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Overview

In the first lecture we saw the key role of the partition function

Zω
N = E

ref [eH
ω
N (S)] = E

ref
[

e
∑N

n=1

∑
x∈Zd (βω(n,Sn)−λ(β))

]

(directed polymer)

Zω
N is a complicated function of the i.i.d. random field ω = (ω(n, x))

Zω
N is a simple function of another i.i.d. random field X = (X (n, x))

Multi-linear polynomial: Zω
N =

∑

A⊆{1,...,N}

φ(A)
∏

i∈A

X i

Goal of this lecture
Study convergence in distribution of multi-linear polynomials
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Polynomial chaos

T = finite or countable index set (T = {1, . . . ,N}, T = N, T = Zd)

Multi-linear polynomial Ψ(x) in the variables (xi )i∈T

Ψ(x) =
∑

I⊆T

ψ(I )
∏

i∈I

xi (sum restricted to |I | <∞)

[ Ψ(x) is a formal polynomial ←→ kernel (ψ(I ))I⊆T ]

Polynomial chaos

Z = Ψ(X ) =
∑

I⊆T

ψ(I )
∏

i∈I

Xi

= ψ(∅) +
∑

i∈T

ψ(i)Xi +
1

2

∑

i 6=j∈T

ψ(i , j)Xi Xj + . . .

with X = (Xi )i∈T independent (possibly non i.d.) random variables in L2
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Polynomial chaos

Z = Ψ(X ) =
∑

I⊆T

ψ(I )X I with X I :=
∏

i∈I

Xi

◮ In case |T| <∞ no problem

◮ In case |T| = ∞ we mean Z = lim
N→∞

ΨTN
(X ) in prob. (TN ↑ T)

If E[Xi ] = 0 then E[X IX J ] = 1{I=J}  Ψ(X ) well-defined in L2 if

∑

I⊆T

ψ(I )2 <∞

If E[Xi ] = µi ∈ R  Ψ(X ) well-defined in L2 if

∑

i∈T

µ2
i <∞ and

∑

I⊆T

(1 + ε)|I | ψ(I )2 <∞ for some ε > 0
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Variance and influences

Fix a multi-linear polynomial

Ψ(x) =
∑

I⊆T

ψ(I ) x I with x I :=
∏

i∈I

xi

CΨ :=
∑

I⊆T, I 6=∅

ψ(I )2 = Var[Ψ(X )]

Inf i [Ψ] :=
∑

I⊆T, I∋i

ψ(I )2 = E

[

Var
[

Ψ(X )
∣

∣XT\{i}

]

]

For any family of r.v.’s X = (Xi )i∈T with E[Xi ] = 0 Var[Xi ] = 1

Inf i [Ψ] quantifies how much Ψ(x) depends on the variable xi

Noise sensitivity [Benjaimini, Kalai, Schramm 2001] [Garban, Steif 2012]
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Lindeberg Principle

If influences Inf i (Ψ) are small, the law of Ψ(X ) is insensitive

to the details of the laws of the individual Xi ’s

◮ Fix a multi-linear polynomial Ψ(x) =
∑

I⊆T, |I |≤ℓ

ψ(I ) x I of degree ℓ

◮ X = (Xi )i∈T , X ′ = (X ′
i )i∈T indep. with zero mean, unit variance

m3 := max
i∈T

(

E[|Xi |3] ∨ E[|X ′
i |3]
)

<∞

Theorem [Mossel, O’Donnel, Oleszkiewicz 2010]

dist
(

Ψ(X ),Ψ(X ′)
)

:= sup

f∈C 3: ‖f ′‖∞,‖f ′′‖∞,‖f ′′′‖∞≤1

∣

∣E
[

f (Ψ(X ))
]

− E
[

f (Ψ(X ′))
]∣

∣

≤ 30ℓ CΨ m3
ℓ
√

max
i∈T

(

Inf i [Ψ]
)

