

Polynomial Chaos and Scaling Limits of Disordered Systems

3. Continuum disordered models

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Levico Terme ~ September 30 - October 2, 2015

Overview

In the previous lecture we developed techniques that allow to construct continuum partition functions $Z_\delta^\omega \xrightarrow[\delta \rightarrow 0]^d Z^W$
(Lindeberg Principle \rightsquigarrow Multi-linear CLT)

In this lecture we use continuum partition functions Z^W to build a continuum disordered model \mathcal{P}^W

We will focus on the DPRE [Alberts, Khanin, Quastel 2014b] building
“Continuum directed polymer (BM) in random environment”

The approach can also be applied to Pinning [C., Sun, Zygouras 2015+b]
from which we draw inspiration

(Remark: the DPRE laws of different size are **not** consistent!)

Outline

1. Continuum partition functions

2. The continuum DPRE

3. Proof

4. Universality

Outline

1. Continuum partition functions

2. The continuum DPRE

3. Proof

4. Universality

Continuum partition function for DPRE

Recall the partition function of 1d DPRE ($N = 1/\delta$)

$$\begin{aligned}
 \mathbf{Z}_\delta^\omega &= \mathbf{E}^{\text{ref}} \left[\exp \left(\mathcal{H}^\omega \right) \right] = \mathbf{E}^{\text{ref}} \left[\exp \left(\sum_{n=1}^N (\beta \omega_{(n,S_n)} - \lambda(\beta)) \right) \right] \\
 &= \mathbf{E}^{\text{ref}} \left[\exp \left(\sum_{n=1}^N \sum_{z \in \mathbb{Z}} (\beta \omega_{(n,z)} - \lambda(\beta)) \mathbb{1}_{\{S_n=z\}} \right) \right] \\
 &= \mathbf{E}^{\text{ref}} \left[\exp \left(\sum_{(t,x) \in \mathbb{T}_\delta} (\beta \omega_{(t,x)} - \lambda(\beta)) \mathbb{1}_{\{S_t^\delta=x\}} \right) \right] \\
 &= \mathbf{E}^{\text{ref}} \left[\prod_{(t,x) \in \mathbb{T}_\delta} e^{(\beta \omega_{(t,x)} - \lambda(\beta)) \mathbb{1}_{\{S_t^\delta=x\}}} \right] = \mathbf{E}^{\text{ref}} \left[\prod_{(t,x) \in \mathbb{T}_\delta} \left(1 + \mathbf{X}_{t,x} \mathbb{1}_{\{S_t^\delta=x\}} \right) \right]
 \end{aligned}$$

► $S_t^\delta := \sqrt{\delta} S_{t/\delta}$ lives on $\mathbb{T}_\delta = ([0, 1] \cap \delta \mathbb{N}_0) \times \sqrt{\delta} \mathbb{Z}$

► $\mathbf{X}_{t,x} = e^{(\beta \omega_{(t,x)} - \lambda(\beta))} - 1 \quad \mathbb{E}[\mathbf{X}_{t,x}] = 0 \quad \text{Var}[\mathbf{X}_{t,x}] \sim \beta^2$

Continuum partition function for DPRE

Developing the product yields a polynomial chaos expansion

$$\begin{aligned} Z_N^\omega = 1 + & \sum_{(t,x) \in \mathbb{T}_\delta} \mathbf{P}^{\text{ref}}(S_t^\delta = x) \mathbf{X}_{t,x} \\ & + \frac{1}{2} \sum_{(t,x) \neq (t',x') \in \mathbb{T}_\delta} \mathbf{P}^{\text{ref}}(S_t^\delta = x, S_{t'}^\delta = x') \mathbf{X}_{t,x} \mathbf{X}_{t',x'} + \dots \end{aligned}$$

Recall the LLT: $\mathbf{P}^{\text{ref}}(S_n = x) \sim \frac{1}{\sqrt{n}} g\left(\frac{x}{\sqrt{n}}\right)$ with $g(z) = \frac{e^{-\frac{z^2}{2}}}{\sqrt{2\pi}}$

$$\mathbf{P}^{\text{ref}}(S_t^\delta = x) = \mathbf{P}^{\text{ref}}(S_{\frac{t}{\delta}} = \frac{x}{\sqrt{\delta}}) \sim \sqrt{\delta} g_t(x) \quad g_t(x) = \frac{e^{-\frac{x^2}{2t}}}{\sqrt{2\pi t}}$$

