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Summary

We consider statistical mechanics models defined on a lattice, in which
disorder (quenched randomness) enters as an external random field

General framework illustrated by 3 concrete examples

1. Random-field Ising model (Ising)

2. Directed polymer in random environment (DPRE)

3. Disordered pinning models (Pinning)

The goal is to study their scaling limits, in a suitable continuum and
weak disorder regime

(Inspired by recent work of Alberts, Quastel and Khanin on DPRE)
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Outline

1. Disordered Systems and their Scaling Limits

2. Partition Function

3. The marginal regime

4. Further Developments
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General Framework

I Lattice 
 ⊆ Rd  “spins” σ = (σx)x∈
 σx = ±1 or σx ∈ {0, 1}

I Reference law Pref

 (σ) on “spin configurations” (non trivial law!)

I Disorder (ωx)x∈Zd i.i.d. random variables (independent of σ)

E[ωx ] = 0 Var[ωx ] = 1 E[etωx ] <∞ for small |t|

(λωx + h)x∈Zd disorder with strength λ > 0 and bias h ∈ R

Disordered law Pω

,λ,h

Random

Gibbs measure on spin configurations σ

(indexed by disorder ω)

Pω
,λ,h(σ) ∝

exp

(∑
x∈


(λωx + h)σx

)

Pref

 (σ)

Zω

,λ,h = Eref


 [e
∑

x∈
(λωx+h)σx ] (Partition function)
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1. Random field Ising model
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I Lattice 
 := {−N, . . . ,N} × {−N, . . . ,N}

I Reference law: critical 2d Ising model
with “+” boundary conditions

Pref

 (σ) ∝ exp

(
βc

∑
x∼y∈


σxσy

)
σx = ±1, βc = 1

2 log(1 +
√

2)

Disordered law: random field Ising model

Pω
,λ,h(σ) =
1

Zω

,λ,h

e
∑

x∈
(λωx+h)σx Pref

 (σ)
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2. Directed polymer in random environment (DPRE)

I Lattice 
 := {1, . . . ,N} × Z

I Reference law: symmetric random walk on Z

X = (Xn)n≥0

attracted to α-stable Lévy processVarref(X1) <∞ if α = 2

Pref
(
|X1| > x

)
∼ C

xα
if α ∈ (0, 2)

Spins? σn,x := 1{Xn=x} ∈ {0, 1} (long-range correlations)

Disordered law: directed polymer in random environment

Pω
,λ,h(X ) =
1

Zω

,λ

e
∑

(n,x)∈
(λω(n,x)+h)1{Xn=x} Pref(X )
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attracted to α-stable Lévy processVarref(X1) <∞ if α = 2

Pref
(
|X1| > x

)
∼ C

xα
if α ∈ (0, 2)

Spins? σn,x := 1{Xn=x} ∈ {0, 1} (long-range correlations)

Disordered law: directed polymer in random environment

Pω
,λ,h(X ) =
1

Zω

,λ

e
∑

(n,x)∈
(λω(n,x)+h)1{Xn=x} Pref(X )

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 7 / 38



Disordered Systems Partition Function The marginal regime Further Developments

2. Directed polymer in random environment (DPRE)

I Lattice 
 := {1, . . . ,N} × Z

I Reference law: symmetric random walk on Z

X = (Xn)n≥0
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3. Disordered pinning model (Pinning)

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

I Lattice 
 := {1, . . . ,N}

I Reference law: renewal process τ = {0 = τ0 < τ1 < τ2 < . . .} ⊆ N0

Pref
(
(τi+1 − τi ) = n

)
∼ C

n1+α
, tail exponent α ∈ (0, 1)

Spins? σn := 1{n∈τ} ∈ {0, 1} (long-range correlations)

Disordered law: disordered pinning model

Pω
,λ,h(τ) =
1

Zω

,λ,h

e
∑N

n=1(λωn+h)1{n∈τ} Pref(τ)
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Continuum limit?

Fix Ω ⊂ Rd bounded open with smooth boundary, and consider the lattice


δ := Ω ∩ (δZ)d

i.e. rescale space by a factor δ > 0 (in the examples δ = 1
N )

Common feature of the examples

Rescaled spins (δ−γσx)x∈
δ under Pref

δ , for suitable exponent γ > 0,

converge to (distribution-valued) “continuum field” (σx)x∈Ω of law Pref
Ω

I Ising: [Camia, Garban, Newman ’12], [Chelkak, Hongler, Izyurov ’12]

I DPRE: random walk X  Lévy process X

I Pinning: renewal processes τ  regenerative set τ

Does the disordered model Pω
δ,λ,h admit a non-trivial continuum limit?
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I Pinning: renewal processes τ  regenerative set τ

Does the disordered model Pω
δ,λ,h admit a non-trivial continuum limit?

