

Marginally relevant polymer models in the critical window

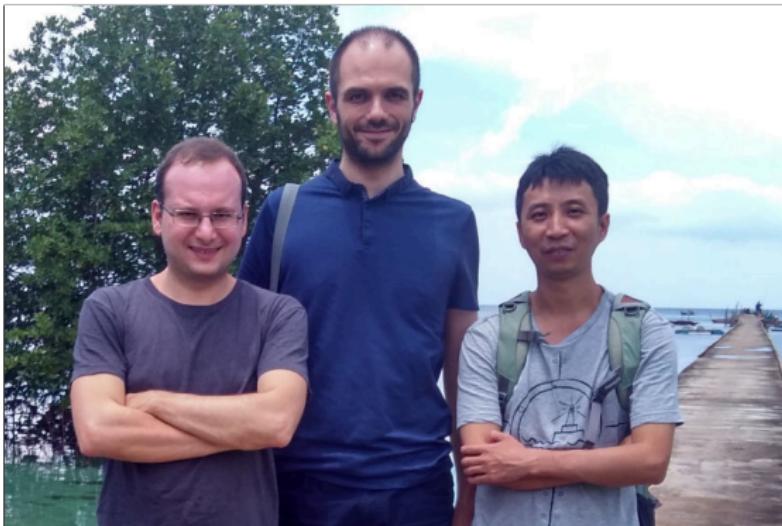
(joint work with R. Sun and N. Zygouras)

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Lyon ~ 6 June 2017

Collaborators



Nikos Zygouras (Warwick) and Rongfeng Sun (NUS)

Overview

I am going to talk about

- ▶ Directed Polymer in Random Environment in dim. $d = 2$

Our results also apply to other **marginally relevant** disordered systems

- ▶ Pinning Model with tail exponent $\alpha = 1/2$
- ▶ Directed Polymer with Cauchy tails in dim. $d = 1$
- ▶ Stochastic Heat Equation (SHE) with $d = 2$

Outline

1. Directed Polymer

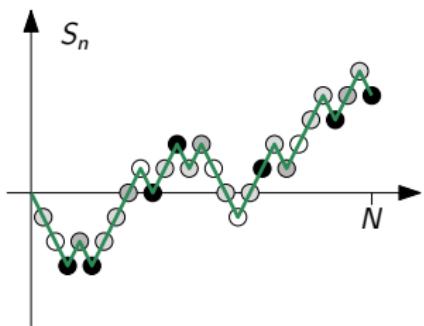
2. Known Results

3. Critical Window

4. Techniques and proofs

5. Additional results

Directed Polymer in Random Environment



- **Reference Model:** simple random walk on \mathbb{Z}^d

$$(S_n)_{n \geq 0} \quad \mathbf{P}^{\text{rw}}(S_n - S_{n-1} = \pm e_i) = \frac{1}{2d}$$
- **Disorder:** i.i.d. random variables $\omega(n, x)$
zero mean, unit variance, expon. moments

$$\lambda(\beta) := \log \mathbb{E}[e^{\beta \omega(n, x)}] < \infty$$

► (-) Hamiltonian $H_N(S, \omega) := \sum_{n=1}^N \omega(n, S_n)$

Directed Polymer in Random Environment $P_N^\omega = P_{N,\beta}^\omega$

$$\frac{d\mathbb{P}_N^\omega(S_1, \dots, S_N)}{d\mathbb{P}^{\text{rw}}(S_1, \dots, S_N)} \propto e^{\beta H_N(S, \omega)} = \frac{e^{\beta H_N(S, \omega)}}{Z_N^\omega}$$

Weak and strong disorder

- ($d \geq 3$) There is a **weak disorder** phase: $\exists \beta_c > 0$ such that

for $0 \leq \beta < \beta_c$ \mathbf{P}_N^ω is “similar” to \mathbf{P}^{rw}

$$\text{CLT} \quad \mathbf{P}_N^\omega \left(\frac{S_N}{\sqrt{N}} \in \cdot \right) \xrightarrow[N \rightarrow \infty]{d} \mathcal{N}(0, 1)$$

