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Introduction Numerical investigation Theoretical analysis Motivations

Qualitative introduction

Copolymer (= inhomogeneous polymer) near a selective interface

Monomers: (+) → hydrophobic (−) → hydrophilic
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Phenomenon:

localization at the interface vs. delocalization in one solvent

Energy–entropy competition
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Definition of the model

Free process: Simple Symmetric Random Walk {Sn}n on Z

S0 = 0 Sn =
∑n

i=1 Xi

where {Xi}i are i.i.d. with P(X1 = ±1) = 1/2.
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S0 = 0 Sn =
∑n

i=1 Xi

where {Xi}i are i.i.d. with P(X1 = ±1) = 1/2.

Parameters:

◮ N (system size) λ, h ≥ 0 (inverse temperature, asymmetry)

◮ ω = {ωn}n ∈ {−1,+1}N (charges: hydrophobicity-hydrophily)
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Definition of the model

Free process: Simple Symmetric Random Walk {Sn}n on Z

S0 = 0 Sn =
∑n

i=1 Xi

where {Xi}i are i.i.d. with P(X1 = ±1) = 1/2.

Parameters:

◮ N (system size) λ, h ≥ 0 (inverse temperature, asymmetry)

◮ ω = {ωn}n ∈ {−1,+1}N (charges: hydrophobicity-hydrophily)

Polymer measure P
λ,h
N,ω [Bolthausen and den Hollander 97]

dP
λ,h
N,ω

dP
(S) :=

1

Z
λ,h
N,ω

· exp
(

λ

N∑

n=1

(ωn + h) sign(Sn)

)
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A sample path

Sn
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Energy: Hλ,h
N,ω(S) := λ

N∑

n=1

(ωn + h) sign(Sn) = λ
(
6 + 6h

)

(
if Sn = 0 → sign(Sn) := sign(Sn−1)

)
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The choice of the charges

Quenched randomness: ω = {ωn}n is a typical sample from a
centered i.i.d. sequence (law P):

E[ω1] = 0 E[ω1
2] = 1

M(α) := E[exp(αω1)] < ∞ ∀α ∈ R

(generalization: ωn ∈ {−1,+1} → ωn ∈ R)
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The choice of the charges

Quenched randomness: ω = {ωn}n is a typical sample from a
centered i.i.d. sequence (law P):

E[ω1] = 0 E[ω1
2] = 1

M(α) := E[exp(αω1)] < ∞ ∀α ∈ R

(generalization: ωn ∈ {−1,+1} → ωn ∈ R)

Typical examples:

◮ Binary: P(ω1 = ±1) = 1
2 → log M(α) = log cosh(α)

◮ Gaussian: ω1 ∼ N(0, 1) → log M(α) = 1
2α2
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The free energy

Interested in the asymptotic properties of the model as N → ∞
(localization-delocalization)
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The free energy

Interested in the asymptotic properties of the model as N → ∞
(localization-delocalization)

Partition function: Z
λ,h
N,ω := E

(
exp(Hλh

N,ω)
)

Free energy: rate of exponential growth of ZN :

fω(λ, h) := lim
N→∞

1

N
log Z

λ,h
N,ω
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The free energy

Interested in the asymptotic properties of the model as N → ∞
(localization-delocalization)

Partition function: Z
λ,h
N,ω := E

(
exp(Hλh

N,ω)
)

Free energy: rate of exponential growth of ZN :

fω(λ, h) := lim
N→∞

1

N
log Z

λ,h
N,ω

◮ The limit exists P–a.s. (and in L1(dP)) by superadditivity

◮ Self-averaging property: fω(λ, h) = f (λ, h) for P–a.e. ω
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Localization vs. Delocalization

How to read the (de)localized character of the model from f (λ, h)?
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Localization vs. Delocalization

How to read the (de)localized character of the model from f (λ, h)?

