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Definition of the model
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Introduction Motivations

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface
Monomers: (+) — hydrophobic (—) — hydrophilic

Oil Interface

Y
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Introduction Motivations

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

Monomers: (+) — hydrophobic (—) — hydrophilic

Oil Interface

Y

Phenomenon:
localization at the interface vs.  delocalization in one solvent

Energy—entropy competition
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Introduction The model

Definition of the model

Free process: Simple Symmetric Random Walk {S,}, on Z
So=0 Sn=Y11 X

where {X;}; areiid. with P(X; =+1)=1/2.
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Introduction The model

Definition of the model

Free process: Simple Symmetric Random Walk {S,}, on Z
So=0 Sn=Y11 X

where {X;}; areiid. with P(X; =+1)=1/2.
Parameters:

» N (system size) A, h > 0 (inverse temperature, asymmetry)
» w={wy}, € {—1,+1} (charges: hydrophobicity-hydrophily)
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Introduction The model

Definition of the model

Free process: Simple Symmetric Random Walk {S,}, on Z
So=0 Sn=Y11 X

where {X;}; areiid. with P(X; =+1)=1/2.
Parameters:

» N (system size) A, h > 0 (inverse temperature, asymmetry)
» w={wy}, € {—1,+1} (charges: hydrophobicity-hydrophily)

Polymer measure Pi{,’l; [Bolthausen and den Hollander 97]

phh 1 w0
—p°(5) = x5 o0 (A 2 (e h)SEg"(S")>

N,w n=1
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Introduction The model

A sample path

Soliam 20 +4 (1) w2() oD

N
Energy: HQZ(S) =\ Z(Wn + h)sign(Sp) = )‘(6 + 6h)

n=1

(if S, =0 — sign(5y) = sign(S,,,l))
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Introduction The model

The choice of the charges

Quenched randomness: w = {wp}, is a typical sample from a
centered i.i.d. sequence (law P):

Elwi] =0 E[w? =1
M(«) := Elexp(aw1)] < 00 Va € R

(generalization: w, € {—1,+1} — w, € R)

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007



Introduction The model

The choice of the charges

Quenched randomness: w = {wp}, is a typical sample from a
centered i.i.d. sequence (law P):

Elw]=0 Elw?=1
M(«) := Elexp(aw1)] < 00 Va € R
(generalization: w, € {—1,+1} — w, € R)
Typical examples:
» Binary: P(w; =+1) = % —  log M(«a) = log cosh(«)
» Gaussian: wy ~ N(0,1) — logM(a) = 3a?
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Introduction The phase diagram

The free energy

Interested in the asymptotic properties of the model as N — oo
(localization-delocalization)
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Introduction The phase diagram

The free energy

Interested in the asymptotic properties of the model as N — oo
(localization-delocalization)

Partition function: Z,’\\,Z = E(exp(H;\V’jw))
Free energy: rate of exponential growth of Zy:

f.(\ h) == lim %logzﬁ,”g

N—oo
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Introduction The phase diagram

The free energy

Interested in the asymptotic properties of the model as N — oo
(localization-delocalization)

Partition function: Z,’\\,Z = E(exp(H;\V’jw))
Free energy: rate of exponential growth of Zy:

f.(\ h) == lim %logzﬁ,”g

N—oo

» The limit exists P-a.s. (and in L1(dPP)) by superadditivity

» Self-averaging property: f,(\, h) = f(\, h) for P-a.e. w
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\, h) > A\h
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\ h) > \h
Proof: restrict Zy on positive trajectories

N
Z,(\,Z > E| exp <>\Z(wn + h) sign(S,,)> 15 >0,...,5v>0

n=1
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\ h) > \h

Proof: restrict Zy on positive trajectories

Y

N
E| exp <>\Z(wn + h) sign(S,,)> :5:1>0,...,5v>0

n=1

A h
ZN,w

N
exp(NAh + Aan> oP[51>0,...,5N>0]

n=1
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\ h) > \h

Proof: restrict Zy on positive trajectories

Y

N
E| exp <>\Z(wn + h) sign(S,,)> :5:1>0,...,5v>0

n=1

A h
ZN,w

N
exp(NAh + Aan> oP[51>0,...,5N>0]

n=1
const. + o(1)
VN

oo (W3t 1 o) -
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\ h) > \h

Therefore we split the phase diagram {(\, h) : A, h > 0} into
> Localized region £ = {(A,h) : (A h) > Ah}