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 9 / 38



Disordered Systems Partition Function The marginal regime Further Developments

Continuum limit?

Fix Ω ⊂ Rd bounded open with smooth boundary, and consider the lattice


δ := Ω ∩ (δZ)d

i.e. rescale space by a factor δ > 0 (in the examples δ = 1
N )

Common feature of the examples

Rescaled spins (δ−γσx)x∈
δ under Pref

δ , for suitable exponent γ > 0,

converge to (distribution-valued) “continuum field” (σx)x∈Ω of law Pref
Ω

I Ising: [Camia, Garban, Newman ’12], [Chelkak, Hongler, Izyurov ’12]

I DPRE: random walk X  Lévy process X

I Pinning: renewal processes τ  regenerative set τ

Does the disordered model Pω
δ,λ,h admit a non-trivial continuum limit?

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 9 / 38



Disordered Systems Partition Function The marginal regime Further Developments

A naive approach

Recall the definition of the (discrete) disordered law:

Pω
δ,λ,h(dσ) ∝

exp

( ∑
x∈
δ

(λωx + h)σx

)

Pref

δ (dσ)

I Replace discrete spins Pref

δ (dσ) with continuum spins Pref

Ω (dσ)

I Replace discrete disorder (ωx)x∈
δ by White noise (dWx)x∈Ω

exp

(∫
Ω

(λdWx + h dx)σx

)

This expression makes no sense, because σx is distribution-valued

Difficulty is substantial: Pω
Ω,λ,h can be singular w.r.t. Pref

Ω !
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Disordered Systems Partition Function The marginal regime Further Developments

A way out: the partition function

Forget the random probability Pω
δ,λ,h and focus on the partition function

Zω

δ,λ,h = Eref

[
exp

( ∑
x∈
δ

(λωx + h)σx

)]

which is “just” a random number (i.e. a real random variable)

Zω

δ,λ,h

is a complicated function of i.i.d. random variables (ωx)x∈
δ

DPRE: Zω

δ,λ,h = Eref

[
exp

(
N∑

n=1

(
λω(n,Xn) + h

))]
We sample the ωx ’s along a path of the random walk (Xn)n≥0

Main question: scaling limit of Zω

δ,λ,h

Does Zω

δ,λ,h

have a (non-trivial) limit in distribution as δ ↓ 0,

letting λ, h→ 0 at suitable rates? (Continuum and weak disorder regime)
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Disordered Systems Partition Function The marginal regime Further Developments

Why should we care?

I Techniques to study Zω

δ,λ,h

are general and model independent

I Scaling limit of Zω

δ,λ,h

encodes large-scale properties of Pω
δ,λ,h

It leads to sharp predictions/conjectures on the asymptotic behavior
of free energy and critical curve, in the weak disorder regime

I Dream: scaling limit of Zω

δ,λ,h

 scaling limit of Pω
δ,λ,h ?

YES, for Pinning and DPRE! (Hopefully for Ising too)

The “f.d.d.” of the law Pω
δ,λ,h can be reconstructed from Zω

δ,λ,h
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Outline

1. Disordered Systems and their Scaling Limits

2. Partition Function

3. The marginal regime

4. Further Developments
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Disordered Systems Partition Function The marginal regime Further Developments

Assumptions on the reference law

k-point function Eref

δ [σx1 · · ·σxk ] defined on (
δ)k  extended on Ωk

Key assumption on the reference law

The k-point functions of Pref

δ converge in L2 under polynomial rescaling

∃γ > 0 :
Eref

δ [σx1 · · ·σxk ]

(δγ)k
−−−→
δ↓0

ψ
(k)
Ω (x1, . . . , xk) (?)

