

Scaling and Universality in Probability

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Luxembourg ~ June 14, 2016

Overview

A more expressive (but less fancy) title would be

Convergence of Discrete Probability Models to a Universal Continuum Limit

This is a key topic of classical and modern probability theory

I will present a (limited) selection of representative results, in order to convey the main ideas and give the flavor of the subject

Outline

1. Weak Convergence of Probability Measures

2. Brownian Motion

3. A glimpse of SLE

4. Scaling Limits in presence of Disorder

Reminders (I). Probability spaces

Fix a set Ω . A probability P is a map from subsets of Ω to $[0, 1]$ s.t.

$$P(\Omega) = 1, \quad P\left(\bigcup_{i \in \mathbb{N}} A_i\right) = \sum_{i \in \mathbb{N}} P(A_i) \quad \text{for disjoint } A_i$$

[P is only defined on a subclass (σ -algebra) \mathcal{A} of “measurable” subsets of Ω]

(Ω, \mathcal{A}, P) is an abstract probability space. We will be “concrete”:

(Metric space E , “Borel σ -algebra”, Probability μ)

- ▶ Integral $\int_E \varphi d\mu$ for bounded and continuous $\varphi : E \rightarrow \mathbb{R}$
- ▶ Discrete probability $\mu = \sum_i p_i \delta_{x_i}$ with $x_i \in E$, $p_i \in [0, 1]$

$$\int_E \varphi d\mu := \sum_i p_i \varphi(x_i)$$

Riemann sums and integral on $[0, 1]$

- ▶ Partition $\underline{t} = (t_0, t_1, \dots, t_k)$ of $[0, 1]$

$$0 = t_0 < t_1 < \dots < t_k = 1 \quad (k \in \mathbb{N})$$

- ▶ Riemann sum of a function $\varphi : [0, 1] \rightarrow \mathbb{R}$ relative to \underline{t}

$$R(\varphi, \underline{t}) := \sum_{i=1}^k \varphi(t_i) (t_i - t_{i-1})$$

Theorem

Let $\underline{t}^{(n)}$ be partitions with

$$\text{mesh}(\underline{t}^{(n)}) := \max_{1 \leq i \leq k_n} (t_i^{(n)} - t_{i-1}^{(n)}) \xrightarrow[n \rightarrow \infty]{} 0$$

If $\varphi : [0, 1] \rightarrow \mathbb{R}$ is continuous, then

$$R(\varphi, \underline{t}^{(n)}) \xrightarrow[n \rightarrow \infty]{} \int_0^1 \varphi(x) \, dx$$

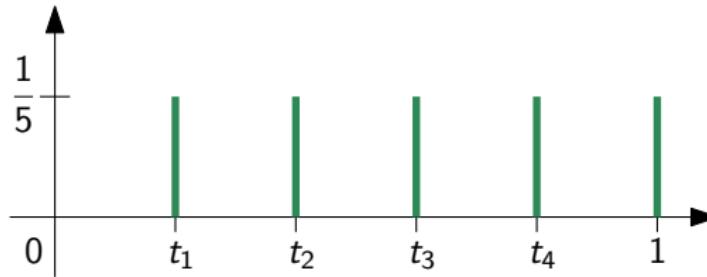
A probabilistic reformulation

Partition $\underline{t} = (t_0, t_1, \dots, t_k)$ \rightsquigarrow discrete probability $\mu_{\underline{t}}$ on $[0, 1]$

$$\mu_{\underline{t}}(\cdot) := \sum_{i=1}^k p_i \delta_{t_i}(\cdot) \quad \text{where} \quad p_i := t_i - t_{i-1}$$

Uniform partition

$\underline{t} = (0, \frac{1}{n}, \frac{2}{n}, \dots, 1)$ \rightsquigarrow $\mu_{\underline{t}}$ = uniform probability on $\{\frac{1}{n}, \frac{2}{n}, \dots, 1\}$



A probabilistic reformulation

Key observation: Riemann sum is ... integral w.r.t. $\mu_{\underline{t}}$

$$R(\varphi, \underline{t}) = \sum_{i=1}^k \varphi(t_i) p_i = \int_{[0,1]} \varphi \, d\mu_{\underline{t}}$$

