

Polynomial Chaos and Scaling Limits of Disordered Systems

2. Lindeberg Principle and multi-linear CLT

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Levico Terme ~ September 30 - October 2, 2015

Overview

In the first lecture we saw the key role of the [partition function](#)

$$Z_N^\omega = \mathbf{E}^{\text{ref}}[e^{\mathcal{H}_N^\omega(S)}] = \mathbf{E}^{\text{ref}}\left[e^{\sum_{n=1}^N \sum_{x \in \mathbb{Z}^d} (\beta \omega(n, S_n) - \lambda(\beta))}\right] \quad (\text{directed polymer})$$

Z_N^ω is a [complicated function](#) of the i.i.d. random field $\omega = (\omega(n, x))$

Z_N^ω is a simple function of another i.i.d. random field $X = (X(n, x))$

Multi-linear polynomial: $Z_N^\omega = \sum_{A \subseteq \{1, \dots, N\}} \phi(A) \prod_{i \in A} X_i$

Goal of this lecture

Study convergence in distribution of multi-linear polynomials

Outline

1. Polynomial chaos
2. Lindeberg Principle
3. White noise and Wiener chaos
4. CLT for polynomial chaos
5. Proofs

Outline

1. Polynomial chaos
2. Lindeberg Principle
3. White noise and Wiener chaos
4. CLT for polynomial chaos
5. Proofs

Polynomial chaos

\mathbb{T} = finite or countable index set ($\mathbb{T} = \{1, \dots, N\}$, $\mathbb{T} = \mathbb{N}$, $\mathbb{T} = \mathbb{Z}^d$)

Multi-linear polynomial $\Psi(x)$ in the variables $(x_i)_{i \in \mathbb{T}}$

$$\Psi(x) = \sum_{I \subseteq \mathbb{T}} \psi(I) \prod_{i \in I} x_i \quad (\text{sum restricted to } |I| < \infty)$$

[$\Psi(x)$ is a formal polynomial \longleftrightarrow kernel $(\psi(I))_{I \subseteq \mathbb{T}}$]

Polynomial chaos

$$\begin{aligned} Z &= \Psi(X) = \sum_{I \subseteq \mathbb{T}} \psi(I) \prod_{i \in I} X_i \\ &= \psi(\emptyset) + \sum_{i \in \mathbb{T}} \psi(i) X_i + \frac{1}{2} \sum_{i \neq j \in \mathbb{T}} \psi(i, j) X_i X_j + \dots \end{aligned}$$

with $X = (X_i)_{i \in \mathbb{T}}$ independent (possibly non i.d.) random variables in \mathcal{L}^2

Polynomial chaos

$$Z = \Psi(X) = \sum_{I \subseteq \mathbb{T}} \psi(I) \textcolor{blue}{X^I} \quad \text{with} \quad \textcolor{blue}{X^I} := \prod_{i \in I} X_i$$

- ▶ In case $|\mathbb{T}| < \infty$ no problem
- ▶ In case $|\mathbb{T}| = \infty$ we mean $Z = \lim_{N \rightarrow \infty} \Psi_{\mathbb{T}_N}(X)$ in prob. ($\mathbb{T}_N \uparrow \mathbb{T}$)

If $\mathbb{E}[X_i] = 0$ then $\mathbb{E}[X^I X^J] = \mathbb{1}_{\{I=J\}}$ $\rightsquigarrow \Psi(X)$ well-defined in L^2 if

$$\sum_{I \subseteq \mathbb{T}} \psi(I)^2 < \infty$$

If $\mathbb{E}[X_i] = \mu_i \in \mathbb{R}$ $\rightsquigarrow \Psi(X)$ well-defined in L^2 if

$$\sum_{i \in \mathbb{T}} \mu_i^2 < \infty \quad \text{and} \quad \sum_{I \subseteq \mathbb{T}} (1 + \varepsilon)^{|I|} \psi(I)^2 < \infty \quad \text{for some } \varepsilon > 0$$

