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Overview

In the previous lecture we constructed continuum partition functions Z"
and we used them to define a continuum disordered model PYW

In this lecture we show how the continuum objects Z" and P" vyield
quantitative information on the discrete model (free energy estimates)

We will focus on Pinning models (rather than DPRE)
In the last part we will introduce marginally relevant models

(Pinning for o = % DPRE for d =2, 2d Stochastic Heat Equation)
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1. Pinning models
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Pinning models
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1. Pinning models
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Pinning models

Ingredients: renewal process & disorder

N NN s

0:7'0 T1 T2 T3 T4 Ts5 To

Discrete renewal process T={0=70 <711 <72 < ...} CNp
Gaps (Tit1 — Ti)i>o are i.i.d. with polynomial-tail distribution:

ref CK
Pe(len)Nm’ CK>0, (YE(O,].)

T={n€Ny: S, =0} zero level set of a Markov chain S = (S,)n>0 J

Disorder w = (w;);jen: i.i.d. real random variables with law P

A(B) := log E[e?*1] < o0 Elwi] =0 Varfwi] =1
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Pinning models

Bessel random walks

For o € (0,1) the a-Bessel random walk is defined as follows:

“5,7 < prob. %( %)
X 1
R Cai=5—
IS b. 1(1 - &
. ’b.rob. 1 prob- 31~ %)
0/( 2 -
\ prob. %

» (e =1) nodrift (c, =0) ~» simple random walk
» (a < 3) drift away from the origin (co > 0)
» (a> 1) drift toward the origin (c, < 0)
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Pinning models

Disordered pinning model

Pinning model rewards penalti <0

0 N

N € N (system size) /5> 0, h € R (disorder strength, bias)

The pinning model

Gibbs change of measure P = Py 5, of the renewal distribution pref

dPy, 1
dprﬁlf (1) = b7 exp (Z(ﬂwn +h—X(B))Liner} ]l{sn_o}>
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Pinning models

The phase transition

How are the typical paths 7 of the pinning model P%7?

Contact number Cp = ’7’ N (0, N]’ = Z,,:I:1 Tinery = Z,’Y:l Tys,—o0y

Theorem (phase transition)

3 continuous, non decreasing, deterministic critical curve h.(5):
> Localized regime: for h > h.(B) one has Cy ~ N

C
dp = pg,p>0: P“,(,(‘WN—M‘>€>N—>O w=—a.s.
—00

» Deocalized regime: for h < h.(8) one has Cy = O(log N)

C
dJA = A,B,h >0: Pfl(logNN > A) m 0 w—a.s.
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Pinning models

Estimates on the critical curve

For 8 = 0 (homogeneous pinning, no disorder) one has h.(0) =0

What is the behavior of h () for 5 > 0 small ? J

Theorem (P(my = n) ~ &5

> (a < 3) disorder is irrelevant: hc(B) =0 for 8> 0 small
[Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]

> (a > 1) disorder is relevant: hc(B) >0 for all 8 >0

» (@>1) he(B) ~ Cp* with explicit C = 135 5

[Berger, C., Poisat, Sun, Zygouras]
1 20 2a A 2
» (3 <a<1) Gp=T <h(B) < G2 he(B) ~ CB2T
using continuum model!
[Derrida, Giacomin, Lacoin, Toninelli] [Alexander, Zygouras] [C., Torri, Toninelli]
_ cto(1)
> (a = %) hc(ﬁ) —e A [Giacomin, Lacoin, Toninelli] [Berger, Lacoin]
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Pinning models

Discrete free energy and critical curve

Partition function Zy = [ H’V(T)] = E{eZ =1 (h+Bwn— (ﬁ))]l{"eﬂ] J

Consider first the regime of N — oo with fixed 3, h
> Free energy F(5,h) = Nll_r>noo tlogZy >0 P(dw)-a.s
Z“’>E[e M) 1 o= @}}_P(m(o N] = ) ~ (const.)
» Critical curve h.(8) =sup{h e R: F(8,h) =0} non analiticity!