> Delocalized region D = {(X, h) : f(A\, h) = Ah}
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How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\ h) > \h

Therefore we split the phase diagram {(\, h) : A, h > 0} into
> Localized region £ = {(A,h) : (A h) > Ah}

> Delocalized region D = {(X, h) : f(A\, h) = Ah}

Two main questions:

1. Study of the phase diagram
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Introduction The phase diagram

Localization vs. Delocalization

How to read the (de)localized character of the model from f(, h)?

Basic observation: f(\ h) > \h

Therefore we split the phase diagram {(\, h) : A, h > 0} into
> Localized region £ = {(A,h) : (A h) > Ah}

> Delocalized region D = {(X, h) : f(A\, h) = Ah}

Two main questions:
1. Study of the phase diagram

2. Free energy definition of £ and D — path properties?

» L: strong path localization [Sinai 93] [Biskup and den Hollander 99]
» D: many open questions [Giacomin and Toninelli 05]
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Introduction The phase diagram

The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve h. : [0,00) — [0, 00),
with he(0) = 0 and 0 < K.(0) < oo, such that

£ = {(\h): h<h(N)} D = {(A\h) : h>h(\)}
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Introduction The phase diagram

The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve h. : [0,00) — [0, 00),
with he(0) = 0 and 0 < K.(0) < oo, such that

L = {()\, h) : h< hc()\)} D = {()\,h) :h> hc()\)}
hc(/\) D
e Slope at the origin:
L » Brownian scaling

» Universality
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Introduction The phase diagram

Upper and Lower Bound on the critical line

Family of increasing curves indexed by m > 0:

i 1 dh(m)
A (N) = 5 log M(—2m)) < o (0) = m)

Binary: h(M()\) = % Gaussian: h(M(X\) = mA
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Introduction The phase diagram

Upper and Lower Bound on the critical line

Family of increasing curves indexed by m > 0:

1 dh(m
A (N) = 5 log M(—2m)) < o (0) = m)

Binary: h(M()\) = logcoshCmA) o osian: AM(\) = mA
y 2mi

Physical literature:
> he(-) = AD(.)  [Garel et al. '89, Maritan and Trovato '99]
> he(-) = h?/3)(-)  [Monthus '00, Stepanov et al. '98]
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Introduction The phase diagram

Upper and Lower Bound on the critical line

Family of increasing curves indexed by m > 0:

1 dhp(m)
A (N) = 5 log M(—2m)) < o (0) = m)

Binary: h(M()\) = % Gaussian: h(M(X\) = mA

Physical literature:
> he(-) = AD(.)  [Garel et al. '89, Maritan and Trovato '99]
> he(-) = h?/3)(-)  [Monthus '00, Stepanov et al. '98]

Theorem ([BdH 97], [Bodineau and Giacomin 04])

h() = KA < he() < HD() = F()
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Introduction The phase diagram

Upper and Lower Bound on the critical line

. ‘ K.(0) € [2/3,1] ‘
» he(\)
h(X)
c
0 A
Theorem ([BdH 97], [Bodineau and Giacomin 04])
h(-) == HA() < he() < AD() = A() J
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Numerical investigation

Outline of the talk

2. Numerical investigation
The transfer matrix approach
Beating the LB: a statistical test
Beating the UB: numerical observations
A conjecture (?7) on the critical line
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Numerical investigation
A preliminary transformation

Reduced free energy: F(A, h) :=f(\, h) — \h

L={(\h):F(\,h)>0}  D={(\h):F\h) =0}
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Numerical investigation
A preliminary transformation

