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Overview

Consider a homogeneous system, described by a probability measure P
ref

(with “interesting” large scale properties)

Perturb it in a inhomogeneous way, defining a disordered system P
ω

P
ω(dσ) ∝ eH

ω(σ)
P

ref(dσ) ω random process

Are large scale properties affected by (a small amount of) disorder?

Is the law P
ω radically different from P

ref?

Disorder relevance vs. irrelevance

We are going to look at this problem in the weak disorder regime

General framework emerges (“model independent”)  Universality
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Overview

General framework ! concrete examples

1. Directed polymer in random environment (perturb. of random walk)

2. Disordered pinning models (perturb. of renewal process)

3. Random-field Ising model

1’. Stochastic Heat Equation

(Inspired by [Alberts, Khanin, Quastel 2014] on directed polymers)

◮ This lecture is general introduction (motivation, key ideas, heuristic
arguments, no proof)  a lot of entropy, don’t be scared!

◮ Next lectures devoted to specific issues (precise statements, proofs)

Ready to start! Introduce our key examples 1. 2. 3.
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Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Stochastic Heat Equation
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1. Random walk

0 n

Sn

P
ref = law of symm. random walk on Z

d

S = (Sn)n≥0

with i.i.d. increments Sn − Sn−1

S attracted to α-stable Lévy process
Brownian motion






E
ref [|S1|2] <∞ if α = 2

P
ref
(

|S1| > x
)

∼ C

xα
if 0 < α < 2

Alternative “language”

Define “spin” variable σn,x in each space-time point

σn,x := 1{Sn=x} ∈ {0, 1}

The random field (σn,x)(n,x)∈N0×Zd is far from independent!
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1. Random walk - large scale properties

Diffusive rescaling Sδ = (
√
δ S t

δ
)t≥0 Tδ := δN0 × (

√
δZ)d

0 1

z = (t, x)

z ′ = (t ′, x ′)

Sδ converges in law to BM as δ → 0 (Donsker)

P
ref

δ

(

σz = 1, σz′ = 1
)

(δ
d
2 )2

−−−−→
δ→0

ψ(z , z ′) =
e−

|x|2

2t

(2πt)
d
2

e
−

|x′−x|2

2(t′−t)

(2π(t ′ − t))
d
2
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2. Renewal process

t t ′0 1

P
ref = law of a renewal process (= RW with positive increments)

P
ref
(

(τi+1 − τi ) = n
)

∼ c

n1+α
tail exponent α ∈ (0, 1)

τ = {0 = τ0 < τ1 < τ2 < . . .} ⊆ N0 viewed as a random subset

“spins” σn := 1{n∈τ} ∈ {0, 1}

Tδ = δN0 δτ
d−−→ α-stable regenerative set (as δ → 0)

E
ref

δ [σt σt′ ]P
ref

δ (t ∈ τ, t ′ ∈ τ)

(δ1−α)2
−−−−→
δ→0

ψ(t, t ′) =
c ′

t1−α

c ′

(t ′ − t)1−α
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3. Critical 2-dim. Ising model
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σ0

−

Rescaled lattice Tδ := (δZ)2 ∩ [−1,+1]2

Spin configurations σ = (σx)x∈Tδ
∈ {−1, 1}Tδ

P
ref

δ = critical 2d Ising model with “+” b.c.

P
ref

δ (σ) ∝ exp

(

βc
∑

x∼y∈Ω

σxσy

)

βc = 1
2 log(1 +

√
2)

Convergence to (distrib. valued) continuum field (σx)x∈[0,1]2 as δ → 0

[Camia, Garban, Newman 2015]

E
ref

δ [σz σz′ ]

(δ
1
8 )2

−−−−→
δ→0

ψ(z , z ′) [Chelkak, Hongler, Izyurov 2015]
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The general setup

Lattice Tδ ⊆ D ⊆ R
d (mesh ≈ δ)

z 7−→ two-valued field σz ∈







± 1

{0, 1}

z3

z2

z4

z5
z1

D

◮ S = {0, 1}Tδ space of spin configurations σ = (σz)z∈Tδ

◮ P
ref

δ “interesting” probability on S: non-trivial correlations

E
ref

δ

[

σz1σz2 · · ·σzk
]

P
ref

δ

(

σ{z1,z2,...,zk} = 1
)

∃γ >

0 :
P

ref

δ

(

σ{z1,z2,...,zk} = 1
)

(δγ)k
−−−−→
δ→0

ψk(z1, . . . , zk)

