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Overview

In the previous lecture we developed techniques that allow to construct
continuum partition functions Z§ —> ZW

(Lindeberg Principle ~~ Multi- I|near CLT)
In this lecture we use continuum partition functions Z" to build a
continuum disordered model P"

We will focus on the DPRE [Alberts, Khanin, Quastel 2014b] building
“Continuum directed polymer (BM) in random environment”

The approach can also be applied to Pinning [C., Sun, Zygouras 2015+b)]
from which we draw inspiration

(Remark: the DPRE laws of different size are not consistent!)
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Continuum partition functions
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Continuum partition functions

Continuum partition function for DPRE

Recall the partition function of 1d DPRE (N =1/6)

) N
zy =" [exp ()] = lexp (Z (Bens,) — A(ﬁ)))]
- n=1
= Eref exp <Z Z ﬁw(n z) - A(ﬂ))]l{s —Z}>‘|
n=1z€Z
= Eref exp < Z (Bw(t,x) - )\(ﬁ))ﬂ{sf—x}>]
L (t,X)GFg
_ Eref H e(le(va))‘(B))ﬂ{sfx}‘| = Eref [ H (1 + Xt,xﬂ{Sf—x}>]
L (t,x)ETs (t,x)€Ts

> S8 := /05,5 lives on Ts = ([0,1] N 6Ng) x v/6Z

b Xpy = elBeen =28 1 E[X¢x] =0 Var[X; ] ~ 32
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Continuum partition functions

Continuum partition function for DPRE

Developing the product yields a polynomial chaos expansion

© =1+ Z Pl(S? = x) X1.x
(t,x)€Ts
i1 >
2

PN(S) = x, 50 = X) Xepe Xer o +
(t.x)#(t' x")ETs

Recall the LLT: P™(S,

X

ﬁ) with g(z) = N
Pi(S) = x) =

/n8

= x)~ L g

<k

N\/g X X) — e 2t
) gt( ) gt( ) \/ﬁ
Replacing X;x ~ Y¢x with Y, iid. N(0,1) yields
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Continuum partition functions

Continuum partition function for DPRE

n=1+ 5\/5 Z 8t(x) Yex

(t,x)€Ts

1
+ 2 (Bﬁ)z Z gt(x) gt’—t(xl —X) Yix Yex + ...
(t,x)#(t' ,x")ETs
Cells in T have volume vs = § V& = §2 ~» “Stochastic Riemann sums”
converge to stochastic integrals if SvV6 ~ \/vs (check the variance!)

N

For 5~B(5% :ﬁ we get

%
“ # zZV =1+ 8 ge(x) W(dtdx)

[0,1]xR

A2
+ ﬁ*/ gt(x) gr—¢(x" — x) W(dtdx) W(dt'dx’)
2 Jio.1xr)

+ ...
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Continuum partition functions

Free and constrained partition functions

We have constructed Z" = “free” partition function on [0, 1] x R
RW paths starting at (0,0) with no constraint on right endpoint

zZ" = 2"((0,0), (1,%)) E[2"] =1

Consider also constrained partition functions: for (s,y),(t,x) € [0,1] x R

Z3 (5,9, (£,2) = B [ e (H*) 155

S = y]
which (divided by v/§) converges to a limit that we call

ZW((sa)/)v (t»X)) [E[ZW((57)/)’ (ta X))} = gt—S(X - y)

This is a function of white noise in the stripe W((s, t] x R)
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Continuum partition functions

Key properties

Key properties

For a.e. realization of W the following properties hold:

» Continuity: Z"((s,y), (t,x)) is jointly continuous in (s, y, t, x)
(on the domain s < t)

» Positivity: Z%((s,y), (t,x)) > 0 for all (s, y, t, x) satisfying s < t
» Semigroup (Chapman-Kolmogorov): for all s < r <t and x,y € R

ZW((Svy)’(tX))=/[RZW((S,Y)’(f,Z))ZW((f’Z),(t’X))dZ

(Inherited from discrete partition functions: drawing!)
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Continuum partition functions

How to prove these properties?

The four-parameter field Z"((s, y), (t, x)) solves the 1d SHE
9.2" = 3In .z + w2V
limtls ZW((Sv)/)v (t,X)) = (5(_)/ - X)

Checked directly from Wiener chaos expansion (mild solution)

It is known that solutions to the SHE satisfy the properties above

Alternative approach (to check, OK for pinning [C., Sun, Zygouras 2015+b])

> Prove continuity by Kolmogorov criterion, showing that

2" ((s,¥), (t,x))

is continuous also for t = s
gt—s(x —y)

> Use continuity to prove semigroup for all times

» Use continuity to deduce positivity for close times, then bootstrap to
arbitrary times using semigroup
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The continuum DPRE
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2. The continuum DPRE
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The continuum DPRE

Partition functions and f.d.d.