Basic observation: f (λ, h) ≥ λh

Proof: restrict ZN on positive trajectories

Z
λ,h
N,ω ≥ E

[
exp

(
λ

N∑

n=1

(ωn + h) sign(Sn)

)
; S1 > 0, . . . ,SN > 0

]
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How to read the (de)localized character of the model from f (λ, h)?

Basic observation: f (λ, h) ≥ λh

Proof: restrict ZN on positive trajectories

Z
λ,h
N,ω ≥ E

[
exp

(
λ

N∑

n=1

(ωn + h) sign(Sn)

)
; S1 > 0, . . . ,SN > 0

]

= exp

(
N λh + λ

N∑

n=1

ωn

)
· P

[
S1 > 0 , . . . , SN > 0

]
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Localization vs. Delocalization

How to read the (de)localized character of the model from f (λ, h)?

Basic observation: f (λ, h) ≥ λh

Proof: restrict ZN on positive trajectories

Z
λ,h
N,ω ≥ E

[
exp

(
λ

N∑

n=1

(ωn + h) sign(Sn)

)
; S1 > 0, . . . ,SN > 0

]

= exp

(
N λh + λ

N∑

n=1

ωn

)
· P

[
S1 > 0 , . . . , SN > 0

]

= exp

(
N λh + o(N)

)
· const. + o(1)√

N
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Localization vs. Delocalization

How to read the (de)localized character of the model from f (λ, h)?

Basic observation: f (λ, h) ≥ λh

Therefore we split the phase diagram {(λ, h) : λ, h ≥ 0} into

◮ Localized region L =
{
(λ, h) : f (λ, h) > λ h

}

◮ Delocalized region D =
{
(λ, h) : f (λ, h) = λ h

}
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Localization vs. Delocalization

How to read the (de)localized character of the model from f (λ, h)?

Basic observation: f (λ, h) ≥ λh

Therefore we split the phase diagram {(λ, h) : λ, h ≥ 0} into

◮ Localized region L =
{
(λ, h) : f (λ, h) > λ h

}

◮ Delocalized region D =
{
(λ, h) : f (λ, h) = λ h

}

Two main questions:

1. Study of the phase diagram

2. Free energy definition of L and D → path properties?
◮ L: strong path localization [Sinai 93] [Biskup and den Hollander 99]

◮ D: many open questions [Giacomin and Toninelli 05]
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The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve hc : [0,∞) → [0,∞) ,

with hc(0) = 0 and 0 < h′c(0) < ∞, such that

L =
{
(λ, h) : h < hc(λ)

}
D =

{
(λ, h) : h ≥ hc(λ)

}
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with hc(0) = 0 and 0 < h′c(0) < ∞, such that

L =
{
(λ, h) : h < hc(λ)

}
D =

{
(λ, h) : h ≥ hc(λ)

}

0

hc(λ)

λ

L

D
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The critical line

Theorem ([BdH 97])

There exists a continuous, increasing curve hc : [0,∞) → [0,∞) ,

with hc(0) = 0 and 0 < h′c(0) < ∞, such that

L =
{
(λ, h) : h < hc(λ)

}
D =

{
(λ, h) : h ≥ hc(λ)

}

0

hc(λ)

λ

L

D

Slope at the origin:

◮ Brownian scaling

◮ Universality
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Upper and Lower Bound on the critical line

Family of increasing curves indexed by m > 0 :

h(m)(λ) :=
1

2mλ
log M(−2mλ)

(
dh(m)

dλ
(0) = m

)

Binary: h(m)(λ) = log cosh(2mλ)
2mλ Gaussian: h(m)(λ) = mλ
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Upper and Lower Bound on the critical line

Family of increasing curves indexed by m > 0 :

h(m)(λ) :=
1

2mλ
log M(−2mλ)

(
dh(m)

dλ
(0) = m

)

Binary: h(m)(λ) = log cosh(2mλ)
2mλ Gaussian: h(m)(λ) = mλ

Physical literature:

◮ hc(·) = h(1)(·) [Garel et al. ’89, Maritan and Trovato ’99]