Replacing $\mathbf{X}_{t,x} \approx \beta \mathbf{Y}_{t,x}$ with $\mathbf{Y}_{t,x}$ i.i.d. $\mathcal{N}(0, 1)$ yields

Continuum partition function for DPRE

$$\begin{aligned}
 Z_N^{\omega} = & 1 + \beta\sqrt{\delta} \sum_{(t,x) \in \mathbb{T}_{\delta}} g_t(x) Y_{t,x} \\
 & + \frac{1}{2} (\beta\sqrt{\delta})^2 \sum_{(t,x) \neq (t',x') \in \mathbb{T}_{\delta}} g_t(x) g_{t'-t}(x' - x) Y_{t,x} Y_{t',x'} + \dots
 \end{aligned}$$

Cells in \mathbb{T}_{δ} have volume $v_{\delta} = \delta\sqrt{\delta} = \delta^{\frac{3}{2}}$ \leadsto "Stochastic Riemann sums" converge to stochastic integrals if $\beta\sqrt{\delta} \approx \sqrt{v_{\delta}}$ (check the variance!)

For $\boxed{\beta \sim \hat{\beta} \delta^{\frac{1}{4}}} = \frac{\hat{\beta}}{N^{\frac{1}{4}}}$ we get

$$\begin{aligned}
 Z_N^{\omega} \xrightarrow[\delta \rightarrow 0]{d} Z^W = & 1 + \hat{\beta} \int_{[0,1] \times \mathbb{R}} g_t(x) W(dt dx) \\
 & + \frac{\hat{\beta}^2}{2} \int_{([0,1] \times \mathbb{R})^2} g_t(x) g_{t'-t}(x' - x) W(dt dx) W(dt' dx') \\
 & + \dots
 \end{aligned}$$

Free and constrained partition functions

We have constructed \mathcal{Z}^W = “free” partition function on $[0, 1] \times \mathbb{R}$ RW paths starting at $(0, 0)$ with no constraint on right endpoint

$$\mathcal{Z}^W = \mathcal{Z}^W((0, 0), (1, *)) \quad \mathbb{E}[\mathcal{Z}^W] = 1$$

Consider also **constrained** partition functions: for $(s, y), (t, x) \in [0, 1] \times \mathbb{R}$

$$\mathcal{Z}_\delta^{\omega}((s, y), (t, x)) = \mathbf{E}^{\text{ref}} \left[\exp \left(\mathcal{H}^{\omega} \right) \mathbf{1}_{\{S_t^\delta = x\}} \middle| S_s^\delta = y \right]$$

which (divided by $\sqrt{\delta}$) converges to a limit that we call

$$\mathcal{Z}^W((s, y), (t, x)) \quad \mathbb{E}[\mathcal{Z}^W((s, y), (t, x))] = g_{t-s}(x - y)$$

This is a function of white noise in the stripe $W([s, t] \times \mathbb{R})$

Key properties

Key properties

For a.e. realization of W the following properties hold:

- **Continuity**: $\mathcal{Z}^W((s, y), (t, x))$ is jointly continuous in (s, y, t, x) (on the domain $s < t$)
- **Positivity**: $\mathcal{Z}^W((s, y), (t, x)) > 0$ for all (s, y, t, x) satisfying $s < t$
- **Semigroup** (Chapman-Kolmogorov): for all $s < r < t$ and $x, y \in \mathbb{R}$

$$\mathcal{Z}^W((s, y), (t, x)) = \int_{\mathbb{R}} \mathcal{Z}^W((s, y), (r, z)) \mathcal{Z}^W((r, z), (t, x)) dz$$

(Inherited from discrete partition functions: [drawing!](#))

How to prove these properties?

The four-parameter field $\mathcal{Z}^W((s, y), (t, x))$ solves the 1d SHE

$$\begin{cases} \partial_t \mathcal{Z}^W = \frac{1}{2} \Delta_x \mathcal{Z}^W + \hat{\beta} W \mathcal{Z}^W \\ \lim_{t \downarrow s} \mathcal{Z}^W((s, y), (t, x)) = \delta(y - x) \end{cases}$$

Checked directly from Wiener chaos expansion ([mild solution](#))

It is known that solutions to the SHE satisfy the properties above

Alternative approach (to check, OK for pinning [C., Sun, Zygouras 2015+b])

- ▶ Prove continuity by Kolmogorov criterion, showing that

$$\frac{\mathcal{Z}^W((s, y), (t, x))}{g_{t-s}(x - y)} \quad \text{is continuous also for } t = s$$

- ▶ Use continuity to prove semigroup for all times
- ▶ Use continuity to deduce positivity for close times, then bootstrap to arbitrary times using semigroup

Outline

1. Continuum partition functions

2. The continuum DPRE

3. Proof

4. Universality

Partition functions and f.d.d.