[Imbrie, Spencer 88] [Bolthausen 89] [Comets, Yoshida 06] [Chatterjee 16]

- ($d = 1, d = 2$) There is **always strong disorder**:

for any $\beta > 0$: \mathbf{P}_N^ω “very different” from \mathbf{P}^{rw}

Conj. super-diffusivity $|S_N| \gg \sqrt{N}$ under \mathbf{P}_N^ω

Macroscopic atoms $\max_{x \in \mathbb{Z}^d} \mathbf{P}_N^\omega(S_N = x) \geq c > 0$

[Carmona, Hu 02] [Comets, Shiga, Yoshida 03] [Vargas 07] [Lacoin 11] [Chatterjee 16]

Intermediate disorder

Henceforth we focus on the cases $d = 1, d = 2$

Any fixed disorder strength $\beta > 0$ has dramatic effects as $N \rightarrow \infty$

Can we tune $\beta = \beta_N \rightarrow 0$ to see an interesting transition ?

This is called **intermediate disorder regime**, because it interpolates between weak and strong disorder

(cf. near-critical percolation)

We do not focus on the probability P_N^ω but rather on **partition functions**

Partition function

Partition function (normalized)

$$Z_N^\omega = \mathbf{E}^{\text{rw}} \left[e^{\beta H_N(S, \omega)} \right] = \mathbf{E}^{\text{rw}} \left[e^{\beta \sum_{n=1}^N \omega(n, S_n)} \right] e^{-\lambda(\beta)N}$$

It amounts to redefine $Z_N^\omega \rightsquigarrow Z_N^\omega / \mathbb{E}[Z_N^\omega]$

- ▶ Z_N^ω is a positive random variable with $\mathbb{E}[Z_N^\omega] = 1$ (martingale!)
- ▶ ($d = 1, d = 2$) Strong disorder means

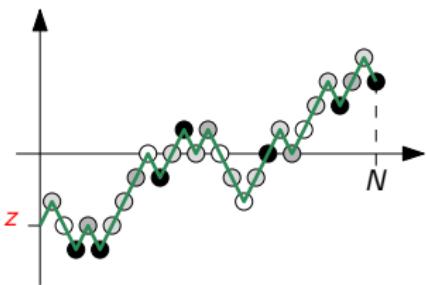
$$\forall \beta > 0: \quad \lim_{N \rightarrow \infty} Z_N^\omega = 0 \quad \mathbb{P}\text{-a.s.}$$

The random field of partition functions

$Z_N^\omega(z)$:= partition function

for RW starting at $z \in \mathbb{Z}^d$

$$= \mathbf{E}^{\text{rw}} \left[e^{\beta H_N} \mid S_0 = z \right] e^{-\lambda(\beta)N}$$



Note that $Z_N^\omega(z) \stackrel{d}{=} Z_N^\omega(0) = Z_N^\omega \xrightarrow[N \rightarrow \infty]{} 0$ for every fixed $\beta > 0$

Can we tune $\beta = \beta_N \rightarrow 0$ so that

$$Z_N^\omega(\sqrt{N}x) \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}(x) \quad (\text{random field on } \mathbb{R}^d)$$

Outline

1. Directed Polymer

2. Known Results

3. Critical Window

4. Techniques and proofs

5. Additional results

Case $d = 1$

For $d = 1$ the right scaling is $\beta_N = \frac{\hat{\beta}}{N^{1/4}}$

Theorem [Alberts, Khanin, Quastel (AOP '14)]

- ▶ Convergence in distribution

$$\mathcal{Z}_{Nt}^\omega(\sqrt{N}x) \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}_t(x)$$

- ▶ $\mathcal{Z}_t(x)$ is solution of 1d Stochastic Heat Equation (SHE)

$$\begin{cases} \partial_t \mathcal{Z} = \frac{1}{2} \Delta_x \mathcal{Z} + \hat{\beta} \mathcal{W} \mathcal{Z} \\ \mathcal{Z}_0 \equiv 1 \end{cases}$$