Reduced free energy: F(A, h) :=f(\, h) — \h

L={(\h):F(\,h)>0}  D={(\h):F\h) =0}

F(\, h) corresponds to the new partition function

ZN = ZN-exp <)\hN>
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Numerical investigation
A preliminary transformation

Reduced free energy: F(A, h) :=f(\, h) — \h

L={(\h):F(\,h)>0}  D={(\h):F\h) =0}

F(\, h) corresponds to the new partition function

N
Zn = Zy-exp <)\hNAZw,->
i=1
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Numerical investigation
A preliminary transformation

Reduced free energy: F(A, h) :=f(\, h) — \h

L={(\h):F(\,h)>0}  D={(\h):F\h) =0}

F(\, h) corresponds to the new partition function

N
Zn = Zy-exp ( AN — )\Zw,)
i=1
N
exp < —2A Z (wn + h) l{sign(S,,)_—l})]

n=1

= E
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Numerical investigation
A preliminary transformation

Reduced free energy: F(A, h) :=f(\, h) — \h

L={(\h):F(\,h)>0}  D={(\h):F\h) =0}

F(\, h) corresponds to the new partition function

N
Zn = Zy-exp (AhNAZw,-)
i=1

N
= E|exp ( —2A Z (wn + h) l{sign(S,,)_—l})]
n=1
(A, h) e L iff Zf\‘,i’) grows exponentially in N. J

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 14 / 32



Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
Z,)\‘,Z as a function of N, to decide between £ and D J
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Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
Z,)\‘,Z as a function of N, to decide between £ and D J

Problem: how far can we push N? (Z is the sum of 2V terms. . .)
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Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
ZMM 35 a function of N, to decide between £ and D J

Problem: how far can we push N? (Z is the sum of 2V terms. . .)

Transfer Matrix approach: compute Zy exactly in O(N?) steps!
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Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
Zf\‘,/; as a function of N, to decide between £ and D J

Problem: how far can we push N? (Zy is the sum of 2N terms. . .)

Zn(x) := {Z restricted to path ending at x € Z}
Markov property + Additivity of the Hamiltonian give:

1Zu(y +2) + 32Zm(y) + 1Zmly - 2) y>0
Zyialy) =4 7| Zm(2) + ZM(O)} + tay [ZM(O) + ZM(—2)} y=0

am|3Zmly +2) + 32uly) + 3Zuly—-2)] v <0

where 1= exp (— 2A (wam11 + wam2 + 2h)). O

v
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Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
ZMM 35 a function of N, to decide between £ and D J

Problem: how far can we push N? (Z is the sum of 2V terms. . .)

Transfer Matrix approach: compute Zy exactly in O(N?) steps!
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Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
ZMM 35 a function of N, to decide between £ and D J

Problem: how far can we push N? (Z is the sum of 2V terms. . .)

Transfer Matrix approach: compute Zy exactly in O(N?) steps!

4

Accessible values: N ~ 107

Approximate computation (LB) in O(N3/2) steps = N ~ 10°
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Numerical investigation The transfer matrix approach

The transfer matrix approach

Naive idea: for fixed (A, h) and typical w, compute numerically
ZMM 35 a function of N, to decide between £ and D J

Problem: how far can we push N? (Z is the sum of 2V terms. . .)

Transfer Matrix approach: compute Zy exactly in O(N?) steps!

4

Accessible values: N ~ 107

Approximate computation (LB) in O(N3/2) steps = N ~ 10°

Computations in the case w, € {—1,+1} (tried also Gaussian, ...)
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Numerical investigation

The transfer matrix approach

Qualitative results (A =0.6, h=0.36, h = 0.49)

Dichotomy for the asymptotics of {Z,’\\,Z}N :

log N0

200
I

Francesco Caravenna

2Nw

500
I

T T T T T T
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

N
it diverges exponentially. ..