Start from **discrete**: distribution of DPRE at two times $0 < t < t' < 1$

$$\mathbf{P}_\delta^\omega(S_t^\delta = x, S_{t'}^\delta = x') = \frac{\mathbf{Z}_\delta^\omega((0, 0), (t, x)) \mathbf{Z}_\delta^\omega((t, x), (t', x')) \mathbf{Z}_\delta^\omega((t', x'), (1, \star))}{\mathbf{Z}_\delta^\omega((0, 0), (1, \star))}$$

(**drawing!**) Analogous formula for any finite number of times

Idea: Replace $\mathbf{Z}_\delta^\omega \rightsquigarrow \mathcal{Z}^W$ to *define* the law of continuum DPRE

Recall: to define a process $(X_t)_{t \in [0, 1]}$ it is enough (Kolmogorov) to assign **finite-dimensional distributions** (f.d.d.)

$$\mu_{t_1, \dots, t_k}(A_1, \dots, A_k) = \mathbf{P}(X_{t_1} \in A_1, \dots, X_{t_k} \in A_k)$$

that are **consistent**

$$\mu_{t_1, \dots, t_j, \dots, t_k}(A_1, \dots, \mathbb{R}, \dots, A_k) = \mu_{t_1, \dots, t_{j-1}, t_{j+1}, \dots, t_k}(A_1, \dots, A_{j-1}, A_{j+1}, \dots, A_k)$$

The continuum 1d DPRE

- ▶ Fix $\hat{\beta} \in (0, \infty)$ (on which \mathcal{Z}^W depend) [recall that $\beta \sim \hat{\beta} \delta^{\frac{1}{4}}$]
- ▶ Fix space-time white noise W on $[0, 1] \times \mathbb{R}$ and a realization of continuum partition functions \mathcal{Z}^W satisfying the key properties (continuity, strict positivity, semigroup)

The Continuum DPRE is the process $(X_t)_{t \in [0,1]}$ with f.d.d.

$$\frac{\mathcal{P}^W(X_t \in dx, X_{t'} \in dx')}{dx dx'} \\ := \frac{\mathcal{Z}^W((0,0), (t,x)) \mathcal{Z}^W((t,x), (t',x')) \mathcal{Z}^W((t',x'), (1,\star))}{\mathcal{Z}^W((0,0), (1,\star))}$$

- ▶ Well-defined by strict positivity of \mathcal{Z}^W
- ▶ Consistent by semigroup property

Relation with Wiener measure

The law of the continuum DPRE is a **random** probability

$$\mathcal{P}^W(X \in \cdot) \quad (\text{quenched law})$$

for the process $X = (X_t)_{t \in [0,1]}$ [Probab. kernel $\mathcal{S}'(\mathbb{R}) \rightarrow \mathbb{R}^{[0,1]}$]

Define a new law $\tilde{\mathbb{P}}$ (mutually absolutely continuous) for disorder W by

$$\frac{d\tilde{\mathbb{P}}}{d\mathbb{P}}(W) = \mathcal{Z}^W((0,0), (1,\star))$$

Key Lemma

$$\mathcal{P}^{\text{ann}}(X \in \cdot) := \int_{\mathcal{S}'(\mathbb{R})} \mathcal{P}^W(X \in \cdot) \tilde{\mathbb{P}}(dW) = \mathbb{P}(BM \in \cdot)$$

Proof. The factor \mathcal{Z}^W in $\tilde{\mathbb{P}}$ cancels the denominator in the f.d.d. for \mathcal{P}^W

Since $\mathbb{E}[\mathcal{Z}^W((s,y), (t,x))] = g_{t-s}(x-y)$ one gets f.d.d. of BM □

Absolute continuity properties

Any given a.s. property of BM is an a.s. property of continuum DPRE, for a.e. realization of the disorder W

Theorem

$$\forall A : \mathbb{P}(BM \in A) = 1 \quad \Rightarrow \quad \mathcal{P}^W(X \in A) = 1 \quad \text{for } \mathbb{P}\text{-a.e. } W$$

Corollary

$$\mathcal{P}^W(X \text{ has Hölder paths with exp. } \frac{1}{2}-) = 1 \quad \text{for } \mathbb{P}\text{-a.e. } W$$

We can thus realize \mathcal{P}^W as a law on $C([0, 1], \mathbb{R})$, for \mathbb{P} -a.e. W

(More precisely: \mathcal{P}^W admits a modification with Hölder paths)

Perhaps \mathcal{P}^W absolutely continuous w.r.t. Wiener measure, for \mathbb{P} -a.e. W ?

