

Polynomial Chaos and Scaling Limits of Disordered Systems

5. Marginally relevant systems

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Levico Terme ~ September 30 - October 2, 2015

Overview

In the previous lectures we focused on systems that are disorder relevant (in particular DPRE with $d = 1$ and Pinning model with $\alpha > \frac{1}{2}$)

- ▶ We constructed continuum partition functions \mathcal{Z}^W
- ▶ We used \mathcal{Z}^W to build continuum disordered models \mathcal{P}^W
- ▶ We used \mathcal{Z}^W to get estimates on the free energy $\mathbf{F}(\beta, h)$

In this last lecture we consider the subtle marginally relevant regime (in particular DPRE with $d = 2$, Pinning model with $\alpha = \frac{1}{2}$, 2d SHE)

We present some results on the the continuum partition function

Outline

1. The marginally relevant regime

Outline

1. The marginally relevant regime

The 2d Stochastic Heat Equation

$$\begin{cases} \partial_t u(t, x) = \frac{1}{2} \Delta_x u(t, x) + \beta \mathbf{W}(t, x) u(t, x) \\ u(0, x) \equiv 1 \end{cases} \quad (t, x) \in [0, \infty) \times \mathbb{R}^2$$

where $\mathbf{W}(t, x)$ is (space-time) white noise on $[0, \infty) \times \mathbb{R}^2$

Mollification in space: fix $j \in C_0^\infty(\mathbb{R}^d)$ and set $j_\delta(z) := \delta^{-1}j(\sqrt{\delta}z)$

$$\mathbf{W}_\delta(t, x) := \int_{\mathbb{R}^d} j_\delta(x - y) \mathbf{W}(t, y) dy$$

Then $\mathbf{u}_\delta(t, x) = \mathbb{E}_x \left[\exp \left\{ \beta \int_0^t \mathbf{W}_\delta(t - s, B_s) ds - \frac{1}{2} \beta^2 t \|j_\delta\|_2^2 \right\} \right]$

By soft arguments $\mathbf{u}_{\delta, \beta} \stackrel{d}{\approx} \mathbf{Z}_{N, \beta}^\omega$ (partition function of 2d DPRE)

Scaling limit of marginal partition function

Theorem 1. [C., Sun, Zygouras '15b]

Consider DPRE $d = 2$ or Pinning $\alpha = \frac{1}{2}$ or 2d SHE
(or long-range DPRE with $d = 1$ and Cauchy tails)

Rescaling $\beta := \frac{\hat{\beta}}{\sqrt{\log N}}$ (and $h \equiv 0$) the partition function converges in

law to an explicit limit: $\mathcal{Z}_N^\omega \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}^W = \begin{cases} \text{log-normal} & \text{if } \hat{\beta} < 1 \\ 0 & \text{if } \hat{\beta} \geq 1 \end{cases}$

$$\mathcal{Z}^W \stackrel{d}{=} \exp \left\{ \sigma_{\hat{\beta}} W_1 - \frac{1}{2} \sigma_{\hat{\beta}}^2 \right\} \quad \text{with} \quad \sigma_{\hat{\beta}} = \log \frac{1}{1 - \hat{\beta}^2}$$

The regime $\hat{\beta} = 1$ (in progress)

What happens for $\hat{\beta} \geq 1$? $\mathbf{Z}_N^W(t, x) \rightarrow 0$ in law for *fixed* (t, x)

However, $\mathbf{Z}_N^W(t, x)$ should have a **non-zero limit** if we look at it as a **space-time distribution** (actually a measure) cf. [Bertini, Cancrini 95]

Although $\text{Var}[\mathbf{Z}_N^W(t, x)] \rightarrow \infty$ covariances are bounded on diffusive scale

$$\text{Cov}[\mathbf{Z}_N^W(t, x), \mathbf{Z}_N^W(t', x')] \underset{N \rightarrow \infty}{\sim} K\left(\left(\frac{t}{N}, \frac{x}{\sqrt{N}}\right), \left(\frac{t'}{N}, \frac{x'}{\sqrt{N}}\right)\right)$$

Then $\text{Var}[\langle \mathbf{Z}_N^W, \phi \rangle] \rightarrow (\phi, K\phi) < \infty$ for every $\phi \in C_0([0, 1] \times \mathbb{R}^2)$

$$\langle \mathbf{Z}_N^W, \phi \rangle := \frac{1}{N^{3/2}} \sum_{(t,x) \in \mathbb{N} \times \mathbb{Z}^2} \phi\left(\frac{t}{N}, \frac{x}{\sqrt{N}}\right) \mathbf{Z}_N^W(t, x)$$

Multi-scale correlations for $\hat{\beta} < 1$

Theorem 2. [C., Sun, Zygouras '15b]

Consider DPRE with $d = 2$ or 2d SHE (fix $\hat{\beta} < 1$)

Fix space-time points $X = (t_N, x_N)$ and $X' = (t'_N, x'_N)$ with

$$\|X - X'\| := |t_N - t'_N| + \sqrt{|x_N - x'_N|} \sim N^\zeta \quad \zeta \in (0, 1)$$