Random copolymers at selective interfaces
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Numerical investigation The transfer matrix approach

Qualitative results (A =0.6, h=0.36, h = 0.49)

Dichotomy for the asymptotics of {Z,’\\,Z}N :

: T
2 B: h =044
g ! o
3T | L3
Vi ii
g o EEEE
07\””7\ 77777 \777777\ 77777 \77777\7 : T T T T T
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08 0e+00 2e+07 4e+07 6e+07 8e+07 1e+08
N N
it diverges exponentially. .. or it vanishes!
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Numerical investigation The transfer matrix approach

Qualitative results (A =0.6, h=0.36, h = 0.49)

Dichotomy for the asymptotics of {Z,’\\,Z}N :

.
° B: h =044
g o
3~ L3
ﬁ»Ng g | 2’N§
- & 9
° T T T T T T : T T T T T
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08 0e+00 2e+07 4e+07 6e+07 8e+07 1e+08
N N
it diverges exponentially. .. or it vanishes!

(outside of the “critical” region. ..come back after)
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Numerical investigation The transfer matrix approach

Qualitative results

It is numerically rather evident that the true critical line hc(A) lies
strictly in between h(A) and h()), i.e.:

» for some h > h(\) we see an exponential growth of Zy

» for some h < h(\) we see a vanishing behavior of Zy
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Numerical investigation The transfer matrix approach

Qualitative results

It is numerically rather evident that the true critical line hc(A) lies
strictly in between h(A) and h()), i.e.:

» for some h > h(\) we see an exponential growth of Zy

» for some h < h(\) we see a vanishing behavior of Zy

How to give more confidence to these observations?
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Numerical investigation The transfer matrix approach

Qualitative results

It is numerically rather evident that the true critical line hc(A) lies
strictly in between h(A) and h(\), i.e.:

» for some h > h(\) we see an exponential growth of Zy

» for some h < h(\) we see a vanishing behavior of Zy

How to give more confidence to these observations?

Beating the LB: hc(\) > h())

Rigorous statistical test for Localization with explicit error bound
(superadditivity + concentration of measure)
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Numerical investigation The transfer matrix approach

Qualitative results

It is numerically rather evident that the true critical line hc(A) lies
strictly in between h(A) and h(\), i.e.:

» for some h > h(\) we see an exponential growth of Zy

» for some h < h(\) we see a vanishing behavior of Zy
How to give more confidence to these observations?

Beating the LB: h.(\) > h()\)

Rigorous statistical test for Localization with explicit error bound
(superadditivity + concentration of measure)

Beating the UB: h.()\) < h())
Quantitative criterion to measure the convergence under diffusive
rescaling to the Brownian meander
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Numerical investigation Beating the LB

Localization in a finite volume

Markov property of S = for N, M € 2N
ZNJrI\/I,w(O) > ZN,w(O) : Z/\//’gNw(O) [(HNCU),, = wN+n}

= the sequence N — E[log Zy ,(0)] is superadditive
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Numerical investigation Beating the LB

Localization in a finite volume

Markov property of S = for N, M € 2N
Znimw(0) = Znw(0) - 2w on,,(0) [(0"w)n = wnen ]
= the sequence N — E[log Zy ,(0)] is superadditive

Since Zy(0) < Zy we have the basic formula:

1
F(\,h) = sup 5 E[log Zn.,(0)]

In a suggestive way:

(\h)eL — INeN: E[logZn.(0)] >0
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Numerical investigation Beating the LB

Localization in a finite volume

Markov property of S = for N, M € 2N
Znimw(0) = Znw(0) - 2w on,,(0) [(0"w)n = wnen ]
= the sequence N — E[log Zy ,(0)] is superadditive

Since Zy(0) < Zy we have the basic formula:

1
F(\,h) = sup 5 E[log Zn.,(0)]

In a suggestive way:

(\h)eL — INeN: E[logZn.(0)] >0

Localization can be proven by looking at finite systems
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Numerical investigation Beating the LB

Statistical test for Localization

To prove (X, h) € L it suffices to find N s.t. E[log Z,)\‘,Z(O)] >0

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 19 / 32



Numerical investigation Beating the LB

Statistical test for Localization

To prove (X, h) € L it suffices to find N s.t. E[log Z,)\‘,Z(O)] >0

Drawback: E means sum over 2" possible charges ...
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Numerical investigation Beating the LB