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015 9 / 30



Polynomial chaos Lindeberg Principle White noise CLT for polynomial chaos Proofs

Lindeberg Principle

We can go beyond finite 3rd moment. Define the truncated moments

m>M
2 := sup

X∈{Xi ,X ′

i
}
E
[

X 2
1{|X |>M}

]

m
≤M
3 := sup

X∈{Xi ,X ′

i
}
E
[

|X |3 1{|X |≤M}

]

Theorem [C., Sun, Zygouras 2015+]

dist
(

Ψ(X ),Ψ(X ′)
)

≤ e
2
ε

∑
i∈T

µ2
i 70ℓ+1 CΨε

{

m>M
2 +

(

m
≤M
3

)ℓ
√

max
i∈T

(

Inf i [Ψε]
)

}

◮ Explicit, non-asymptotic estimate!

◮ Extension to the case E[Xi ] = E[X ′
i ] = µi 6= 0

Ψε(x) =
∑

I⊆T

(1 + ε)|I | ψ(I ) x I
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Lindeberg Principle

dist
(

Ψ(X ),Ψ(X ′)
)

≤ 70ℓ+1 CΨ

{

m>M
2 +

(

m
≤M
3

)ℓ
√

max
i∈T

(

Inf i [Ψ]
)

}

Corollary

Consider a family (Ψδ)δ>0 of multi-linear polynomials

◮ Assume sup
δ>0

CΨδ
<∞ max

i∈Tδ

(

Inf i [Ψδ]
)

−−−→
δ→0

0

◮ Take (Xδ,i ), (X ′
δ,i ) with zero mean, unit variance and u.i. squares

lim
M→∞

m>M
2 := sup

X∈{Xδ,i ,X ′

δ,i
}
E
[

X 2
1{|X |>M}

]

= 0

Then dist
(

Ψδ(Xδ),Ψδ(X
′
δ)
)

−−−→
δ→0

0

Does ΨN(Xδ) have a limit in law as δ → 0? Check it for Gaussian Xδ’s !
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White noise (1 dim.)

We are familiar with (1-dim.) Brownian motion B = (B(t))t≥0

We are interested in its derivative “W (t) := d
dtB(t)” called white noise

[ Well-defined as a (random) Schwarz distribution  Max’s course ]

Think of W as a stochastic process W = (W (·)) indexed by

Intervals I = [a, b] 7−→ W (I ) = B(b)− B(a) ∼ N (0, b − a)

Borel sets A ∈ B(R) 7−→ W (A) =

∫

R

1A(t) dB(t) ∼ N (0, |A|)

W is a Gaussian process with

E[W (A)] = 0 Cov[W (A),W (B)] = |A ∩ B |

This can be taken as the definition of W  multi-dimensional W
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White noise

White noise on Rd

It is a Gaussian process W = (W (A))A∈B(Rd ) with

E[W (A)] = 0 Cov[W (A),W (B)] = |A ∩ B |

It is the continuum analogue of i.i.d. field W (A) =
∑

z∈A

X z for A ⊆ Zd

◮ Existence OK (Kolmogorov)

◮ W (A) ∼ N (0, |A|) W (A) indep. of W (B) for A ∩ B = ∅

◮ ∀ (An)n∈N disjoint =⇒ W

(

⋃

n∈N

An

)

a.s.
=
∑

n∈N

W (An)

Almost a random signed measure on Rd . . . but not quite:

“∀” and “a.s.” cannot be exchanged! ( infinite variation)

[ W (A) is equivalence class of random variables ]
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Single stochastic integrals w.r.t. white noise

We can define single stochastic integrals w.r.t. white noise
∫

f (x)W (dx)

(next we consider multiple ones:
∫
f (x , y)W (dx)W (dy), etc.)