◮ hc(·) = h(2/3)(·) [Monthus ’00, Stepanov et al. ’98]
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Upper and Lower Bound on the critical line

Family of increasing curves indexed by m > 0 :

h(m)(λ) :=
1

2mλ
log M(−2mλ)

(
dh(m)

dλ
(0) = m

)

Binary: h(m)(λ) = log cosh(2mλ)
2mλ Gaussian: h(m)(λ) = mλ

Physical literature:

◮ hc(·) = h(1)(·) [Garel et al. ’89, Maritan and Trovato ’99]

◮ hc(·) = h(2/3)(·) [Monthus ’00, Stepanov et al. ’98]

Theorem ([BdH 97], [Bodineau and Giacomin 04])

h(·) := h(2/3)(·) ≤ hc(·) ≤ h(1)(·) =: h(·)
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Upper and Lower Bound on the critical line

0

h

λ

L

D

h(λ)

h(λ)

hc(λ)

h′

c(0) ∈ [2/3, 1]

Theorem ([BdH 97], [Bodineau and Giacomin 04])

h(·) := h(2/3)(·) ≤ hc(·) ≤ h(1)(·) =: h(·)
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A preliminary transformation

Reduced free energy: F(λ, h) := f (λ, h) − λ h

L =
{
(λ, h) : F(λ, h) > 0

}
D =

{
(λ, h) : F(λ, h) = 0

}
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ZN = ZN · exp
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− λhN

)
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L =
{
(λ, h) : F(λ, h) > 0

}
D =

{
(λ, h) : F(λ, h) = 0

}

F(λ, h) corresponds to the new partition function

ZN = ZN · exp
(

− λhN − λ
N∑

i=1

ωi

)

= E

[
exp

(
− 2λ

N∑

n=1

(ωn + h)1{sign(Sn)=−1}

)]
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A preliminary transformation

Reduced free energy: F(λ, h) := f (λ, h) − λ h

L =
{
(λ, h) : F(λ, h) > 0

}
D =

{
(λ, h) : F(λ, h) = 0

}

F(λ, h) corresponds to the new partition function

ZN = ZN · exp
(

− λhN − λ
N∑

i=1

ωi

)

= E

[
exp

(
− 2λ

N∑

n=1

(ωn + h)1{sign(Sn)=−1}

)]

(λ, h) ∈ L iff Zλ,h
N,ω grows exponentially in N.
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The transfer matrix approach

Näıve idea: for fixed (λ, h) and typical ω , compute numerically

Zλ,h
N,ω as a function of N, to decide between L and D
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The transfer matrix approach

Näıve idea: for fixed (λ, h) and typical ω , compute numerically

Zλ,h
N,ω as a function of N, to decide between L and D

Problem: how far can we push N? (ZN is the sum of 2N terms. . . )
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The transfer matrix approach

Näıve idea: for fixed (λ, h) and typical ω , compute numerically

Zλ,h
N,ω as a function of N, to decide between L and D

Problem: how far can we push N? (ZN is the sum of 2N terms. . . )

ZN(x) := {ZN restricted to path ending at x ∈ Z}
Markov property + Additivity of the Hamiltonian give:

ZM+2(y) =






1
4ZM(y + 2) + 1

2ZM(y) + 1
4ZM(y − 2) y > 0

1
4

[
ZM(2) + ZM(0)

]
+ 1

4αM

[
ZM(0) + ZM(−2)

]
y = 0

αM

[
1
4ZM(y + 2) + 1

2ZM(y) + 1
4ZM(y − 2)

]
y < 0

,

where αM := exp
(
− 2λ (ω2M+1 + ω2M+2 + 2h)

)
.
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Näıve idea: for fixed (λ, h) and typical ω , compute numerically
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Problem: how far can we push N? (ZN is the sum of 2N terms. . . )
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Näıve idea: for fixed (λ, h) and typical ω , compute numerically

Zλ,h
N,ω as a function of N, to decide between L and D

Problem: how far can we push N? (ZN is the sum of 2N terms. . . )

Transfer Matrix approach: compute ZN exactly in O(N2) steps!