Statistical test for Localization

To prove (X, h) € L it suffices to find N s.t. E[log Z,)\‘,Z(O)] >0

Drawback: E means sum over 2" possible charges ...
Could small values of N suffice? No: back to this later
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Statistical test for Localization

To prove (X, h) € L it suffices to find N s.t. E[log Z,)\‘,Z(O)] >0

Drawback: E means sum over 2" possible charges ...
Could small values of N suffice? No: back to this later

Problem: N large — we can sample only a small number of w
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Numerical investigation Beating the LB

Statistical test for Localization

To prove (X, h) € L it suffices to find N s.t. E[log Z,?,Z(O)] >0

Drawback: E means sum over 2" possible charges ...
Could small values of N suffice? No: back to this later

Problem: N large — we can sample only a small number of w

Solution: Concentration of Measure — few w may suffice!
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Numerical investigation Beating the LB

Statistical test for Localization

To prove (X, h) € L it suffices to find N s.t. E[log Z,i‘,Z(O)] >0

Drawback: E means sum over 2" possible charges ...
Could small values of N suffice? No: back to this later

Problem: N large — we can sample only a small number of w

Solution: Concentration of Measure — few w may suffice!
Lipschitz function G : {—1,+1}" — R with Lipschitz constant Cp,:
U2
P[G>E(G)+u] < exp( —

4Ct,

More generally for an i.i.d. family {G;};:

n i 2
P M>E(G1)+u] < exp(—n—u)

n 4 C,_2,-p

v
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Numerical investigation Beating the LB

Statistical test for Localization

By direct computation for G := log Zp, we get Cpjp = 22N
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Numerical investigation Beating the LB

Statistical test for Localization

By direct computation for G := log Zp, we get Cpjp = 22N

Statistical test for £
» Null hypothesis: Hp : E[Iong\‘,’Z] <0
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Numerical investigation Beating the LB

Statistical test for Localization

By direct computation for G := log Zp, we get Cpjp = 22N

Statistical test for £
» Null hypothesis: Hp : E[Iong\‘,’Z] <0

» U, := average of a sample of n independent realizations of
log Zp" .
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Numerical investigation Beating the LB

Statistical test for Localization

By direct computation for G := log Zp, we get Cpjp = 22N

Statistical test for £
» Null hypothesis: Hp : E[Iong\‘,’Z] <0

» U, := average of a sample of n independent realizations of
log Zp" .

» If U, > 0 then we refuse Hp (that is (A, h) € L!) with a level
of error not larger than

= exp | — Unn
P = &P\ " Toa2N
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Introduction

Numerical investigation Theoretical analysis

Beating the LB

Statistical test for Localization

Numerical results: the LB is strict

x| o3 | os 1
h 0.22 0.41 0.58
h()\) 0.195 0.363 0.530
h()) 0.286 0.495 0.662
p-value | 1.5x107°% | 95 x 1073 | 1.6 x 1075
N 300000 500000 160000
n 225000 330000 970000

Francesco Caravenna
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Numerical investigation Beating the LB

Computer—assisted proof?

Back to naive idea: can we hope that
E|log Z,i‘,g] >0 for small values of N (up to N =~ 20)

for h > h()), to perform an explicit computation?
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Numerical investigation Beating the LB

Computer—assisted proof?

Back to naive idea: can we hope that
E|log Z,i‘,f}] >0 for small values of N (up to N =~ 20)

for h > h()), to perform an explicit computation?

NO!

| A Jloos | o1 | 02 [ 0sa ] o6 | 1 2[4 |
Ni || 750000 | 190000 | 40000 | 9500 | 4250 | 1800 | 900 | 800
N_ || 600000 | 130000 | 33000 | 7500 | 3650 | 1550 | 750 | 700
p=10">~ 109 (x) p=10"2 ~ 1073 (%) limit model (A — 00)

With the stated p-value and for h = h(?/3)()), both

E[log Zy",] >0  E[logZy" ] <0
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Numerical investigation Beating the LB

Computer—assisted proof?

Back to naive idea: can we hope that
E|log Z,i‘,g] >0 for small values of N (up to N =~ 20)

for h > h(\), to perform an explicit computation?