\mathcal{W} = Gaussian white noise on $[0, \infty) \times \mathbb{R}$

Case $d = 1$

Non-trivial limiting field: $\mathcal{Z}_t(x) > 0$ for every $\hat{\beta} \in (0, \infty)$

Corollary

Strong disorder emerges **smoothly** on the scale $\beta \propto \frac{1}{N^{1/4}}$

$$\mathbf{Z}_N^\omega \xrightarrow[N \rightarrow \infty]{d} \begin{cases} 1 & \text{if } \beta \ll \frac{1}{N^{1/4}} \\ \mathcal{Z} > 0 & \text{if } \beta \sim \frac{\hat{\beta}}{N^{1/4}} \\ 0 & \text{if } \beta \gg \frac{1}{N^{1/4}} \end{cases}$$

$\mathcal{Z}_t(x) \rightsquigarrow$ Brownian Directed Polymer in Random Environment

[Alberts, Khanin, Quastel (JSP '14)]

Case $d = 2$: marginal relevance

Henceforth we focus on $d = 2$

The right scaling is $\beta_N \sim \sqrt{\frac{\pi}{\log N}} \hat{\beta}$ [Lacoin '10] [Berger, Lacoin '15]

Logarithmic replica overlap

$$R_N := \mathbf{E}^{\text{rw}} \left[\sum_{n=1}^N \mathbf{1}_{\{S_n = S'_n\}} \right] \sim \frac{1}{\pi} \log N$$

We look again for $\mathbf{Z}_N^\omega(\sqrt{N}x) \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}(x)$

Unlike the case $d = 1$, there is a **phase transition** in $\hat{\beta}$

Phase transition

Theorem [C., Sun, Zygouras (AAP to appear)]

- ▶ For every fixed $x \in \mathbb{R}^2$

$$Z_N^\omega(\sqrt{N}x) \xrightarrow[N \rightarrow \infty]{d} \tilde{\mathcal{Z}}(x) \quad \begin{cases} > 0 \text{ a.s.} & \text{if } \hat{\beta} < 1 \\ = 0 \text{ a.s.} & \text{if } \hat{\beta} \geq 1 \end{cases}$$

- ▶ $(\hat{\beta} < 1)$ Log-normal marginals with $\mathbb{E}[\tilde{\mathcal{Z}}(x)] \equiv 1$

$$\tilde{\mathcal{Z}}(x) \stackrel{d}{=} \exp \left\{ N(0, \sigma^2) - \frac{1}{2}\sigma^2 \right\} \quad \text{with} \quad \sigma^2 = \log \frac{1}{1 - \hat{\beta}^2}$$

- ▶ $(\hat{\beta} < 1)$ Joint distributions: for any $x \neq x'$

$\tilde{\mathcal{Z}}(x)$ and $\tilde{\mathcal{Z}}(x')$ are independent (!)

[Dependence in $Z_N^\omega(z)$, $Z_N^\omega(z')$ at all scales $|z - z'| = o(\sqrt{N})$]

A different viewpoint

Recall that $\beta_N \sim \frac{\sqrt{\pi} \hat{\beta}}{\sqrt{\log N}}$

- $(\hat{\beta} < 1)$ Disorder has weak effects ($\tilde{\mathcal{Z}}(x)$ indep. of $\tilde{\mathcal{Z}}(x')$)
- $(\hat{\beta} \geq 1)$ Trivial limit $\tilde{\mathcal{Z}}(x) \equiv 0$