Then $(Z_N^\omega(X), Z_N^\omega(X')) \xrightarrow[N \rightarrow \infty]{d} (e^{Y - \frac{1}{2}\text{Var}[Y]}, e^{Y' - \frac{1}{2}\text{Var}[Y']})$

Y, Y' joint $\mathcal{N}(0, \sigma_{\hat{\beta}}^2)$ with $\text{Cov}[Y, Y'] = \log \frac{1 - \zeta \hat{\beta}^2}{1 - \hat{\beta}^2}$

Fluctuations for $\hat{\beta} < 1$

Theorem 3. [C., Sun, Zygouras '15b]

Consider DPRE with $d = 2$ or 2d SHE (fix $\hat{\beta} < 1$)

$$Z_N^W(t, x) \approx 1 + \frac{1}{\sqrt{\log N}} G\left(\frac{t}{N}, \frac{x}{N}\right) \quad (\text{in } \mathcal{S}')$$

where $G(t, x)$ is a Gaussian field on $[0, 1] \times \mathbb{R}^2$ with

$$\text{Cov}[G(X), G(X')] \sim C \log \frac{1}{\|X - X'\|}$$

Proof of Theorem 1. for pinning

$$\begin{aligned}
 Z_N^{\omega} &= \sum_{k=0}^N \beta^k \sum_{0 < n_1 < \dots < n_k \leq N} \frac{X_{n_1} X_{n_2} \cdots X_{n_k}}{\sqrt{n_1} \sqrt{n_2 - n_1} \cdots \sqrt{n_k - n_{k-1}}} \\
 &= 1 + \frac{\hat{\beta}}{\sqrt{\log N}} \sum_{0 < n \leq N} \frac{X_n}{\sqrt{n}} + \left(\frac{\hat{\beta}}{\sqrt{\log N}} \right)^2 \sum_{0 < n < n' \leq N} \frac{X_n X_{n'}}{\sqrt{n} \sqrt{n' - n}} + \dots
 \end{aligned}$$

Goal: find the joint limit in distribution of all these sums

↔ blackboard!

Fourth moment theorem

4th Moment Theorem

[de Jong 90] [Nualart, Peccati, Reinert 10]

Consider **homogeneous** (deg. ℓ) polynomial chaos $Y_N = \sum_{|I|=\ell} \psi_N(I) \prod_{i \in I} X_i$

- ▶ $\max_i \psi_N(i) \xrightarrow[N \rightarrow \infty]{} 0$ (in case $\ell = 1$) [Small influences!]
- ▶ $\mathbb{E}[(Y_N)^2] \xrightarrow[N \rightarrow \infty]{} \sigma^2$
- ▶ $\mathbb{E}[(Y_N)^4] \xrightarrow[N \rightarrow \infty]{} 3\sigma^4$

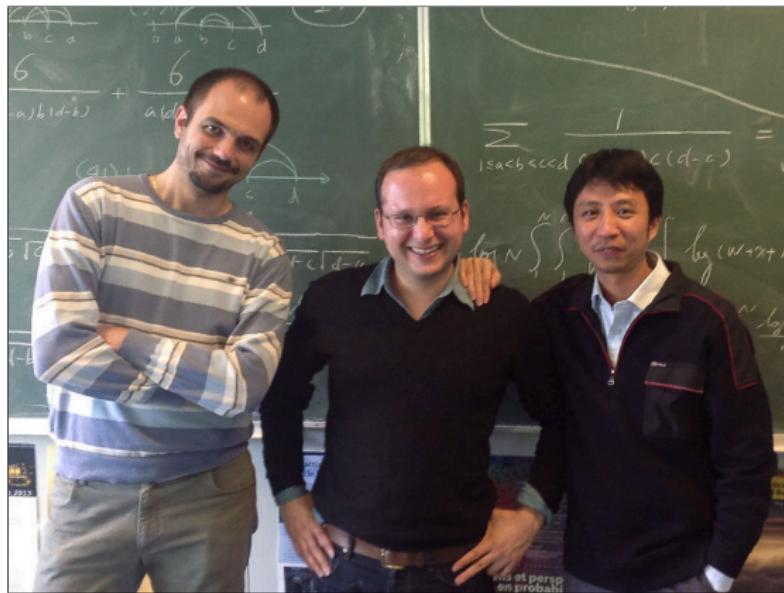
Then

$$Y_N \xrightarrow[N \rightarrow \infty]{d} \mathcal{N}(0, \sigma^2)$$

References

- ▶ L. Bertini, N. Cancrini
The two-dimensional stochastic heat equation: renormalizing a multiplicative noise
J. Phys. A: Math. Gen. **31** (1998) 615–622
- ▶ F. Caravenna, R. Sun, N. Zygouras
Universality in marginally relevant disordered systems
preprint (2015)
- ▶ P. de Jong
A central limit theorem for generalized multilinear forms
J. Multivariate Anal. **34** (1990), 275–289
- ▶ I. Nourdin, G. Peccati, G. Reinert
Invariance principles for homogeneous sums: universality of Gaussian Wiener chaos
Ann. Probab. **38** (2010) 1947–1985

Collaborators



Nikos Zygouras (Warwick) and Rongfeng Sun (NUS)