Start from discrete: distribution of DPRE at two times 0 < t < t' <1

Z5((0,0), (t,x)) Z5 ((t, x), (t',x) Z5 ((t', '), (1, %))
Z%((0,0),(1,%))

(drawing!) Analogous formula for any finite number of times

Pw(55 = X, St’ = /) =

Idea: Replace Z¢ ~~ Z" to define the law of continuum DPRE J

Recall: to define a process (X:)¢co,1 it is enough (Kolmogorov) to assign
finite-dimensional distributions (f.d.d.)

bt (A, AK) " =P(Xy € Apy ol Xy, € Ak) T
that are consistent

Mtl,A..,tj,..A,tk(A].) DR} [R7 DR Ak) = /f['tl,...,lyfl,tprl,...,tk(A17 e 7Aj—1? Aj+17 e )Ak)
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The continuum DPRE

The continuum 1d DPRE

» Fix € (0,00) (on which Z" depend) [recall that B ~ 353]

> Fix space-time white noise W on [0,1] x R and a realization of
continuum partition functions Z" satisfying the key properties
(continuity, strict positivity, semigroup)

The Continuum DPRE is the process (X:)¢cpo,1) with f.d.d.

PYW(X; € dx, Xv € dx')
dx dx’
L ZW((Ov O)a (t,X)) ZW((t,X), (lJ,X/)) ZW((tJvX,)a (1’*))
B 2"((0,0), (1,%))

» Well-defined by strict positivity of Z"

» Consistent by semigroup property
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The continuum DPRE

Relation with Wiener measure

The law of the continuum DPRE is a random probability

PY(X €-) (quenched law)
for the process X = (X¢)eecp.1] [ Probab. kernel S'(R) — RI®! ]
Define a new law P (mutually absolutely continuous) for disorder W by

dP
E(W) = ZW((Oa 0)7 (17*))
Key Lemma

P"M(X €)= Lo PY(X e-)P(dW)=P(BM € -)

Proof. The factor Z" in P cancels the denominator in the f.d.d. for PV

Since E[ZY((s,y),(t,x))] = ge—s(x — y) one gets f.d.d. of BM O
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The continuum DPRE

Absolute continuity properties

Any given a.s. property of BM is an a.s. property of continuum DPRE,
for a.e. realization of the disorder W/

Theorem

VA: PBMecA) =1 = 7PYXecA)=1 forP-ae W

Corollary

P"(X has Hdlder paths with exp. —) =1 for P-a.e. W
We can thus realize P as a law on C([0,1],R), for P-a.e. W

(More precisely: P" admits a modification with Holder paths)

Perhaps P absolutely continuous w.r.t. Wiener measure, for P-a.e. W ?

NO! "VA" and “for P-a.e. W" cannot be exchanged!
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The continuum DPRE

Singularity properties

Any given a.s. property of BM is an a.s. property of continuum DPRE,
for a.e. realization of the disorder W. However:

Theorem

The law PW is singular w.r.t. Wiener measure, for P-a.e. W.
for P-a.e. W JA=Aw C C([0,1],R):
PY(XeA) =1 vs. PBMcA)=0

Unlike discrete DPRE, there is no continuum Hamiltonian
PY(X e )t e CIP(BM e )

Absolute continuity is lost in the scaling limit

In a sense, the laws P" are just barely not absolutely continuous w.r.t.
Wiener measure ( “stochastically absolutely continuous™)
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Outline

3. Proof
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Proof of singularity

Let (X:)tepo,1) be the canonical process on C([0, 1], R) [ Xe(F) = £(t) ]

Let F, := O'(Xt{' Dt =5, 0<7<2") be the dyadic filtration

1

Fix (a typical realization of) W. Setting P™f = Wiener measure

dPY|x,

RW(X) = dfPrefl}_

n

(X)

The process (R )nen is a martingale w.r.t. Pref (exercise!)