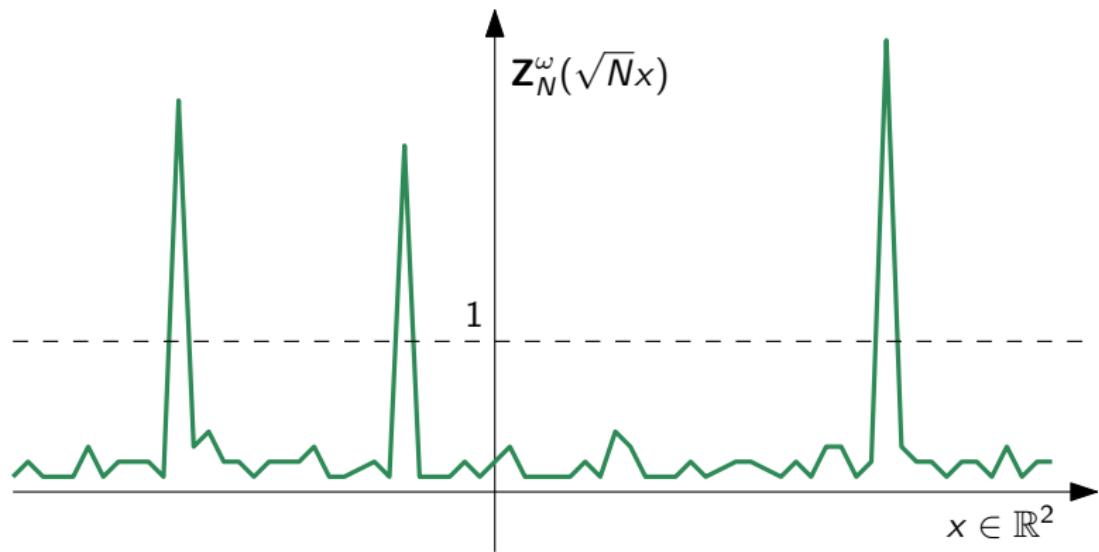
Can we obtain an interesting limit $\mathcal{Z}(x) \not\equiv 0$ for $\hat{\beta} \geq 1$?

$\mathcal{Z}_N^\omega(\sqrt{N}x)$ is an *irregular function* of $x \in \mathbb{R}^2$

~ We should look for a limit in the space of (Schwartz) **distributions**!

(Instead of distributions we can focus on measures, because $\mathcal{Z}_N^\omega \geq 0$)

Heuristic picture



Averaged partition function

Henceforth we look at $\mathbf{Z}_N^\omega(\sqrt{N}x)$ as a **random measure** on \mathbb{R}^2

For **positive** continuous $\phi : \mathbb{R}^2 \rightarrow \mathbb{R}^+$ we define

$$\langle \mathbf{Z}_N^\omega, \phi \rangle := \int_{\mathbb{R}^2} \mathbf{Z}_N^\omega(\sqrt{N}x) \phi(x) dx$$

We can revisit our results for $\hat{\beta} < 1$

Proposition

For $\hat{\beta} < 1$ we have $\mathbf{Z}_N^\omega(\sqrt{N}x) \xrightarrow[N \rightarrow \infty]{d} \mathbf{Z}(x) \equiv 1$

$$\langle \mathbf{Z}_N^\omega, \phi \rangle \xrightarrow[N \rightarrow \infty]{d} \langle 1, \phi \rangle = \int_{\mathbb{R}^2} \phi(x) dx$$

Outline

1. Directed Polymer

2. Known Results

3. Critical Window

4. Techniques and proofs

5. Additional results

What happens for $\hat{\beta} = 1$?

We now set $\hat{\beta} = 1$. More generally, we explore the critical window

$$\beta_N = \sqrt{\frac{\pi}{\log N} \left(1 + \frac{\vartheta}{\log N} \right)} \quad \text{with } \vartheta \in \mathbb{R}$$

For fixed $x \in \mathbb{R}^2$ we already know that $\mathbf{Z}_N^\omega(\sqrt{N}x) \xrightarrow{d} 0$