Typically P
ref

δ has a non-trivial continuum limit as δ → 0

Keep in mind your favorite example (e.g. random walk)
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Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Stochastic Heat Equation
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Enters disorder

(ωz)z∈Tδ
i.i.d. random variables (e.g. N (0, 1))

E[ωz ] = 0 E[ω2
z ] = 1 λ(β) = logE[eβωz ] <∞

Each site z ∈ Tδ carries a charge ωz that can be

{

> 0 reward

< 0 penalty

Spatial inhomogeneities in P
ref

δ  new probability law P
ω
δ

Gibbs measure: P
ω
δ (dσ) :=

1

Z
ω
δ

eH
ω(σ)

P
ref

δ (dσ)

(−) Energy: σ 7→ H
ω(σ) :=

∑

z∈Tδ

(

β ωz + h − λ(β) + h
)

σz

β ≥ 0 disorder strength h ∈ R disorder bias
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1. Directed Polymer in Random Environment (random walk)

◮ Symmetric random walk S = (Sn)n≥0 on Z
d

attracted to BM (finite variance)

◮ (Forget rescaled lattice Tδ = δN0 × (
√
δZ)d)

◮ ωn,x > 0 reward ωn,x < 0 penalty

◮ “spin” σn,x := 1{Sn=x} ∈ {0, 1}

Directed polymer in random environment (N = 1/δ steps)

P
ω(S) =

1

Z
ω
δ

e
∑N

n=1(βωn,Sn−λ(β)+h)
P

ref(S)

RW paths in corridors of large ω > 0 have high probability (energy gain)

. . . but such paths are few! (entropy loss)  Who wins?
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1. Directed Polymer in Random Environment (random walk)

◮ [d ≥ 3, β > 0 small] P
ω “similar” to P

ref (entropy wins)

SN√
N

under P
ω d−−−−→

N→∞
N (0, 1) (P(dω)-a.s.)

i.e. the same under Pref
[Imbrie, Spencer 1988] [Bolthausen 1989]

◮ [d ≤ 2, any β > 0] P
ω “different” from P

ref (energy wins)

max
x∈Zd

P
ω
(

SN = x
)

≥ c > 0 (P(dω)-a.s.)

unlike P
ref(SN = x) = O(N− 1

2 ) = o(1) [Carmona, Hu 2002]

[Comets, Shiga, Yoshida 2003]

For DPRE disorder is irrelevant for d ≥ 3 and relevant for d ≤ 2

(d = 2 is actually marginally relevant, cf. below)
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Disorder Relevance vs. Irrelevance

Does arbitrarily small disorder affect large scale properties?

Is P
ω
δ qualitatively different from P

ref

δ ?

[ δ → 0 (N → ∞) with fixed β > 0 (suitable h) ]

YES: model is disorder relevant NO: model is disorder irrelevant

2. Disordered Pinning Model (renewal process + disorder)

P
ref(τ1 = n) ∼ c

n1+α

[

α > 1
2

]

disorder relevant
[

α < 1
2

]

disorder irrelevant
[

α = 1
2

]

marginal: (ir)relevance depends on finer details

(cf. free energy and critical exponents) [References: . . . ]

3. Random Field Ising Model (2d critical Ising + disorder) relevant
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What are we going to do?

We focus on models P
ω
δ which are disorder relevant

Any fixed disorder strength β > 0 , no matter how small, has dramatic
effects in the large scale regime δ → 0 (i.e. N → ∞)

Weak disorder regime

Can we tune β → 0 as δ → 0 (“keep disorder under control”)

and still see interesting effects on P
ω
δ ?

YES! This is the goal of our course

Very robust approach ! Universality

Before describing the results, let us present a concrete problem
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Disordered continuum model?

Consider DPRE in d = 1 (random walk + disorder)

P
ω(S) ∝ e

∑N
n=1 β ω(n,Sn) P

ref(S)

Can we define its continuum analogue (BM + disorder)? Naively

PW (dB) ∝ e
∫ 1
0
β̂W (t,Bt) dt Pref(dB)

Pref = law of BM W (t, x) = white noise on R
2 (space-time)

◮

∫ 1

0
W (t,Bt) dt ill-defined. Regularization? NO!

[

PW 6≪ Pref !
]

How do we proceed? Recall that P
ref

δ
d−−→ Pref as δ → 0

Theorem [Alberts, Khanin, Quastel 2014b] [C., Sun, Zygouras 2015+]

