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Overview

I am going to talk about

◮ Directed Polymer in Random Environment in dim. d = 2

Our results also apply to other marginally relevant disordered systems

◮ Pinning Model with tail exponent α = 1/2

◮ Directed Polymer with Cauchy tails in dim. d = 1

◮ Stochastic Heat Equation (SHE) with d = 2
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Directed Polymer in Random Environment

Sn

N

◮ Reference Model: simple random walk on Zd

(Sn)n≥0 P
rw(Sn − Sn−1 = ±ei ) =

1
2d

◮ Disorder: i.i.d. random variables ω(n, x)

zero mean, unit variance, expon. moments

λ(β) := logE[eβω(n,x)] < ∞

◮ (-) Hamiltonian HN(S , ω) :=

N
∑

n=1

ω(n, Sn)

Directed Polymer in Random Environment P
ω
N = P

ω
N,β

dPω
N(S1, . . . , SN)

dPrw(S1, . . . , SN)
∝ eβHN (S,ω) =

eβHN (S,ω)

Z
ω
N
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Weak and strong disorder

◮ (d ≥ 3) There is a weak disorder phase: ∃βc > 0 such that

for 0 ≤ β < βc P
ω
N is “similar” to P

rw

CLT P
ω
N

(

SN√
N

∈ ·
)

d−−−−→
N→∞

N (0, 1)

[Imbrie, Spencer 88] [Bolthausen 89] [Comets, Yoshida 06] [Chatterjee 16]

◮ (d = 1, d = 2) There is always strong disorder:

for any β > 0: P
ω
N “very different” from P

rw

Conj. super-diffusivity |SN | ≫
√
N under Pω

N

Macroscopic atoms max
x∈Zd

P
ω
N

(

SN = x
)

≥ c > 0

[Carmona, Hu 02] [Comets, Shiga, Yoshida 03] [Vargas 07] [Lacoin 11] [Chatterjee 16]
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Intermediate disorder

Henceforth we focus on the cases d = 1, d = 2

Any fixed disorder strength β > 0 has dramatic effects as N → ∞

Can we tune β = βN → 0 to see an interesting transition ?

This is called intermediate disorder regime, because it interpolates
between weak and strong disorder

(cf. near-critical percolation)

We do not focus on the probability P
ω
N but rather on partition functions
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Partition function

Partition function (normalized)

Z
ω
N = E

rw

[

eβHN (S,ω)
]

= E
rw

[

eβ
∑N

n=1 ω(n,Sn)
]

e−λ(β)N

It amounts to redefine Z
ω
N  Z

ω
N /E[Zω

N ]

◮ Z
ω
N is a positive random variable with E[Zω

N ] = 1 (martingale!)

◮ (d = 1, d = 2) Strong disorder means

∀β > 0: lim
N→∞

Z
ω
N = 0 P-a.s.
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The random field of partition functions

Z
ω
N(z) := partition function

for RW starting at z ∈ Z
d

= E
rw

[

eβHN

∣

∣

∣
S0 = z

]

e−λ(β)N
N

z

Note that Z
ω
N(z)

d
= Z

ω
N(0) = Z

ω
N −−−−→

N→∞
0 for every fixed β > 0

Can we tune β = βN → 0 so that

Z
ω
N(

√
N x)

d−−−−→
N→∞

Z(x) (random field on R
d)
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Case d = 1

For d = 1 the right scaling is βN =
β̂

N1/4

Theorem [Alberts, Khanin, Quastel (AOP ’14)]

◮ Convergence in distribution

Z
ω
Nt(

√
Nx)

d−−−−−→
N→∞

Zt(x)

◮ Zt(x) is solution of 1d Stochastic Heat Equation (SHE)






∂tZ = 1
2∆xZ + β̂ Ẇ Z

Z0 ≡ 1

W = Gaussian white noise on [0,∞)× R
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Case d = 1

Non-trivial limiting field: Zt(x) > 0 for every β̂ ∈ (0,∞)

Corollary

Strong disorder emerges smoothly on the scale β ∝ 1

N1/4

Z
ω
N

d−−−−−→
N→∞



















1 if β ≪ 1
N1/4

Z > 0 if β ∼ β̂
N1/4

0 if β ≫ 1
N1/4

Zt(x)  Brownian Directed Polymer in Random Environment

[Alberts, Khanin, Quastel (JSP ’14)]
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Case d = 2: marginal relevance

