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Summary

We consider statistical mechanics models defined on a lattice, in which
disorder (quenched randomness) enters as an external random field

General framework illustrated by 3 concrete examples

1. Random-field Ising model (Ising)
2. Directed polymer in random environment (DPRE)

3. Disordered pinning models (Pinning)

The goal is to study their scaling limits, in a suitable continuum and
weak disorder regime

(Inspired by recent work of Alberts, Quastel and Khanin on DPRE)
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Disordered Systems

Outline

1. Disordered Systems and their Scaling Limits
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Disordered Systems

General Framework

» Lattice CR? ~ “spins” o = (0x)xe o0x=%1 or o, € {0,1}
» Reference law P™ (o) on “spin configurations” (non trivial law!)

» Disorder (wy),czo i.i.d. random variables (independent of o)
Elwx] =0  Varfwx] =1  E[e"*] < oo for small |¢|

(Awx + h)xezes disorder with strength A > 0 and bias h € R

Disordered law P“ , ,

Random Gibbs measure on spin configurations o (indexed by disorder w)

Pw,A7h(U) =

Zwl ) exp (Z()\wx + h)ox> P™i(o)

(S

1\

Z%, , = Ef[eXxe Gwxthlox]  (Partition function)

pA
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Disordered Systems

1. Random field Ising model

' > Lattice :={-N,...,N} x{=N,...,N}
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Disordered Systems

1. Random field Ising model

' > Lattice :={-N,...,N} x{=N,...,N}

+ + +
.’"' » Reference law: critical 2d Ising model
[Hi-it, with “+" boundary conditions
Y] [ i
oF .-

Pref(a) o exp <BC Z O’XO'y>

xX~ye

ox ==+1, B = Lllog(l+Vv2)
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Disordered Systems

. Random field Ising model

' > Lattice :={-N,...,N} x{=N,...,N}

+ + +
. » Reference law: critical 2d Ising model
with “+" boundary conditions
Y] [ i
oF .o

Pref(a) o exp <BC Z axay>

x~yeE

ox ==+1, B = Lllog(l+Vv2)

Disordered law: random field Ising model
1

w
A h

PUJ’)\’h(g) = 7 eZXE (Awx+h)oy Pref(a)
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2. Directed polymer in random environment (DPRE)

» Lattice :={1,...,N} xZ
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2. Directed polymer in random environment (DPRE)

» Lattice :={1,...,N} xZ

» Reference law: symmetric random walk on Z
X = (Xn)nZO
attracted to a-stable Lévy process

Varf(X;) < oo ifa=2

C
P (|X1| > x) ~ = fae(0,2)

Spins? Opx = lyx,—x; €{0,1}  (long-range correlations) J

Disordered law: directed polymer in random environment

w 1
P ,)\,h(X) = 7
A

3

ez(n,x)e (Aw(n, ML rx,=x3 Pref(X)
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Disordered Systems

2. Directed polymer in random environment (DPRE)

» Lattice :={1,...,N} xZ

» Reference law: symmetric random walk on Z
X = (Xn)nZO
attracted to a-stable Lévy process

Varf(X;) < oo ifa=2

C
P (|X1| > x) ~ = fae(0,2)

Spins? Opx = lyx,—x; €{0,1}  (long-range correlations) J

Disordered law: directed polymer in random environment

eZnN:1()‘W(n,X,,)+h) Pref(X)

Pw,/\,h(X) = Zw
A
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N NN N

0= Tt T T3 s Ts T6

» Lattice :={1,...,N}

> Reference law: renewal process 71={0=79 <71 <72 < ...} CNp
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Disordered Systems

3. Disordered pinning model (Pinning)

N NN N

0= Tt T T3 s T T6

» Lattice :={1,...,N}

> Reference law: renewal process 71={0=79 <71 <72 < ...} CNp

Pl (141 — 1) = 1) ~

T tail exponent « € (0,1)
n

Spins? 0= lpery €{0,1}  (long-range correlations) J

Disordered law: disordered pinning model

1
Pw)\’h(,r) _ > eEnNzl()\w,,-&-h)]l{,,e,_} Pref(,]_)

w
Ash
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Fix Q C R? bounded open with smooth boundary, and consider the lattice
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i.e. rescale space by a factor § > 0 (in the examples § = %)
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Disordered Systems

Continuum limit?