Tuning β ∼ β̂ δ
1
4 as δ → 0 , the DPRE P

ω
δ has a non-trivial limit PW
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Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Stochastic Heat Equation
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Key assumption (disorder relevant vs. marginal)

◮ Lattice Tδ ⊆ D ⊆ R
d (mesh ≈ δ)

Two-valued field σ = (σz)z∈Tδ

◮ P
ref

δ interesting probability for σ

z3

z2

z4

z5
z1

D

∃γ > 0 :
E
ref

δ

[

σz1 σz2 · · ·σzk
]

(δγ)k
−−−−→

δ→0

L2(D)−−−−→
δ→0

ψk(z1, . . . , zk) (⋆)

L2 characterizes disorder relevant regime! (Harris criterion)

1. DPRE. ψ(t, x) =
e−

|x|2

2t

(2πt)
d
2

L2([0, 1]× R
d)  d < 2

2. Pinning. ψ(t) =
c ′

t1−α
L2([0, 1])  α > 1

2 marginal!

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015 20 / 34



Homogeneous systems Disordered systems Main results Stochastic Heat Equation

The partition function

Recall the definition of the disordered system

P
ω
δ (dσ) :=

1

Zω
δ

eH
ω(σ)

P
ref

δ (dσ)

The normalizing constant Z
ω
δ is called partition function

Z
ω
δ = E

ref

[

eH
ω(σ)

]

= E
ref

[

exp

(

∑

z∈Tδ

(βωz − λ(β) + h)σz

)]

Z
ω
δ is a complicated function of i.i.d. random variables (ωx)x∈Tδ

DPRE Z
ω
δ = E

ref

[

exp

(

N
∑

n=1

(

βω(n,Sn) − λ(β)+h
)

)]

Sample the ω’s along a path of the RW (Sn)n≥0, then average their exp
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Plan of the course

The partition function Z
ω
δ encodes the key properties of P

ω
δ

Key Result (scaling limit of Z
ω

δ )

The partition function Z
ω
δ has a non-trivial limit in distribution ZW

(continuum partition function) when β, h → 0 at suitable rates as δ ↓ 0

◮ Lecture II. Key Result for disorder relevant systems

Multi-linear CLT based on a Lindeberg principle

◮ Lecture III. ZW
 disordered continuum model

◮ Lecture IV. ZW
 free energy estimates (sketch)

Intro to marginal relevance

◮ Lecture V. Key Result for marginal systems

(DPRE d = 2, Pinning α = 1
2 , 2d Stochastic Heat Equation)
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Sketch of the approach: Polynomial Chaos

1. Linearization. Since σx ∈ {0, 1}, every function of σx is linear

Z
ω
δ = E

ref

δ

[

e
∑

x∈Tδ
(βωx−λ(β)+h)σx

]

= E
ref

δ

[

∏

x∈Tδ

e(βωx−λ(β)+h)σx

]

= E
ref

δ

[

∏

x∈Tδ

(

1+

where X x := eβωx−λ(β)+h − 1. New random variables (X x) with

E[X x ] ≃ h Var[X x ] ≃ β2

2. High-temperature expansion. By a binomial expansion of the product

Z
ω
δ =

|Tδ|
∑

k=0

1

k!

∑

(x1,...,xk )∈(Tδ)k

E
ref

δ

[

σx1 · · ·σxk
]

X x1 · · ·X xk

Multilinear polynomial! Formally replace
∑

 

∫

and X xi  W (dxi )

Justified by Lindeberg principle (Lecture II)

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015 23 / 34



Homogeneous systems Disordered systems Main results Stochastic Heat Equation

Key Result A (disorder relevant systems) – Lecture II

Theorem A [C., Sun, Zygouras ’15+]

Let Pref

δ satisfy (⋆) with exponent γ (dimension d). Assume σx ∈ {0, 1}.

The partition function has a non-trivial limit in law: Z
ω
δ

d−−→
δ↓0

ZW

provided we scale β, h → 0 appropriately:

β := β̂ δd/2−γ h := ĥ δd−γ (β̂, ĥ fixed)

The limit ZW is explicit function of W (dx) := white noise on R
d

ZW :=

∞
∑

k=0

1

k!

∫

· · ·
∫

Ωk

ψk(z1, . . . , zk)

k
∏

i=1

(

λ̂W (dzi ) + ĥ dzi
)

Wiener chaos expansion
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A concrete example: Disordered Pinning Model

Pinning Models with α > 1
2 (disorder relevant) [ δ = 1

N
]

Z
ω
δ ≈ 1 +

∑

0<n≤N

X n

n1−α
+

∑

0<m<n≤N

Xm X n

m1−α(n −m)1−α
+ . . .

