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Hydrodynamics

Corner growth model (in dimension 1)

Random evolution of interface h: Z — Z (Jh(x +1) — h(x)| = 1)

h(x)
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2K
Simple probabilistic evolution (exponential clocks ~~ Markov process)

> local valleys become hills at rate p > 0
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Hydrodynamics

Corner growth model (in dimension 1)

Random evolution of interface h: Z — Z (Jh(x +1) — h(x)| = 1)

h(x)

2K
Simple probabilistic evolution (exponential clocks ~~ Markov process)

> local valleys become hills at rate p > 0

» local hills become valleys at rate ¢ > 0
h(t, x) := interface height at time t > 0, position x € Z.

Large scale evolution? J
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Hydrodynamics

Asymmetric case

Assume that v := p — g > 0 is fixed (“upward drift")
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Eulerian scaling: T =et, X=ex H(T,X):= eh(%, 5)

€
Theorem (Rost '81, Rezakhanlou ’91)

As e ] 0, the random function H(T,X) converges a.s. to a
deterministic function H(T, X), solution of the PDE

orH = 2(1 = (VH)) (V = dx)
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Hydrodynamics
Asymmetric case

Assume that v := p — g > 0 is fixed (“upward drift")
Eulerian scaling: T =et, X=ex H(T,X):= eh(%, 5)

Theorem (Rost '81, Rezakhanlou ’91)
As e ] 0, the random function H(T,X) converges a.s. to a
deterministic function H(T, X), solution of the PDE

orH = 2(1 = (VH)) (V = 0x)

Then U :=VH solves 07U = —%V(Uz) (inviscid Burgers)

v

Law of Large Numbers

Random (micro) model ~»  Deterministic (macro) behavior

4

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 4 / 21



Hydrodynamics

Weakly asymmetric regime

Consider p — g = € and diffusive scaling H (T, X) := eh(Iz, 5)
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Hydrodynamics

Weakly asymmetric regime

Consider p — g = € and diffusive scaling H (T, X) := eh(elz, 5)

€

Theorem (Gartner '88, De Masi, Presutti, Scacciatelli '89)

Ase ] 0, H(T,X) converges a.s. to (deterministic) solution of

1 1
OrH = 5AH AL 5(1 — (VH)2) (viscous Burgers)

Fluctuations? (= “second order” corrections to LLN)
ﬁ{He(T,X) — H(T,X)} ~ linear stochastic PDE (typical)
Interesting: non-linear fluctuations for p — g = /e

Theorem (Bertini Giacomin '97)

Ase ] 0, H(T,X) \[{H (T,X)— \Cg} converges in distrib.
to the ‘“solution” of a non-linear stochastic PDE: the KPZ equation
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Hydrodynamics

KPZ equation (Kardhar-Parisi-Zhang '86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

OrH = %(AH — (VH)?) + W (KPZ)

W space-time white noise (random distribution on R?)

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 6 / 21



Hydrodynamics

KPZ equation (Kardhar-Parisi-Zhang '86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

1 :
OrH = S (AH = (VH)") + W (KPZ)
W space-time white noise (random distribution on R?)

ill-posed: V#H should be distribution ~» meaning of (V#)?? J

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 6 / 21



Hydrodynamics

KPZ equation (Kardhar-Parisi-Zhang '86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

1 :
OrH = S (AH = (VH)") + W (KPZ)
W space-time white noise (random distribution on R?)

ill-posed: V#H should be distribution ~» meaning of (V#)??
Recent breakthrough (Hairer '13)

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 6 / 21



Hydrodynamics

KPZ equation (Kardhar-Parisi-Zhang '86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

1 :
OrH = S (AH = (VH)") + W (KPZ)
W space-time white noise (random distribution on R?)

ill-posed: V#H should be distribution ~» meaning of (V#)??
Recent breakthrough (Hairer '13)

Before that, rigorous meaning through Hopf-Cole transform

Z.=e M

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 6 / 21



Hydrodynamics

KPZ equation (Kardhar-Parisi-Zhang '86)

The KPZ equation is a non-linear stochastic PDE, believed to
describe the statistics of several physical systems (Universality)