Variance and influences

Fix a multi-linear polynomial

$$\Psi(x) = \sum_{I \subseteq \mathbb{T}} \psi(I) x^I \quad \text{with} \quad x^I := \prod_{i \in I} x_i$$

$$C_\Psi := \sum_{I \subseteq \mathbb{T}, I \neq \emptyset} \psi(I)^2 = \text{Var}[\Psi(X)]$$

$$\text{Inf}_i[\Psi] := \sum_{I \subseteq \mathbb{T}, I \ni i} \psi(I)^2 = \mathbb{E}[\text{Var}[\Psi(X) | X_{\mathbb{T} \setminus \{i\}}]]$$

For any family of r.v.'s $X = (X_i)_{i \in \mathbb{T}}$ with $\mathbb{E}[X_i] = 0$ $\text{Var}[X_i] = 1$

$\text{Inf}_i[\Psi]$ quantifies how much $\Psi(x)$ depends on the variable x_i

Noise sensitivity [Benjamini, Kalai, Schramm 2001] [Garban, Steif 2012]

Outline

1. Polynomial chaos
2. Lindeberg Principle
3. White noise and Wiener chaos
4. CLT for polynomial chaos
5. Proofs

Lindeberg Principle

If influences $\text{Inf}_i(\Psi)$ are small, the law of $\Psi(X)$ is insensitive to the details of the laws of the individual X_i 's

- ▶ Fix a multi-linear polynomial $\Psi(x) = \sum_{I \subseteq \mathbb{T}, |I| \leq \ell} \psi(I) x^I$ of degree ℓ
- ▶ $X = (X_i)_{i \in \mathbb{T}}$, $X' = (X'_i)_{i \in \mathbb{T}}$ indep. with zero mean, unit variance

$$m_3 := \max_{i \in \mathbb{T}} (\mathbb{E}[|X_i|^3] \vee \mathbb{E}[|X'_i|^3]) < \infty$$

Theorem [Mossel, O'Donnell, Oleszkiewicz 2010]

$$\begin{aligned} \text{dist}(\Psi(X), \Psi(X')) &:= \sup_{f \in C^3: \|f'\|_\infty, \|f''\|_\infty, \|f'''\|_\infty \leq 1} |\mathbb{E}[f(\Psi(X))] - \mathbb{E}[f(\Psi(X'))]| \\ &\leq 30^\ell C_\Psi m_3^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])} \end{aligned}$$

Lindeberg Principle

We can go beyond finite 3rd moment. Define the truncated moments

$$m_2^{>M} := \sup_{X \in \{X_i, X'_i\}} \mathbb{E}[X^2 \mathbb{1}_{\{|X| > M\}}] \quad m_3^{\leq M} := \sup_{X \in \{X_i, X'_i\}} \mathbb{E}[|X|^3 \mathbb{1}_{\{|X| \leq M\}}]$$

Theorem [C., Sun, Zygouras 2015+]

$$\text{dist}(\Psi(X), \Psi(X'))$$

$$\leq e^{\frac{2}{\varepsilon} \sum_{i \in \mathbb{T}} \mu_i^2} 70^{\ell+1} C_{\Psi^\varepsilon} \left\{ m_2^{>M} + \left(m_3^{\leq M} \right)^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi^\varepsilon])} \right\}$$

- ▶ Explicit, non-asymptotic estimate!
- ▶ Extension to the case $\mathbb{E}[X_i] = \mathbb{E}[X'_i] = \mu_i \neq 0$

$$\Psi^\varepsilon(x) = \sum_{I \subseteq \mathbb{T}} (1 + \varepsilon)^{|I|} \psi(I) x^I$$

Lindeberg Principle

$$\text{dist}(\Psi(X), \Psi(X')) \leq 70^{\ell+1} C_\Psi \left\{ m_2^{>M} + \left(m_3^{\leq M} \right)^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])} \right\}$$