⇓
Accessible values: N ∼ 107

Approximate computation (LB) in O(N3/2) steps ⇒ N ∼ 108
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The transfer matrix approach

Näıve idea: for fixed (λ, h) and typical ω , compute numerically

Zλ,h
N,ω as a function of N, to decide between L and D

Problem: how far can we push N? (ZN is the sum of 2N terms. . . )

Transfer Matrix approach: compute ZN exactly in O(N2) steps!

⇓
Accessible values: N ∼ 107

Approximate computation (LB) in O(N3/2) steps ⇒ N ∼ 108

Computations in the case ωn ∈ {−1,+1} (tried also Gaussian, . . . )
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Qualitative results (λ = 0.6, h = 0.36, h = 0.49)

Dichotomy for the asymptotics of {Zλ,h
N,ω}N :

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

N

lo
g

Z
λ

,h
2
N

,ω

A: h = 0.42

it diverges exponentially. . .

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 16 / 32



Introduction Numerical investigation Theoretical analysis The transfer matrix approach

Qualitative results (λ = 0.6, h = 0.36, h = 0.49)

Dichotomy for the asymptotics of {Zλ,h
N,ω}N :

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

N

lo
g

Z
λ

,h
2
N

,ω

A: h = 0.42

it diverges exponentially. . .
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−
7

−
6

−
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−
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N
lo
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Z

λ
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2
N
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or it vanishes!
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Qualitative results (λ = 0.6, h = 0.36, h = 0.49)

Dichotomy for the asymptotics of {Zλ,h
N,ω}N :

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

N

lo
g

Z
λ

,h
2
N

,ω

A: h = 0.42

it diverges exponentially. . .

0e+00 2e+07 4e+07 6e+07 8e+07 1e+08

−
7

−
6

−
5

−
4

N
lo

g
Z

λ
,h

2
N

,ω

B: h = 0.44

or it vanishes!

(outside of the “critical” region. . . come back after)
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Qualitative results

It is numerically rather evident that the true critical line hc(λ) lies
strictly in between h(λ) and h(λ), i.e.:

◮ for some h > h(λ) we see an exponential growth of ZN

◮ for some h < h(λ) we see a vanishing behavior of ZN
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◮ for some h > h(λ) we see an exponential growth of ZN

◮ for some h < h(λ) we see a vanishing behavior of ZN

How to give more confidence to these observations?
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It is numerically rather evident that the true critical line hc(λ) lies
strictly in between h(λ) and h(λ), i.e.:

◮ for some h > h(λ) we see an exponential growth of ZN

◮ for some h < h(λ) we see a vanishing behavior of ZN

How to give more confidence to these observations?

Beating the LB: hc(λ) > h(λ)

Rigorous statistical test for Localization with explicit error bound
(superadditivity + concentration of measure)
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Qualitative results

It is numerically rather evident that the true critical line hc(λ) lies
strictly in between h(λ) and h(λ), i.e.:

◮ for some h > h(λ) we see an exponential growth of ZN

◮ for some h < h(λ) we see a vanishing behavior of ZN

How to give more confidence to these observations?

Beating the LB: hc(λ) > h(λ)

Rigorous statistical test for Localization with explicit error bound
(superadditivity + concentration of measure)

Beating the UB: hc(λ) < h(λ)

Quantitative criterion to measure the convergence under diffusive
rescaling to the Brownian meander
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Localization in a finite volume

Markov property of S ⇒ for N,M ∈ 2N

ZN+M,ω(0) ≥ ZN,ω(0) · ZM,θNω(0)
[
(θNω)n := ωN+n

]

⇒ the sequence N 7→ E
[
logZN,ω(0)

]
is superadditive
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ZN+M,ω(0) ≥ ZN,ω(0) · ZM,θNω(0)
[
(θNω)n := ωN+n

]

⇒ the sequence N 7→ E
[
logZN,ω(0)

]
is superadditive

Since ZN(0) ≍ ZN we have the basic formula:

F(λ, h) = sup
N∈N

1

N
E
[
logZN,ω(0)

]

In a suggestive way:

(λ, h) ∈ L ⇐⇒ ∃ N ∈ N : E
[
logZN,ω(0)

]
> 0
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Localization in a finite volume

Markov property of S ⇒ for N,M ∈ 2N

ZN+M,ω(0) ≥ ZN,ω(0) · ZM,θNω(0)
[
(θNω)n := ωN+n

]

⇒ the sequence N 7→ E
[
logZN,ω(0)

]
is superadditive

Since ZN(0) ≍ ZN we have the basic formula:

F(λ, h) = sup
N∈N

1

N
E
[
logZN,ω(0)

]

In a suggestive way:

(λ, h) ∈ L ⇐⇒ ∃ N ∈ N : E
[
logZN,ω(0)

]
> 0

Localization can be proven by looking at finite systems
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Statistical test for Localization

To prove (λ, h) ∈ L it suffices to find N s.t. E
[
logZλ,h

N,ω(0)
]

> 0
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Statistical test for Localization

To prove (λ, h) ∈ L it suffices to find N s.t. E
[
logZλ,h

N,ω(0)
]

> 0

Drawback: E means sum over 2N possible charges . . .
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Statistical test for Localization

To prove (λ, h) ∈ L it suffices to find N s.t. E
[
logZλ,h

N,ω(0)
]

> 0

Drawback: E means sum over 2N possible charges . . .
Could small values of N suffice? No: back to this later

Problem: N large −→ we can sample only a small number of ω

Solution: Concentration of Measure – few ω may suffice!

Lipschitz function G : {−1, +1}N → R with Lipschitz constant CLip:

P
[
G > E(G) + u

]
≤ exp

(
− u2

4 C 2
Lip

)

More generally for an i.i.d. family {Gi}i :

P

[∑n

i=1 Gi

n
> E(G1) + u

]
≤ exp

(
− n u2

4 C 2
Lip

)
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Statistical test for Localization

By direct computation for G := logZN,ω we get CLip = 2λ
√

N
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Statistical test for Localization

By direct computation for G := logZN,ω we get CLip = 2λ
√

N

Statistical test for L
◮ Null hypothesis: H0 : E

[
logZλ,h

N,ω

]
≤ 0
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Statistical test for Localization

By direct computation for G := logZN,ω we get CLip = 2λ
√

N

Statistical test for L
◮ Null hypothesis: H0 : E

[
logZλ,h

N,ω

]
≤ 0

◮ ûn := average of a sample of n independent realizations of
logZλ,h

N,ω.
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Statistical test for Localization

By direct computation for G := logZN,ω we get CLip = 2λ
√

N

Statistical test for L
◮ Null hypothesis: H0 : E

[
logZλ,h

N,ω

]
≤ 0

◮ ûn := average of a sample of n independent realizations of
logZλ,h

N,ω.

◮ If ûn > 0 then we refuse H0 (that is (λ, h) ∈ L!) with a level
of error not larger than

p := exp

(
− û2

nn

16λ2N

)
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Statistical test for Localization

Numerical results: the LB is strict

λ 0.3 0.6 1

h 0.22 0.41 0.58

h(λ) 0.195 0.363 0.530

h(λ) 0.286 0.495 0.662

p–value 1.5 × 10−6 9.5 × 10−3 1.6 × 10−5

N 300000 500000 160000

n 225000 330000 970000

p := exp

(
− û2

nn

16λ2N

)
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Computer–assisted proof?

Back to näıve idea: can we hope that

E
[
log Z

λ,h
N,ω

]
> 0 for small values of N (up to N ≈ 20)

for h > h(λ), to perform an explicit computation?
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Computer–assisted proof?

Back to näıve idea: can we hope that

E
[
log Z

λ,h
N,ω

]
> 0 for small values of N (up to N ≈ 20)

for h > h(λ), to perform an explicit computation?

NO!