Fix Q C R? bounded open with smooth boundary, and consider the lattice
s =Qn(02)?
i.e. rescale space by a factor § > 0 (in the examples § = %)

Common feature of the examples

Rescaled spins (0~ 7ox)xe ; under Preéf, for suitable exponent v > 0,

converge to (distribution-valued) “continuum field” (ox)xeq of law P5f

> Ising: [Camia, Garban, Newman '12], [Chelkak, Hongler, Izyurov '12]
» DPRE: random walk X ~-» Lévy process X

» Pinning: renewal processes 7 ~- regenerative set T

Does the disordered model P y , admit a non-trivial continuum limit? J

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P, \p(do) o P (do)

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 10 / 38



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P¥ yn(do) oc exp ( Z (Awx + h)ox> P (do)

XE s

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P¥ yn(do) oc exp ( Z (Awx + h)0x> P (do)

XE s

» Replace discrete spins Preéf(da) with continuum spins 25! (do)

PG p(dor) & P (dor)

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 10 / 38



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P¥ yn(do) oc exp ( Z (Awx + h)0x> P (do)

XE s

> Replace discrete spins Preéf(da) with continuum spins 25! (do)

> Replace discrete disorder (wy)xe ; by White noise (dW)xea

PG p(dor) & P (dor)

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 10 / 38



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P¥ yn(do) oc exp ( Z (Awx + h)0x> P (do)

XE s

> Replace discrete spins Preéf(da) with continuum spins 25! (do)

> Replace discrete disorder (wy)xe ; by White noise (dW)xea

P\ p(dor) & exp ( / (AW, + hdx)ax> 2 (do)
Q

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 10 / 38



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P¥ yn(do) oc exp ( Z (Awx + h)0x> P (do)

XE s

» Replace discrete spins Preéf(da) with continuum spins 25! (do)

> Replace discrete disorder (wy)xe ; by White noise (dW)xea
P\ p(dor) & exp ( / (AW, + hdx)ax> 2 (do)
Q

This expression makes no sense, because o is distribution-valued J

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015



Disordered Systems

A naive approach

Recall the definition of the (discrete) disordered law:

P¥ yn(do) oc exp ( Z (Awx + h)0x> P (do)

XE s

> Replace discrete spins Preéf(da) with continuum spins 25! (do)

> Replace discrete disorder (wy)xe ; by White noise (dW)xea
P\ p(dor) & exp ( / (AW, + hdx)ax> 2 (do)
Q

This expression makes no sense, because o is distribution-valued J

Difficulty is substantial: &g , , can be singular w.r.t. gagrzef ! J
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Disordered Systems

A way out: the partition function

Forget the random probability P and focus on the partition function
g Y E sk

M)

Xe s

ng Sp= Eref

which is “just” a random number (i.e. a real random variable)
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Forget the random probability P , , and focus on the partition function

M)

Xe s

Zwa Sp= Eref

which is “just” a random number (i.e. a real random variable)

Z% \.n is a complicated function of i.i.d. random variables (wx)xe , J

w ref
DPRE:  Z“ ,,=E

exp (ZN: (Aw(nx,) + h))

n=1

We sample the wy's along a path of the random walk (X,)n>0
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Disordered Systems

A way out: the partition function

Forget the random probability P , , and focus on the partition function

M)

Xe s

ng Sp= Eref

which is “just” a random number (i.e. a real random variable)

Z% \.n is a complicated function of i.i.d. random variables (wx)xe , J

w ref
DPRE:  Z“ ,,=E

exp (ZN: (Aw(nx,) + h))

n=1

We sample the wy's along a path of the random walk (X,)n>0

Main question: scaling limit of Z% , ,

Does Z* , , have a (non-trivial) limit in distribution as & | 0,
letting A, h — 0 at suitable rates? (Continuum and weak disorder regime)
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Disordered Systems

Why should we care?