NO! “ $\forall A$ ” and “for \mathbb{P} -a.e. W ” cannot be exchanged!

Singularity properties

Any given a.s. property of BM is an a.s. property of continuum DPRE, for a.e. realization of the disorder W . However:

Theorem

The law \mathcal{P}^W is **singular** w.r.t. Wiener measure, for \mathbb{P} -a.e. W .

for \mathbb{P} -a.e. W $\exists A = A_W \subseteq C([0, 1], \mathbb{R}) :$

$$\mathcal{P}^W(X \in A) = 1 \quad \text{vs.} \quad \mathbb{P}(BM \in A) = 0$$

Unlike discrete DPRE, there is **no continuum Hamiltonian**

$$\mathcal{P}^W(X \in \cdot) \not\propto e^{\mathcal{H}^W(\cdot)} \mathbb{P}(BM \in \cdot)$$

Absolute continuity is lost in the scaling limit

In a sense, the laws \mathcal{P}^W are just *barely* not absolutely continuous w.r.t. Wiener measure ("stochastically absolutely continuous")

Outline

1. Continuum partition functions

2. The continuum DPRE

3. Proof

4. Universality

Proof of singularity

Let $(X_t)_{t \in [0,1]}$ be the canonical process on $C([0,1], \mathbb{R})$ [$X_t(f) = f(t)$]

Let $\mathcal{F}_n := \sigma(X_{t_i^n} : t_i^n = \frac{i}{2^n}, 0 \leq i \leq 2^n)$ be the dyadic filtration

Fix (a typical realization of) \mathcal{W} . Setting $\mathcal{P}^{\text{ref}} = \text{Wiener measure}$

$$R_n^{\mathcal{W}}(X) := \frac{d\mathcal{P}^{\mathcal{W}}|_{\mathcal{F}_n}}{d\mathcal{P}^{\text{ref}}|_{\mathcal{F}_n}}(X)$$

The process $(R_n^{\mathcal{W}})_{n \in \mathbb{N}}$ is a **martingale** w.r.t. \mathcal{P}^{ref} (exercise!)

Since $R_n^{\mathcal{W}} \geq 0$, the martingale converges: $R_n^{\mathcal{W}} \xrightarrow[n \rightarrow \infty]{\text{a.s.}} R_{\infty}^{\mathcal{W}}$

- $\mathcal{P}^{\mathcal{W}} \ll \mathcal{P}^{\text{ref}}$ if and only if $\mathcal{E}^{\text{ref}}[R_{\infty}^{\mathcal{W}}] = 1$ (the martingale is UI)
- $\mathcal{P}^{\mathcal{W}}$ is **singular** w.r.t. \mathcal{P}^{ref} if and only if $R_{\infty}^{\mathcal{W}} = 0$

Proof of singularity

Known: for \mathbb{P} -a.e. W we have $R_n^W(X) \xrightarrow[n \rightarrow \infty]{} R_\infty^W(X)$ for \mathcal{P}^{ref} -a.e. X

It suffices to show that $R_n^W(X) \xrightarrow[n \rightarrow \infty]{} 0$ in $\mathbb{P} \otimes \mathcal{P}^{\text{ref}}$ -probability

Fractional moment

For \mathcal{P}^{ref} -a.e. X $\mathbb{E}[\tilde{\mathbb{E}}[(R_n^W(X))^\gamma]] \xrightarrow[n \rightarrow \infty]{} 0$ for some $\gamma \in (0, 1)$

$$R_n^W(X) = \frac{1}{\mathcal{Z}^W((0, 0), (1, \star))} \prod_{i=0}^{2^n-1} \frac{\mathcal{Z}^W((t_i^n, X_{t_i^n}), (t_{i+1}^n, X_{t_{i+1}^n}))}{g_{\frac{1}{2^n}}(X_{t_{i+1}^n} - X_{t_i^n})}$$

- ▶ Switch from \mathbb{E} to equivalent law $\tilde{\mathbb{E}}$ to cancel the denominator
- ▶ For fixed X , the $\mathcal{Z}^W((t_i^n, X_{t_i^n}), (t_{i+1}^n, X_{t_{i+1}^n}))$'s are independent

