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Overview

In the first lecture we saw the key role of the partition function
7y = E™[eMn(5)] = Ef [eZL Lrezd (Be(nS)=A(B))] (directed polymer)

Zj; is a complicated function of the i.i.d. random field w = (w(n, x))

Zj; is a simple function of another i.i.d. random field X = (X(n, x))

Multi-linear polynomial: Zy = Z (A HX
AC{1,...,N} i€EA

Goal of this lecture
Study convergence in distribution of multi-linear polynomials
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Polynomial chaos
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1. Polynomial chaos
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Polynomial chaos

Polynomial chaos

T = finite or countable index set (T ={1,...,N}, T=N, T=279)

Multi-linear polynomial W(x) in the variables (x;);et

V(x) = Z »(I) HX,- (sum restricted to |/]| < 00)

ICT iel

[ V(x) is a formal polynomial <— kernel (¢(/))icT ]

Polynomial chaos
v(X) =Y o) [[X
ICT iel

9O + U)X+ 5 X XX

ieT i#jeT

V4

with X = (X;);et independent (possibly non i.d.) random variables in L?
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Polynomial chaos

Polynomial chaos

Z =v(X) =Y y(x! with X' :=J[X

IcT icl

> In case |T| < oo no problem

> In case |T| = co we mean Z = lim Wy, (X) inprob. (Ty 1 T)

N—oo

If E[X]=0 then E[X'X’]=1T(_; ~ W(X) well-defined in L2 if

> (1) < oo

ICT
If E[X]=p €R ~ W(X) well-defined in L? if

Zu? < 00 and Z(1+5)"|¢(I)2<oo for some >0
i€T 1T
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Polynomial chaos

Variance and influences

Fix a multi-linear polynomial

V(x) = Z OES with x/:= Hx,-

ICT icl

Coi= Y ¢(I)* = Var[¥(X)]

ICT, 10

S w2 = E[Var[ W) | Xy ]]

ICT, I5i

Inf;[V] :

For any family of r.v.'s X = (X;)ier with E[X]] =0 Var[X;] =1

Inf;[W] quantifies how much W(x) depends on the variable x; J

Noise sensitivity [Benjaimini, Kalai, Schramm 2001] [Garban, Steif 2012]

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015



Lindeberg Principle

Outline

2. Lindeberg Principle
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Lindeberg Principle

Lindeberg Principle

If influences Inf;(W) are small, the law of W(X) is insensitive
to the details of the laws of the individual X;'s J

» Fix a multi-linear polynomial W(x) = Z (1) x" of degree ¢
ICT, |1]<¢

> X = (X)ier, X' = (X!)ier indep. with zero mean, unit variance
— 3 3
ms := max (E[XiPP] v E[X/]P]) < o0
Theorem [Mossel, O’Donnel, Oleszkiewicz 2010]

dist (W(X), W(X")) = sup  [E[F(W(X))] — E[F(¥(X"))]]
FECS: [Flloos |7 lloo, 17 | oo <1

¢ ¢
< 30°Cy ms rpeaTx (Inf,-[\ll])
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Lindeberg Principle

Lindeberg Principle

We can go beyond finite 3rd moment. Define the truncated moments

M= sup E[X*Lyx>my] m;" = sup  E[IXP Lyxi<m]
Xe{Xi, X/} Xe{Xi X/}

>
m;

Theorem [C., Sun, Zygouras 2015+]
dist(\ll(X), \U(X’))

Y4
< e% ier I 70€+1 Cy- {m2>M + (m§M> meaﬂ—x (|nf,[\U5]) }
i

» Explicit, non-asymptotic estimate!

» Extension to the case E[X;] = E[X/] = u; #0

Ve (x) =Y (142) () X!

ICT
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Lindeberg Principle

Lindeberg Principle

dist (W(X), W(X")) < 701 Cy {m2>M + (m3§M>£ max (Inf;[V]) }

Corollary

Consider a family (W5)s>o of multi-linear polynomials

» Assume sup Cy, < ax (Inf;[Ws]) —— 0
ol U ?e]v?(n’[ i) 50

» Take (X5,), (X5;) with zero mean, unit variance and u.i. squares

lim myM = sup E[X*1 =0
M—oo 2 Xe{Xs,i, X5} [ {‘XI>M}]
Then dist(W5(Xs), Ws(X5)) 0
0—0

4

Does Wy (X5) have a limit in law as § — 0?7 Check it for Gaussian Xs's !
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White noise

Outline

3. White noise and Wiener chaos
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White noise

White noise (1 dim.)