> Techniques to study Z , , are general and model independent

> Scaling limit of Z*  , encodes large-scale properties of P
It leads to sharp predictions/conjectures on the asymptotic behavior
of free energy and critical curve, in the weak disorder regime

» Dream: scaling limit of Z“ , . ~» scaling limit of P \n?
YES, for Pinning and DPRE! (Hopefully for Ising too)

The “f.d.d.” of the law P“_  , can be reconstructed from Z* , ,
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Outline

2. Partition Function
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Assumptions on the reference law

k-point function E™[o,, - -0, ] defined on ( )k ~» extended on Q¥
S 1 k

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 14 / 38



Partition Function

Assumptions on the reference law

k-point function E**[o,, - 0,,] defined on ( 5)¥ ~ extended on QX

Key assumption on the reference law

The k-point functions of Pre&f converge in L? under polynomial rescaling

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015



Partition Function

Assumptions on the reference law

k-point function E**[o,, - 0,,] defined on ( 5)¥ ~ extended on QX

Key assumption on the reference law

The k-point functions of Pre&f converge in L? under polynomial rescaling

Eref le Ce Oy
5L 3 ’Q,[)(k)(Xl,...7Xk) (%)

dy>0: 51)F 50 7O
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Assumptions on the reference law

k-point function E**[o,, - 0,,] defined on ( 5)¥ ~ extended on QX

Key assumption on the reference law

The k-point functions of Pre&f converge in L? under polynomial rescaling

Ere(;f [le e JXk]

B : (k) e
Y > 0 (6,),)[( 510 Q;[)Q (X17 7Xk) (*)
Convergence is in L?(Jy ey Q) with respect to 35, Il - (17200
Pointwise convergence in (x) leads to ¢§7k)(xl, CoXk) =X — x|
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Partition Function

Assumptions on the reference law

k-point function E**[o,, - 0,,] defined on ( 5)¥ ~ extended on QX

Key assumption on the reference law

The k-point functions of Pre&f converge in L? under polynomial rescaling

Ere(;f [le c JXk]

. (k)

Iy >0: ) 570 Yo (X1, Xk) (%)
Convergence is in L?(|J,cn ©2F) with respect to >, o || - - ||f2(m)
Pointwise convergence in (x) leads to ¢g<)(xl, CoXk) =X — x|

) . d
L? convergence requires |y < >
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Partition Function

An example: Pinning

N NN N

0= T Ty T3 Ta Ts Te

Set 0 = % Note that k-point function are explicit:
E™“[0,] = P™ (7 visits x) =: u(x)

k
E]r'ef[ax1 o] = me(r ViSits X1, X2, . .., Xk) = H u(x; — xi—1)
i=1
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An example: Pinning

N NN N

0= T Ty T3 Ta Ts Te

Set 0 = % Note that k-point function are explicit:
E™“[0,] = P™ (7 visits x) =: u(x)

k
Emf[ax1 o] = me(r ViSits X1, X2, . .., Xk) = H u(x; — xi—1)
i=1

c . .
— (renewal theory), rescaled k-point function converges to

Since u(x) ~ "

Ck

)
'(/J( (X150 Xk) = 15
? X = x) (= xe1)
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Partition Function

An example: Pinning

N NN N

0= T Ty T3 Ta Ts Te

Set 0 = % Note that k-point function are explicit:
E™“[0,] = P™ (7 visits x) =: u(x)

k
Emf[ox1 o] = me(r ViSits X1, X2, . .., Xk) = H u(x; — xi—1)
i=1

. c . .

Since u(x) ~ —— (renewal theory), rescaled k-point function converges to
-

ok

B
'(/J( (X150 Xk) = 15
2 X0 = xa) e (ke — xe1)

To have L2 conv., a € (1,1) ~» Harris criterion for disorder relevance! J
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Partition Function

Main result (I): partition function

Theorem [C., Sun, Zygouras '13]

Let Paeéf satisfy () with exponent + (dimension d). Assume o, € {0,1}.
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The partition function has a non-trivial limit in law: Z%  , L Z}/z‘fx,ﬁ

provided we scale A\, h — 0 as follows:

A:=A69277  pi=hedTr — 1X2 (A, h fixed)

The limit Zg‘/{;\ﬁ is explicit function of W(dx) := white noise on R:

Wiener chaos expansion (converging in L27)

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 16 / 38



Disordered Systems Partition Function

Main result (I): partition function

Theorem [C., Sun, Zygouras '13]
Let Paeéf satisfy () with exponent + (dimension d). Assume o, € {0,1}.

. : C e 540
The partition function has a non-trivial limit in law: Z%_, , L8 Zg;\ 5
provided we scale A\, h — 0 as follows:

A:=A69277  pi=hedTr — 1X2 (A, h fixed)

The limit Zf‘/{i,fr is explicit function of W(dx) := white noise on R:

Wiener chaos expansion (converging in L27)

Case 0, € {—1,1}: minor modifications
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Partition Function

Some considerations

» Assumptions satisfied by motivating models (Ising, DPRE, Pinning)
under restrictions on the parameters (y < %) ~» disorder relevance!
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Partition Function

Some considerations

» Assumptions satisfied by motivating models (Ising, DPRE, Pinning)
under restrictions on the parameters (y < %) ~» disorder relevance!