Henceforth we focus on d = 2

The right scaling is βN ∼
√

π

logN
β̂ [Lacoin ’10] [Berger, Lacoin ’15]

Logarithmic replica overlap

RN := E
rw

[

N
∑

n=1

1{Sn=S′
n}

]

∼ 1

π
logN

We look again for Z
ω
N(

√
Nx)

d−−−−→
N→∞

Z(x)

Unlike the case d = 1 , there is a phase transition in β̂
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Phase transition

Theorem [C., Sun, Zygouras (AAP to appear)]

◮ For every fixed x ∈ R2

Z
ω
N(

√
Nx)

d−−−−−→
N→∞

Z̃(x)

{

> 0 a.s. if β̂ < 1

= 0 a.s. if β̂ ≥ 1

◮ (β̂ < 1) Log-normal marginals with E[Z̃(x)] ≡ 1

Z̃(x)
d
= exp

{

N(0, σ2)− 1
2σ

2
}

with σ2 = log
1

1− β̂2

◮ (β̂ < 1) Joint distributions: for any x 6= x ′

Z̃(x) and Z̃(x ′) are independent (!)

[ Dependence in Z
ω
N(z), Z

ω
N(z

′) at all scales |z − z
′| = o(

√
N) ]
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A different viewpoint

Recall that βN ∼
√
π β̂√
logN

◮ (β̂ < 1) Disorder has weak effects (Z̃(x) indep. of Z̃(x ′))

◮ (β̂ ≥ 1) Trivial limit Z̃(x) ≡ 0

Can we obtain an interesting limit Z(x) 6≡ 0 for β̂ ≥ 1 ?

Z
ω
N(

√
Nx) is an irregular function of x ∈ R2

 We should look for a limit in the space of (Schwartz) distributions !

(Instead of distributions we can focus on measures, because Z
ω
N ≥ 0)
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Heuristic picture

x ∈ R
2

Z
ω

N
(
√
Nx)

1
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Averaged partition function

Henceforth we look at Z
ω
N(

√
Nx) as a random measure on R2

For positive continuous φ : R2 → R+ we define

〈Zω
N , φ〉 :=

∫

R2

Z
ω
N(

√
Nx)φ(x) dx

We can revisit our results for β̂ < 1

Proposition

For β̂ < 1 we have Z
ω
N(

√
Nx)

d−→ Z(x) ≡ 1

〈Zω
N , φ〉 d−−−−−→

N→∞
〈1 , φ〉 =

∫

R2

φ(x) dx
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What happens for β̂ = 1 ?

We now set β̂ = 1. More generally, we explore the critical window

βN =

√

π

logN

(

1 +
ϑ

logN

)

with ϑ ∈ R

For fixed x ∈ R2 we already know that Z
ω
N(

√
Nx)

d−→ 0

We now look at Z
ω
N(

√
Nx) as a random measure

Conjecture

Z
ω
N(

√
Nx) converges to a generalized random field Z(x) on R2

〈Zω
N , φ〉 d−−−−→

N→∞
〈Z , φ〉 for every φ

Z is a random measure on R2 (expected to be singular wrt Lebesgue)
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Second moment in the critical window

What is known [Bertini, Cancrini ’95 (on 2d SHE)]

Tightness via second moment bounds

E
[

〈Zω
N , φ〉

]

≡
〈

1, φ
〉

sup
N∈N

E
[

〈Zω
N , φ〉2

]

< ∞

More precisely Var
[

〈Zω
N , φ〉

]

−−−−→
N→∞

〈

φ,Kφ
〉

< ∞

Explicit K
(

x , x ′
)

∼ C log
1

|x − x ′| as |x − x ′| → 0

Corollary

Existence of subsequential limits 〈Zω
N , φ〉 d−−−−→

N→∞
〈Z , φ〉
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New results: third moment

Theorem [C., Sun, Zygouras ’17+]

lim
N→∞

E

[

〈Zω
N , φ〉3

]

= C (φ) < ∞

Corollary

Any subsequential limit Z has the same covariance kernel K (x , x ′)

 Z 6≡ 1 is non-degenerate !