We need to exploit translation and scale invariance of their laws

Proof of singularity

Lemma 1 (Translation and scale invariance)

If we set $\Delta_i^n := \frac{X_{t_{i+1}^n} - X_{t_i^n}}{\sqrt{t_{i+1}^n - t_i^n}}$ we have

$$\frac{\mathcal{Z}_{\hat{\beta}}^W((t_i^n, X_{t_i^n}), (t_{i+1}^n, X_{t_{i+1}^n}))}{g_{\frac{1}{2^n}}(X_{t_{i+1}^n} - X_{t_i^n})} \stackrel{d}{=} \frac{\mathcal{Z}_{\frac{\hat{\beta}}{2^{n/4}}}^W((0, 0), (1, \Delta_i^n))}{g_1(\Delta_i^n)}$$

Lemma 2 (Expansion)

For $z \in \mathbb{R}$ and $\varepsilon \in [0, 1]$ (say)

$$\frac{\mathcal{Z}_{\varepsilon}^W((0, 0), (1, z))}{g_1(z)} = 1 + \varepsilon X_z + \varepsilon^2 Y_{\varepsilon, z}$$

$$\mathbb{E}[X_z] = 0 \quad \mathbb{E}[X_{\varepsilon, z}] = 0 \quad \mathbb{E}[X_z^2] \leq C \quad \mathbb{E}[Y_{\varepsilon, z}^2] \leq C \quad \text{unif. in } \varepsilon, z$$

Proof of singularity

By Taylor expansion, for fixed $\gamma \in (0, 1)$

$$\begin{aligned} \mathbb{E} \left[\left(\frac{\mathcal{Z}_\varepsilon^W((0,0),(1,z))}{g_1(z)} \right)^\gamma \right] &= \mathbb{E} \left[(1 + \varepsilon \mathcal{X}_z + \varepsilon^2 \mathcal{Y}_{\varepsilon,z})^\gamma \right] \\ &= 1 + \gamma \{ \varepsilon \mathbb{E}[\mathcal{X}_z] + \varepsilon^2 \mathbb{E}[\mathcal{Y}_{\varepsilon,z}] \} + \frac{\gamma(\gamma-1)}{2} \{ \varepsilon^2 \mathbb{E}[(\mathcal{X}_z)^2] + \dots \} + \dots \\ &= 1 - c \varepsilon^2 \leq e^{-c \varepsilon^2} \end{aligned}$$

(*) First order terms vanish (*) $\gamma(\gamma-1) < 0$ (*) For some $c > 0$

Estimate is uniform over $z \in \mathbb{R}$ \rightsquigarrow We can set $z = \Delta_i^n$ and $\varepsilon = \frac{1}{2^{n/4}}$

$$\tilde{\mathbb{E}}[(R_n^W(X))^\gamma] = \prod_{i=0}^{2^n-1} \mathbb{E} \left[\left(\frac{\mathcal{Z}_\varepsilon^W((0,0),(1,\Delta_i^n))}{g_1(\Delta_i^n)} \right)^\gamma \right] \leq e^{-c \varepsilon^2 2^n} = e^{-c 2^{n/2}}$$

which vanishes as $n \rightarrow \infty$

□

Proof of Lemma 1

Introducing the dependence on $\hat{\beta}$

$$\mathcal{Z}_{\hat{\beta}}^W((s, y), (t, x)) \stackrel{d}{=} \mathcal{Z}_{\hat{\beta}}^W((0, 0), (t - s, x - y))$$

$$\mathcal{Z}_{\hat{\beta}}^W((0, 0), (t, x)) \stackrel{d}{=} \frac{1}{\sqrt{t}} \mathcal{Z}_{\hat{\beta} t^{\frac{1}{4}}}^W \left((0, 0), \left(1, \frac{x}{\sqrt{t}} \right) \right)$$

transl. invariance + diffusive rescaling (prefactor, new $\hat{\beta}$) (drawing!)