Convergence is in L2(
⋃

k∈N Ωk) with respect to
∑

k∈N ‖ . . . ‖2
L2(Ωk )

Pointwise convergence in (?) leads to ψ
(k)
Ω (x1, . . . , xk) ≈ |xi − xj |−γ

L2 convergence requires γ <
d

2
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Disordered Systems Partition Function The marginal regime Further Developments

An example: Pinning

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

Set δ = 1
N . Note that k-point function are explicit:

Eref [σx ] = Pref(τ visits x) =: u(x)

Eref [σx1 · · ·σxk ] = Pref(τ visits x1, x2, . . . , xk) =
k∏

i=1

u(xi − xi−1)

Since u(x) ∼ c

x1−α (renewal theory), rescaled k-point function converges to

ψ
(k)
Ω (x1, . . . , xk) =

ck

x1−α
1 (x2 − x1)1−α · · · (xk − xk−1)1−α

To have L2 conv., α ∈ ( 1
2 , 1)  Harris criterion for disorder relevance!
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ck

x1−α
1 (x2 − x1)1−α · · · (xk − xk−1)1−α

To have L2 conv., α ∈ ( 1
2 , 1)  Harris criterion for disorder relevance!
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Disordered Systems Partition Function The marginal regime Further Developments

Main result (I): partition function

Theorem [C., Sun, Zygouras ’13]

Let Pref
Ωδ satisfy (?) with exponent γ (dimension d). Assume σx ∈ {0, 1}.

The partition function has a non-trivial limit in law: Zω

δ,λ,h

δ↓0
=⇒ ZW

Ω;λ̂,ĥ

provided we scale λ, h→ 0 as follows:

λ := λ̂ δd/2−γ h := ĥ δd−γ − 1
2λ

2 (λ̂, ĥ fixed)

The limit ZW
Ω;λ̂,ĥ

is explicit function of W (dx) := white noise on Rd :

ZW
Ω;λ̂,ĥ

:=
∞∑
k=0

1

k!

∫
· · ·
∫

Ωk

ψ
(k)
Ω (x1, . . . , xk)

k∏
i=1

(
λ̂W (dxi ) + ĥ dxi

)
Wiener chaos expansion (converging in L2−)

Case σx ∈ {−1, 1}: minor modifications
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)
Wiener chaos expansion (converging in L2−)

Case σx ∈ {−1, 1}: minor modifications

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 16 / 38



Disordered Systems Partition Function The marginal regime Further Developments

Main result (I): partition function

Theorem [C., Sun, Zygouras ’13]

Let Pref
Ωδ satisfy (?) with exponent γ (dimension d). Assume σx ∈ {0, 1}.

The partition function has a non-trivial limit in law: Zω

δ,λ,h

δ↓0
=⇒ ZW

Ω;λ̂,ĥ
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)
Wiener chaos expansion (converging in L2−)

Case σx ∈ {−1, 1}: minor modifications

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 16 / 38



Disordered Systems Partition Function The marginal regime Further Developments

Some considerations

I Assumptions satisfied by motivating models (Ising, DPRE, Pinning)
under restrictions on the parameters (γ < d

2 )  disorder relevance!

I Universality: the scaling limit ZW
Ω;λ̂,ĥ

(continuum partition function)

is insensitive toward the fine details of the discrete model

Different laws Pref

δ (dσ) and P(dω1) yield the same ZW

Ω;λ̂,ĥ

I White noise: Gaussian process (W (A))A⊆Rd , for bounded A ⊆ Rd

I W (A) ∼ N (0, Leb(A))

I W (
⋃

n∈N An)
a.s.
=
∑

n∈NW (An) for disjoint (An)n∈N

Not a random signed measure. . . but integrals are well-defined.

(For d = 1  Ito integrals w.r.t. Brownian motion)
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Disordered Systems Partition Function The marginal regime Further Developments

Sketch of the proof (1-2)

1. Linearization. Since σx ∈ {0, 1}, every function of σx is linear

Zω

δ,λ,h = Eref


δ

[
e
∑

x∈
δ
(λωx+h)σx

]

= Eref

δ

[ ∏
x∈
δ

(
1 + εxσx

)]

where εx := eλωx+h − 1. New random variables (εx) with

E[εx ] ' h + 1
2λ

2 =: h′ Var[εx ] ' λ2

2. High-temperature expansion. By a binomial expansion of the product

Zω

δ,λ,h =

|
δ|∑
k=0

1

k!

