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Overview

Consider a homogeneous system, described by a probability measure pref
(with “interesting” large scale properties)

Perturb it in a inhomogeneous way, defining a disordered system P¥

P (do) o< e () Pri(do) w random process

Are large scale properties affected by (a small amount of) disorder?
Is the law P“ radically different from P™f? }

Disorder relevance vs. irrelevance J

We are going to look at this problem in the weak disorder regime

General framework emerges (“model independent”) ~» Universality
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Overview

General framework «~ concrete examples

1. Directed polymer in random environment (perturb. of random walk)
2. Disordered pinning models (perturb. of renewal process)

3.

1'. Stochastic Heat Equation

(Inspired by [Alberts, Khanin, Quastel 2014] on directed polymers)

» This lecture is general introduction (motivation, key ideas, heuristic
arguments, no proof) ~~ a lot of entropy, don't be scared!

» Next lectures devoted to specific issues (precise statements, proofs)

Ready to start! Introduce our key examples 1. 2. 3.
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Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Stochastic Heat Equation
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Homogeneous systems

Outline

1. Homogeneous systems
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Homogeneous systems

1. Random walk

P = law of symm. random walk on Z¢

S= (Sn)nZO

Sn
with i.i.d. increments S, — S,_1
L S attracted to a-stable Lévy process
o] W n Brownian motion

E™[|S:]?] < o0 if =2

Alternative “language”

Define “spin” variable o, in each space-time point

Onpx ‘= ]l{Sn:x} € {07 1}

The random field (04,x)(n,x)enoxz¢ is far from independent!
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Homogeneous systems

1. Random walk - large scale properties
Diffusive rescaling

S0 = (\/35§)t20 Ts := ONg X (\/EZ)d

S? converges in law to BM as § — 0 (Donsker) |
ref x]2 _ I =x?
P5 (o’z =10, = ]_) d}( /) e 2t e 2A7—1
z,7) =
(62)? i ’ (2rt): (2
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Homogeneous systems

2. Renewal process

_——

eV

P™f — law of a renewal process (= RW with positive increments)
f
P ((Tis1 — 1) = n) ~

T={0=19<7 <72<...} CNp viewed as a random subset

c .
i tail exponent o € (0,1)

“spins” 0p = lgpery €{0,1} J
Ts = 6N 67 -5 a-stable regenerative set (as & — 0) J
Exfo:on]PEi(teT, t' €7) Wt ) = c c
(617@)2 §—0 Y tl—a (tl _ t)l—oc
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Homogeneous systems

3. Critical 2-dim. Ising model

t Rescaled lattice Ts := (6Z)>N[-1,+1]?
et i Spin configurations o = (0y)xeT, € {—1,1}7s
- -t +
it ol ¢
R S P§® = critical 2d Ising model with “+" b.c.
- -E- .
: P (o) o exp (/j’c Z (TXO'y)
x~y€en

Be = 3 log(1+V2)

Convergence to (distrib. valued) continuum field (ox)xefo,12 as 0 — 0
[Camia, Garban, Newman 2015]

Egef [020-]

(65)2 50

IZJ(Z, Z/) [Chelkak, Hongler, Izyurov 2015]
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Homogeneous systems

The general setup

Lattice Ts € D C R (mesh = 9)

1

{0,1}

z — two-valued field o, €

» S=1{0,1}" space of spin configurations o = (0,),eT,

» P “interesting” probability on S: non-trivial correlations

Egef [021022 T UZk:I Pgef (0{21722""’2"} - 1)

Pgef (0{21,22,..‘721(} = 1)
(67)’( §—0

wk(zl, 500 ,Zk)

Typically P has a non-trivial continuum limit as § — 0 J

Keep in mind your favorite example (e.g. random walk)

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015 11 / 34



Disordered systems

Outline

2. Disordered systems
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Disordered systems

Enters disorder

(wz)zer; i.i.d. random variables (e.g. N(0,1))

Elw,]=0 Ewl=1 AB) = logE[e’*:] < x0

. . >0 reward
Each site z € T carries a charge w, that can be
<0 penalty

Spatial inhomogeneities in Pf;ef ~> new probability law P¥
: w 1 H“ (o) pref
Gibbs measure: P5 (do) := Zw € P (do)
s

(=) Energy: o— H(o) := Z (Bw, + h  —XB)+h)o,
z€T;s

B > 0 disorder strength  h € R disorder bias
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Disordered systems

1. Directed Polymer in Random Environment (random walk)

» Symmetric random walk S = (S,),>0 on Z¢
attracted to BM (finite variance)

> (Forget rescaled lattice Ts = N x (v/62)7)

> wpy > 0reward w,, <0 penalty

> “spin” Onx ‘= H{Sn:x} S {0, 1}

Directed polymer in random environment (N = 1/0 steps)

1
P<(S) = 7 e n1(Bwns,=A(B) ) Pf(S)

RW paths in corridors of large w > 0 have high probability (energy gain)