We now look at $\mathbf{Z}_N^\omega(\sqrt{N}x)$ as a random measure

Conjecture

$\mathbf{Z}_N^\omega(\sqrt{N}x)$ converges to a generalized random field $\mathcal{Z}(x)$ on \mathbb{R}^2

$$\langle \mathbf{Z}_N^\omega, \phi \rangle \xrightarrow[N \rightarrow \infty]{d} \langle \mathcal{Z}, \phi \rangle \quad \text{for every } \phi$$

\mathcal{Z} is a random measure on \mathbb{R}^2 (expected to be singular wrt Lebesgue)

Second moment in the critical window

What is known [Bertini, Cancrini '95 (on 2d SHE)]

Tightness via second moment bounds

$$\mathbb{E}[\langle \mathbf{Z}_N^\omega, \phi \rangle] \equiv \langle 1, \phi \rangle \quad \sup_{N \in \mathbb{N}} \mathbb{E}[\langle \mathbf{Z}_N^\omega, \phi \rangle^2] < \infty$$

More precisely

$$\text{Var}[\langle \mathbf{Z}_N^\omega, \phi \rangle] \xrightarrow[N \rightarrow \infty]{} \langle \phi, \mathbf{K} \phi \rangle < \infty$$

Explicit $\mathbf{K}(x, x') \sim C \log \frac{1}{|x - x'|}$ as $|x - x'| \rightarrow 0$

Corollary

Existence of subsequential limits $\langle \mathbf{Z}_N^\omega, \phi \rangle \xrightarrow[N \rightarrow \infty]{d} \langle \mathbf{Z}, \phi \rangle$

New results: third moment

Theorem [C., Sun, Zygouras '17+]

$$\lim_{N \rightarrow \infty} \mathbb{E} \left[\langle \mathbf{Z}_N^\omega, \phi \rangle^3 \right] = C(\phi) < \infty$$

Corollary

Any subsequential limit \mathcal{Z} has the same covariance kernel $K(x, x')$

$\rightsquigarrow \mathcal{Z} \not\equiv 1$ is non-degenerate !

- ▶ Explicit expression for $C(\phi)$ as a series of multiple integrals

Work in progress

- ▶ Uniqueness of subsequential limit \mathcal{Z} via **coarse-graining** arguments
~~ Existence of the limit $\mathbf{Z}_N^\omega \xrightarrow[N \rightarrow \infty]{d} \mathcal{Z}$
- ▶ Investigate properties of the limiting random measure \mathcal{Z}
(it looks **not so close** to Gaussian Multiplicative Chaos)

Outline

1. Directed Polymer
2. Known Results
3. Critical Window
4. Techniques and proofs
5. Additional results

Partition function and polynomial chaos

$$\begin{aligned}
 Z_N^\omega &= \mathbf{E}^{\text{rw}} \left[e^{H_N(\omega, S)} \right] = \mathbf{E}^{\text{rw}} \left[e^{\sum_{1 \leq n \leq N} \sum_{x \in \mathbb{Z}^2} (\beta \omega(n, x) - \lambda(\beta)) \mathbb{1}_{\{S_n=x\}}} \right] \\
 &= \mathbf{E}^{\text{rw}} \left[\prod_{1 \leq n \leq N} \prod_{x \in \mathbb{Z}^2} e^{(\beta \omega(n, x) - \lambda(\beta)) \mathbb{1}_{\{S_n=x\}}} \right] \\
 &= \mathbf{E}^{\text{rw}} \left[\prod_{1 \leq n \leq N} \prod_{x \in \mathbb{Z}^2} (1 + \mathbf{X}_{n,x} \mathbb{1}_{\{S_n=x\}}) \right] \\
 &= 1 + \sum_{\substack{1 \leq n \leq N \\ x \in \mathbb{Z}^2}} \mathbf{P}^{\text{rw}}(S_n = x) \mathbf{X}_{n,x} \\
 &\quad + \sum_{\substack{1 \leq n < m \leq N \\ x, y \in \mathbb{Z}^2}} \mathbf{P}^{\text{rw}}(S_n = x, S_m = y) \mathbf{X}_{n,x} \mathbf{X}_{m,y} + \dots
 \end{aligned}$$