λ 0.05(⋆) 0.1 0.2 0.4 0.6 1 2(⋆) 4(⋆⋆)

N+ 750000 190000 40000 9500 4250 1800 900 800

N− 600000 130000 33000 7500 3650 1550 750 700

p = 10−5 ∼ 10−6 (⋆) p = 10−2 ∼ 10−3 (⋆⋆) limit model (λ → ∞)

With the stated p–value and for h = h(2/3)(λ), both

E
[
log Z

λ,h
N+,ω

]
> 0 E

[
log Z

λ,h
N

−
,ω

]
< 0
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Computer–assisted proof?

Back to näıve idea: can we hope that

E
[
log Z

λ,h
N,ω

]
> 0 for small values of N (up to N ≈ 20)

for h > h(λ), to perform an explicit computation?
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+
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+
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Delocalized observations

Difficult to make rigorous numerical claims on D:

Delocalization is not a finite-volume issue
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Delocalized observations

Difficult to make rigorous numerical claims on D:

Delocalization is not a finite-volume issue
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Jumps correspond to atypical stretches in the environment ω
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Delocalized path analysis

Assume the convergence to Brownian meander in
◦
D:

under PN,ω
SN√
N

=⇒ x e−x2/2
dx =: ϕ+(x)dx
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Delocalized path analysis

Assume the convergence to Brownian meander in
◦
D:

under PN,ω
SN√
N

=⇒ x e−x2/2
dx =: ϕ+(x)dx

The law of SN under PN,ω is computed in terms of {ZN,ω(x)}x :

PN,ω

[
SN = x

]
=

ZN,ω(x)

ZN,ω
.
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Delocalized path analysis

Assume the convergence to Brownian meander in
◦
D:

under PN,ω
SN√
N

=⇒ x e−x2/2
dx =: ϕ+(x)dx

The law of SN under PN,ω is computed in terms of {ZN,ω(x)}x :

PN,ω

[
SN = x

]
=

ZN,ω(x)

ZN,ω
.

Quantitative measure of Delocalization (ℓ1 distance)

△λ,h
N (ω) :=

∑

x∈Z

∣∣∣∣P
λ,h
N,ω

[
SN = x

]
− 1√

N
ϕ+

(
x√
N

)∣∣∣∣
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Delocalized path analysis

We work at λ = 0.6 [h = 0.36, htest = 0.41, h = 0.49]

◮ (ωr )n := ωN−n environment attached backwards
(fluctuations)
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Delocalized path analysis

We work at λ = 0.6 [h = 0.36, htest = 0.41, h = 0.49]

◮ (ωr )n := ωN−n environment attached backwards
(fluctuations)

◮ Plot: 95% C.I. for the median of a sample {△λ,h
N (ωr )}

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 25 / 32



Introduction Numerical investigation Theoretical analysis Beating the UB
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We work at λ = 0.6 [h = 0.36, htest = 0.41, h = 0.49]

◮ (ωr )n := ωN−n environment attached backwards
(fluctuations)

◮ Plot: 95% C.I. for the median of a sample {△λ,h
N (ωr )}
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A conjecture (?) on the true critical line

How to define a finite volume critical line?
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A conjecture (?) on the true critical line

How to define a finite volume critical line?

Possible criteria: for fixed N and λ, take the value of h s.t.

◮ Zλ,h
N,ω(0) = 1 (monotonicity in h)

◮ △λ,h
N (ω) = 0.1 (empirical monotonicity in h)

Changing the (rather arbitrary) threshold does not affect the
results.

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 26 / 32



Introduction Numerical investigation Theoretical analysis The true critical line

A conjecture (?) on the true critical line

How to define a finite volume critical line?

Possible criteria: for fixed N and λ, take the value of h s.t.

◮ Zλ,h
N,ω(0) = 1 (monotonicity in h)

◮ △λ,h
N (ω) = 0.1 (empirical monotonicity in h)

Changing the (rather arbitrary) threshold does not affect the
results.