Corollary

Consider a **family** $(\Psi_\delta)_{\delta > 0}$ of multi-linear polynomials

- ▶ Assume $\sup_{\delta > 0} C_{\Psi_\delta} < \infty$ $\max_{i \in \mathbb{T}_\delta} (\text{Inf}_i[\Psi_\delta]) \xrightarrow[\delta \rightarrow 0]{} 0$
- ▶ Take $(X_{\delta,i}), (X'_{\delta,i})$ with zero mean, unit variance and **u.i. squares**

$$\lim_{M \rightarrow \infty} m_2^{>M} := \sup_{X \in \{X_{\delta,i}, X'_{\delta,i}\}} \mathbb{E}[X^2 \mathbb{1}_{\{|X| > M\}}] = 0$$

Then

$$\boxed{\text{dist}(\Psi_\delta(X_\delta), \Psi_\delta(X'_\delta)) \xrightarrow[\delta \rightarrow 0]{} 0}$$

Does $\Psi_N(X_\delta)$ have a limit in law as $\delta \rightarrow 0$? Check it for Gaussian X_δ 's !

Outline

1. Polynomial chaos
2. Lindeberg Principle
3. White noise and Wiener chaos
4. CLT for polynomial chaos
5. Proofs

White noise (1 dim.)

We are familiar with (1-dim.) Brownian motion $B = (B(t))_{t \geq 0}$

We are interested in its derivative " $W(t) := \frac{d}{dt} B(t)$ " called **white noise**
 [Well-defined as a (random) *Schwarz distribution* \rightsquigarrow Max's course]

Think of W as a stochastic process $W = (W(\cdot))$ indexed by

Intervals $I = [a, b]$ \longmapsto $W(I) = B(b) - B(a) \sim \mathcal{N}(0, b - a)$

Borel sets $A \in \mathcal{B}(\mathbb{R})$ \longmapsto $W(A) = \int_{\mathbb{R}} \mathbb{1}_A(t) dB(t) \sim \mathcal{N}(0, |A|)$

W is a Gaussian process with

$$\mathbb{E}[W(A)] = 0 \quad \mathbb{C}\text{ov}[W(A), W(B)] = |A \cap B|$$

This can be taken as the **definition** of W \rightsquigarrow multi-dimensional W

White noise

White noise on \mathbb{R}^d

It is a Gaussian process $W = (W(A))_{A \in \mathcal{B}(\mathbb{R}^d)}$ with

$$\mathbb{E}[W(A)] = 0 \quad \text{Cov}[W(A), W(B)] = |A \cap B|$$

It is the continuum analogue of i.i.d. field $W(A) = \sum_{z \in A} X_z$ for $A \subseteq \mathbb{Z}^d$

- ▶ Existence OK (Kolmogorov)
- ▶ $W(A) \sim \mathcal{N}(0, |A|)$ $W(A)$ indep. of $W(B)$ for $A \cap B = \emptyset$
- ▶ $\forall (A_n)_{n \in \mathbb{N}}$ disjoint $\implies W\left(\bigcup_{n \in \mathbb{N}} A_n\right) \stackrel{\text{a.s.}}{=} \sum_{n \in \mathbb{N}} W(A_n)$

Almost a random signed measure on \mathbb{R}^d ... but not quite:

“ \forall ” and “a.s.” cannot be exchanged! (\rightsquigarrow infinite variation)

[$W(A)$ is equivalence class of random variables]

Single stochastic integrals w.r.t. white noise

We can define **single** stochastic integrals w.r.t. white noise $\int f(x) \mathbf{W}(dx)$
 (next we consider multiple ones: $\int f(x, y) \mathbf{W}(dx) \mathbf{W}(dy)$, etc.)