Z_N^ω multi-linear polynomial of new RVs $\mathbf{X}_{n,x} := e^{\beta \omega(n, x) - \lambda(\beta)} - 1$

Polynomial chaos

$$\mathbb{E}[\textcolor{red}{X}_{n,x}] = 0 \quad \mathbb{V}\text{ar}[\textcolor{red}{X}_{n,x}] \sim \beta^2$$

Let us pretend $\textcolor{red}{X}_{n,x} = \beta \textcolor{red}{Y}_{n,x}$ with $(\textcolor{red}{Y}_{n,x})_{n,x}$ i.i.d. $\mathcal{N}(0, 1)$

Then $\textcolor{blue}{Z}_N^{\omega} \simeq 1 + \sum_{k=1}^{\infty} \beta^k Z_N^{(k)}$

$$Z_N^{(1)} := \sum_{\substack{1 \leq n \leq N \\ x \in \mathbb{Z}^2}} \mathbf{P}^{\text{rw}}(S_n = x) \textcolor{red}{Y}_{n,x}$$

$$Z_N^{(2)} := \sum_{\substack{1 \leq n \leq m \leq N \\ x, y \in \mathbb{Z}^2}} \mathbf{P}^{\text{rw}}(S_n = x, S_m = y) \textcolor{red}{Y}_{n,x} \textcolor{red}{Y}_{m,y}$$

The choice of β

$Z_N^{(1)}$ is Gaussian with variance given by the replica overlap R_N :

$$\begin{aligned}\mathbb{V}\text{ar}[Z_N^{(1)}] &= \sum_{1 \leq n \leq N} \sum_{x \in \mathbb{Z}^2} \mathbf{P}^{\text{rw}}(S_n = x)^2 = \sum_{1 \leq n \leq N} \mathbf{P}^{\text{rw}}(S_n = S'_n) \\ &\sim \frac{1}{\pi} \sum_{1 \leq n \leq N} \frac{1}{n} \sim \frac{\log N}{\pi}\end{aligned}$$

To normalize $\beta Z_N^{(1)}$ we choose $\beta = \frac{\hat{\beta}}{\sqrt{\frac{\log N}{\pi}}}$

Similarly $\mathbb{V}\text{ar}[Z_N^{(2)}] \sim \frac{1}{\pi^2} \sum_{1 \leq n < m \leq N} \frac{1}{n} \frac{1}{m-n} \lesssim \left(\frac{\log N}{\pi}\right)^2$

Variance bounds for $\hat{\beta} < 1$

More generally

$$\mathbb{V}\text{ar}[Z_N^{(k)}] \lesssim \left(\frac{\log N}{\pi} \right)^k \quad (*)$$

For $\hat{\beta} < 1$

$$\begin{aligned} \mathbb{V}\text{ar}[Z_N^\omega] &\lesssim \sum_{k=1}^{\infty} (\hat{\beta}^2)^k \mathbb{V}\text{ar}[Z_N^{(k)}] \\ &\lesssim \sum_{k=1}^{\infty} \left(\frac{\hat{\beta}^2}{\frac{\log N}{\pi}} \right)^k \left(\frac{\log N}{\pi} \right)^k \lesssim \sum_{k=1}^{\infty} \hat{\beta}^{2k} < \infty \end{aligned}$$

To deal with $\hat{\beta} = 1$ we need to refine $(*)$

Sharp asymptotics

Lemma

$$\begin{aligned}\mathbb{V}\text{ar}[Z_N^{(k)}] &\sim \sum_{0 < n_1 < \dots < n_k \leq N} \frac{1}{n_1} \frac{1}{n_2 - n_1} \dots \frac{1}{n_k - n_{k-1}} \\ &\sim \left(\frac{\log N}{\pi} \right)^k \mathbf{P} \left(\mathcal{T}_{\frac{k}{\log N}} \leq 1 \right)\end{aligned}$$