∑
(x1,...,xk )∈(
δ)k

Eref

δ

[
σx1 · · ·σxk

]
εx1 · · · εxk

Partition function is a multilinear polynomial of new random variables εx

with coefficients given by k-point functions of Pref . Decoupled σ and ω!
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Disordered Systems Partition Function The marginal regime Further Developments

Sketch of the proof (3-4)

3. Lindeberg principle, extending [Mossel, O’Donnell, Oleszkiewicz ’10]

The law of a multilinear polynomial is insensitive toward the distribution
of the εx (keeping same mean and variance)

 independent Gaussians

εx  N (h′, λ2)

∼ λ δ−d/2 W (∆x) + h′ δ−d Leb(∆x)

can be realized by white noise W on the cell ∆x := (x − δ
2 , x + δ

2 )d

Zω

δ,λ,h '

∞∑
k=0

1

k!

∫
· · ·
∫

Ωk

Eref

δ

[
σx1 · · ·σxk

] k∏
i=1

(
λ δ−

d
2 W (dxi ) + h′ δ−d dxi

)
4. Conclusion. Finally use the assumption on the reference law:

Eref

δ

[
σx1 · · ·σxk

]
' (δγ)kψ

(k)
Ω (x1, . . . , xk)

Choosing λ = λ̂ δ
d
2−γ and h′ = ĥ δd−γ the δ’s disappear.
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· · ·
∫

Ωk

Eref

δ

[
σx1 · · ·σxk

] k∏
i=1

(
λ δ−

d
2 W (dxi ) + h′ δ−d dxi

)
4. Conclusion. Finally use the assumption on the reference law:

Eref

δ

[
σx1 · · ·σxk

]
' (δγ)kψ

(k)
Ω (x1, . . . , xk)

Choosing λ = λ̂ δ
d
2−γ and h′ = ĥ δd−γ the δ’s disappear.
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Back to Pinning

Rescaling λ = λ̂
Nα−1/2 , h = ĥ

Nα − λ2

2 , partition function Zω
N,λ,h converges

ZW
[0,1];λ̂,ĥ

:=
∞∑
k=0

∫
· · ·
∫

0<x1<···<xk<1

ck

x1−α
1 · · · (xk − xk−1)1−α

k∏
i=1

(
λ̂W (dxi )+ĥ dxi

)

Extension [0, 1]→ [s, t]  ZW
[s,t];λ̂,ĥ

(continuous in (s, t))

What happens in the marginal case α = 1
2 ? The k-point function fails to

be in L2 (barely!) so stochastic integrals are ill-defined:∫ 1

0

1√
x

dW x = ?

The same happens for (1 + 1)-dim. DPRE with Cauchy tails (α = 1)
and for (1 + 2)-dim. DPRE with finite variance (e.g. SRW)
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1. Disordered Systems and their Scaling Limits

2. Partition Function

3. The marginal regime

4. Further Developments
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Logarithmic overlap

Recall the 1-point function

{
Eref [σx ] = Pref(τ visits n) (Pinning)

Eref [σ(n,x)] = Pref(Xn = x) (DPRE)

Overlap: O
 :=
∑

z∈
Eref

 [σx ]2 = Eref


 [〈σ, σ′〉]
Consider the Pinning model with α = 1

2

ON :=
N∑

n=1

Pref(τ visits n)2 ∼
N∑

n=1

C

n
∼ C log N

Analogously for (1 + 2)-dim. DPRE: since Pref(Xn = x) ∼ 1
2πne−|x|

2/(2n)

ON :=
N∑

n=1

∑
x∈Z2

Pref(Xn = x)2 ∼ C ′ log N

The same holds also for (1 + 1)-dim. DPRE with Cauchy tails (α = 1)
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Disordered Systems Partition Function The marginal regime Further Developments

Main result (II): the marginal case

Theorem [C., Sun, Zygouras (in progress)]

Consider a Pinning/DPRE model with logarithmic overlap ON ∼ C log N

Rescale λ =
λ̂√

C log N
(with fixed h = − 1

2λ
2)

I If λ̂ < 1, then Zω
N,λ converges in law to a log-normal RV:

ZW
λ̂

:= exp

{∫ 1

0

λ̂√
1− λ̂2t

W (dt)− 1

2

∫ 1

0

λ̂2

1− λ̂2t
dt

}

d
= exp

{√
log

1

1− λ̂2
Y − 1

2
log

1

1− λ̂2

}
, Y ∼ N (0, 1)

I If λ̂ ≥ 1, then Zω
N,λ converges in law to 0
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Disordered Systems Partition Function The marginal regime Further Developments

Main result (II): the marginal case

We have a form of universality across different models.

This also extends
to the solution of the 2d stochastic heat equation (SHE).