1 :
OrH = S (AH = (VH)") + W (KPZ)
W space-time white noise (random distribution on R?)

ill-posed: V#H should be distribution ~» meaning of (V#)??
Recent breakthrough (Hairer '13)

Before that, rigorous meaning through Hopf-Cole transform
Z:=e

Z solves the Stochastic Heat Equation, a linear stochastic PDE

OrZ = %AZ + Wz (SHE)

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 6 / 21



“Polymers”

Outline

2. The link with “polymers”
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“Polymers” enter the game

012 = %AZ + Wz (SHE)J
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“Polymers” enter the game

012 = %AZ + Wz (SHE)J

If W(T,X) were a function, the solution would be
Z(T,X) = [ —Jo W(s.B:)d (Feynman-Kac)
with (Bs)sejo, 7] Brownian Bridge from 0 to X

Average over paths

2(T,X) = / e~ o W(s:b(=)ds p(qp)
Cc([0, T],R)

P(-) = Brownian Bridge law = Wiener measure (law of Brownian
Motion) conditioned on paths b(0) =0, b(T) = X
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“Polymers”
“Polymers” enter the game

Average over paths

2(T,X) = / e~ o W(s:b(s)ds p(qdp)
Cc([0, T],R)

P(-) = Brownian Bridge law = Wiener measure (law of Brownian
Motion) conditioned on paths b(0) =0, b(T) = X
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“Polymers”

From continuum to discrete

Feynman-Kac is only heuristic, since W( T, X) is not a function
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“Polymers”

“Polymers” enter the game

Directed polymer in random environment

Z(t,x) = E[e_ Y1 w(n,Sn)] — Z e~ St w(n,sn) P({s})

s:{0,...,t}=>Z
s(t)=x
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“Polymers”

“Polymers” enter the game

Directed polymer in random environment

Z(t,x) = E[e_ Y1 w(n,Sn)] — Z e~ St w(n,sn) P({s})

s:{0,...,t}=>Z
s(t)=x

» Converges in the continuum limit to the SHE solution
» Discretization retains the essence of the problem
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Pinning model

Outline

3. The random pinning model
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Pinning model

Some motivations from biology

DNA is a long polymer, typically in a double stranded state

Strands are tied together by energetic (hydrogen) bonds
(otherwise they would be detached, for entropic rasons)
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Strands are tied together by energetic (hydrogen) bonds
(otherwise they would be detached, for entropic rasons)

Denaturation transition
At high temperature there is an unzipping transition J
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Pinning model

Some motivations from biology

DNA is a long polymer, typically in a double stranded state

Strands are tied together by energetic (hydrogen) bonds
(otherwise they would be detached, for entropic rasons)

Denaturation transition
At high temperature there is an unzipping transition J

How to model such a situation?
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Pinning model

The pinning model

1. Configuration space Q = (Np)V (N = system size)
S, = distance of the n-th monomers of the two strands

v
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Pinning model

Phase transition

»
>

0 N

» Parameters N, (= k;%T' & = (&n)1<n<n (bond energies)
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0 N

» Parameters N, (= k;%T' ¢ = (£n)1<n<n (bond energies)

> va,/j probability on a space Q = (Ng)" of discrete paths

It tells us whether the strands are attached or detached

Phase Transition
There exists S. > 0 such that for N > 1:
> if B < B, vaﬂ supported by paths with O(log ) contacts

Francesco Caravenna Universality for Random Pinning Models September 12, 2013 15 / 21



Pinning model

Phase transition

»
|

0 N

» Parameters N, (= k;%T' ¢ = (£n)1<n<n (bond energies)

> va,/j probability on a space Q = (Ng)" of discrete paths

It tells us whether the strands are attached or detached

Phase Transition
There exists S. > 0 such that for N > 1:
> if B < B, vaﬂ supported by paths with O(log ) contacts

> if 3> B, Pf\,ﬂ supported by paths with ~ c/N contacts
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Pinning model

Assumptions on P (a priori law)

P = law of a Markov chain on Ny such that for some a € (0, )

(const.)