Theorem

If $\text{mesh}(\underline{t}^{(n)}) \rightarrow 0$ and $\varphi : [0, 1] \rightarrow \mathbb{R}$ is continuous, then

$$\int_{[0,1]} \varphi \, d\mu_{\underline{t}^{(n)}} \xrightarrow{n \rightarrow \infty} \int_{[0,1]} \varphi \, d\lambda \quad (*)$$

with λ := Lebesgue measure (probability) on $[0, 1]$

- ▶ **Scaling Limit**: convergence of $\mu_{\underline{t}^{(n)}}$ toward λ
- ▶ **Universality**: the limit λ is **the same**, for any choice of $\underline{t}^{(n)}$

Weak convergence

- E is a **Polish space** (complete separable metric space), e.g.

$$[0, 1], \quad C([0, 1]) := \{\text{continuous } f : [0, 1] \rightarrow \mathbb{R}\}, \quad \dots$$

- $(\mu_n)_{n \in \mathbb{N}}$, μ are probabilities on E

Definition (weak convergence of probabilities)

We say that μ_n converges weakly to μ (notation $\mu_n \Rightarrow \mu$) if

$$\int_E \varphi \, d\mu_n \xrightarrow{n \rightarrow \infty} \int_E \varphi \, d\mu$$

for every $\varphi \in C_b(E) := \{\text{continuous and bounded } \varphi : E \rightarrow \mathbb{R}\}$

[Analysts call this **weak-*** convergence; note that $\mu_n, \mu \in C_b(E)^*$]

A useful reformulation

- ▶ $\mu_n \Rightarrow \mu$ **does not imply** $\mu_n(A) \rightarrow \mu(A)$ for all meas. $A \subseteq E$?

Example

μ_n = uniform probability on $\left\{ \frac{1}{n}, \frac{2}{n}, \dots, 1 \right\}$ $A := \mathbb{Q} \cap [0, 1]$

$\mu_n \Rightarrow \lambda$ (Lebesgue) **but** $1 = \mu_n(A) \not\rightarrow \lambda(A) = 0$

- ▶ Weak convergence means $\mu_n(A) \rightarrow \mu(A)$ for “nice” $A \subseteq E$

Theorem

$\mu_n \Rightarrow \mu$ iff $\mu_n(A) \rightarrow \mu(A)$ \forall meas. $A \subseteq E$ with $\mu(\partial A) = 0$

- ▶ Weak convergence links **measurable** and **topological** structures

Rest of the talk

Three interesting examples of weak convergence, leading to

- ▶ Brownian motion
- ▶ Schramm-Löwner Evolution (SLE)
- ▶ Continuum disordered pinning models

Common mathematical structure

- ▶ A Polish space E
- ▶ A sequence of discrete probabilities μ_n (easy) on E
- ▶ A “continuum” probability μ (difficult!) such that $\mu_n \Rightarrow \mu$

Outline

1. Weak Convergence of Probability Measures

2. Brownian Motion

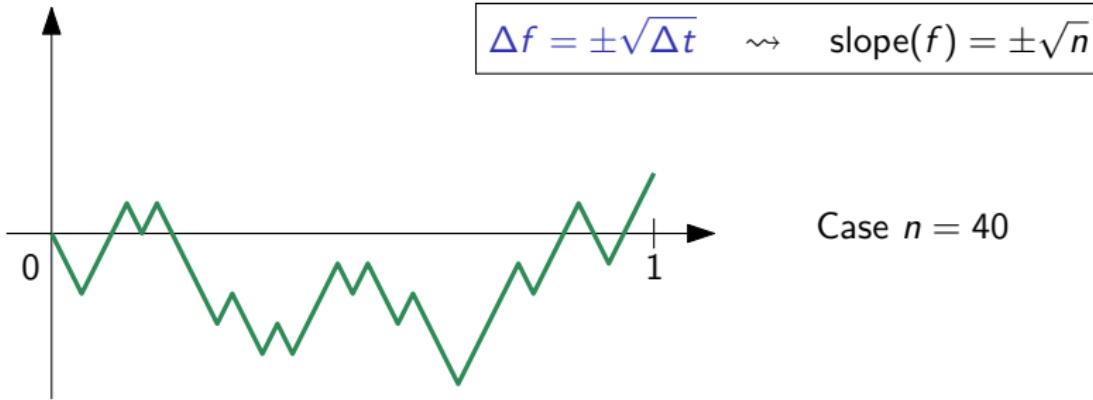
3. A glimpse of SLE

4. Scaling Limits in presence of Disorder

From random walk to Brownian motion

- ▶ $E := C([0, 1]) = \{\text{continuous } f : [0, 1] \rightarrow \mathbb{R}\}$ (with $\|\cdot\|_\infty$)
- ▶ $E_n := \left\{ \text{piecewise linear } f : [0, 1] \rightarrow \mathbb{R} \text{ with } f(0) = 0 \text{ and } f\left(\frac{i+1}{n}\right) = f\left(\frac{i}{n}\right) \pm \sqrt{\frac{1}{n}} \right\} \subseteq C([0, 1])$