For **simple functions** $f = \sum_{i=1}^k c_i \mathbb{1}_{A_i}$ with $c_i \in \mathbb{R}$

$$\int_{\mathbb{R}^d} f(x) \mathbf{W}(dx) := \sum_{i=1}^k c_i \mathbf{W}(A_i) \sim \mathcal{N}(0, \|f\|_{L^2(\mathbb{R}^d)}^2)$$

Isometry $L^2(\mathbb{R}^d) \longrightarrow L^2(\Omega_{\mathbf{W}})$ \rightsquigarrow Extends to all $f \in L^2(\mathbb{R}^d)$

Set for short $\mathbf{W}(f) := \int f(x) \mathbf{W}(dx)$ and keep in mind the **Ito isometry**

$$\mathbb{E}[\mathbf{W}(f)] = 0 \quad \mathbb{E}[\mathbf{W}(f)^2] = \|f\|_{L^2(\mathbb{R}^d)}^2$$

Multiple stochastic integrals w.r.t. white noise

In a “product measure” fashion, we define

$$W^{\otimes 2}(g) = \int_{\mathbb{R}^d \times \mathbb{R}^d} g(x, y) W(dx) W(dy) := \sum_{i=1}^k c_i W(A_i) W(B_i)$$

for $g(x, y) = \sum_{i=1}^k c_i \mathbb{1}_{A_i \times B_i}(x, y)$ with $A_i \cap B_i = \emptyset$ (“**avoid diagonals**”)

- ▶ Such simple functions are **dense** in $L^2(\mathbb{R}^d \times \mathbb{R}^d)$

We can restrict to **symmetric** functions $g(x, y) = g(y, x)$ and note that

$$\mathbb{E}[W^{\otimes 2}(g)] = 0 \quad \mathbb{E}[W^{\otimes 2}(g)^2] = 2 \|g\|_{L^2(\mathbb{R}^d \times \mathbb{R}^d)}^2$$

We can extend $W^{\otimes 2}(g)$ to every $g \in L^2_{\text{sym}}(\mathbb{R}^d \times \mathbb{R}^d)$

Note that $\mathbb{E}[W^{\otimes 1}(f), W^{\otimes 2}(g)] = 0$ for all f, g

Multiple stochastic integrals w.r.t. white noise

In a similar way we define

$$W^{\otimes k}(g) = \int_{(\mathbb{R}^d)^k} g(x_1, \dots, x_k) W(dx_1) \cdots W(dx_k)$$

For **symmetric** functions we have

$$\mathbb{E}[W^{\otimes 2}(g)] = 0 \quad \mathbb{E}[W^{\otimes 2}(g)^2] = k! \|g\|_{L^2((\mathbb{R}^d)^k)}^2$$

$$\text{Cov}[W^{\otimes k}(f), W^{\otimes k'}(g)] = k! \mathbb{1}_{\{k=k'\}} \langle f, g \rangle_{L^2((\mathbb{R}^d)^k)}$$

Wiener chaos expansion

Any r.v. $X \in L^2(\Omega_W)$ measurable w.r.t. $\sigma(W)$ can be written as

$$X = \sum_{k=0}^{\infty} \frac{1}{k!} W^{\otimes k}(f_k) \quad \text{with} \quad f_k \in L^2_{\text{sym}}((\mathbb{R}^d)^k)$$

[Case $k=0$: $f_0 = \mathbb{E}[X]$ $W^{\otimes 0}(c) := c$]

Outline

1. Polynomial chaos
2. Lindeberg Principle
3. White noise and Wiener chaos
4. CLT for polynomial chaos
5. Proofs

Assumptions

[We use $\delta \rightarrow 0$ instead of $N \rightarrow \infty$]

Let \mathbb{T}_δ be a lattice in \mathbb{R}^d , all cells with the same volume v_δ

e.g. $\mathbb{T}_\delta = (\delta\mathbb{Z})^d$, $v_\delta = \delta^d$ $\mathbb{T}_\delta = (\delta\mathbb{Z}) \times (\sqrt{\delta}\mathbb{Z})$, $v_\delta = \delta^{3/2}$