◮ Explicit expression for C (φ) as a series of multiple integrals
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Work in progress

◮ Uniqueness of subsequential limit Z via coarse-graining arguments

 Existence of the limit Z
ω
N

d−−−−→
N→∞

Z

◮ Investigate properties of the limiting random measure Z
(it looks not so close to Gaussian Multiplicative Chaos)

Francesco Caravenna Marginally relevant polymer models 6 June 2017



Directed Polymer Known Results Critical Window Techniques Additional results

Outline

1. Directed Polymer

2. Known Results

3. Critical Window

4. Techniques and proofs

5. Additional results

Francesco Caravenna Marginally relevant polymer models 6 June 2017



Directed Polymer Known Results Critical Window Techniques Additional results

Partition function and polynomial chaos

Z
ω
N = E

rw

[

eHN (ω,S)
]

= E
rw

[

e
∑

1≤n≤N

∑
x∈Z2 (βω(n,x)−λ(β)) 1{Sn=x}

]

= E
rw

[

∏

1≤n≤N

∏

x∈Z2

e(βω(n,x)−λ(β)) 1{Sn=x}

]

= E
rw

[

∏

1≤n≤N

∏

x∈Z2

(

1 + X n,x 1{Sn=x}
)

]

= 1 +
∑

1≤n≤N

x∈Z
2

P
rw(Sn = x)X n,x

+
∑

1≤n<m≤N

x,y∈Z
2

P
rw(Sn = x , Sm = y)X n,x Xm,y + . . .

Z
ω
N multi-linear polynomial of new RVs X n,x := eβω(n,x)−λ(β) − 1
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Polynomial chaos

E[X n,x ] = 0 Var[X n,x ] ∼ β2

Let us pretend X n,x = β Y n,x with
(

Y n,x

)

n,x
i.i.d. N (0, 1)

Then Z
ω
N ≃ 1 +

∞
∑

k=1

βk Z
(k)
N

Z
(1)
N :=

∑

1≤n≤N

x∈Z
2

P
rw(Sn = x)Y n,x

Z
(2)
N :=

∑

1≤n≤m≤N

x,y∈Z
2

P
rw(Sn = x , Sm = y)Y n,x Ym,y
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The choice of β

Z
(1)
N is Gaussian with variance given by the replica overlap RN :

Var[Z
(1)
N ] =

∑

1≤n≤N

∑

x∈Z2

P
rw(Sn = x)2 =

∑

1≤n≤N

P
rw(Sn = S ′

n)

∼ 1

π

∑

1≤n≤N

1

n
∼ logN

π

To normalize β Z
(1)
N we choose β =

β̂
√

logN
π

Similarly Var[Z
(2)
N ] ∼ 1

π2

∑

1≤n<m≤N

1

n

1

m − n
.

(

logN

π

)2
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Variance bounds for β̂ < 1

More generally

Var
[

Z
(k)
N

]

.

(

logN

π

)k

(⋆)

For β̂ < 1

Var
[

Z
ω
N

]

.

∞
∑

k=1

(β2)k Var
[

Z
(k)
N

]

.

∞
∑

k=1

(

β̂2

logN
π

)k
(

logN
π

)k
.

∞
∑

k=1

β̂2k < ∞

To deal with β̂ = 1 we need to refine (⋆)
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Sharp asymptotics

Lemma

Var
[

Z
(k)
N

]

∼
∑

0<n1<...<nk≤N

1

n1

1

n2 − n1
· · · 1

nk − nk−1

∼
(

logN

π

)k

P

(

T k
log N

≤ 1
)

◮ (T s)s≥0 increasing Lévy process (subordinator) with Lévy measure

ν(dt) =
1

t
1(0,1)(t)

◮ One can compute P(T s ≤ 1) =
e−γs

Γ(1 + s)
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Variance and covariances in the critical window

Variance

For β̂ = 1 Var
[

Z
ω
N

]

∼
∞
∑

k=1

P

(

T k
log N

≤ 1
)

∼ C logN

where C :=

∫

∞

0

P(T s ≤ 1) ds =

∫

∞

0

e
−γs

Γ(1 + s)
ds

Covariances

Cov
[

Z
ω
N(x), Z

ω
N(x

′)
]

∼ K
(

x , x ′
)

=

∫ 1

0

e−
|x′−x|2

2t

2t

(
∫ ∞

0

e−γs (1− t)s

Γ(1 + s)
ds

)

dt
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Third moment in the critical window