We are familiar with (1-dim.) Brownian motion B = (B(t)):>0

We are interested in its derivative “W(t) := %B(t)” called white noise

[ Well-defined as a (random) Schwarz distribution ~~ Max’s course |

Think of W as a stochastic process W = (W(-)) indexed by

Intervals | =[a,b] +—— W(Il)= B(b) — B(a) ~ N(0,b— a)
Borel sets A € B(R) —s  W/(A) = / 1a(£)dB(t) ~ N0, |A])

W is a Gaussian process with

E[W(A)] =0 Cov[W(A), W(B)] = |An B

This can be taken as the definition of W ~» multi-dimensional W
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White noise

White noise

White noise on RY
It is a Gaussian process W = (W(A))acp(re) With

E[W(A)] = 0 Cov[W/(A), W(B)] = |AN B

It is the continuum analogue of i.i.d. field W(A) = ZXZ for A C 7¢

z€A
» Existence OK (Kolmogorov)

» W(A) ~ N(0,|A]) W(A) indep. of W(B) for ANB =10
>V (An)nen disjoint = W( U A,,) =3 W(A)
neN neN

Almost a random signed measure on RY. .. but not quite:
“Y" and “a.s.” cannot be exchanged! (~- infinite variation)

[ W(A) is equivalence class of random variables ]
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White noise

Single stochastic integrals w.r.t. white noise

We can define single stochastic integrals w.r.t. white noise [ f(x) W(dx)
(next we consider multiple ones: [ f(x,y) W (dx)W(dy), etc.)

For simple functions f = Zf'(:l cily, with ¢ € R

/[Rd f(x) W = ZC,W(A ~ N(0, ||f||i2([Rd))

Isometry L?(R?) — L2(Qy/) ~ Extends to all f € L2(R9)

Set for short W(f) := [ f(x) W(dx) and keep in mind the Ito isometry

EW(A)l=0  EW(f)’] = Iz
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White noise

Multiple stochastic integrals w.r.t. white noise

In a “product measure” fashion, we define

W g) = [ gl W Widy) = ch AYW(5)

for g(x,y) = Zf‘;l ¢ilaxg(x,y) with AinB; =0 (“avoid diagonals”)
» Such simple functions are dense in L2(RY x RY)

We can restrict to symmetric functions g(x, y) = g(y, x) and note that

E[W®(g)] =0  E[W®*()*] = 2|lg72(rexre)

We can extend W®?(g) to every g e [2,_(R? x RY) J

sym(

Note that E[W®(f), W®?(g)] =0 for all f, g
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White noise

Multiple stochastic integrals w.r.t. white noise

In a similar way we define
wtg) = [ ala, o) Wida) - Wids)
R

For symmetric functions we have
E[W®(g)] =0  E[W®*(g)’] = Kk!llgl72(rey)
Cov[WoK(f), WK (g)] = k! Lik=ky (f, 8) 2((re)¥)

Wiener chaos expansion
Any r.v. X € L?(Qw) measurable w.r.t. o(W/) can be written as

X=3 ZWHE)  with i € (R
k=0

[Case k=0: fo=E[X] W®(c):=c]
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CLT for polynomial chaos
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4. CLT for polynomial chaos
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CLT for polynomial chaos

Assumptions

[ We use § =0 instead of N — oo ]
Let Ts be a lattice in R?, all cells with the same volume v
eg. Ty=(62)%, vs =47 Ts = (0Z) x (V6Z), vs = §°/2
A. Let X5 = (Xs,i)ier, be independent random variables with
E[Xs,i] = ps(i) Var[Xs,] =1
and such that ((Xs,; — E[X5.1])?)s>0,icT, are uniformly integrable

B. Let Ws(x) be a multi-linear polynomial such that for some ¢ > 0

lim sup Z(1+5)"|w5(l)2 =0

{— 00 §>0 e

i.e. W(x) approximated by finite degree polynomials (unif. in 0)
[If ws(i) =0 onecan take & = 0]
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CLT for polynomial chaos

CLT for polynomial chaos

Any function defined on Ts is extended (piecewise constant) to RY
ps R = R st (RO - R

ps(x)  2(RY) J(x)

C. Assume that
V51/2 6—0

Ps(x, ..oy xK)  L((RY))
vsk/2 50

Polxt, .-, xk)

Theorem [C., Sun, Zygouras 2015+]

Hp. A. B. C. yield Ws(Xjs) ﬁwo with
—

0 ng/ ([Rd)kilJo Xiyeooy X H( (dx;) +u0(x,)dx,)

i=1

where W is white noise on RY
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Proofs

Proof of CLT for polynomial chaos

K
Us(X5) = > ws(l) [[Xox = = Zkl S sl x) HX6,X;

ICTs xel X1,--,XkET 5
distinct points

1. Truncate the series at k = ¢. Choosing ¢ € N large, we make an error
in L2 which is small, uniformly in § (recall Hp. B.)