... but such paths are few! (entropy loss) ~ Who wins?
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Disordered systems

1. Directed Polymer in Random Environment (random walk)

> [d >3, 5> 0small P “similar” to P! (entropy wins)
Sn w  d
ﬁ under P m N(O, 1) (lP(dw)—as)

i.e. the same under P™f [Imbrie, Spencer 1988] [Bolthausen 1989]

» [d <2, any 8 >0] P “different” from P! (energy wins)

P“(Sy =x) > 0 P(dw)-a.s.
max (Sn=x)>c> (P(dw)-a.s.)
unlike Pref(SN =x)= O(N_%) =o0(1) [Carmona, Hu 2002]

[Comets, Shiga, Yoshida 2003]

For DPRE disorder is irrelevant for d > 3 and relevant for d < 2 J

(d = 2 is actually marginally relevant, cf. below)
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Disordered systems

Disorder Relevance vs. Irrelevance

Does arbitrarily small disorder affect large scale properties?
Is P¢ qualitatively different from P°'?

[0 >0 (N — oc0) with fixed >0 (suitable h)]

YES: model is disorder relevant NO irrelevant

2. Disordered Pinning Model (renewal process + disorder)

Pl (r = n) ~ ——
[a> 1] disorder relevant [a < 1] disorder irrelevant
[a = 3] marginal: (ir)relevance depends on finer details
(cf. free energy and critical exponents) [References: .. .]

3. Random Field Ising Model (2d critical Ising + disorder) relevant
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Disordered systems

What are we going to do?

We focus on models P§ which are disorder relevant J

Any fixed disorder strength 8 > 0, no matter how small, has dramatic
effects in the large scale regime § — 0 (i.e. N = o0)

Weak disorder regime

Can we tune § — 0 as 6 — 0 (“keep disorder under control”)
and still see interesting effects on P%§ ?

YES! This is the goal of our course

Very robust approach «~ Universality

Before describing the results, let us present a concrete problem
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Disordered systems

Disordered continuum model?

Consider DPRE in d =1 (random walk + disorder)
PY(S) o e Au(mS) pref(g)
Can we define its continuum analogue (BM + disorder)? Naively
PYW(dB) o el #WEB)dt pref(gp)
Pref = law of BM W(t,x) = white noise on R? (space-time)
> [ W(t,B:)dt ill-defined. Regularization? NO! [ PY & Prf1]
How do we proceed? Recall that P%* 2 pref a5 5 — 0

Theorem [Alberts, Khanin, Quastel 2014b] [C., Sun, Zygouras 2015+]
Tuning 8 ~ 36% as 0 — 0, the DPRE P¥ has a non-trivial limit 72440 J
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Main results

Outline

3. Main results
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Main results

Key assumption (disorder relevant vs. marginal)
D /- o

(mesh = §)

> Lattice Ts C D C RY
Two-valued field 0 = (0,).eT,

» P interesting probability for

Egef [Oz Op * Oy ] LZ(D)
3 : 1= u ...
>0 ((57)1‘ 50 5—0 V(a, 7). (%)
L? characterizes disorder relevant regime! (Harris criterion)
] L2([0,1] x RY) ~ d <2
2
marginal!

27t)

C/

t—l—a
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1. DPRE. #(t,x) =
L2([0.1]) ~ a> 3
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2. Pinning. 9¥(t) =
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Main results

The partition function

Recall the definition of the disordered system
w 1 H“ (o) pref
P5 (dO') = —=—0=¢ P5 (dU)
Z5

The normalizing constant Z§ is called partition function

zy = g [e”“’(“)} =g lexp ( 3" (Bws — A(B) + h) (7)]

zeTs

Z§ is a complicated function of i.i.d. random variables (wy)xeT, )

n=1

DPRE © = gref [exp (Z (Bw(ns,) — MB) ))]

Sample the w's along a path of the RW (5,),>0, then average their exp
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Main results

Plan of the course

The partition function Z§ encodes the key properties of P¥ J

Key Result (scaling limit of Z¥)

The partition function Z¢ has a non-trivial limit in distribution Z"
(continuum partition function) when (8, h — 0 at suitable rates as § | 0

> Lecture Il. Key Result for disorder relevant systems
Multi-linear CLT based on a Lindeberg principle

» Lecture Ill. ZW ~» disordered continuum model

» Lecture IV. Z" ~ free energy estimates (sketch)

Intro to marginal relevance

» Lecture V. Key Result for marginal systems

(DPRE d =2, Pinning = 3, 2d Stochastic Heat Equation)
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Main results

Sketch of the approach: Polynomial Chaos

1. Linearization. Since o, € {0, 1}, every function of o is linear

w __ pref
26_E6

ereTé (ﬁwa(ﬂ)+h)UX] — Egef[ H e(ﬁwa(ﬁ)+h)JX] — Egefl H (

x€Ts x€Ts

where X, := ef“x=AMB)+h 1 New random variables (X,) with
E[Xx] =~ h Var[X,] =~ (32
2. High-temperature expansion. By a binomial expansion of the product

[Ts|

1 re:
%J:Zﬁ Z Eéf[le"'UXk]Xxl"'XXk
k=0 """ (x1,...,xk)E(T5)k

Multilinear polynomial! Formally replace }~ ~~ [ and X, ~» W(dx;)
Justified by Lindeberg principle (Lecture I1)
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Main results Stochastic Heat Equatior

Key Result A (disorder relevant systems) — Lecture I

Theorem A [C., Sun, Zygouras '15+]

Let P! satisfy (x) with exponent ~ (dimension d). Assume oy € {0,1}.