A. Let $X_\delta = (X_{\delta,i})_{i \in \mathbb{T}_\delta}$ be independent random variables with

$$\mathbb{E}[X_{\delta,i}] = \mu_\delta(i) \quad \mathbb{V}\text{ar}[X_{\delta,i}] = 1$$

and such that $((X_{\delta,i} - \mathbb{E}[X_{\delta,i}])^2)_{\delta > 0, i \in \mathbb{T}_\delta}$ are uniformly integrable

B. Let $\Psi_\delta(x)$ be a multi-linear polynomial such that for some $\varepsilon > 0$

$$\lim_{\ell \rightarrow \infty} \sup_{\delta > 0} \sum_{|I| > \ell} (1 + \varepsilon)^{|I|} \psi_\delta(I)^2 = 0$$

i.e. $\Psi(x)$ approximated by finite degree polynomials (unif. in δ)

[If $\mu_\delta(i) \equiv 0$ one can take $\varepsilon = 0$]

CLT for polynomial chaos

Any function defined on \mathbb{T}_δ is extended (piecewise constant) to \mathbb{R}^d

$$\mu_\delta : \mathbb{R}^d \rightarrow \mathbb{R} \quad \psi_\delta : (\mathbb{R}^d)^k \rightarrow \mathbb{R}$$

C. Assume that

$$\frac{\mu_\delta(x)}{\nu_\delta^{1/2}} \xrightarrow[\delta \rightarrow 0]{L^2(\mathbb{R}^d)} \mu_0(x)$$

$$\frac{\psi_\delta(x_1, \dots, x_k)}{\nu_\delta^{k/2}} \xrightarrow[\delta \rightarrow 0]{L^2((\mathbb{R}^d)^k)} \psi_0(x_1, \dots, x_k)$$

Theorem [C., Sun, Zygouras 2015+]

Hp. A. B. C. yield $\Psi_\delta(X_\delta) \xrightarrow[\delta \rightarrow 0]{d} \Psi_0$ with

$$\Psi_0 := \sum_{k=0}^{\infty} \frac{1}{k!} \int \cdots \int_{(\mathbb{R}^d)^k} \psi_0(x_1, \dots, x_k) \prod_{i=1}^k \left(W(dx_i) + \mu_0(x_i) dx_i \right)$$

where W is white noise on \mathbb{R}^d

Outline

1. Polynomial chaos
2. Lindeberg Principle
3. White noise and Wiener chaos
4. CLT for polynomial chaos
5. Proofs

Proof of CLT for polynomial chaos

$$\Psi_\delta(X_\delta) = \sum_{I \subseteq \mathbb{T}_\delta} \psi_\delta(I) \prod_{x \in I} X_{\delta,x} \approx \sum_{k=0}^{\infty \ell} \frac{1}{k!} \sum_{\substack{x_1, \dots, x_k \in \mathbb{T}_\delta \\ \text{distinct points}}} \psi_\delta(x_1, \dots, x_k) \prod_{i=1}^k X_{\delta,x_i}$$

1. Truncate the series at $k = \ell$. Choosing $\ell \in \mathbb{N}$ large, we make an error in L^2 which is small, *uniformly in δ* (recall Hp. B.)
2. Consider Gaussian disorder first. Since

$$\mathbb{E}[X_{\delta,x}] = \mu_\delta(x) \quad \text{Var}[X_{\delta,x}] = 1$$

we define Gaussians $\textcolor{red}{X}'_{\delta,x} \sim \mathcal{N}(\mu_\delta(x), 1)$. Using white noise $\textcolor{red}{W}$ on \mathbb{R}^d

$$\textcolor{red}{X}'_{\delta,x} = \frac{\textcolor{red}{W}(\mathcal{C}_\delta(x))}{\nu_\delta^{1/2}} + \mu_\delta(x) = \frac{1}{\nu_\delta^{1/2}} \int_{\mathbb{R}^d} \mathbb{1}_{\mathcal{C}_\delta(x)}(z) \left(\textcolor{red}{W}(dz) + \frac{\mu_\delta(z)}{\nu_\delta^{1/2}} dz \right)$$