OFBH) _ o e {c,v} {> 0 if h>he(p)

(convexity) ——— =
oh N=oo LN ] | =0 if h<he(B)

F(8, h) and h.(53) depend on the law of 7 and w
Universality as B, h — 07 YES, connected to continuum model J
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Pinning models
A word on critical exponents

The free energy F(3, h) is non analytic at the critical point h = h.(5)

F(8,h) =0 (h<h(B)) F(8,h) >0 (h>he(B))
What is the behavior of F(8, h) as h | h.(3)?

For 8 = 0 the model is exactly solvable: h.(0) =0 and

F(0,h) — F(0,h(0)) ~ C (h— hc(0))~ (o € (0,1))

Smoothing inequality [Giacomin, Toninelli]

F(8, h) - F(8, he(B)) < 65 (h— he(0))?

» For a > % disorder makes phase transition smoother!
Also h.(3) # h.(0) for every 5 >0 ~- disorder relevance

> For o < 1 and for 8 > 0 small F(3, h) ~ F(0,h) ~ irrelevance
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Weak disorder regime

Outline

2. Weak disorder regime
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Weak disorder regime

Continuum partition functions

Build continuum partition functions for Pinning Model with o € (% 1)
(disorder relevant) following “usual” approach [C, Sun, Zygouras 2015-+]

We need to rescale

N

B

Na-i2 h=hn =

h
ﬁ:ﬁN: m
2

(Note that hy ~ B2~ ~ hc(Bn))

One has Zjy —9 5 2V with
N—o00

N c/ dwih c2/ dWE" dwhh .
o<t<1 T o<t<r<1 ET(t — t)ie

where Wf .= AW, + ht and C = 2sinlam)

™ CK
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Weak disorder regime

Continuum partition functions

Exercise
Recalling that

P“’f(n eT) = PrEf(Sn =0) ~

check that By and hy are the correct scaling (polynomial chaos)

Like for DPRE we build constrained partition functions: 0 <s <t < 0o
2Z%(s,t) = scaling limit of E**[eMemilp,c y|Ns € 7]
We show that they satisfy continuity, strict positivity, semigroup

Theorem [C., Sun, Zygouras 2015+b]

We can build a continuum disordered Pinning model PW

as a random probability law on the space of closed subsets of [0, 1]
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Weak disorder regime

Continuum free energy

In analogy with the discrete model, define
Continuum free energy .F(B, /A7) = I|m - IogZ 3(0,t) as.

(existence and self-averaging need some work)

Again F(j3,h) >0 and define

Continuum critical curve H(B) = sup {h eR: F(B,h)= =0}

Scaling relations

Ve >0: Zé/vi,(c t) L zw (1) (Wiener chaos exp.)
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Weak disorder regime

Interchanging the limits

Can we relate continuum free energy to the discrete one?

By construction of continuum partition functions

d "
Zgj;,(t) = N'i“oo Z35, ny(NE)

Assuming uniform integrability of log Z“ (OK)

Ao 1 : , w
F(B,h) = tlngo?ﬁ[|ogzgfﬂ(t)} = Jim — A)Toom[mgzﬁmm(/\/t)}

Assuming we can interchange the limits N — oo and t — o0

" . : 1 w .
F(B,h) = lim N lim N—[E[IogZBNth(Nt)] = ngnoo NF(Bwn, hn)

N—oo t—oo Nt t

Setting § = % for clarity, we arrive at. ..
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Weak disorder regime

Interchanging the limits

Conjecture

Ao _ F(Bse—2, hs~
7. = g, ")

Theorem [C., Toninelli, Torri 2015]
For all B >0, heR and 7 > 0 there is §g > 0 such that Vd < dg

F(B62%, ho%)

5 < F(B,h+n)

]'—(37/3_77) <

This implies Conj. and ho(8) ~ He(B) ~ He(l) Bz

For any discrete Pinning model with a € (1, 1), the free energy F(3, h)
and the critical curve h.(8) have a universal shape in the regime 5, h — 0
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Weak disorder regime

Interchanging the limits

Very delicate result. How to prove it?
» Assume that there is a continuum Hamiltonian:
w w
Z¥ = E[e"n] zZW =gle]

» Couple H}, and H)” on the same probability space in such a way
that the difference Ay, := Hjy, — H}" is “small”

» Deduce that
E[log Z*] < E[log 2] + log EE[e®"+]
and show that the last term is “negligible”

Problem: there is no continuum Hamiltonian!