Theorem [C., Sun, Zygouras (in progress)]

Let W denote white noise on R1+2 and W ε its space regularization

W ε(dt, dx) :=

∫
R2

1

ε2
J

(
x − y

ε

)
W (dt, dy) ,

with J ∈ C∞c (R2). Let uW
ε (t, x) solve the regularized 2d SHE

∂uW
ε

∂t
=

1

2
∆uW

ε + λW ε uW
ε , uW

ε (0, ·) ≡ 1 .

Then, rescaling λ =
λ̂
√

2π√
log(1/ε)

, for fixed (t, x), the solution uW
ε (t, x)

converges in law as ε→ 0 to the same limit (log-normal/zero) as before.

Moreover, uW
ε (t, x) and uW

ε (t ′, x ′) are asymptotically independent
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The critical regime λ̂ = 1

What happens if λ̂ = 1 ? Heuristically, uW
ε (t, x) should converge as ε→ 0

to a distribution-valued random field with log-correlations.

We can (re)prove the following result [Bertini-Cancrini ’98]: defining

〈uW
ε , φ〉 := ε2

∑
x∈Z2

φ (εx) uW
ε (t, x)

for φ ∈ C∞c (R2), then

lim
ε→0

Cov
[
〈uW
ε , φ〉, 〈uW

ε , ψ〉
]

=

∫
R2×R2

φ(x)ψ(y) f (x − y) dx dy ,

with (explicit) f such that f (t) ∼ C log 1
t as t → 0.

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 25 / 38



Disordered Systems Partition Function The marginal regime Further Developments

The critical regime λ̂ = 1

What happens if λ̂ = 1 ? Heuristically, uW
ε (t, x) should converge as ε→ 0

to a distribution-valued random field with log-correlations.

We can (re)prove the following result [Bertini-Cancrini ’98]: defining

〈uW
ε , φ〉 := ε2

∑
x∈Z2

φ (εx) uW
ε (t, x)

for φ ∈ C∞c (R2),

then

lim
ε→0

Cov
[
〈uW
ε , φ〉, 〈uW

ε , ψ〉
]

=

∫
R2×R2

φ(x)ψ(y) f (x − y) dx dy ,

with (explicit) f such that f (t) ∼ C log 1
t as t → 0.

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 25 / 38



Disordered Systems Partition Function The marginal regime Further Developments

The critical regime λ̂ = 1

What happens if λ̂ = 1 ? Heuristically, uW
ε (t, x) should converge as ε→ 0

to a distribution-valued random field with log-correlations.

We can (re)prove the following result [Bertini-Cancrini ’98]: defining

〈uW
ε , φ〉 := ε2

∑
x∈Z2

φ (εx) uW
ε (t, x)

for φ ∈ C∞c (R2), then

lim
ε→0

Cov
[
〈uW
ε , φ〉, 〈uW

ε , ψ〉
]

=

∫
R2×R2

φ(x)ψ(y) f (x − y) dx dy ,

with (explicit) f such that f (t) ∼ C log 1
t as t → 0.

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 25 / 38



Disordered Systems Partition Function The marginal regime Further Developments

Sketch of the proof

Pinning model with α = 1
2 .

Polynomial chaos expansion gives approx.

Zω

N,λ,−λ2

2

' 1 + λ
N∑

n=1

ωn√
n

+ λ2
∑

1≤m<n≤N

ωm ωn√
m
√

n −m
+ . . .

= 1 + I1 + I2 + . . .

Assume the ωn Gaussian (for simplicity). I1 is Gaussian with variance

Var(I1) = λ2
N∑

n=1

1

n
∼ λ2 log N → λ̂2 , since λ ∼ λ̂√

log N

The term I2 is trickier. Using integrals instead of sums, we can write∫
s∈[1,N]

W (ds)√
s

∫
u∈[s+1,N]

W (du)√
u − s

'
∫
s∈[1,N]

W (ds)√
s

∫
t∈[1,N]

W (s + dt)√
t
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Sketch of the proof

We now change variables s = Na and t = Nb, so that

I2 '
(

λ̂√
log N

)2 ∫
s∈[1,N]

W (ds)√
s

∫
t∈[1,N]

W (s + dt)√
t

= λ̂2

∫
a∈[0,1]

W (dNa)√
Na log N

∫
b∈[0,1]

W (Na + dNb)√
Nb log N

= λ̂2

∫
a∈[0,1]

W̃ (da)

∫
b∈[0,1]

W̃ a(db)

Note that W̃ (·) is white noise; for fixed a, W̃ a(·) is also white noise.