$|E_n| = 2^n$



From random walk to Brownian motion

Let μ_n be the probability on $C([0, 1])$ which is uniform on E_n :

$$\mu_n(\cdot) = \sum_{f \in E_n} \frac{1}{2^n} \delta_f(\cdot)$$

Theorem (Donsker)

The sequence $(\mu_n)_{n \in \mathbb{N}}$ converges weakly on $C([0, 1])$: $\mu_n \Rightarrow \mu$

The limiting probability μ on $C([0, 1])$ is called Wiener measure

- ▶ Deep result!
- ▶ Wiener measure is the law of Brownian motion
- ▶ Wiener measure is a “natural” probability on $C([0, 1])$ (like Lebesgue for $[0, 1]$)

Reminders (II). Random variables and their laws

A **random variable** (r.v.) is a measurable function $X : \Omega \rightarrow E$

[where (Ω, \mathcal{A}, P) is some abstract probability space]

The **law** (or **distribution**) μ_X of X is a probability on E

$$\mu_X(A) = P(X^{-1}(A)) = P(X \in A) \quad \text{for } A \subseteq E$$

- ▶ X describes a **random element** of E
- ▶ μ_X describes the values taken by X and the resp. probabilities

Instead of a **probability** μ on E , it is often convenient to work with a **random variable** X with law μ

When $E = C([0, 1])$, a r.v. $X = (X_t)_{t \in [0, 1]}$ is a **stochastic process**

Simple random walk

Let us build a stochastic process $X^{(n)}$ with law μ_n

Fair coin tossing: independent random variables Y_1, Y_2, \dots with

$$P(Y_i = +1) = P(Y_i = -1) = \frac{1}{2}$$

Simple random walk: $S_0 := 0$ $S_n := Y_1 + Y_2 + \dots + Y_n$

Diffusive rescaling: space $\propto \sqrt{\text{time}}$

$$X^{(n)}(t) := \text{linear interpol. of } \frac{S_{nt}}{\sqrt{n}} \quad t \in [0, 1]$$

The law of $X^{(n)}$ (r.v. in $C([0, 1])$) is μ_n uniform probab. on E_n

Donsker: The law of simple random walk, diffusively rescaled, converges weakly to the law of Brownian motion

General random walks

Instead of coin tossing, take independent random variables Y_i with a generic law, with **zero mean** and **finite variance** (say 1)

Define random walk S_n and its diffusive rescaling $X^{(n)}(t)$ as before

E.g. $P(Y_i = +2) = \frac{1}{3}, \quad P(Y_i = -1) = \frac{2}{3}$

The law μ_n of $X^{(n)}$ is a (non uniform!) probability on $C([0, 1])$

Universality of Brownian motion

Theorem (Donsker)

$$\mu_n \Rightarrow \mu := \text{Wiener measure}$$

The law of **any** RW (zero mean, finite variance) diffusively rescaled converges weakly to the law of Brownian motion (Wiener measure)

