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Hydrodynamics “Polymers” Pinning model Weak disorder

Corner growth model (in dimension 1)

Random evolution of interface h : Z→ Z (|h(x + 1)− h(x)| = 1)

x

h(x)

Simple probabilistic evolution (exponential clocks  Markov process)

I local valleys become hills at rate p > 0

I local hills become valleys at rate q > 0

h(t, x) := interface height at time t ≥ 0, position x ∈ Z.

Large scale evolution?
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Hydrodynamics “Polymers” Pinning model Weak disorder

Asymmetric case

Assume that γ := p − q > 0 is fixed (“upward drift”)

Eulerian scaling: T = εt, X = εx Hε(T ,X ) := εh
(
T
ε ,

X
ε

)

Theorem (Rost ’81, Rezakhanlou ’91)

As ε ↓ 0, the random function Hε(T ,X ) converges a.s. to a
deterministic function H(T ,X ), solution of the PDE

∂TH =
γ

2

(
1− (∇H)2

)
(∇ := ∂X )

Then U := ∇H solves ∂TU = −γ
2
∇(U2) (inviscid Burgers)

Law of Large Numbers

Random (micro) model  Deterministic (macro) behavior
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Hydrodynamics “Polymers” Pinning model Weak disorder

Weakly asymmetric regime

Consider p − q = ε and diffusive scaling Hε(T ,X ) := εh
(
T
ε2
, Xε
)

Theorem (Gärtner ’88, De Masi, Presutti, Scacciatelli ’89)

As ε ↓ 0, Hε(T ,X ) converges a.s. to (deterministic) solution of

∂TH =
1

2
∆H +

1

2

(
1− (∇H)2

)
(viscous Burgers)

Fluctuations? (= “second order” corrections to LLN)
1√
ε

{
Hε(T ,X )− H(T ,X )

}
 linear stochastic PDE (typical)

Interesting: non-linear fluctuations for p − q =
√
ε

Theorem (Bertini, Giacomin ’97)

As ε ↓ 0, Hε(T ,X ) := 1√
ε

{
Hε(T ,X )− T

2
√
ε

}
converges in distrib.

to the “solution” of a non-linear stochastic PDE: the KPZ equation
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Hydrodynamics “Polymers” Pinning model Weak disorder

KPZ equation (Kardhar-Parisi-Zhang ’86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

∂TH =
1

2

(
∆H− (∇H)2

)
+ Ẇ (KPZ)

Ẇ space-time white noise (random distribution on R2)

ill-posed: ∇H should be distribution  meaning of (∇H)2 ?

Recent breakthrough (Hairer ’13)

Before that, rigorous meaning through Hopf-Cole transform

Z := e−H

Z solves the Stochastic Heat Equation, a linear stochastic PDE

∂TZ =
1

2
∆Z + ẆZ (SHE)
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∆Z + ẆZ (SHE)

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 6 / 21



Hydrodynamics “Polymers” Pinning model Weak disorder

KPZ equation (Kardhar-Parisi-Zhang ’86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

∂TH =
1

2

(
∆H− (∇H)2

)
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Hydrodynamics “Polymers” Pinning model Weak disorder

“Polymers” enter the game

∂TZ =
1

2
∆Z + ẆZ (SHE)

If Ẇ (T ,X ) were a function, the solution would be

Z(T ,X ) = E
[
e−

∫ T
0 Ẇ (s,Bs) ds

]
(Feynman-Kac)

with (Bs)s∈[0,T ] Brownian Bridge from 0 to X

Average over paths

Z(T ,X ) =

∫

C([0,T ],R)
e−

∫ T
0 Ẇ (s,b(s)) ds P(db)

P(·) = Brownian Bridge law = Wiener measure (law of Brownian
Motion) conditioned on paths b(0) = 0, b(T ) = X

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 8 / 21
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0 Ẇ (s,b(s)) ds P(db)

P(·) = Brownian Bridge law = Wiener measure (law of Brownian
Motion) conditioned on paths b(0) = 0, b(T ) = X

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 8 / 21



Hydrodynamics “Polymers” Pinning model Weak disorder

“Polymers” enter the game

∂TZ =
1

2
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Hydrodynamics “Polymers” Pinning model Weak disorder

“Polymers” enter the game

T0

X

Average over paths

Z(T ,X ) =

∫

C([0,T ],R)
e−

∫ T
0 Ẇ (s,b(s)) ds P(db)

P(·) = Brownian Bridge law = Wiener measure (law of Brownian
Motion) conditioned on paths b(0) = 0, b(T ) = X
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Hydrodynamics “Polymers” Pinning model Weak disorder

From continuum to discrete

Feynman-Kac is only heuristic, since Ẇ (T ,X ) is not a function

Possible rigorous meaning through discretization:

I (T ,X )  (t, x) ∈ Z2

I Ẇ (T ,X )  ω(t, x) i.i.d. random variables

I Brownian Motion (Bs)s≥0  Random Walk (Sn)n≥0

T0

X

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 10 / 21



Hydrodynamics “Polymers” Pinning model Weak disorder

From continuum to discrete

Feynman-Kac is only heuristic, since Ẇ (T ,X ) is not a function
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Possible rigorous meaning through discretization:

I (T ,X )  (t, x) ∈ Z2
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Hydrodynamics “Polymers” Pinning model Weak disorder

“Polymers” enter the game

Directed polymer in random environment

Z(t, x) = E
[
e−

∑t
n=1 ω(n,Sn)

]
=

∑

s:{0,...,t}→Z
s(t)=x

e−
∑t

n=1 ω(n,sn) P({s})

I Converges in the continuum limit to the SHE solution

I Discretization retains the essence of the problem

t0

x
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Hydrodynamics “Polymers” Pinning model Weak disorder

Some motivations from biology

DNA is a long polymer, typically in a double stranded state

Strands are tied together by energetic (hydrogen) bonds
(otherwise they would be detached, for entropic rasons)

Denaturation transition

At high temperature there is an unzipping transition

How to model such a situation?
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Hydrodynamics “Polymers” Pinning model Weak disorder

The pinning model

1. Configuration space Ω = (N0)N (N = system size)

Sn = distance of the n-th monomers of the two strands

2. A priori measure P on Ω (non-interacting system)

P = law of a random walk or Markov chain

3. Energy function H : Ω→ R
H(S) = −∑N

n=1 ξn 1{Sn=0} (ξn = energy of n-th bond)

Sn

N0
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Hydrodynamics “Polymers” Pinning model Weak disorder

Phase transition

Sn

N0

I Parameters N, β = 1
kBT

, ξ = (ξn)1≤n≤N (bond energies)

I PξN,β probability on a space Ω = (N0)N of discrete paths

It tells us whether the strands are attached or detached

Phase Transition

There exists βc > 0 such that for N � 1:

I if β < βc , PξN,β supported by paths with O(logN) contacts

I if β > βc , PξN,β supported by paths with ∼ cN contacts
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Hydrodynamics “Polymers” Pinning model Weak disorder

Assumptions on P (a priori law)

P = law of a Markov chain on N0 such that for some α ∈ (0,∞)

P
(
first return to zero = n

)
∼ (const.)

n1+α
(loop probability)

0
1
with prob. 1

x
x + 1

x − 1

with prob. 1
2

(
1 + cα

x

)

1
2

(
1− cα

x

)
Sn

with prob.

with cα := 1
2 − α

Discretization of Bessel process: dSt = dBt +
cα
St

dt
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Hydrodynamics “Polymers” Pinning model Weak disorder

Assumptions on ξ (bond energies)

How to choose the bond energies ξ = (ξn)n∈N defining PξN,β?

(linked to the base pairs sequence)

In a random way! ( disordered system)

(ξn)n∈N i.i.d. random variables with mean h and variance 1
(with finite exponential moments)

1. Fix parameters β ≥ 0 (inverse temp.), h ∈ R (disorder mean)

2. Sample a typical realization of disorder sequence ξ = (ξn)n∈N

3. Plug these “external parameters” in the Gibbs measure PξN,β,h
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Hydrodynamics “Polymers” Pinning model Weak disorder

Some key observations

Large scale properties of the Gibbs measure PξN,β,h (as N →∞)

I do not depend on the realization of disorder ξ = (ξn)n∈N

(Warning: they depend on the law of ξ !)

I are encoded in the partition function Z ξβ,h(N, x)

Z ξβ,h(N, x) = E
[
e−H(S) 1{SN=x}

]
=

∑

s:{0,...,N}→N0
sN=x

e−H(s) P({s})

sn

N0

x
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Hydrodynamics “Polymers” Pinning model Weak disorder

From discrete to continuum

The pinning model for α ∈ (12 , 1) is “disorder relevant”  
Interesting behavior in the weak disorder regime β, h→ 0

Continuum partition function

Choosing appropriately βN → 0, hN → 0, the diffusively rescaled
partition function has a universal non-trivial random limit

Z ξβN ,hN (NT ,
√
NX )

d−−−−→
N→∞

Z(T ,X )

(which formally solves an irregular stochastic linear PDE)

Continuum pinning model

The diffusively rescaled Gibbs measure converges to a random
distribution on C ([0, 1],R) (“perturbation” of a Bessel processes)

[Joint work with N. Zygouras (Warwick) and R. Sun (Singapore)]
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Thanks.
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