2. Consider Gaussian disorder first. Since
[E[X&X] = ,u(;(x) \/ar[X57X] =1

we define Gaussians X5 . ~ AN (us(x),1). Using white noise W on R
,x

x = %4—#5&) = #/ Lesx(2 )(W(dz) A‘L/jg/zz) dz)

Cs(x) = cell containing x € T, with volume |Cs(x)| = vs
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Proofs

Proof of CLT for polynomial chaos

Replacing Xs. by X:S,x; yields

4
AN 1 Rk 1/)5(21,~~,Zk)
Vs(Xs5) = ZHW k/2
k=0 v
‘1
‘UO ~ kIW®k<’¢’0(Zl7...,Zk)>
k=0

Assume that p5 = 0 for simplicity
Terms with different k are orthogonal in L% ~+ by lto isometry

4

e jvs0) - wl] = X5 |

2

by Hp. C.
y—> 0
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Proofs

Proof of CLT for polynomial chaos

3. Justify the replacement of X;, by X, using Lindeberg.

Assume ps =0 for simplicity (hence £ = 0)
> (X5x)5>0,xcT, zero mean, unit variance, u.i. squares  (by Hp. A.)

> sup Cy, = sup Z ws(! 00 (by Hp. B. and C.)
0>0 O psicT

> It remains to check that max (Inf,[W]) —0
—

x€Ts

J4
1 Vs(z1,. .., 2zi)?
Inf[Ws] = w1~ > o . % Liamecsooy 421+ dz
k=1

I>x

+||’¢o]1{zleca x)}||L2 umf%) 0 0

2
s
L2 = H vsk/2 Vo

5
kI Lz ecs ()
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Proofs

Proof of Lindeberg Principle

Recall the assumptions:

» Fix a multi-linear polynomial W(x) = Z (1) x" of degree ¢
ICT, |1]<¢

» X =(X)ier, X' =(X!)ier indep. with zero mean, unit variance

__ .3 /3
ms = max (E[IX:P] v E[1X]]*]) < o0
> For e C3R—R) define Cr = max{||f oo, | " llocs | " lloc}
Lindeberg Principle

|E[f(W(X))] — E[F(W(X)]| < 30 Cr Cy m3* max (Inf;[W])

Assume w.l.o.g. T={1,...,n} andset g(:):=f(V("))
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Proofs

Proof of Lindeberg Principle

1. Telescopic sum. Replace each X; by X', one by one:
g(X) — g(X’)

= En:{g(Xl,...,X,-,X;H,...,X;) —g(Xy, ..., Xic1, X, X))
i=1
2. Taylor expansion. For x; € R and y € Rn—1
g(x1,y) = g(0,y) + x1 0, 8(0,y) + %2 9;,8(0,y) + Ri(x1,y)
Since E[X;] = E[X]] and E[(X1)?] = E[(X})]

|Elg(X1, X)] — Elg (X1, X)| < E[|Ri(X1, X")[] + E[|Ru(X], X")]
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Proofs

Proof of Lindeberg Principle

3. Remainder estimate. We claim that for all x = (x1,...,x,) € R”

R < L0’ = 30 e

[<e, 131

Proof. 3™ order Taylor remainder for g(x1,y) (x1 € R y € R"1)

1
|Ri(x1, y)| < = 6

sum?tg (t,y ‘ )| bl < = IX1 Uy ()

Since g(-) = F(V())

dig(t,y) = " (W(t,y)) (V1 (y))’

(0:V) Z (! y M = \Tll(y) no dependence on t!
l<e, 1>1
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Proofs

Proof of Lindeberg Principle

4. Hypercontractivity. For any multi-linear polynomial W of degree ¢

v2<g<oo:  [W(Y)ll < (Bo) [W(Y)ee
B, =2v/q — 1 max 1Yillus
9 €T || Yill 2

In our case

3/2
E[[i[7] < (B E[[9, ") = "’( > W)

[11<¢e, 131

— 230 myt (Infl[\ll])3/2

The influence Inf1[W] of x; on W(x) has appeared!
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Proof of Lindeberg Principle

5. Conclusion. Recalling that g(-) = f(V(-))
|Elg(X)] - Elg(X")]| < [Elg(Xe, X)] — Elg(X3, X)]| + ...

< E[|R (X1, X)|] + E[|Ru(X, X)] + ...

= %{[EU‘I“(XLX')P] +E[006, X)) + .

C
é 223 myt {Infl[\ll]3/2 .. }

Cf%mf r}weavx (Inf,-[\ll]) {Infl[\IJ] + }

IN

IN

Inf1[W] + Info[W] +... = Z S ow(? = e()? < eCy O

i=1|1|<e, I15i [1]<e

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015



Proofs

References

>

I. Benjaimini, G. Kalai, O. Schramm
Noise sensitivity of Boolean functions and applications to percolation
Inst. Hautes Etudes Sci. Publ. Math. 90 (2001), 5-43

F. Caravenna, R. Sun, N. Zygouras
Polynomial chaos and scaling limits of disordered systems
J. Eur. Math. Soc. (JEMS), to appear

C. Garban, J. Steif

Noise Sensitivity and Percolation

In “Probability and Statistical Physics in Two and more Dimensions”
Clay Mathematics Proceedings 15 (2012), 319-393

E. Mossel, R. O'Donnell, and K. Oleszkiewicz

Noise stability of functions with low influences: Variance and
optimality

Ann. Math. 171 (2010) 295-341

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015

30/



	Polynomial chaos
	Lindeberg Principle
	White noise and Wiener chaos
	CLT for polynomial chaos
	Proofs