Since R > 0, the martingale converges: RY 2> RY
n—o0o

» PW < Pt if and only if E[RY] =1 (the martingale is Ul)

» PW is singular w.r.t. P™f if and only if RY =0

Francesco Caravenna Scaling Limits of Disordered Systems Sep 30 - Oct 2, 2015 18 / 28



Proof of singularity

Known: for P-a.e. W we have RY(X) —— RY(X) for Pf-a.e. X

n— o0

It suffices to show that R (X) — 0 in P ® Pr*f-probability
n—oo

Fractional moment
For Prfae. X [E[E[(R,‘,/V(X))’Y] — 0 for some ~ € (0,1)

n— oo

. B 1 2"-1 ZW((tr, Xen), ( ti1s Xen, )
Rn (X) - ZW((07O)’(1,*)) g (Xt,"+1 —th_n)

» Switch from E to equivalent law [ to cancel the denominator
> For fixed X, the Z"((7, Xir), (£ 1, Xir)) s are independent

We need to exploit translation and scale invariance of their laws
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Continuum partition functions The continuum DPRE

Proof of singularity

Lemma 1 (Translation and scale invariance)

n Xti"-%-l B th"

If we set A,- = ————_ we have
i = &
i+1 i

B

|

on/4

2 (7, Xe), (1, X)), 2o, (00 (L AD)

g%n(th — Xir) ; g1(A7)

i+1

Lemma 2 (Expansion)
For z€ R and ¢ € [0,1] (say)
z%((0,0),(1,2))
&1(2)

=1+ X, + 52Y672

E[X;]=0 E[X..]=0 E[X3]<C E[YZ,]<C

unif. in g,z

v
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Proof of singularity

By Taylor expansion, for fixed v € (0,1)

: (zm(o,omz)))”] = E[(4 X+ 2Y20) ]

&1(2)

— 1+ +w{e2m[(xx)2]+...}+...

_ 2
=1 —ce® < eg°¢¢

(x) First order terms vanish (%) v(y—1) <0 (%) For some ¢ >0

1

Estimate is uniform over z€ R~ Wecanset z=A? and €=

on/4
2"-1 w n v
N z2((0,0),(1,AmM) 2o oo
E[(RY(X)1=]]E £ ’ <e Y = €2
(o0 - T e | (Z1008 <
which vanishes as n — oo O
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Proof of Lemma 1

Introducing the dependence on i

25 ((s,9), (%) £ Z5((0,0),(t —s,x—y))
1

z4((0,0),(t,x)) = \/;ZEZ% <(0’0)’ (1’ %))

Q

transl. invariance + diffusive rescaling (prefactor, new B) (drawing!)
2Z"((0,0), (t,x)) = g(x) + B o g:(2) gr_s(x — z) W(dsdz) + ...
0,t]xR
1 1 (pei / . W(dsdz)
= X + s (2= (=2 —~— 7 +
\/fgl(ﬁ) : ( ﬁ) [O,t]xﬂ%gt(ﬁ)gl t(\/;) 3
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Universality

Outline

4. Universality
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Universality

Convergence of discrete DPRE

» PY = law of discrete DPRE (recall that S7 := V/35,5)

“Rescaled RW S° moving in an i.i.d. environment w"

» PW = law of continuum DPRE

“BM moving in a white noise environment W"

Both PY and P" are random probability laws on E := C([0, 1], R)
i.e. RVs (defined on different probab. spaces) taking values in M (E)

Does P§ converge in distribution toward P"' as § — 07?

Vo€ Co(MI(E) = R):  E[g(P§)] —— E[¢(P")]

The answer is positive. .. almost surely ;-)
Statement for Pinning model proved in [C., Sun, Zygouras 2015+b]
Details need to be checked for DPRE (stronger assumptions on RW 7)
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Universality

Universality

The convergence of P¥§ toward P is an instance of universality
There are many discrete DPRE:
» any RW S (zero mean, finite variance + technical assumptions)
» any (i.i.d.) disorder w (finite exponential moments)

In the continuum (& — 0) and weak disorder (5 — 0) regime, all these
microscopic models P§ give rise to a unique macroscopic model pwW

Tomorrow we will see how the continuum model P"' can tell
quantitative information on discrete models P§ (free energy estimates)
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Universality

Convergence

T d
How to prove convergence in distribution PY Y P2
—

Prove a.s. convergence through a suitable coupling of (w, W)

Assume we have convergence in distribution of discrete partition functions
to continuum ones, in the space of continuum functions of (s, y), (t, x)

Z§((s:3).(6.0) =5 27 ((s9). (£.))

§—0

By Skorokhod representation theorem, there is a coupling of (w, W)
under which this convergence holds a.s.

Fix such a coupling: for a.e. (w, W) the f.d.d. of P§ converge weakly to
those of P It only remains to prove tightness of P¥(-).
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Universality

Convergence

To prove tightness (also for the convergence of discrete partition
functions) a key tool is the inequality of Garsia, Rodemich and Rumsey

P
f(t)—f f(t) — f(s)|P
O ) oy A CELLC T
s,te[0,1]9,s£t |t — 5| TP [0,1]¢ x[0,1]¢ |t — s|Pr
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Universality
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