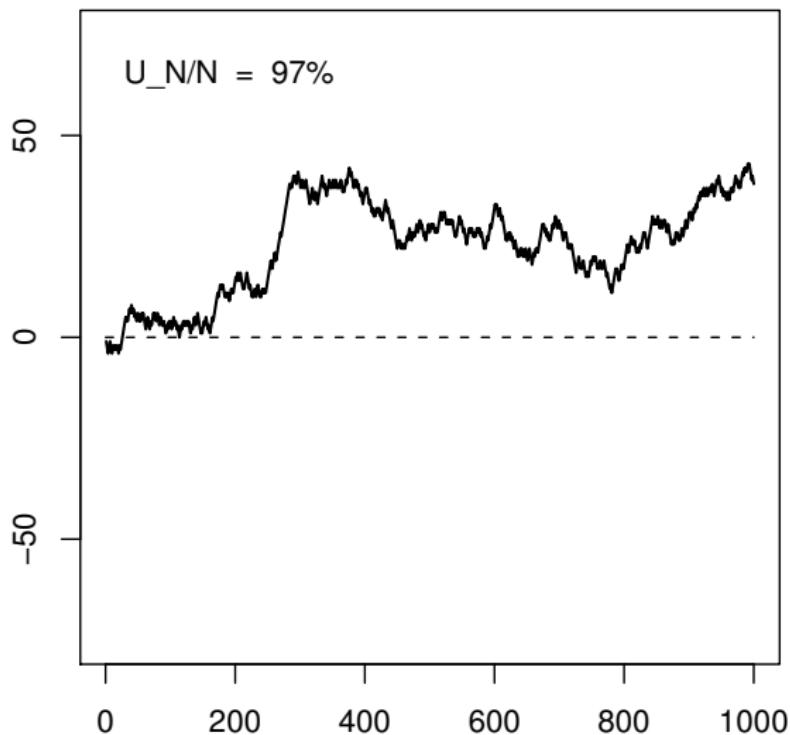
Universality: $\mu_n(A) \rightarrow \mu(A) \quad \forall A \subseteq C([0, 1])$ with $\mu(\partial A) = 0$

Example (Feller I, Chapter III)

- ▶ $U_+(f) := \text{Leb}\{t \in [0, 1] : f(t) > 0\}$
 $= \{\text{amount of time in which } f > 0\}$
- ▶ $A := \{f : U_+(f) \geq 0.95\textcolor{red}{0.99} \text{ or } U_+(f) \leq 0.05\textcolor{red}{0.01}\} \subseteq C([0, 1])$

Then $\mu_n(A) \rightarrow \mu(A) \simeq \textcolor{red}{0.290.13}$. Random walk has a chance of $29\%\textcolor{red}{13\%}$ of spending $95\%\textcolor{red}{99\%}$ or more of its time on the same side!

Some sample paths of the SRW



Outline

1. Weak Convergence of Probability Measures

2. Brownian Motion

3. A glimpse of SLE

4. Scaling Limits in presence of Disorder

A glimpse of SLE

Even the simplest randomness (coin tossing) can lead to interesting models, such as random walks and Brownian motion

Brownian motion is at the heart of Schramm-Löwner Evolution (SLE), one of the greatest achievements of modern probability

[Fields Medal awarded to W. Werner (2006) and S. Smirnov (2010)]

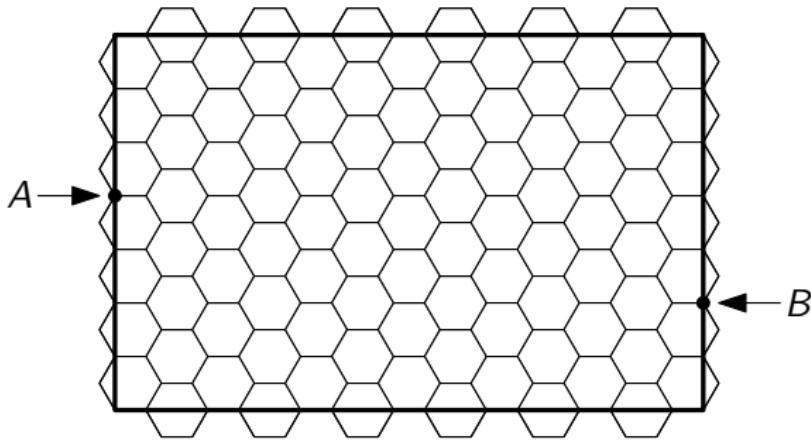
We present an instance of SLE, which emerges as the scaling limit of percolation (spatial version of coin tossing)

Fix a simply connected Jordan domain $D \subseteq \mathbb{R}^2$ and $A, B \in \partial D$

$$\begin{aligned} E &:= \{ \text{continuous } f : [0, 1] \rightarrow \overline{D} \text{ with } f(0) = A, f(1) = B \} \\ &= \{ \text{curves in } \overline{D} \text{ joining } A \text{ to } B \} \quad [\|\cdot\|_\infty \text{ norm, up to reparam.}] \end{aligned}$$