〈Zω
N , φ〉 is multilinear polynomial (sum of products) of i.i.d. RVs X n,x

〈Zω
N , φ〉 =

∑

I⊆{1,...,N}×Z2

c(I )
∏

(n,x)∈I

X n,x

for suitable c(I ) = c(I ,N, φ)

◮ Expand E[〈Zω
N , φ〉3] in 3 sums

◮ X ’s from different sums match in pairs or triples (by E[X n,x ] = 0)

◮ Triple matchings give negligible contribution

Pairwise matching of the X ’s  highly non-trivial, yet manageable

combinatorial structure  sharp asymptotics for E[〈Zω
N , φ〉3]

Francesco Caravenna Marginally relevant polymer models 6 June 2017



Directed Polymer Known Results Critical Window Techniques Additional results

Thanks
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Multi-scale correlations for β̂ < 1

Theorem

Fix β̂ < 1 and

|z − z ′| ≍ Nζ ζ ∈ [0, 1
2 ]

Then

(

Z
ω
N(z) , Z

ω
N(z

′)
) d−−−−→

N→∞

(

eY− 1
2Var[Y ] , eY

′− 1
2Var[Y ′]

)

◮ Y , Y ′ jointly Normal with variance σ2 = log 1
1−β̂2

◮ Cov
[

Y ,Y ′] = log 1−(2ζ) β̂2

1−β̂2
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Path diffusivity for β̂ < 1

Diffusivity

◮ Central Limit Theorem

P
ω
N

(

SN√
N

∈ ·
)

d−−−−−→
N→∞

N(0, 1) in P(dω)-probability

◮ Local Limit Theorem with random corrections

(
√
N
)2

P
ω
N

(

SN = ⌊x
√
N⌋

)

d−−−−−→
N→∞

eY x− 1
2Var[Y x ]

e−|x|2/2

2π
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Partition function fluctuations for β̂ < 1

For β̂ < 1 Z
ω
N(

√
Nx)

P−−−−−→
N→∞

1 (as a Schwartz distribution on R2)

This can be viewed as a LLN. Here is the corresponding CLT.

Theorem [C., Sun, Zygouras (AAP to appear)]

Z
ω
N(

√
Nx)

d≈ 1 +
1√
logN

G (x) in S ′

where G (x) is a generalized Gaussian field on R2 with

Cov
[

G (x),G (x ′)
]

∼ C log
1

|x − x ′|

More precisely

〈

√

logN
(

Z
ω
N(

√
N · )− 1

)

, φ
〉

d−−−−−→
N→∞

〈G , φ〉 ∀ φ ∈ C0(R
2)
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Second moment in the critical window

Theorem (variance vs. covariances)

◮ Var[Zω
N(

√
Nx)] ≃ logN → ∞

◮ Cov[Zω
N(

√
Nx) , Z

ω
N(

√
Nx ′)] −−−−−→

N→∞
K
(

x , x ′
)

< ∞

K
(

x , x ′
)

∼ C log 1
|x−x′| as |x − x ′| → 0

Corollary

Var
[

〈Zω
N , φ〉

]

−−−−→
N→∞

〈

φ,Kφ
〉

< ∞

Explicit kernel: K
(

x , x
′
)

=

∫ 1

0

1

2t
e
−

|x′−x|2

2t

(
∫

∞

0

e
(πϑ−γ)s (1− t)s

Γ(1 + s)
ds

)

dt
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The 2d Stochastic Heat Equation







∂tu(t, x) =
1
2∆xu(t, x) + β Ẇ (t, x) u(t, x)

u(0, x) ≡ 1

where W (dt, dx) is Gaussian white noise on [0,∞)× R2

Mollified noise: W δ(dt, x) :=

∫

y∈R2

1
δ j

(

x−y√
δ

)

W (dt, dy)

Mollified solution uδ(t, x)
d≈ Z

ω
Nt(

√
Nx) for N =

1

δ

Generalized Feynman-Kac Formula [Bertini, Cancrini ’95]

uδ(t, x)
d
= E

BM

[

exp

{
∫ t

δ

0

(

βW 1(ds,Bs) − 1
2β

2 ds
)

} ∣

∣

∣

∣

B t
δ
= x√

δ

]
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