I If a > b, then Na + dNb is a tiny window close to Na, hence W̃ a(·)
is asymptotically independent of W̃ (·) and W̃ (da)W̃ a(db) becomes

asymptotically a 2d white noise W̃ (2)(da, db).

I If a < b, then Na + dNb is essentially dNb, hence W̃ a(·)
asymptotically coincides with W̃ (·).
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Sketch of the proof

Then

I2 ' λ̂2

(∫
0≤b<a≤1

W̃ (2)(da, db) +

∫
0≤a<b≤1

W̃ (da)W̃ (db)

)
' λ̂2

(
W̃ (2)({0 ≤ b < a ≤ 1}) +

1

2
W̃ ([0, 1])2

)

One can perform analogous computations at every order k, splitting the
domain of integration into subdomains, that give rise to independent
white noise of all dimensions.

Collecting all the terms and reorganizing the sum, we reconstruct the
explicit Wiener chaos series of a log-normal random variable.
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Thanks
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Outline

1. Disordered Systems and their Scaling Limits
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3. The marginal regime

4. Further Developments
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Disordered Systems Partition Function The marginal regime Further Developments

Motivating models: Ising

Pointwise convergence of k-point function, with exponent γ = 1
8 , toward

ψ
(k)
Ω (x1, . . . , xk) conformally covariant,

was proved in [Chelkak, Hongler, Izyurov ’12].

This convergence holds in L2(Ωk), for bounded open Ω ⊆ R2 with
piecewise smooth boundary (we provide a uniform domination)

Recall that we consider random field 2d Ising model at the critical point,
with external field (λωx + h)x∈
δ

We fix continuous functions λ̂ : Ω→ (0,∞) and ĥ : Ω→ R and set

λ = λ̂(x) δ7/8 h = ĥ(x) δ15/8
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Disordered Systems Partition Function The marginal regime Further Developments

Motivating models: Ising

Theorem [C., Sun, Zygouras ’13]

As δ ↓ 0 one has the convergence in law

e−
1
2‖λ̂‖

2
2 δ
−1/4

Zω

δ,λ,h =⇒ ZW

Ω;λ̂,ĥ

where W (dx) is white noise on Rd and

ZW
Ω;λ̂,ĥ

:=
∞∑
k=0

1

k!

∫
· · ·
∫

Ωk

ψ
(k)
Ω (x1, . . . , xk)

k∏
i=1

(
λ̂(xi ) W (dxi ) + ĥ(xi ) dxi

)

Conformal covariance: if φ : Ω̃→ Ω is a conformal map,

ZW
Ω;λ̂,ĥ

dist.
= ZW

Ω̃;λ̃,h̃

where λ̃(x) := |φ′(x)|7/8λ̂(φ(x)) and h̃(x) := |φ′(x)|15/8ĥ(φ(x))
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Disordered Systems Partition Function The marginal regime Further Developments

Continuum free energy and critical exponents

Continuum partition function ZW
Ω,λ̂,ĥ

 continuum free energy

F(λ̂, ĥ) := lim
Ω↑Rd

1

Leb(Ω)
logZW

Ω,λ̂,ĥ

Discrete free energy F (λ, h) := lim

↑Zd

1

|
| log ZW

,λ,h

Interchanging of limits (Ising)

lim
δ↓0

F (λ̂ δ
7
8 , ĥ δ

15
8 )

δ2
= F(λ̂, ĥ)

Conjecture

lim
h↓0

〈σ0〉
λ̂ h

7
15 ,h

h
1

15

=
∂F

∂h
(λ̂, 1) refining [Camia, Garban, Newman ’12]
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 continuum free energy
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15
8 )

δ2
= F(λ̂, ĥ)
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Discrete free energy F (λ, h) := lim

↑Zd

1

|
| log ZW

,λ,h

Interchanging of limits (Ising)

lim
δ↓0

F (λ̂ δ
7
8 , ĥ δ
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Disordered Systems Partition Function The marginal regime Further Developments

Back to pinning models

0 = τ0 τ1 τ2 τ3 τ4 τ5 τ6

τ = {τ0 < τ1 < τ2 < . . .} random element of E := {closed subsets of R}

Rescaled set (δτ,Pref)
δ↓0
=⇒ (τ ,Pref) α-stable regenerative set

What happens for the disordered model Pω
δ,λ,h? (Ω = (0, 1))