The partition function has a non-trivial limit in law: Z§ ﬁ zZW

provided we scale 3, h — O appropriately:

B:=p627 h:=hsl (B, h fixed)

The limit Z" is explicit function of W/(dx) := white noise on RY

~ koo )
ZW ::; E/.../Qk@[;k(zl,,,,,zk)E(AW(dZ;)-i—hdZi)

Wiener chaos expansion
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Main results

A concrete example: Disordered Pinning Model

=l

Pinning Models with o > 1 (disorder relevant) [0 =

X Xm X
W A n m n
Z(S ~1 + Z nl—o + Z ml—(x(n _ m)l—(x +
0<n<N 0<m<n<N

Rescaling 8 ~ 5oz (h = 0 for simplicity)

d dW dWs dW,
§—0 1 + tl—(y + 1—(1.(t _ )1—(v
- o<t<1 0<s<t<l S S

Intriguing question: what happens for a = %? J

This case is marginal, like DPRE for d =2

(and also to 2d Stochastc Heat Equation, see below)
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Main results

Key Result B (marginally relevant systems) — Lecture V

Theorem B [C., Sun, Zygouras '15b]

Consider DPRE d=2 or Pinning a= % or 2d SHE

(or long-range DPRE with d = 1 and Cauchy tails)

Rescaling 5 := b (and h =0) the partition function converges in
1/ log %

log-normal if <1
law to an explicit limit: Zy LI - e I é
510 0 if >1

1 A 1 A2
ZW = exp _ 5w 1/ 5—Adt (B<1)
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Harris Criterion

Main results

Pointwise convergence of correlation typically implies

"/}k(zlwwazk) ~

w5 |z — ]

1
Y € L2, —

This restriction is not technical, but substantial!

Harris Criterion (1974)

<9
T3

Decide relevance/irrelevance looking at homogeneous model P%f

through its

v < % relevant

In our context v = ;=

correlation length exponent v
v =2 marginal v > 2 jrrelevant
d g d
v < 2 coincides with < &
d S

Sep 30 - Oct 2, 2015

27/

Francesco Caravenna

Scaling Limits of Disordered Systems



Stochastic Heat Equation

Outline

4. Stochastic Heat Equation
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Stochastic Heat Equation

The Stochastic Heat Equation

deu(t, x) = 3Axu(t, x) + S W(t, x) u(t, x) (t,x) € [0,00) x R
U(O,X) =1

What if W(t,x) is (space-time) white noise on [0,00) x RY? J

Mollification in space: fix j € C°(R?) and set js5(z) := 6 1j(64z2)
Wie.) = [ ix = y) Wie.y)dy

(t— fot Ws(s,x)ds is a one-dimensional BM with variance |js||5)

Solution ws(t, x) admits generalized Feynman-Kac formula

us(e.x) = & [ { B [ wite = s.B)as = 5Pl |
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Stochastic Heat Equation

The Stochastic Heat Equation

Does us(t,x) admit a limitas § —07? )

Analogy with the partition function of DPRE

ze o (d=1)
u ~(1,0) ,gj Zv sy = 8,8=04p
" R P4 (d=2)
6,6=p

Our results for DPRE can be transfered to SHE

By a time-reversal in W and a space-time rescaling, for (t,x) = (1,0)

us(1,0) = Eo {: exp : {5524‘1 /O% </[Rdj(Bs —z) W(s, z)dz> ds}]

using the shorthand : exp: {Y} = exp(Y — $Var[Y]))
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Stochastic Heat Equation

The Stochastic Heat Equation

1d SHE

Fix 3> 0. The regularized solution us(t,x) has a limit in law as § — 0
(explicit Wiener chaos expansion)

This is well-know in the literature. This is possibly new.

2d SHE
b

Iog%

Fix 3> 0 and rescale 3 := . The regularized solution wus(t, x)

log- | ifg<1
has a limit in law as § — 0 that is { e I @

if 6>1

ug(t,x) and us(t’,x") are asympt. independent for (t,x) # (t',x’)
(B < 1is weak disorder) Interesting multi-scale correlations (Lecture V)
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Stochastic Heat Equation
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Stochastic Heat Equation
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Stochastic Heat Equation
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