» Universality: the scaling limit Zg_/;\ ;, (continuum partition function)

is insensitive toward the fine details of the discrete model

Different laws Pre;(da) and P(dw;) yield the same Zg‘g;/x,i,

» White noise: Gaussian process (W (A))acrs. for bounded A C R?
> W(A) ~ N(0, Leb(A))
> W(U,en An) =300 W(A,) for disjoint (Ap)nen
Not a random signed measure. .. but integrals are well-defined.

(Ford =1 ~~ lto integrals w.r.t. Brownian motion)
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Partition Function

Sketch of the proof (1-2)

7w p = Eref ezxe 5()\wx+h)ax
857\ s
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1. Linearization. Since o € {0, 1}, every function of o, is linear

Zwé h= Eresf H e()\wx+h)o'x

Xe 5
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Partition Function

Sketch of the proof (1-2)

1. Linearization. Since o € {0, 1}, every function of o, is linear

ng,A,h = ]'Ere(;f H e()\warh)O'X == :Elreéf H (1 + EXO—X)

Xe 5 Xe€ s

where ¢, = e?xth _ 1,
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Partition Function

Sketch of the proof (1-2)

1. Linearization. Since o € {0, 1}, every function of o, is linear

H e(Awxth)oy H (1 + exax)]

Xe 5 Xe€ s

w _ pref _ yoref
74 s\ h E 5 =E 5

Awx+h

where ¢, :=e — 1. New random variables (e,) with

Ele,] ~ h+iX2 =W Var[e,] ~ A2
2

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015



Partition Function

Sketch of the proof (1-2)

1. Linearization. Since o € {0, 1}, every function of o, is linear

H e(Awxth)oy H (1 + exox)]

Xe 5 Xe€ s

w _ pref _ yoref
74 s\ h E 5 =E 5

Awx+h

where ¢, :=e — 1. New random variables (e,) with

Elex] @ h+ X2 = Var[e,] =~ A2
2. High-temperature expansion. By a binomial expansion of the product

| sl

1 re.
Z“%J\,h:Zﬁ Z E ;[Uxf"am]ﬁxl“'exk

k=0 """ (x1,exk)E( 5)K
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Partition Function

Sketch of the proof (1-2)

1. Linearization. Since o € {0, 1}, every function of o, is linear

H e(Awxth)oy H (1 + exox)]

Xe 5 Xe€ s

w _ pref _ yoref
74 s\ h E 5 =E 5

where ¢, := e*xT" — 1. New random variables (¢,) with
Elex] @ h+ X2 = Var[e,] =~ A2

2. High-temperature expansion. By a binomial expansion of the product

| sl

1 re.
Z“’s,A,h:Zﬁ Z E ;[Uxf"UXk]Exl"'Exk

k=0 """ (x1,exk)E( 5)K

Partition function is a multilinear polynomial of new random variables ¢,
with coefficients given by k-point functions of P,

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015



Partition Function

Sketch of the proof (1-2)

1. Linearization. Since o € {0, 1}, every function of o, is linear

H e(Awxth)oy H (1 + exox)]

Xe 5 Xe€ s

w _ pref _ yoref
74 s\ h E 5 =E 5

where ¢, := e*xT" — 1. New random variables (¢,) with
Elex] @ h+ X2 = Var[e,] =~ A2

2. High-temperature expansion. By a binomial expansion of the product

| sl

1 re.
Z“’s,A,h:Zﬁ Z E ;[Uxf"UXk]Exl"'Exk

k=0 """ (x1,exk)E( 5)K

Partition function is a multilinear polynomial of new random variables ¢,
with coefficients given by k-point functions of P™f. Decoupled & and w!J
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Partition Function

Sketch of the proof (3-4)

3. Lindeberg principle, extending [Mossel, O'Donnell, Oleszkiewicz '10]

The law of a multilinear polynomial is insensitive toward the distribution
of the e, (keeping same mean and variance)
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Partition Function

Sketch of the proof (3-4)