For simple functions f =
∑k

i=1 ci1Ai
with ci ∈ R

∫

Rd

f (x)W (dx) :=
k
∑

i=1

ciW (Ai ) ∼ N (0, ‖f ‖2L2(Rd ))

Isometry L2(Rd) −→ L2(ΩW )  Extends to all f ∈ L2(Rd)

Set for short W (f ) :=
∫

f (x)W (dx) and keep in mind the Ito isometry

E[W (f )] = 0 E[W (f )2] = ‖f ‖2L2(Rd )
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Multiple stochastic integrals w.r.t. white noise

In a “product measure” fashion, we define

W⊗2(g) =

∫

Rd×Rd

g(x , y)W (dx)W (dy) :=

k
∑

i=1

ciW (Ai )W (Bi )

for g(x , y) =
∑k

i=1 ci1Ai×Bi
(x , y) with Ai ∩Bi = ∅ (“avoid diagonals”)

◮ Such simple functions are dense in L2(Rd × Rd)

We can restrict to symmetric functions g(x , y) = g(y , x) and note that

E[W⊗2(g)] = 0 E[W⊗2(g)2] = 2 ‖g‖2L2(Rd×Rd )

We can extend W⊗2(g) to every g ∈ L2sym(R
d × Rd)

Note that E[W⊗1(f ),W⊗2(g)] = 0 for all f , g
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Multiple stochastic integrals w.r.t. white noise

In a similar way we define

W⊗k(g) =

∫

(Rd )k
g(x1, . . . , xk)W (dx1) · · ·W (dxk)

For symmetric functions we have

E[W⊗2(g)] = 0 E[W⊗2(g)2] = k! ‖g‖2L2((Rd )k )

Cov[W⊗k(f ),W⊗k′

(g)] = k!1{k=k′} 〈f , g〉L2((Rd )k )

Wiener chaos expansion

Any r.v. X ∈ L2(ΩW ) measurable w.r.t. σ(W ) can be written as

X =

∞
∑

k=0

1

k!
W⊗k(fk) with fk ∈ L2sym((R

d)k)

[ Case k = 0: f0 = E[X ] W⊗0(c) := c ]
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Assumptions

[ We use δ → 0 instead of N →∞ ]

Let Tδ be a lattice in Rd , all cells with the same volume vδ

e.g. Tδ = (δZ)d , vδ = δd Tδ = (δZ)× (
√
δZ), vδ = δ3/2

A. Let Xδ = (Xδ,i )i∈Tδ
be independent random variables with

E[Xδ,i ] = µδ(i) Var[Xδ,i ] = 1

and such that ((Xδ,i − E[Xδ,i ])
2)δ>0,i∈Tδ

are uniformly integrable

B. Let Ψδ(x) be a multi-linear polynomial such that for some ε > 0

lim
ℓ→∞

sup
δ>0

∑

|I |>ℓ

(1 + ε)|I | ψδ(I )
2 = 0

i.e. Ψ(x) approximated by finite degree polynomials (unif. in δ)

[If µδ(i) ≡ 0 one can take ε = 0]
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CLT for polynomial chaos

Any function defined on Tδ is extended (piecewise constant) to Rd

µδ : R
d → R ψδ : (Rd)k → R

C. Assume that
µδ(x)

vδ1/2
L2(Rd )−−−−−→
δ→0

µ0(x)

ψδ(x1, . . . , xk)

vδk/2
L2((Rd )k )−−−−−−−→

δ→0
ψ0(x1, . . . , xk)

Theorem [C., Sun, Zygouras 2015+]

Hp. A. B. C. yield Ψδ(Xδ)
d−−−−→

δ→0
Ψ0 with

Ψ0 :=

∞
∑

k=0

1

k!

∫

· · ·
∫

(Rd )k
ψ0(x1, . . . , xk)

k
∏

i=1

(

W (dxi ) + µ0(xi ) dxi

)

where W is white noise on Rd
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Proof of CLT for polynomial chaos

Ψδ(Xδ) =
∑

I⊆Tδ

ψδ(I )
∏

x∈I

Xδ,x = ≈
∞ℓ
∑

k=0

1

k!