Rescaling β ∼ δα−
1
2 (h ≡ 0 for simplicity)

d−−−→
δ→0

1 +

∫

0<t<1

dW t

t1−α
+

∫

0<s<t<1

dW s dW t

s1−α(t − s)1−α
+ . . .

Intriguing question: what happens for α = 1
2 ?

This case is marginal, like DPRE for d = 2

(and also to 2d Stochastc Heat Equation, see below)
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Key Result B (marginally relevant systems) – Lecture V

Theorem B [C., Sun, Zygouras ’15b]

Consider DPRE d = 2 or Pinning α = 1
2 or 2d SHE

(or long-range DPRE with d = 1 and Cauchy tails)

Rescaling β :=
β̂

√

log 1
δ

(and h ≡ 0) the partition function converges in

law to an explicit limit: Z
ω
δ

d−−→
δ↓0

ZW =

{

log-normal if β̂ < 1

0 if β̂ ≥ 1

ZW = exp







∫ 1

0

β̂
√

1− β̂2t

dW t −
1

2

∫ 1

0

β̂2

1− β̂2t
dt







(β̂ < 1)
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Harris Criterion

Pointwise convergence of correlation typically implies

ψk(z1, . . . , zk) ≈
zi→zj

1

|zi − zj |γ
ψk ∈ L2loc ⇐⇒ γ <

d

2

This restriction is not technical, but substantial!

Harris Criterion (1974)

Decide relevance/irrelevance looking at homogeneous model P
ref

δ

through its correlation length exponent ν

ν < 2
d

relevant ν = 2
d

marginal ν > 2
d

irrelevant

In our context ν = 1
d−γ ν < 2

d
coincides with γ < d

2
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Outline

1. Homogeneous systems

2. Disordered systems

3. Main results

4. Stochastic Heat Equation
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The Stochastic Heat Equation







∂tu(t, x) =
1
2∆xu(t, x) + β̃W (t, x) u(t, x)

u(0, x) ≡ 1
(t, x) ∈ [0,∞)× R

d

What if W (t, x) is (space-time) white noise on [0,∞)× R
d ?

Mollification in space: fix j ∈ C∞
0 (Rd) and set jδ(z) := δ−1j(δ

1
d z)

W δ(t, x) :=

∫

Rd

jδ(x − y)W (t, y) dy

(

t 7→
∫ t

0
W δ(s, x) ds is a one-dimensional BM with variance ‖jδ‖22

)

Solution uδ(t, x) admits generalized Feynman-Kac formula

uδ(t, x) = Ex

[

exp

{

β̃

∫ t

0

W δ(t − s,Bs) ds −
1

2
β̃2t‖jδ‖22

}]

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015 29 / 34



Homogeneous systems Disordered systems Main results Stochastic Heat Equation

The Stochastic Heat Equation

Does uδ(t, x) admit a limit as δ → 0 ?

Analogy with the partition function of DPRE

uδ,β̃(1, 0)
d≈ Z

ω

δ,β=δ
2−d
4 β̃

=







Z
ω

δ,β=δ
1
4 β̃

(d = 1)

Z
ω
δ,β=β̃

(d = 2)

Our results for DPRE can be transfered to SHE

By a time-reversal in W and a space-time rescaling, for (t, x) = (1, 0)

uδ(1, 0) = E0

[

: exp :

{

β̃δ
2−d
4

∫ 1
δ

0

(
∫

Rd

j(Bs − z)W (s, z) dz

)

ds

}]

using the shorthand : exp : {Y } = exp(Y − 1
2
Var[Y ])

)
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The Stochastic Heat Equation

1d SHE

Fix β̃ > 0 . The regularized solution uδ(t, x) has a limit in law as δ → 0
(explicit Wiener chaos expansion)

This is well-know in the literature. This is possibly new.

2d SHE

Fix β̂ > 0 and rescale β̃ :=
β̂

√

log 1
δ

. The regularized solution uδ(t, x)

has a limit in law as δ → 0 that is

{

log-normal if β̂ < 1

0 if β̂ ≥ 1

uδ(t, x) and uδ(t
′, x ′) are asympt. independent for (t, x) 6= (t ′, x ′)

(β̂ < 1 is weak disorder) Interesting multi-scale correlations (Lecture V)
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