- $(\mathcal{T}_s)_{s \geq 0}$ increasing Lévy process (subordinator) with Lévy measure

$$\nu(dt) = \frac{1}{t} \mathbb{1}_{(0,1)}(t)$$

- One can compute $\mathbf{P}(\mathcal{T}_s \leq 1) = \frac{e^{-\gamma s}}{\Gamma(1+s)}$

Variance and covariances in the critical window

Variance

For $\hat{\beta} = 1$

$$\mathbb{V}\text{ar}[\mathbf{Z}_N^\omega] \sim \sum_{k=1}^{\infty} \mathbf{P}\left(\mathbf{T}_{\frac{k}{\log N}} \leq 1\right) \sim C \log N$$

where

$$C := \int_0^{\infty} \mathbf{P}(\mathbf{T}_s \leq 1) ds = \int_0^{\infty} \frac{e^{-\gamma s}}{\Gamma(1+s)} ds$$

Covariances

$$\mathbb{C}\text{ov}[\mathbf{Z}_N^\omega(x), \mathbf{Z}_N^\omega(x')] \sim K(x, x')$$

$$= \int_0^1 \frac{e^{-\frac{|x'-x|^2}{2t}}}{2t} \left(\int_0^{\infty} \frac{e^{-\gamma s} (1-t)^s}{\Gamma(1+s)} ds \right) dt$$

Third moment in the critical window

$\langle \mathbf{Z}_N^\omega, \phi \rangle$ is multilinear polynomial (sum of products) of i.i.d. RVs $\mathbf{X}_{n,x}$

$$\langle \mathbf{Z}_N^\omega, \phi \rangle = \sum_{I \subseteq \{1, \dots, N\} \times \mathbb{Z}^2} c(I) \prod_{(n,x) \in I} \mathbf{X}_{n,x}$$

for suitable $c(I) = c(I, N, \phi)$

- ▶ Expand $\mathbb{E}[\langle \mathbf{Z}_N^\omega, \phi \rangle^3]$ in 3 sums
- ▶ \mathbf{X} 's from different sums match in pairs or triples (by $\mathbb{E}[\mathbf{X}_{n,x}] = 0$)
- ▶ Triple matchings give negligible contribution

Pairwise matching of the \mathbf{X} 's \rightsquigarrow highly non-trivial, yet manageable combinatorial structure \rightsquigarrow sharp asymptotics for $\mathbb{E}[\langle \mathbf{Z}_N^\omega, \phi \rangle^3]$

Thanks

Outline

1. Directed Polymer

2. Known Results

3. Critical Window

4. Techniques and proofs

5. Additional results

Multi-scale correlations for $\hat{\beta} < 1$

Theorem

Fix $\hat{\beta} < 1$ and

$$|z - z'| \asymp N^\zeta \quad \zeta \in [0, \frac{1}{2}]$$

Then

$$(\mathbf{Z}_N^\omega(z), \mathbf{Z}_N^\omega(z')) \xrightarrow[N \rightarrow \infty]{d} \left(e^{Y - \frac{1}{2}\text{Var}[Y]}, e^{Y' - \frac{1}{2}\text{Var}[Y']} \right)$$

- ▶ Y, Y' jointly Normal with variance $\sigma^2 = \log \frac{1}{1 - \hat{\beta}^2}$
- ▶ $\text{Cov}[Y, Y'] = \log \frac{1 - (2\zeta)\hat{\beta}^2}{1 - \hat{\beta}^2}$

Path diffusivity for $\hat{\beta} < 1$

Diffusivity

- Central Limit Theorem

$$\mathbf{P}_N^\omega \left(\frac{S_N}{\sqrt{N}} \in \cdot \right) \xrightarrow[N \rightarrow \infty]{d} N(0, 1) \quad \text{in } \mathbb{P}(d\omega)\text{-probability}$$