$\mathcal{C}_\delta(x) = \text{cell containing } x \in \mathbb{T}_\delta, \text{ with volume } |\mathcal{C}_\delta(x)| = \nu_\delta$

Proof of CLT for polynomial chaos

Replacing X_{δ, x_i} by $\textcolor{red}{X}'_{\delta, x_i}$ yields

$$\Psi_\delta(\textcolor{red}{X}'_\delta) \approx \sum_{k=0}^{\ell} \frac{1}{k!} \textcolor{red}{W}^{\otimes k} \left(\frac{\psi_\delta(z_1, \dots, z_k)}{\textcolor{red}{v}_\delta^{k/2}} \right)$$

$$\Psi_0 \approx \sum_{k=0}^{\ell} \frac{1}{k!} \textcolor{red}{W}^{\otimes k} \left(\psi_0(z_1, \dots, z_k) \right)$$

Assume that $\mu_\delta \equiv 0$ for simplicity

Terms with different k are orthogonal in L^2 \rightsquigarrow by Ito isometry

$$\mathbb{E} \left[|\Psi_\delta(\textcolor{red}{X}'_\delta) - \Psi_0|^2 \right] = \sum_{k=0}^{\ell} \frac{1}{k!} \left\| \frac{\psi_\delta}{\textcolor{red}{v}_\delta^{k/2}} - \psi_0 \right\|_{L^2((\mathbb{R}^d)^k)}^2 \xrightarrow[\delta \rightarrow 0]{\text{by Hp. C.}} 0$$

Proof of CLT for polynomial chaos

3. Justify the replacement of $X_{\delta,x}$ by $X'_{\delta,x}$ using Lindeberg.

Assume $\mu_\delta \equiv 0$ for simplicity (hence $\varepsilon = 0$)

- ▶ $(X_{\delta,x})_{\delta>0, x \in \mathbb{T}_\delta}$ zero mean, unit variance, u.i. squares (by Hp. A.)
- ▶ $\sup_{\delta>0} \text{C}_{\Psi_\delta} = \sup_{\delta>0} \sum_{\emptyset \neq I \subseteq \mathbb{T}} \psi_\delta(I)^2 < \infty$ (by Hp. B. and C.)
- ▶ It remains to check that $\max_{x \in \mathbb{T}_\delta} (\text{Inf}_x[\Psi_\delta]) \xrightarrow[\delta \rightarrow 0]{} 0$

$$\text{Inf}_x[\Psi_\delta] = \sum_{I \ni x} \psi_\delta(I)^2 \approx \sum_{k=1}^{\ell} \frac{1}{k!} \int_{(\mathbb{R}^d)^k} \frac{\psi_\delta(z_1, \dots, z_k)^2}{v_\delta^k} \mathbb{1}_{\{\exists z_i \in \mathcal{C}_\delta(x)\}} dz_1 \cdots dz_k$$

$$\left\| \frac{\psi_\delta}{v_\delta^{k/2}} \mathbb{1}_{\{z_1 \in \mathcal{C}_\delta(x)\}} \right\|_{L^2}^2 \leq \left\| \frac{\psi_\delta}{v_\delta^{k/2}} - \psi_0 \right\|_{L^2}^2 + \left\| \psi_0 \mathbb{1}_{\{z_1 \in \mathcal{C}_\delta(x)\}} \right\|_{L^2}^2 \xrightarrow[\delta \rightarrow 0]{\text{unif. in } x} 0 \quad \square$$

Proof of Lindeberg Principle

Recall the assumptions:

- ▶ Fix a multi-linear polynomial $\Psi(x) = \sum_{I \subseteq \mathbb{T}, |I| \leq \ell} \psi(I) x^I$ of degree ℓ
- ▶ $X = (X_i)_{i \in \mathbb{T}}$, $X' = (X'_i)_{i \in \mathbb{T}}$ indep. with zero mean, unit variance
 $m_3 := \max_{i \in \mathbb{T}} (\mathbb{E}[|X_i|^3] \vee \mathbb{E}[|X'_i|^3]) < \infty$
- ▶ For $f \in C^3(\mathbb{R} \rightarrow \mathbb{R})$ define $C_f := \max\{\|f'\|_\infty, \|f''\|_\infty, \|f'''\|_\infty\}$

Lindeberg Principle

$$|\mathbb{E}[f(\Psi(X))] - \mathbb{E}[f(\Psi(X'))]| \leq 30^\ell C_f C_\Psi m_3^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])}$$

Assume w.l.o.g. $\mathbb{T} = \{1, \dots, n\}$ and set $g(\cdot) := f(\Psi(\cdot))$

Proof of Lindeberg Principle

1. Telescopic sum. Replace each X_i by \mathbf{X}'_i , one by one:

$$\begin{aligned} & g(X) - g(\mathbf{X}') \\ &= \sum_{i=1}^n \{g(X_1, \dots, X_i, \mathbf{X}'_{i+1}, \dots, \mathbf{X}'_n) - g(X_1, \dots, X_{i-1}, \mathbf{X}'_i, \dots, \mathbf{X}'_n)\} \end{aligned}$$

2. Taylor expansion. For $x_1 \in \mathbb{R}$ and $y \in \mathbb{R}^{n-1}$

$$g(x_1, y) = g(0, y) + x_1 \partial_{x_1} g(0, y) + \frac{x_1^2}{2} \partial_{x_1}^2 g(0, y) + R_1(x_1, y)$$

Since $\mathbb{E}[X_1] = \mathbb{E}[\mathbf{X}'_1]$ and $\mathbb{E}[(X_1)^2] = \mathbb{E}[(\mathbf{X}'_1)^2]$

$$|\mathbb{E}[g(X_1, \mathbf{X}')] - \mathbb{E}[g(\mathbf{X}'_1, \mathbf{X}')]| \leq \mathbb{E}[|R_1(X_1, \mathbf{X}')|] + \mathbb{E}[|R_1(\mathbf{X}'_1, \mathbf{X}')|]$$

Proof of Lindeberg Principle

3. Remainder estimate. We claim that for all $x = (x_1, \dots, x_n) \in \mathbb{R}^n$

$$|R_1(x)| \leq \frac{C_f}{6} |\hat{\Psi}_1(x)|^3 \quad \hat{\Psi}_1(x) = \sum_{|I| \leq \ell, I \ni 1} \psi(I) x^I$$

Proof. 3rd order Taylor remainder for $g(\textcolor{blue}{x}_1, y)$ ($\textcolor{blue}{x}_1 \in \mathbb{R}$ $y \in \mathbb{R}^{n-1}$)

$$|R_1(\textcolor{blue}{x}_1, y)| \leq \frac{1}{6} \left| \sup_{t \in \mathbb{R}} \partial_t^3 g(t, y) \right| |\textcolor{blue}{x}_1|^3 \leq \frac{C_f}{6} |\textcolor{blue}{x}_1 \tilde{\Psi}_1(y)|^3$$

Since $g(\cdot) = f(\Psi(\cdot))$

$$\partial_t^3 g(t, y) = f'''(\Psi(t, y)) (\tilde{\Psi}_1(y))^3$$

$$(\partial_t \Psi)(t, y) = \sum_{|I| \leq \ell, I \ni 1} \psi(I) y^{\setminus \{1\}} =: \tilde{\Psi}_1(y) \quad \text{no dependence on } t !$$