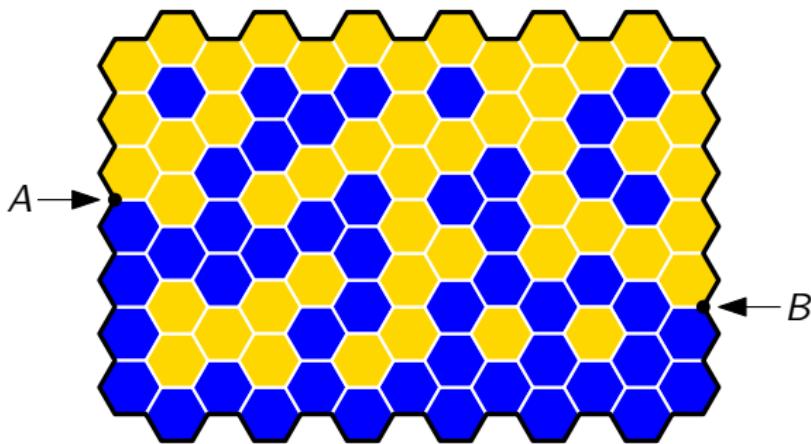
We now introduce discrete probabilities μ_n on E

1. The rescaled hexagonal lattice



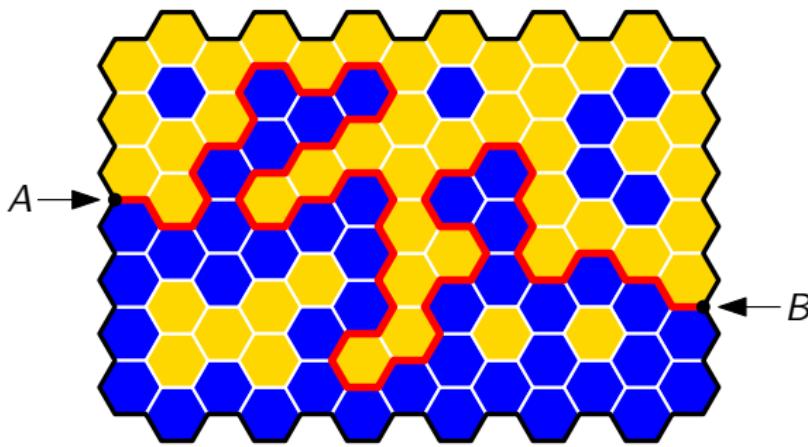
- ▶ Fix $n \in \mathbb{N}$ and consider the hexagonal lattice of side $\frac{1}{n}$
- ▶ Approximate ∂D with a closed loop in the lattice

2. Percolation



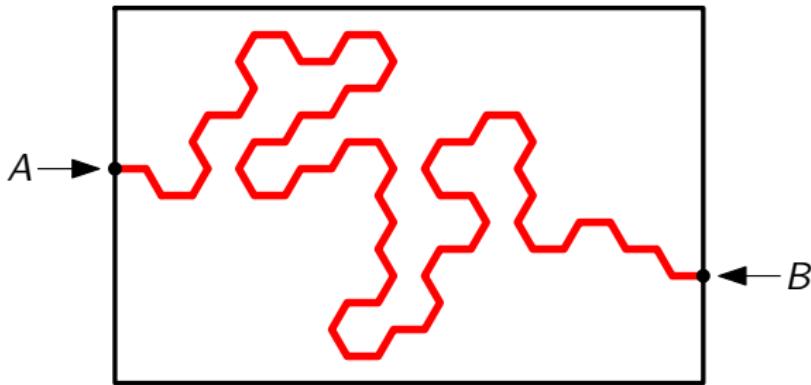
- ▶ Boundary hexagons colored yellow (A to B) and blue (B to A)
- ▶ Inner hexagons colored by coin tossing ([critical percolation](#))

3. The exploration path



- ▶ Exploration path: start from A and follow the boundary between yellow and blue hexagons, eventually leading to B

4. The law μ_n



- ▶ Forgetting the colors, the exploration path is an **element of E** (continuous curve $A \rightarrow B$)
- ▶ It is a **random** element of E (determined by coin tossing)
- ▶ Its law μ_n is a discrete probability on E ($\frac{1}{n} =$ lattice mesh)

Scaling limit of the exploration path

Fix a (simply connected) Jordan domain D and points $A, B \in \partial D$

$$E := \{ \text{curves in } \overline{D} \text{ joining } A \text{ to } B \}$$

Theorem (Schramm; Smirnov; Camia & Newman)

The sequence $(\mu_n)_{n \in \mathbb{N}}$ converges weakly on E : $\mu_n \Rightarrow \mu$

The limiting probability μ is the law of (the trace of) SLE(6)