1e+03 5e+03 2e+04 1e+05 5e+05
I

0.05 0.10 0.20 0.50 1.00 2.00 5.00
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Numerical investigation Beating the UB

Delocalized observations

Difficult to make rigorous numerical claims on D:

Delocalization is not a finite-volume issue
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Numerical investigation Beating the UB

Delocalized observations

Difficult to make rigorous numerical claims on D:

Delocalization is not a finite-volume issue

30 40

L Ah
log Z3N o
20

10

T T T T T T
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

N
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Numerical investigation Beating the UB

Delocalized observations

Difficult to make rigorous numerical claims on D:

Delocalization is not a finite-volume issue

o
o 2
< 7 1
0
<1 D: h = 0.43 (Zoom)
o i
8
o |1
a4
3 3 9
< 9 4 < v
<5 " <F e |
N N 5 .
o0 o0 ! '
S o | < .
- o |
© o,
I
'
o 0 !
@
[ 1
'
T T T T T T T T T T T T
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08 0e+00 20406 4e+06 6e+06 8e+06 1e+07
N N
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Numerical investigation Beating the UB

Delocalized observations

Difficult to make rigorous numerical claims on D:

Delocalization is not a finite-volume issue

o
o 2
< 7 1
0
<1 D: h = 0.43 (Zoom)
o i
8
o |1
a4
3 3 9
< 9 4 < v
<5 " <F e |
N N 5 .
o0 o0 ! '
S o | < .
- o |
© o,
I
'
o 0 !
@
[ 1
'
T T T T T T T T T T T T
0e+00 2e+07 4e+07 6e+07 8e+07 1e+08 0e+00 20406 4e+06 6e+06 8e+06 1e+07
N N

Jumps correspond to atypical stretches in the environment w
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Numerical investigation Beating the UB

Delocalized path analysis

[¢]
Assume the convergence to Brownian meander in D:

under Py, — xe XPdx = et (x)dx

Su
VN
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Numerical investigation Beating the UB

Delocalized path analysis

[¢]
Assume the convergence to Brownian meander in D:

Su
VN

under Py, — xe XPdx = et (x)dx

The law of Sy under Py, is computed in terms of {Zp ., (x)}x:

ZN,w(X) .

PN,w [SN = X] ZN
W
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Numerical investigation Beating the UB

Delocalized path analysis

[¢]
Assume the convergence to Brownian meander in D:

Su
VN

under Py, — xe XPdx = et (x)dx

The law of Sy under Py, is computed in terms of {Zp ., (x)}x:

_ ZN,w(X) .

PN,w [SN = X] ZN
W

Quantitative measure of Delocalization (¢; distance)

B3 = X [Pilon=r - o (5)

XEZ
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Numerical investigation Beating the UB

Delocalized path analysis

We work at A =0.6  [h=0.36, hses = 0.41, h=0.49]

» (w"), := wn_p environment attached backwards
(fluctuations)
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Numerical investigation Beating the UB

Delocalized path analysis

We work at A =0.6  [h=0.36, hses = 0.41, h=0.49]

» (w"), := wn_p environment attached backwards
(fluctuations)

» Plot: 95% C.I. for the median of a sample {A),{,’h(w’)}
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Numerical investigation Beating the UB

Delocalized path analysis

We work at A =0.6  [h=0.36, hses = 0.41, h=0.49]

» (w"), := wn_p environment attached backwards
(fluctuations)
» Plot: 95% C.I. for the median of a sample {A),{,’h(w’)}

5
o > -
ch | S
©
o
g1+ 1 1 1
@
S 8 ]
S}
3 o h=0.44
g 7 S} A h=0.45
. < h=0.46
g 7ZE v h=0.47
S A 8 | s
o 8 —_—
o I\lg
kod
= =
84 =} V\#\$\$
-
T T T T T T T T T T
2e+05 4e+05 6e+05 8e+05 1e+06 2e+06 4e+06 6e+06 8e+06 1le+07
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Numerical investigation The true critical line