Proof of Lindeberg Principle

4. Hypercontractivity. For any multi-linear polynomial Ψ of degree ℓ

$$\forall 2 < q < \infty : \quad \|\Psi(Y)\|_{L^q} \leq (B_q)^\ell \|\Psi(Y)\|_{L^2}$$

$$B_q = 2\sqrt{q-1} \max_{i \in \mathbb{T}} \frac{\|Y_i\|_{L^q}}{\|Y_i\|_{L^2}}$$

In our case

$$\begin{aligned} \mathbb{E}[|\hat{\Psi}_1|^3] &\leq (B_3)^{3\ell} \mathbb{E}[|\hat{\Psi}_1|^2]^{3/2} = 2^{\frac{9}{2}\ell} m_3^\ell \left(\sum_{|I| \leq \ell, I \ni 1} \psi(I)^2 \right)^{3/2} \\ &= 2^{\frac{9}{2}\ell} m_3^\ell \left(\text{Inf}_1[\Psi] \right)^{3/2} \end{aligned}$$

The influence $\text{Inf}_1[\Psi]$ of x_1 on $\Psi(x)$ has appeared!

Proof of Lindeberg Principle

5. Conclusion. Recalling that $g(\cdot) = f(\Psi(\cdot))$

$$|\mathbb{E}[g(X)] - \mathbb{E}[g(\textcolor{red}{X}')]| \leq |\mathbb{E}[g(X_1, \textcolor{red}{X}')] - \mathbb{E}[g(\textcolor{red}{X}'_1, \textcolor{red}{X}')]| + \dots$$

$$\leq \mathbb{E}[|R_1(X_1, \textcolor{red}{X}')|] + \mathbb{E}[|R_1(\textcolor{red}{X}'_1, \textcolor{red}{X}')|] + \dots$$

$$\leq \frac{\textcolor{red}{C}_f}{6} \left\{ \mathbb{E}[|\hat{\Psi}_1(X_1, \textcolor{red}{X}')|^3] + \mathbb{E}[|\hat{\Psi}_1(\textcolor{red}{X}'_1, \textcolor{red}{X}')|^3] + \dots \right\}$$

$$\leq \frac{\textcolor{red}{C}_f}{6} 2 2^{\frac{9}{2}\ell} \textcolor{red}{m}_3^\ell \left\{ \text{Inf}_1[\Psi]^{3/2} + \dots \right\}$$

$$\leq \textcolor{red}{C}_f \frac{2^{\frac{9}{2}\ell}}{3} \textcolor{red}{m}_3^\ell \sqrt{\max_{i \in \mathbb{T}} (\text{Inf}_i[\Psi])} \left\{ \text{Inf}_1[\Psi] + \dots \right\}$$

$$\text{Inf}_1[\Psi] + \text{Inf}_2[\Psi] + \dots = \sum_{i=1}^n \sum_{|I| \leq \ell, I \ni i} \psi(I)^2 = \sum_{|I| \leq \ell} |I| \psi(I)^2 \leq \ell \textcolor{blue}{C}_\Psi \quad \square$$

References

- ▶ I. Benjamini, G. Kalai, O. Schramm
Noise sensitivity of Boolean functions and applications to percolation
Inst. Hautes Études Sci. Publ. Math. 90 (2001), 5–43
- ▶ F. Caravenna, R. Sun, N. Zygouras
Polynomial chaos and scaling limits of disordered systems
J. Eur. Math. Soc. (JEMS), to appear
- ▶ C. Garban, J. Steif
Noise Sensitivity and Percolation
In “Probability and Statistical Physics in Two and more Dimensions”
Clay Mathematics Proceedings 15 (2012), 319–393
- ▶ E. Mossel, R. O'Donnell, and K. Oleszkiewicz
Noise stability of functions with low influences: Variance and optimality
Ann. Math. 171 (2010) 295–341