Tra (loop probability)

P(first return to zero = n) ~
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P = law of a Markov chain on Ny such that for some a € (0, )

. const.
P(flrst return to zero = n) ~ % (loop probability)
n

Sn X<X+1 with prob. 3(1+ <)

x —1 with prob. 3(1— <)

\J

1.7
(V with prob. 1
|

with ¢, = % —«
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Assumptions on P (a priori law)

P = law of a Markov chain on Ny such that for some a € (0, )

. const.
P(flrst return to zero = n) ~ % (loop probability)
n

Sn X<X+1 with prob. 3(1+ <)

x —1 with prob. 3(1— <)

\J

1.7
(V with prob. 1
|

with ¢, = % —«

c
Discretization of Bessel process: dS; =dB; + f dt
t

September 12, 2013 16 / 21
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Pinning model

Assumptions on ¢ (bond energies)

How to choose the bond energies £ = (£,)nen defining va 5?
(linked to the base pairs sequence)
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Assumptions on ¢ (bond energies)

How to choose the bond energies £ = (£,)nen defining va ﬁ?
(linked to the base pairs sequence)

In a random way! (~- disordered system)

(£n)nen i.i.d. random variables with mean h and variance 1
(with finite exponential moments)
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Pinning model

Assumptions on ¢ (bond energies)

How to choose the bond energies £ = (£,)nen defining Pf\w?

(linked to the base pairs sequence)

In a random way! (~- disordered system)

(£n)nen i.i.d. random variables with mean h and variance 1
(with finite exponential moments)

1. Fix parameters > 0 (inverse temp.), h € R (disorder mean)
2. Sample a typical realization of disorder sequence & = (£,)nen

3. Plug these “external parameters” in the Gibbs measure Pf\,ﬁ’h
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Pinning model

Some key observations

Large scale properties of the Gibbs measure P§V,,8,h (as N — o0)
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Pinning model

Some key observations

Large scale properties of the Gibbs measure P§V,,8,h (as N — o0)

» do not depend on the realization of disorder & = (&) pen

(Warning: they depend on the law of £ 1)

» are encoded in the partition function Zéyh(N,x)

Zg’h(N,x) = E[e_H(s) ]l{SN:X}] = Z e~ H(s) P({s})

s:{0,...,N}—Ng
SN=X
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Pinning model

Some key observations

Large scale properties of the Gibbs measure P§v,,3,h (as N — o0)

» do not depend on the realization of disorder & = (&) pen

(Warning: they depend on the law of £ 1)

» are encoded in the partition function Zg}h(N,x)

Zéh(N,x) = E[e_H(s) ]l{sN:X}] = Z e~ H(s) P({s})

s:{0,...,N}—Ng
SN=X
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Weak disorder

Outline

4. Weak disorder regime

Francesco Caravenna Universality for Random Pinning Models ,2013 19 / 2



Weak disorder

From discrete to continuum

The pinning model for a € (%, 1) is “disorder relevant” ~~
Interesting behavior in the weak disorder regime 8, h — 0
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Weak disorder

From discrete to continuum

The pinning model for a € (%, 1) is “disorder relevant” ~
Interesting behavior in the weak disorder regime 8, h — 0

Continuum partition function

Choosing appropriately Sy — 0, hy — 0, the diffusively rescaled
partition function has a universal non-trivial random limit

d
Z5 p (NT,VNX) —— Z(T.X)

(which formally solves an irregular stochastic linear PDE)
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Hydrodynamics Polymers” inning mod Weak disorder

From discrete to continuum

The pinning model for a € (%, 1) is “disorder relevant” ~
Interesting behavior in the weak disorder regime 8, h — 0

Continuum partition function

Choosing appropriately Sy — 0, hy — 0, the diffusively rescaled
partition function has a universal non-trivial random limit

7¢

d
& (NT, VN X) —— 2(T.X)

(which formally solves an irregular stochastic linear PDE)

Continuum pinning model

The diffusively rescaled Gibbs measure converges to a random
distribution on C([0, 1], R) (“perturbation” of a Bessel processes)

[Joint work with N. Zygouras (Warwick) and R. Sun (Singapore)]
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Weak disorder

Thanks.
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