∑

x1,...,xk∈Tδ

distinct points

ψδ(x1, . . . , xk)

k
∏

i=1

Xδ,xi

1. Truncate the series at k = ℓ. Choosing ℓ ∈ N large, we make an error
in L2 which is small, uniformly in δ (recall Hp. B.)

2. Consider Gaussian disorder first. Since

E[Xδ,x ] = µδ(x) Var[Xδ,x ] = 1

we define Gaussians X ′
δ,x ∼ N (µδ(x), 1). Using white noise W on Rd

X ′
δ,x =

W (Cδ(x))
vδ1/2

+µδ(x) =
1

vδ1/2

∫

Rd

1Cδ(x)(z)

(

W (dz)+
µδ(z)

vδ1/2
dz

)

Cδ(x) = cell containing x ∈ Tδ, with volume |Cδ(x)| = vδ
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Proof of CLT for polynomial chaos

Replacing Xδ,xi by X ′
δ,xi yields

Ψδ(X
′
δ) ≈

ℓ
∑

k=0

1

k!
W⊗k

(

ψδ(z1, . . . , zk)

vδk/2

)

Ψ0 ≈
ℓ
∑

k=0

1

k!
W⊗k

(

ψ0(z1, . . . , zk)

)

Assume that µδ ≡ 0 for simplicity

Terms with different k are orthogonal in L2  by Ito isometry

E

[

∣

∣Ψδ(X
′
δ)−Ψ0

∣

∣

2
]

=

ℓ
∑

k=0

1

k!

∥

∥

∥

∥

ψδ

vδk/2
−ψ0

∥

∥

∥

∥

2

L2((Rd )k )

by Hp. C.−−−−−−→
δ→0

0
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Proof of CLT for polynomial chaos

3. Justify the replacement of Xδ,x by X ′
δ,x using Lindeberg.

Assume µδ ≡ 0 for simplicity (hence ε = 0)

◮ (Xδ,x)δ>0, x∈Tδ
zero mean, unit variance, u.i. squares (by Hp. A.)

◮ sup
δ>0

CΨδ
= sup

δ>0

∑

∅6=I⊆T

ψδ(I )
2 < ∞ (by Hp. B. and C.)

◮ It remains to check that max
x∈Tδ

(

Infx [Ψδ]
)

−−−→
δ→0

0

Infx [Ψδ] =
∑

I∋x

ψδ(I )
2 ≈

ℓ
∑

k=1

1

k!

∫

(Rd )k

ψδ(z1, . . . , zk)
2

vδk
1{∃zi∈Cδ(x)} dz1 · · · dzk

∥

∥

∥

∥

ψδ

vδk/2
1{z1∈Cδ(x)}

∥

∥

∥

∥

2

L2

≤
∥

∥

∥

∥

ψδ

vδk/2
−ψ0

∥

∥

∥

∥

2

L2

+
∥

∥ψ01{z1∈Cδ(x)}

∥

∥

2

L2

unif. in x−−−−−→
δ→0

0
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Proof of Lindeberg Principle

Recall the assumptions:

◮ Fix a multi-linear polynomial Ψ(x) =
∑

I⊆T, |I |≤ℓ

ψ(I ) x I of degree ℓ

◮ X = (Xi )i∈T , X ′ = (X ′
i )i∈T indep. with zero mean, unit variance

m3 := max
i∈T

(

E[|Xi |3] ∨ E[|X ′
i |3]
)

<∞

◮ For f ∈ C 3(R → R) define Cf := max{‖f ′‖∞, ‖f ′′‖∞, ‖f ′′′‖∞}

Lindeberg Principle

∣

∣E
[

f (Ψ(X ))
]

− E
[

f (Ψ(X ′))
]
∣

∣ ≤ 30ℓ Cf CΨ m3
ℓ
√

max
i∈T

(

Inf i [Ψ]
)

Assume w.l.o.g. T = {1, . . . , n} and set g(·) := f (Ψ(·))
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Proof of Lindeberg Principle