Numerical computations show that

hc(·) ≃ h(m)(·) m = 0.82 − 0.83

with remarkable precision (value of m somewhat criterion dependent)
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A conjecture (?) on the true critical line
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A conjecture (?) on the true critical line
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Binary case Gaussian case

Plotted points are obtained for one fixed realization of ω
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Outline of the talk

1. Introduction
Motivations
Definition of the model
The phase diagram: UB and LB on the critical line

2. Numerical investigation
The transfer matrix approach
Beating the LB: a statistical test
Beating the UB: numerical observations
A conjecture (?) on the critical line

3. Theoretical analysis
Improving the UB: the constrained annealing technique
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The constrained annealing technique

Annealed bound on ZN,ω (old partition function):

f (λ, h) = lim
N→∞

1

N
E log Z

λ,h
N,ω ≤ lim

N→∞

1

N
log EZ

λ,h
N,ω =: fa(λ, h)
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1
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E log Z
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N,ω ≤ lim

N→∞

1

N
log EZ

λ,h
N,ω =: fa(λ, h)

Useless: f a(λ, h) > λh for every λ, h.

Constrained annealing (Morita approximation): replace ZN,ω by

Z ′
N,ω := ZN,ω exp(AN(ω)) E(AN(ω)) = 0
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1
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E log Z
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N,ω ≤ lim

N→∞

1

N
log EZ

λ,h
N,ω =: fa(λ, h)

Useless: f a(λ, h) > λh for every λ, h.

Constrained annealing (Morita approximation): replace ZN,ω by

Z ′
N,ω := ZN,ω exp(AN(ω)) E(AN(ω)) = 0

◮ New annealed free energy f ′a(λ, h) := lim
N→∞

1

N
log EZ ′

N,ω
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The constrained annealing technique

Annealed bound on ZN,ω (old partition function):

f (λ, h) = lim
N→∞

1

N
E log Z

λ,h
N,ω ≤ lim

N→∞

1

N
log EZ

λ,h
N,ω =: fa(λ, h)

Useless: f a(λ, h) > λh for every λ, h.

Constrained annealing (Morita approximation): replace ZN,ω by

Z ′
N,ω := ZN,ω exp(AN(ω)) E(AN(ω)) = 0

◮ New annealed free energy f ′a(λ, h) := lim
N→∞

1

N
log EZ ′

N,ω

◮ Same quenched free energy
1

N
E log Z ′

N,ω → f (λ, h)

Francesco Caravenna Random copolymers at selective interfaces June 22, 2007 29 / 32



Introduction Numerical investigation Theoretical analysis The constrained annealing technique

The constrained annealing technique

Annealed bound on ZN,ω (old partition function):

f (λ, h) = lim
N→∞

1

N
E log Z

λ,h
N,ω ≤ lim

N→∞

1

N
log EZ

λ,h
N,ω =: fa(λ, h)

Useless: f a(λ, h) > λh for every λ, h.

Constrained annealing (Morita approximation): replace ZN,ω by

Z ′
N,ω := ZN,ω exp(AN(ω)) E(AN(ω)) = 0

◮ New annealed free energy f ′a(λ, h) := lim
N→∞

1

N
log EZ ′

N,ω

◮ Same quenched free energy
1

N
E log Z ′

N,ω → f (λ, h)

Therefore f (λ, h) ≤ f ′a(λ, h)
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The constrained annealing technique

New partition function ZN,ω corresponds to AN(ω) = −λ
∑N

n=1 ωn

(a part from −λh).
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The constrained annealing technique

New partition function ZN,ω corresponds to AN(ω) = −λ
∑N

n=1 ωn

(a part from −λh). Direct computation

F′a(λ, h) = min{logM(−2λ) − 2λh, 0}
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New partition function ZN,ω corresponds to AN(ω) = −λ
∑N

n=1 ωn

(a part from −λh). Direct computation

F(λ, h) ≤ F′a(λ, h) = min{logM(−2λ) − 2λh, 0}

Hence we prove the UB:

F(λ, h) = 0 if h ≥ 1

2λ
log M(−2λ) =: h(λ)
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New partition function ZN,ω corresponds to AN(ω) = −λ
∑N

n=1 ωn

(a part from −λh). Direct computation

F(λ, h) ≤ F′a(λ, h) = min{logM(−2λ) − 2λh, 0}

Hence we prove the UB:

F(λ, h) = 0 if h ≥ 1

2λ
log M(−2λ) =: h(λ)

Natural idea: could we improve h(λ) with some smarter choice of
AN(ω) =

∑N
n=1 B(θnω), with B(·) local?
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The constrained annealing technique

New partition function ZN,ω corresponds to AN(ω) = −λ
∑N

n=1 ωn

(a part from −λh). Direct computation

F(λ, h) ≤ F′a(λ, h) = min{logM(−2λ) − 2λh, 0}

Hence we prove the UB:

F(λ, h) = 0 if h ≥ 1

2λ
log M(−2λ) =: h(λ)

Natural idea: could we improve h(λ) with some smarter choice of
AN(ω) =

∑N
n=1 B(θnω), with B(·) local?

Theorem ([C. and Giacomin])

For every local function B(·) and for every h < h(λ) we have

F
′
a(λ, h) > 0
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The proof

F′a = lim
N→∞

1

N
log E

{
ZN,ω exp

(
N∑

n=1

B(θnω)

)}
(1)
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The proof

F′a = lim
N→∞

1

N
log E

{
ZN,ω exp

(
N∑

n=1

B(θnω)

)}
(1)

By the basic Delocalization bound

ZN,ω ≥ P(Sn > 0, 1 ≤ n ≤ N) ≈ N−1/2
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The proof

F′a = lim
N→∞

1

N
log E

{
ZN,ω exp

(
N∑

n=1

B(θnω)

)}
(1)

By the basic Delocalization bound

ZN,ω ≥ P(Sn > 0, 1 ≤ n ≤ N) ≈ N−1/2

hence

F′a ≥ lim
N→∞

1

N
log E exp

(
N∑

n=1

B(θnω)

)
=: γ
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The proof

F′a = lim
N→∞

1

N
log E

{
ZN,ω exp

(
N∑

n=1

B(θnω)

)}
(1)

By the basic Delocalization bound

ZN,ω ≥ P(Sn > 0, 1 ≤ n ≤ N) ≈ N−1/2

hence

F′a ≥ lim
N→∞

1

N
log E exp

(
N∑

n=1

B(θnω)

)
=: γ

◮ if γ > 0 then F′a > 0 and we are done
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N
log E exp

(
N∑
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)
=: γ

◮ if γ > 0 then F′a > 0 and we are done

◮ if γ = 0 then B(·) is trivial, i.e. supω

∑N
n=1 B(θnω) = o(N).
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The proof

F′a = lim
N→∞

1

N
log E

{
ZN,ω exp

(
N∑

n=1

B(θnω)

)}
(1)

By the basic Delocalization bound

ZN,ω ≥ P(Sn > 0, 1 ≤ n ≤ N) ≈ N−1/2

hence

F′a ≥ lim
N→∞

1

N
log E exp

(
N∑

n=1

B(θnω)

)
=: γ

◮ if γ > 0 then F′a > 0 and we are done

◮ if γ = 0 then B(·) is trivial, i.e. supω

∑N
n=1 B(θnω) = o(N).

Hence by (1)

F′a = lim
N→∞

1

N
log EZN,ω = Fa > 0
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A general statement

Theorem

Let ZN,ω be the partition function of a system of size N and with

i.i.d. disorder ω. Assume that

◮ for every ZN,ω ≥ cN > 0 with 1
N

log cN → 0

◮ the annealed free energy is positive: Fa > 0

Then, for any choice of the local function B(ω) with

E(B(ω)) = 0 E(exp(αB(ω))) < ∞ ∀α ∈ R

the constrained annealed free energy with AN(ω) =
∑N

n=1 B(θnω)
is positive: F′a > 0.
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