Solution: perform coarse-graining and define an “effective” Hamiltonian
(drawing!)
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Weak disorder regime

The DPRE case

What about the DPRE?
We can still define discrete F(3) and continuum F(3) free energy
Since F(B) ~ F(1)3* we can hope that
F(B) ~ F(1)B* aspB—0
provided the “interchanging of limits” is justified

N. Torri is currently working on this problem. A finer coarse-graining is
needed, together with sharper estimates on continuum partition functions
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The marginally relevant regime

Outline

3. The marginally relevant regime
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The marginally relevant regime

The marginal case

We consider simultaneously different models that are marginally relevant:

Pinning Models with o = %

DPRE with d =2 (RW attracted to BM)
DPRE with d =1 (RW with Cauchy tails: P(|S1| > n) ~ <

v

v

v

v

Stochastic Heat Equation in d =2

All these different models share a crucial feature: logarithmic overlap

> P(ner)

1<n<N
Ry = ~ ClogN

Z Z Pref(sn _ X)2

1<n<N xezd

More generally: Ry diverges as a slowly varying function
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The marginally relevant regime

The marginal case

Analogy between Pinning model with o = % and DPRE with d =2

N
Bn =1+ P(ner)X,+...
n=1

gPRE_HZ(ZPrefs_x)X >+
n=1 \xeZ?2

Note that P™(S, = x) ~ %gl(ﬁ) (recall that d = 2)

Then the random variable in parenthesis has variance

re X 2 ||g1||2
pr(sn: 2N772g17 ~ n2

x€Z? x€Z?

hence we can replace it by %X,, ~~ Pinning! (P™(ne 1) ~ 77)
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The marginally relevant regime

Relevant vs. marginal regime

For computation we focus on Pinning model (for simplicity h = 0)

Look at relevant case o > 3 (P (ner)~ ) B~

N

zy => B > HPfef nj—ni—1 €7) Xy,

k=0 0<m<...<nk<N i=1

Z Xy Xy o+ X,
n% “(ny — )= (g — ng_q)t-@

S Ay e

I
M=
=

A A C R R e S
o0
A dW, dWy, ---dW
‘ Z ﬁk / 11—« . 1— 2 * 1—
N—=oo =70 oc<tico.<ti<t B (o —t)lm o (b — te—q)t e

For v = 1 last step breaks down % ¢ L2([0,1])  How to make sense?
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The marginally relevant regime

Relevant vs. marginal regime

Always in the relevant case o > 1 (setting x =2(1—a) < 1)

dt; dir - - - dity

<th<..<t<1 t%(t2 - tl)X o (tk - tkfl)X

w nk
VarlZil S 20 /

The k! makes the series converge for all B >0
It arises from the constraint 0 < t; <... <t <1

Exercise
Prove "by bare hands” that (probabilistic argument!)
/ _ dty dty ---dty < o~ Cklogk
0<ti<..<te<1 b (t2 — t1)X oo (tk — ty—1)X
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The marginally relevant regime

Relevant vs. marginal regime

Zw _ k ni7tn2 Nk
N Z ﬂ Z \/n>1\/n2_n1...\/nk_nk_1

k=0 o<m<...<nk<N

Xn X X
=1+BZ%+ﬂ2 Z ﬁ/n’—n—’—-”

0<n<N o<n<n’'<N

Goal: find the joint limit in distribution of all these sums

Linear term is easy (X, ~ A(0,1) by Lindeberg): asympt. N(0,02)

1
2: 2 o 2| N
o ) —~ 0% log

0<n<N

B
Vl0og N

We then rescale B =0Bn~ Other terms converge?
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The marginally relevant regime
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