^n \omega)$, with $B(\cdot)$ local?

The constrained annealing technique

New partition function $\mathcal{Z}_{N,\omega}$ corresponds to $A_N(\omega) = -\lambda \sum_{n=1}^N \omega_n$ (a part from $-\lambda h$). Direct computation

$$F(\lambda, h) \leq F'_a(\lambda, h) = \min\{\log M(-2\lambda) - 2\lambda h, 0\}$$

Hence we prove the UB:

$$F(\lambda, h) = 0 \quad \text{if} \quad h \geq \frac{1}{2\lambda} \log M(-2\lambda) =: \bar{h}(\lambda)$$

Natural idea: could we improve $\bar{h}(\lambda)$ with some smarter choice of $A_N(\omega) = \sum_{n=1}^N B(\theta^n \omega)$, with $B(\cdot)$ local?

Theorem ([C. and Giacomin])

For every local function $B(\cdot)$ and for every $h < \bar{h}(\lambda)$ we have

$$F'_a(\lambda, h) > 0$$

The proof

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \left\{ \mathcal{Z}_{N,\omega} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) \right\} \quad (1)$$

The proof

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \left\{ \mathcal{Z}_{N,\omega} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) \right\} \quad (1)$$

By the basic Delocalization bound

$$\mathcal{Z}_{N,\omega} \geq P(S_n > 0, 1 \leq n \leq N) \approx N^{-1/2}$$

The proof

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \left\{ \mathcal{Z}_{N,\omega} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) \right\} \quad (1)$$

By the basic Delocalization bound

$$\mathcal{Z}_{N,\omega} \geq P(S_n > 0, 1 \leq n \leq N) \approx N^{-1/2}$$

hence

$$F'_a \geq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) =: \gamma$$

The proof

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \left\{ \mathcal{Z}_{N,\omega} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) \right\} \quad (1)$$

By the basic Delocalization bound

$$\mathcal{Z}_{N,\omega} \geq P(S_n > 0, 1 \leq n \leq N) \approx N^{-1/2}$$

hence

$$F'_a \geq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) =: \gamma$$

- ▶ if $\gamma > 0$ then $F'_a > 0$ and we are done

The proof

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \left\{ \mathcal{Z}_{N,\omega} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) \right\} \quad (1)$$

By the basic Delocalization bound

$$\mathcal{Z}_{N,\omega} \geq P(S_n > 0, 1 \leq n \leq N) \approx N^{-1/2}$$

hence

$$F'_a \geq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) =: \gamma$$

- ▶ if $\gamma > 0$ then $F'_a > 0$ and we are done
- ▶ if $\gamma = 0$ then $B(\cdot)$ is trivial, i.e. $\sup_{\omega} \sum_{n=1}^N B(\theta^n \omega) = o(N)$.

The proof

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \left\{ \mathcal{Z}_{N,\omega} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) \right\} \quad (1)$$

By the basic Delocalization bound

$$\mathcal{Z}_{N,\omega} \geq P(S_n > 0, 1 \leq n \leq N) \approx N^{-1/2}$$

hence

$$F'_a \geq \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \exp \left(\sum_{n=1}^N B(\theta^n \omega) \right) =: \gamma$$

- ▶ if $\gamma > 0$ then $F'_a > 0$ and we are done
- ▶ if $\gamma = 0$ then $B(\cdot)$ is trivial, i.e. $\sup_{\omega} \sum_{n=1}^N B(\theta^n \omega) = o(N)$.
Hence by (1)

$$F'_a = \lim_{N \rightarrow \infty} \frac{1}{N} \log \mathbb{E} \mathcal{Z}_{N,\omega} = F_a > 0$$

A general statement

Theorem

Let $\mathcal{Z}_{N,\omega}$ be the partition function of a system of size N and with i.i.d. disorder ω . Assume that

- ▶ for every $\mathcal{Z}_{N,\omega} \geq c_N > 0$ with $\frac{1}{N} \log c_N \rightarrow 0$
- ▶ the annealed free energy is positive: $F_a > 0$

Then, for any choice of the local function $B(\omega)$ with

$$\mathbb{E}(B(\omega)) = 0 \quad \mathbb{E}(\exp(\alpha B(\omega))) < \infty \quad \forall \alpha \in \mathbb{R}$$

the constrained annealed free energy with $A_N(\omega) = \sum_{n=1}^N B(\theta^n \omega)$ is positive: $F'_a > 0$.