- ▶ Extremely challenging!
- ▶ Universality? Independence of lattice (loop soup - conj.)
- ▶ Conformal Invariance. For another Jordan domain D'

$$\mu_{D';A',B'} = \phi_{\#}(\mu_{D;A,B})$$

where $\phi : D \rightarrow D'$ is conformal with $\phi(A) = A'$, $\phi(B) = B'$

Outline

1. Weak Convergence of Probability Measures

2. Brownian Motion

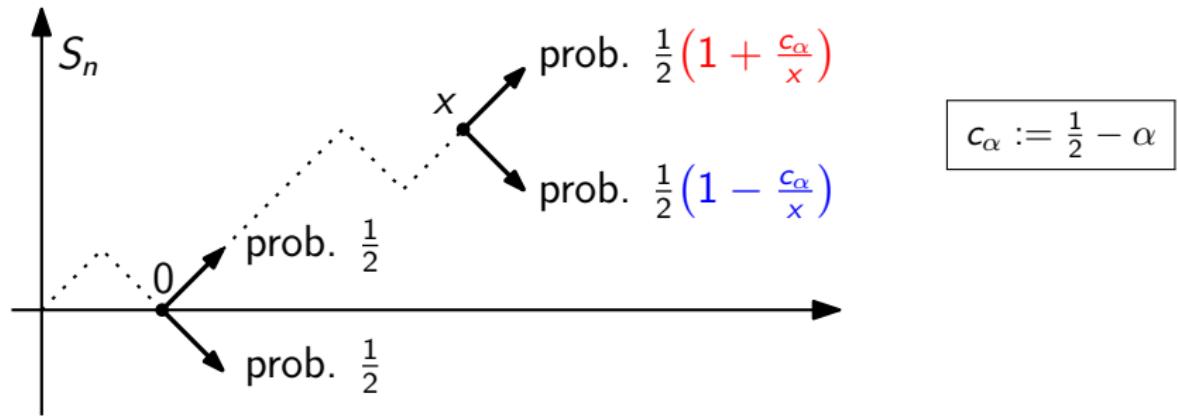
3. A glimpse of SLE

4. Scaling Limits in presence of Disorder

From simple to Bessel random walk

The simple random walk is $S_n := Y_1 + \dots + Y_n$ [Y_i coin tossing]

Fix $\alpha \in (0, 1)$ and define the α -Bessel random walk as follows:

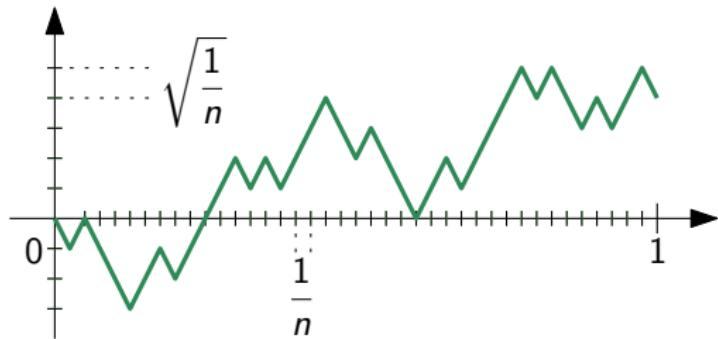


- ▶ $(\alpha = \frac{1}{2})$ no drift $(c_\alpha = 0)$ \rightsquigarrow simple random walk
- ▶ $(\alpha < \frac{1}{2})$ drift away from the origin $(c_\alpha > 0)$
- ▶ $(\alpha > \frac{1}{2})$ drift toward the origin $(c_\alpha < 0)$

Diffusively rescaled α -Bessel RW

Definition

$\mu_{n,\alpha}$:= law of diffusively rescaled α -Bessel RW



Discrete probability
on $E_n \subseteq C([0, 1])$

Not uniform for $\alpha \neq \frac{1}{2}$

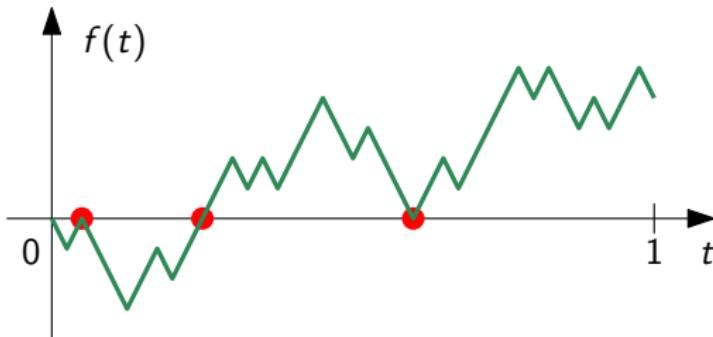
Theorem (Extension of Donsker)