$$\begin{aligned} \mathcal{Z}^W((0, 0), (t, x)) &= g_t(x) + \hat{\beta} \int_{[0, t] \times \mathbb{R}} g_s(z) g_{t-s}(x - z) W(ds dz) + \dots \\ &= \frac{1}{\sqrt{t}} g_1\left(\frac{x}{\sqrt{t}}\right) + \frac{1}{\sqrt{t}} \left(\frac{\hat{\beta} t^{\frac{3}{4}}}{\sqrt{t}} \right) \int_{[0, t] \times \mathbb{R}} g_{\frac{s}{t}}\left(\frac{z}{\sqrt{t}}\right) g_{1 - \frac{s}{t}}\left(\frac{x-z}{\sqrt{t}}\right) \frac{W(ds dz)}{t^{\frac{3}{4}}} + \dots \\ &= \text{OK! } \square \end{aligned}$$

Outline

1. Continuum partition functions

2. The continuum DPRE

3. Proof

4. Universality

Convergence of discrete DPRE

- ▶ $\mathcal{P}_\delta^\omega$ = law of discrete DPRE (recall that $S_t^\delta := \sqrt{\delta} S_{t/\delta}$)
“Rescaled RW S^δ moving in an i.i.d. environment ω ”
- ▶ \mathcal{P}^W = law of continuum DPRE
“BM moving in a white noise environment W ”

Both $\mathcal{P}_\delta^\omega$ and \mathcal{P}^W are random probability laws on $E := C([0,1], \mathbb{R})$
i.e. RVs (defined on different probab. spaces) taking values in $\mathcal{M}_1(E)$

Does $\mathcal{P}_\delta^\omega$ converge in distribution toward \mathcal{P}^W as $\delta \rightarrow 0$?

$$\forall \psi \in C_b(\mathcal{M}_1(E) \rightarrow \mathbb{R}) : \quad \mathbb{E}[\psi(\mathcal{P}_\delta^\omega)] \xrightarrow[\delta \rightarrow 0]{} \mathbb{E}[\psi(\mathcal{P}^W)]$$

The answer is positive... almost surely ;-)

Statement for Pinning model proved in [C., Sun, Zygouras 2015+b]

Details need to be checked for DPRE (stronger assumptions on RW ?)

Universality

The convergence of P_δ^ω toward P^W is an instance of universality

There are many discrete DPRE:

- ▶ any RW S (zero mean, finite variance + technical assumptions)
- ▶ any (i.i.d.) disorder ω (finite exponential moments)

In the continuum ($\delta \rightarrow 0$) and weak disorder ($\beta \rightarrow 0$) regime, all these microscopic models P_δ^ω give rise to a unique macroscopic model P^W

Tomorrow we will see how the continuum model P^W can tell quantitative information on discrete models P_δ^ω (free energy estimates)

Convergence

How to prove convergence in distribution $\mathbf{P}_\delta^\omega \xrightarrow[\delta \rightarrow 0]{d} \mathcal{P}^W$?

Prove a.s. convergence through a suitable coupling of (ω, W)

Assume we have convergence in distribution of discrete partition functions to continuum ones, in the space of continuum functions of $(s, y), (t, x)$

$$\mathbf{Z}_\delta^\omega((s, y), (t, x)) \xrightarrow[\delta \rightarrow 0]{d} \mathcal{Z}^W((s, y), (t, x))$$

By Skorokhod representation theorem, there is a coupling of (ω, W) under which this convergence holds a.s.

Fix such a coupling: for a.e. (ω, W) the f.d.d. of \mathbf{P}_δ^ω converge weakly to those of \mathcal{P}^W . It only remains to prove tightness of $\mathbf{P}_\delta^\omega(\cdot)$.

Convergence

To prove tightness (also for the convergence of discrete partition functions) a key tool is the inequality of Garsia, Rodemich and Rumsey

$$\left(\sup_{s,t \in [0,1]^d, s \neq t} \frac{|f(t) - f(s)|}{|t - s|^{\mu - \frac{2d}{p}}} \right)^p \leq C_{\mu,p,d} \int_{[0,1]^d \times [0,1]^d} \frac{|f(t) - f(s)|^p}{|t - s|^{p\mu}} \, ds \, dt$$

References

- ▶ T. Alberts, K. Khanin, J. Quastel
The intermediate disorder regime for directed polymers in dimension 1 + 1
Ann. Probab. 42 (2014), 1212–1256
- ▶ T. Alberts, K. Khanin, J. Quastel
The Continuum Directed Random Polymer
J. Stat. Phys. 154 (2014), 305–326
- ▶ F. Caravenna, R. Sun, N. Zygouras
Polynomial chaos and scaling limits of disordered systems
J. Eur. Math. Soc. (JEMS), to appear
- ▶ F. Caravenna, R. Sun, N. Zygouras
The continuum disordered pinning model
Probab. Theory Related Fields, to appear