1. Telescopic sum. Replace each Xi by X ′
i , one by one:

g(X )− g(X ′)

=

n
∑

i=1

{

g(X1, . . . ,Xi ,X
′
i+1, . . . ,X

′
n)− g(X1, . . . ,Xi−1,X

′
i , . . . ,X

′
n)
}

2. Taylor expansion. For x1 ∈ R and y ∈ Rn−1

g(x1, y) = g(0, y) + x1 ∂x1g(0, y) +
x1

2

2
∂2x1g(0, y) + R1(x1, y)

Since E[X1] = E[X ′
1] and E[(X1)

2] = E[(X ′
1)

2]

∣

∣E[g(X1,X
′)]− E[g(X ′

1,X
′)]
∣

∣ ≤ E
[

|R1(X1,X
′)|
]

+ E
[

|R1(X
′
1,X

′)|
]
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Proof of Lindeberg Principle

3. Remainder estimate. We claim that for all x = (x1, . . . , xn) ∈ Rn

|R1(x)| ≤
Cf

6

∣

∣Ψ̂1(x)
∣

∣

3
Ψ̂1(x) =

∑

|I |≤ℓ, I∋1

ψ(I ) x I

Proof. 3rd order Taylor remainder for g(x1, y) (x1 ∈ R y ∈ Rn−1)

|R1(x1, y)| ≤
1

6

∣

∣

∣
sup
t∈R

∂3t g(t, y)
∣

∣

∣
|x1|3 ≤

Cf

6

∣

∣x1 Ψ̃1(y)
∣

∣

3

Since g(·) = f (Ψ(·))

∂3t g(t, y) = f ′′′
(

Ψ(t, y)
) (

Ψ̃1(y)
)3

(∂tΨ)(t, y) =
∑

|I |≤ℓ, I∋1

ψ(I ) y I\{1} =: Ψ̃1(y) no dependence on t !
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Proof of Lindeberg Principle

4. Hypercontractivity. For any multi-linear polynomial Ψ of degree ℓ

∀ 2 < q <∞ : ‖Ψ(Y )‖Lq ≤ (Bq)
ℓ ‖Ψ(Y )‖L2

Bq = 2
√

q − 1max
i∈T

‖Yi‖Lq

‖Yi‖L2

In our case

E
[
∣

∣Ψ̂1

∣

∣

3] ≤ (B3)
3ℓ

E
[
∣

∣Ψ̂1

∣

∣

2]3/2
= 2

9
2 ℓ m3

ℓ

(

∑

|I |≤ℓ, I∋1

ψ(I )2

)3/2

= 2
9
2 ℓ m3

ℓ
(

Inf1[Ψ]
)3/2

The influence Inf1[Ψ] of x1 on Ψ(x) has appeared!
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Proof of Lindeberg Principle

5. Conclusion. Recalling that g(·) = f (Ψ(·))
∣

∣E[g(X )]− E[g(X ′)]
∣

∣ ≤
∣

∣E[g(X1,X
′)]− E[g(X ′

1,X
′)]
∣

∣ + . . .

≤ E
[

|R1(X1,X
′)|
]

+ E
[

|R1(X
′
1,X

′)|
]

+ . . .

≤ Cf

6

{

E
[

|Ψ̂1(X1,X
′)|3
]

+ E
[

|Ψ̂1(X1,X
′)|3
]

+ . . .
}

≤ Cf

6
2 2

9
2 ℓ m3

ℓ
{

Inf1[Ψ]3/2 + . . .
}

≤ Cf

2
9
2 ℓ

3
m3

ℓ
√

max
i∈T

(

Inf i [Ψ]
)

{

Inf1[Ψ] + . . .
}

Inf1[Ψ] + Inf2[Ψ] + . . . =

n
∑

i=1

∑

|I |≤ℓ, I∋i

ψ(I )2 =
∑

|I |≤ℓ

|I |ψ(I )2 ≤ ℓCΨ
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