A conjecture (?) on the true critical line

How to define a finite volume critical line?
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Numerical investigation The true critical line

A conjecture (?) on the true critical line

How to define a finite volume critical line?
Possible criteria: for fixed N and )\, take the value of h s.t.
> ZI)\‘I’L(O) =1 (monotonicity in h)
> A),{,’h(w) =0.1 (empirical monotonicity in h)
Changing the (rather arbitrary) threshold does not affect the
results.
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Numerical investigation The true critical line

A conjecture (?) on the true critical line

How to define a finite volume critical line?
Possible criteria: for fixed N and )\, take the value of h s.t.
> ZI)\‘I’L(O) =1 (monotonicity in h)

> A),{,’h(w) =0.1 (empirical monotonicity in h)

Changing the (rather arbitrary) threshold does not affect the
results.

Numerical computations show that
he(-) ~ AM()  m=0.82-0.83

with remarkable precision (value of m somewhat criterion dependent)
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Numerical investigation The true critical line

A conjecture (?) on the true critical line

Binary case Gaussian case
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Numerical investigation The true critical line

A conjecture (?) on the true critical line

0 1 2 3 4 0.0 0.2 04 0.6 08 1.0 12

Binary case Gaussian case

Plotted points are obtained for one fixed realization of w
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Theoretical analysis

Outline of the talk

3. Theoretical analysis
Improving the UB: the constrained annealing technique
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

Annealed bound on Zy, (old partition function):

1 1
fF(\, h) = lim NEk)gzm < ,JilnmﬁlogEZ@:Z = f(\h)

N—oo
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

Annealed bound on Zy, (old partition function):

1 1
fF(\, h) = lim NEk)gzm < ,JilnmﬁlogEZ@:Z = f(\h)

N—oo

Useless: f2(A, h) > A\h for every A, h.
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

Annealed bound on Zy, (old partition function):

1 1
fF(\, h) = lim NEk)gzm < ,JilnmﬁlogEzﬁzz = f(\h)

N—oo
Useless: f2(\, h) > Ah for every A, h.

Constrained annealing (Morita approximation): replace Zy , by

Zy ., = Znwexp(An(w)) E(Any(w)) =0
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The constrained annealing technique

Annealed bound on Zy, (old partition function):

1 1
fF(\, h) = lim NEk)gzm < ,JilnmﬁlogEzﬁzz = f(\h)

N—oo

Useless: f2(\, h) > Ah for every A, h.

Constrained annealing (Morita approximation): replace Zy , by

ZIIV,w = Znwexp(An(w)) E(Any(w)) =0
1
» New annealed free energy f1(\, h) = Nlim = logEZ)y ,
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

Annealed bound on Zy, (old partition function):

1 1
fF(\, h) = lim NEk)gzm < ,JilnmﬁlogEzﬁzz = f(\h)

N—oo

Useless: f2(\, h) > Ah for every A, h.

Constrained annealing (Morita approximation): replace Zy , by

ZIIV,w = Znwexp(An(w)) E(Any(w)) =0
1
» New annealed free energy f1(\, h) = Nlim = logEZ)y ,

1
» Same quenched free energy NIElog ZI/V,w — f(\, h)
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

Annealed bound on Zy, (old partition function):

1 1
fF(\, h) = lim NEk)gzm < ,JilnmﬁlogEzﬁzz = f(\h)

N—oo

Useless: f2(\, h) > Ah for every A, h.

Constrained annealing (Morita approximation): replace Zy , by

ZIIV,w = Znwexp(An(w)) E(Any(w)) =0
1
» New annealed free energy f1(\, h) = Nlim = logEZ)y ,

1
» Same quenched free energy NIElog ZI/V,w — f(\, h)

Therefore f(Ah) < fi(\h)
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

New partition function Zy ,, corresponds to Ay(w) = —A 22121 Wn
(a part from —\h).
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

New partition function Zy ,, corresponds to Ay(w) = —A 22121 Wn
(a part from —\h). Direct computation

FL(A, h) = min{logM(—2\) — 2\h, 0}
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