3. Lindeberg principle, extending [Mossel, O'Donnell, Oleszkiewicz '10]

The law of a multilinear polynomial is insensitive toward the distribution
of the €, (keeping same mean and variance) ~- independent Gaussians

e~ N, A2) ~ X692 W(A) + W 679 Leb(Ay)

can be realized by white noise W on the cell A, := (x — g,x + %)d

Zwé,,\,h':ZE/"'/QkEre:[axl O, H X6~2 W(dx)+H 6 4 dx;)
i=1

k=0
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Partition Function

Sketch of the proof (3-4)

3. Lindeberg principle, extending [Mossel, O'Donnell, Oleszkiewicz '10]

The law of a multilinear polynomial is insensitive toward the distribution
of the €, (keeping same mean and variance) ~- independent Gaussians

e~ N, A2) ~ X692 W(A) + W 679 Leb(Ay)
can be realized by white noise W on the cell A, = (x — g,x + g)d
00 1 k
25 an ™ Zﬁ//ﬂk E 0y 0y H X6~2 W(dx)+H 6 4 dx;)
k=0 i=1

4. Conclusion. Finally use the assumption on the reference law:

Ere(;f [Ux1 U UXk] = (67)1( g)k)(xla .o 7Xk)
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Partition Function

Sketch of the proof (3-4)

3. Lindeberg principle, extending [Mossel, O'Donnell, Oleszkiewicz '10]

The law of a multilinear polynomial is insensitive toward the distribution
of the €, (keeping same mean and variance) ~- independent Gaussians

e~ N, A2) ~ X692 W(A) + W 679 Leb(Ay)

can be realized by white noise W on the cell A, := (x — g,x + %)d

Zwé,,\,h':ZE/"'/QkEre:[axl O, H X6~2 W(dx)+H 6 4 dx;)
i=1

k=0

4. Conclusion. Finally use the assumption on the reference law:
f K, (k
E“ o, - 0] = ()95 a, .., x0)

Choosing A = X627 and KW = hé97 the &'s disappear. |
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Partition Function

Back to Pinning

A p_ b

2 i, ,
sVl W= — 4, partition function Zy »p converges

Rescaling A =

[e's) k

k
Zigaah =D // — TT (% widx)+hdx)

1—a -«
_ X oo\ Xk T Xk—1 P
k=00cxi<ciecl T ( ) i=1
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Partition Function

Back to Pinning

A A 2 i, ,
Rescaling A = 7-273, h = 4= — %, partition function Zjj , , converges

(oo}

K k
ZW Z / - ¢ (A W(dx;)+hdx;)
=1

0,1 )\h —« _
(0.1]; — XpTN e (e — Xpp) p
TU0<x < <1

Extension [0,1] — [s,t] ~ Z

[s.6]: 5, (continuous in (s, t)) J
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Partition Function

Back to Pinning

r 2 .. .
Rescaling A = h = s — -, partition function Zj; , , converges

No— 1/2,

(oo}

K k
ZW Z / - ¢ (A W(dx;)+hdx;)
=1

0,1 )\h —« _
(0.1]; — XpTN e (e — Xpp) p
TU0<x < <1

Extension [0,1] — [s,t] ~ Z

[s.6]: 5, (continuous in (s, t)) J

What happens in the marginal case a = %? The k-point function fails to

be in L2 (barely!) so stochastic integrals are ill-defined:

L
—dW, =
/ox/?<
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Partition Function

Back to Pinning

Rescaling A = =257, h = N—"a - )‘72 partition function Z , , converges
o Ck k . .
[o ;3 Z / / X O — xeg)i (A W(dx;)+hdx;)
k=00cx < <x<1 =1
Extension [0,1] — [s,t] ~ Z[ A (continuous in (s, t)) J

What happens in the marginal case a = %? The k-point function fails to

be in L2 (barely!) so stochastic integrals are ill-defined:

L
—dW, =
/ox/?<

The same happens for (1 + 1)-dim. DPRE with Cauchy tails (o = 1)
and for (1 + 2)-dim. DPRE with finite variance (e.g. SRW)
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The marginal regime

Outline

3. The marginal regime
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The marginal regime

Logarithmic overlap

E*[0,] = P™ (7 visits n)  (Pinning)

Recall the 1-point function " ‘
E™ [0(hx] =P (X, =x) (DPRE)
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The marginal regime

Logarithmic overlap

E*[0,] = P™ (7 visits n)  (Pinning)

Recall the 1-point function " ‘
E™ [0(hx] =P (X, =x) (DPRE)

Overlap: O =3}, E“[0,]? = E™[(0, 0")]