Restrict α ∈ ( 1
2 , 1). Fix λ̂ > 0, ĥ ∈ R and set

λ := λ̂ δα−
1
2 h := ĥ δα − 1

2λ
2
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Disordered Systems Partition Function The marginal regime Further Developments

Continuum Disordered Pinning Model [C., Sun, Zygouras ’14]

E := {closed subsets of R} equipped with the Hausdorff distance

Theorem (existence and universality of the CDPM)

As δ ↓ 0, the rescaled discrete set (δτ,Pω
δ,λ,h) converges in distribution

on E to a universal random closed set (τ ,PW
Ω,λ̂,ĥ

), called CDPM

Theorem (a.s. properties)

The CDPM has any a.s. property of the α-stable regenerative set Pref

A ⊆ E , Pref(A) = 1 =⇒ PW
Ω,λ̂,ĥ

(A) = 1 , P(dW )-a.s.

Example: A =
{
A ⊆ R : Hausdorff dim. of A = α

}
Theorem (singularity)

The CDPM PW
Ω,λ̂,ĥ

law is singular w.r.t. Pref for P-a.e. W
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), called CDPM

Theorem (a.s. properties)

The CDPM has any a.s. property of the α-stable regenerative set Pref

A ⊆ E , Pref(A) = 1 =⇒ PW
Ω,λ̂,ĥ
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(A) = 1 , P(dW )-a.s.

Example: A =
{
A ⊆ R : Hausdorff dim. of A = α

}

Theorem (singularity)

The CDPM PW
Ω,λ̂,ĥ
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law is singular w.r.t. Pref for P-a.e. W

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 35 / 38



Disordered Systems Partition Function The marginal regime Further Developments

Construction strategy

Macroscopic observables (finite-dimensional distributions) expressed using
partition functions with suitable boundary conditions

tx y0 N

Pω
δ,λ,h(. . .) =
Z cond

0,x
C

(y−x)1+α Zy ,N

Z0,N

Scaling limit (at the process level) of (Z cond
x,y ,Zx,y )0≤x<y≤N  

Definition of CDPM via “finite-dimensional distributions”

The same can be done for DPRE, cf. [Alberts, Khanin, Quastel ’12]
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Disordered Systems Partition Function The marginal regime Further Developments

Continuum random field Ising model?

Analogous procedure for Ising?

Need joint scaling limit of partition functions for “many” domains
and boundary conditions

Possible alternative approach: define continuum disordered law PW
Ω,λ̂,ĥ

assigning its k-point function E W
Ω,λ̂,ĥ

[
σx1 · · ·σxk

]
?

A generalization of our theorem about the scaling limit of partition
functions yields the corresponding scaling limit of correlations:

Eω
δ,λ,h
[
σx1 · · ·σxk

] d−−→
δ↓0

E W
Ω,λ̂,ĥ

[
σx1 · · ·σxk

]
:= Wiener chaos expansion
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[
σx1 · · ·σxk

]
?

A generalization of our theorem about the scaling limit of partition
functions yields the corresponding scaling limit of correlations:

Eω
δ,λ,h
[
σx1 · · ·σxk

] d−−→
δ↓0

E W
Ω,λ̂,ĥ

[
σx1 · · ·σxk

]
:= Wiener chaos expansion

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 37 / 38



Disordered Systems Partition Function The marginal regime Further Developments

Disorder relevance vs. irrelevance

Why the restriction α > 1
2 for pinning? [And α ∈ (1, 2] for DPRE]

I The regime α < 1
2 is disorder-irrelevant for pinning models

If λ > 0 is small, the disordered model Pω
δ,λ,h has same properties
(e.g. critical exponents) as the non-disordered model (λ = 0)

Conj.: scaling limit of Pω
δ,λ,h is non-disordered [Proved for DPRE]

I The regime α > 1
2 is disorder-relevant for pinning models

For any λ > 0, the disordered model Pω
δ,λ,h has different properties
(e.g. critical exponents) than the non-disordered model (λ = 0)

Our results fit this picture nicely: even though λ→ 0 as δ ↓ 0,
disordered survives in the scaling limit

Our restriction involving L2 convergence of k-point function (γ < d
2 )

matches with Harris criterion ν < 2
d for disorder relevance

(ν correlation length exponent  ν = 1
d−γ

)
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