New partition function Zy ,, corresponds to Ay(w) = —A 22121 Wn
(a part from —\h). Direct computation

F(\, h) < Fi(\ h) = min{log M(—2X) — 2\h, 0}
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

New partition function Zy ,, corresponds to Ay(w) = —A 22121 Wn
(a part from —\h). Direct computation

F(\, h) < Fi(\ h) = min{log M(—2X) — 2\h, 0}

Hence we prove the UB:

1 _
F(Lh) = 0 if h > - logM(=2)) = h(})
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

New partition function Zy ,, corresponds to Ay(w) = —A 22121 Wn
(a part from —\h). Direct computation

F(\, h) < Fi(\ h) = min{log M(—2X) — 2\h, 0}
Hence we prove the UB:

1 _
F(Lh) = 0 if h > - logM(=2)) = h(})

Natural idea: could we improve h(\) with some smarter choice of
An(w) = SN B(6"w), with B(-) local?
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Theoretical analysis The constrained annealing technique

The constrained annealing technique

New partition function Zy ,, corresponds to Ay(w) = —A 22121 Wh
(a part from —\h). Direct computation

F(\, h) < Fi(\ h) = min{log M(—2X) — 2\h, 0}
Hence we prove the UB:
F(\h) = 0 if h > %IogM(—D\) =: h(\)

Natural idea: could we improve h(\) with some smarter choice of
An(w) = SN B(6"w), with B(-) local?

Theorem ([C. and Giacomin])

For every local function B(-) and for every h < h()\) we have

F,(\,h) >0
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Theoretical analysis The constrained annealing technique

The proof

N
.1 n
F, = Nll—r>noo N log E< Zn o, exp g_l B(0"w) (1)

By the basic Delocalization bound

Znw > P(Sy>0,1<n<N) = N2
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Theoretical analysis The constrained annealing technique

The proof

N
1 n
F, = Nll—r>noo N IogE{ZNM exp (ZB(G w))} (1)
By the basic Delocalization bound
Znw > P(Sy>0,1<n<N) = N2

hence

N
1
/ H n .
F, > Nl|m N IogIEexp( 271 B(6 w)) =: 5
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Theoretical analysis The constrained annealing technique

The proof

N
1 n
F, = Nll—r>noo N IogE{ZNM exp (Z;B(G w))} (1)
By the basic Delocalization bound
Znw > P(Sy>0,1<n<N) = N2

hence
1 N
/ H n .
F, > leloﬁ IogIEexp( 271 B(6 w)) = v

» if v > 0 then F., > 0 and we are done
Y a
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Theoretical analysis The constrained annealing technique

The proof

N
Fl = A)iqu% IogE{ZNM exp (Z; B(@%)) } (1)
By the basic Delocalization bound
Znw > P(S,>0,1<n<N) ~ N7V/2
hence
F, > lim 1 log E exp (iB(@”w)) = v
N=oo N n=1
» if v > 0 then F, > 0 and we are done
> if v = 0 then B(-) is trivial, i.e. sup, 32N, B(0"w) = o(N).
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Theoretical analysis The constrained annealing technique

The proof

F, = Nlinoo% IogE{ZNM exp (éB(G”w)) } (1)
By the basic Delocalization bound
Znw > P(S,>0,1<n<N) ~ N7V/2
hence
1 N
F, > NILr>nooN log E exp (;B(@’M)) = v
» if v > 0 then F, > 0 and we are done

> if v = 0 then B(-) is trivial, i.e. sup, 32N, B(6"w) = o(N).
Hence by (1)

1
F, = lim N logEZy., = Fa>0

N—oo
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Theoretical analysis The constrained annealing technique

A general statement

Theorem

Let Zy ,, be the partition function of a system of size N and with
i.i.d. disorder w. Assume that

> for every Zy,, > cy > 0 with % logcy — 0
> the annealed free energy is positive: F, > 0

Then, for any choice of the local function B(w) with
E(B(w)) =0 E(exp(aB(w))) < o0 VaeR

the constrained annealed free energy with Ay(w) = Z,’Yzl B(0"w)
is positive: F, > 0.
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