- Local Limit Theorem with **random corrections**

$$(\sqrt{N})^2 \mathbf{P}_N^\omega \left(S_N = \lfloor x\sqrt{N} \rfloor \right) \xrightarrow[N \rightarrow \infty]{d} e^{Y_x - \frac{1}{2} \text{Var}[Y_x]} \frac{e^{-|x|^2/2}}{2\pi}$$

Partition function fluctuations for $\hat{\beta} < 1$

For $\hat{\beta} < 1$ $\mathbf{Z}_N^{\omega}(\sqrt{N}x) \xrightarrow[N \rightarrow \infty]{\mathbb{P}} 1$ (as a Schwartz distribution on \mathbb{R}^2)

This can be viewed as a LLN. Here is the corresponding CLT.

Theorem [C., Sun, Zygouras (AAP to appear)]

$$\mathbf{Z}_N^{\omega}(\sqrt{N}x) \stackrel{d}{\approx} 1 + \frac{1}{\sqrt{\log N}} \mathbf{G}(x) \quad \text{in } \mathcal{S}'$$

where $\mathbf{G}(x)$ is a generalized Gaussian field on \mathbb{R}^2 with

$$\mathbb{C}\text{ov} [\mathbf{G}(x), \mathbf{G}(x')] \sim C \log \frac{1}{|x - x'|}$$

More precisely

$$\left\langle \sqrt{\log N} (\mathbf{Z}_N^{\omega}(\sqrt{N} \cdot) - 1), \phi \right\rangle \xrightarrow[N \rightarrow \infty]{d} \langle \mathbf{G}, \phi \rangle \quad \forall \phi \in C_0(\mathbb{R}^2)$$

Second moment in the critical window

Theorem (variance vs. covariances)

- ▶ $\text{Var}[\mathbf{Z}_N^\omega(\sqrt{N}x)] \simeq \log N \rightarrow \infty$
- ▶ $\text{Cov}[\mathbf{Z}_N^\omega(\sqrt{N}x), \mathbf{Z}_N^\omega(\sqrt{N}x')] \xrightarrow[N \rightarrow \infty]{} \mathbf{K}(x, x') < \infty$

$$\mathbf{K}(x, x') \sim C \log \frac{1}{|x - x'|} \quad \text{as } |x - x'| \rightarrow 0$$

Corollary

$$\text{Var}[\langle \mathbf{Z}_N^\omega, \phi \rangle] \xrightarrow[N \rightarrow \infty]{} \langle \phi, \mathbf{K} \phi \rangle < \infty$$

Explicit kernel: $\mathbf{K}(x, x') = \int_0^1 \frac{1}{2t} e^{-\frac{|x' - x|^2}{2t}} \left(\int_0^\infty \frac{e^{(\pi\vartheta - \gamma)s} (1-t)^s}{\Gamma(1+s)} ds \right) dt$

The 2d Stochastic Heat Equation

$$\begin{cases} \partial_t u(t, x) = \frac{1}{2} \Delta_x u(t, x) + \beta \dot{W}(t, x) u(t, x) \\ u(0, x) \equiv 1 \end{cases}$$

where $W(dt, dx)$ is Gaussian white noise on $[0, \infty) \times \mathbb{R}^2$

Mollified noise: $W_\delta(dt, x) := \int_{y \in \mathbb{R}^2} \frac{1}{\delta} j\left(\frac{x-y}{\sqrt{\delta}}\right) W(dt, dy)$

Mollified solution $u_\delta(t, x) \stackrel{d}{\approx} Z_{Nt}^\omega(\sqrt{N}x)$ for $N = \frac{1}{\delta}$

Generalized Feynman-Kac Formula

[Bertini, Cancrini '95]

$$u_\delta(t, x) \stackrel{d}{=} \mathbf{E}^{\text{BM}} \left[\exp \left\{ \int_0^{\frac{t}{\delta}} \left(\beta W_1(ds, B_s) - \frac{1}{2} \beta^2 ds \right) \right\} \middle| B_{\frac{t}{\delta}} = \frac{x}{\sqrt{\delta}} \right]$$