$\forall \alpha \in (0, 1), \mu_{n,\alpha}$ converges weakly on $C([0, 1])$: $\mu_{n,\alpha} \Rightarrow \mu_\alpha$

[μ_α := law of “ α -Bessel process” (Brownian motion for $\alpha = \frac{1}{2}$)]

The disordered pinning model

Idea: reward/penalize α -Bessel RW $\mu_{n,\alpha}$ each time it visits zero



- ▶ Fix a real sequence $\omega = (\omega_i)_{i \in \mathbb{N}}$ (charges attached to $t = \frac{i}{n}$)
- ▶ Total charge (energy) of a path $H_n^\omega(f) := \sum_{i=1}^n \omega_i \mathbb{1}_{\{f(\frac{i}{n})=0\}}$

Disordered pinning model $\mu_{n,\alpha}^\omega$

(Gibbs measure)

$$\mu_{n,\alpha}^\omega(f) := \frac{1}{(\text{normaliz.})} e^{H_n^\omega(f)} \mu_{n,\alpha}(f), \quad \forall f \in E_n$$

The disordered pinning model

$\mu_{n,\alpha}^\omega$ is a probability on $C([0, 1])$ that depends on the sequence ω

How to choose the charges ω ? In a random way!

$(\omega_i)_{i \in \mathbb{N}}$ independent $\mathcal{N}(h, \beta^2)$ [mean $h \in \mathbb{R}$, variance $\beta^2 > 0$]

Disordered systems: two sources of randomness!

- ▶ First we sample a typical ω , called (quenched) disorder
- ▶ Then we have a probability $\mu_{n,\alpha}^\omega$ on the space E_n of RW paths

The disordered pinning model $\mu_{n,\alpha}^\omega$ is a random probability on E_n
 [i.e. a random variable $\omega \mapsto \mu_{n,\alpha}^\omega$ taking values in $\mathcal{M}_1(E_n)$]

Weak convergence of $\mu_{n,\alpha}^\omega$ [of its law] to some random probab. μ_α^ω ?

Scaling limits of disordered pinning model

Inspired by [Alberts, Khanin, Quastel 2014]

Theorem (F. Caravenna, R. Sun, N. Zygouras)

Rescale suitably β, h (disorder mean and variance) and let $n \rightarrow \infty$

- ▶ $(\alpha < \frac{1}{2})$ Disorder disappears in the scaling limit!

$\mu_{n,\alpha}^{\omega} \Rightarrow \mu_{\alpha}$ law of α -Bessel process (as if $\omega \equiv 0$)

- ▶ $(\alpha > \frac{1}{2})$ Disorder survives in the scaling limit!

$\mu_{n,\alpha}^{\omega} \Rightarrow \mu_{\alpha}^{\omega}$ truly random probability on $C([0, 1])$

Recall that $\mu_{n,\alpha}^{\omega} \ll \mu_{n,\alpha}$ for every $n \in \mathbb{N}$ (Gibbs measure)

However $\mu_{\alpha}^{\omega} \not\ll \mu_{\alpha}$ for a.e. ω ! (no continuum Gibbs measure)

- ▶ $(\alpha = \frac{1}{2})$ Work in progress...

Thanks

Weak convergence in presence of disorder

- ▶ E is a **Polish space** (complete separable metric space)
- ▶ $\mathcal{M}_1(E) :=$ probability measures on E
- ▶ Notion of convergence $\mu_n \Rightarrow \mu$ (**weak convergence**) in $\mathcal{M}_1(E)$

What if μ_n^ω, μ^ω are **random** probabilities on E ?

[$\omega \in \Omega$ probability space]

- ▶ The space $\tilde{E} := \mathcal{M}_1(E)$ is also **Polish**
- ▶ Random probabilities μ_n^ω, μ^ω are \tilde{E} -valued random variables
- ▶ Their **laws** are probabilities on \tilde{E} : weak convergence applies!

We still write $\mu_n^\omega \Rightarrow \mu^\omega$ for this convergence
(heuristics/intuition analogous to the non-disordered case)