Consider the Pinning model with o = 1
N N
Oy =Y P™(rvisits n)? ~ Y — ~ ClogN
N ; (7 visits n) ,,2::1 . og
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The marginal regime

Logarithmic overlap

E*[0,] = P™ (7 visits n)  (Pinning)

Recall the 1-point function " ‘
E™ [0(hx] =P (X, =x) (DPRE)

Overlap: O =3}, E“[0,]? = E™[(0, 0")]

Consider the Pinning model with o = 1
N N
Oy =Y P™(rvisits n)? ~ Y — ~ ClogN
N ; (7 visits n) ,,2::1 . og

Analogously for (1 + 2)-dim. DPRE: since P™ (X, = x) ~ 51 e~ IxI"/(2)

N
On:=>_ Y P*(X,=x)~C logh

n=1 xcZz2
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The marginal regime

Logarithmic overlap

E*[0,] = P™ (7 visits n)  (Pinning)

Recall the 1-point function " ‘
E™ [0(hx] =P (X, =x) (DPRE)

Overlap: O =3}, E“[0,]? = E™[(0, 0")]

Consider the Pinning model with o = 1
N N
Oy =Y P™(rvisits n)? ~ Y — ~ ClogN
N ; (7 visits n) ,,2::1 . og

Analogously for (1 + 2)-dim. DPRE: since P™ (X, = x) ~ 51 e~ IxI"/(2)

N
On:=>_ Y P*(X,=x)~C logh

n=1 xcZz2

The same holds also for (1 4 1)-dim. DPRE with Cauchy tails (o = 1)
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The marginal regime

Main result (Il): the marginal case

Theorem [C., Sun, Zygouras (in progress)]
Consider a Pinning/DPRE model with logarithmic overlap Oy ~ Clog N
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The marginal regime

Main result (Il): the marginal case

Theorem [C., Sun, Zygouras (in progress)]
Consider a Pinning/DPRE model with logarithmic overlap Oy ~ Clog N

~

Rescale A = #glv (with fixed h = —1)?)
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

Theorem [C., Sun, Zygouras (in progress)]
Consider a Pinning/DPRE model with logarithmic overlap Oy ~ Clog N

~

Rescale A\ = ﬁ (with fixed h = —3A?)

> If X < 1, then Zy y converges in law to a log-normal RV:

W 1 3\ 1 1 3\2
Z: —ex / — W/(dt ——/ ———dt
A P 0 V1— )\t (d) 2 Jo 1— M2t
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

Theorem [C., Sun, Zygouras (in progress)]
Consider a Pinning/DPRE model with logarithmic overlap Oy ~ Clog N

~

Rescale A\ = ﬁ (with fixed h = —3A?)

> If X < 1, then Zy y converges in law to a log-normal RV:

W 1 3\ 1 1 3\2
Z: —ex / — W/(dt ——/ ———dt
A P 0 V1— )\t (d) 2 Jo 1— M2t

1 1

1
gexp{ Iogl—AY——I

32 QOgm}a Y ~N(0,1)
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

Theorem [C., Sun, Zygouras (in progress)]
Consider a Pinning/DPRE model with logarithmic overlap Oy ~ Clog N

~

Rescale A\ = ﬁ (with fixed h = —3A?)

> If X < 1, then Zy y converges in law to a log-normal RV:

W 1 3\ 1 1 3\2
Z: —ex / — W/(dt ——/ ———dt
A P 0 V1— )\t (d) 2 Jo 1— M2t

1 1

1
gexp{ Iogl—AY——I

32 QOgm}a Y ~N(0,1)

> If A > 1, then Zy | converges in law to 0
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The marginal regime

Main result (Il): the marginal case

We have a form of universality across different models.

Francesco Caravenna Scaling Limits of Disordered Systems March 19, 2015 24 / 38



The marginal regime

Main result (Il): the marginal case

We have a form of universality across different models. This also extends
to the solution of the 2d stochastic heat equation (SHE).
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

We have a form of universality across different models. This also extends
to the solution of the 2d stochastic heat equation (SHE).

Theorem [C., Sun, Zygouras (in progress)]

Let W denote white noise on R1*2 and W€ its space regularization

We(dt, dx) ;:/ ey (X;y> W(de,dy),

R2 62

with J € C®(R?).
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

We have a form of universality across different models. This also extends
to the solution of the 2d stochastic heat equation (SHE).

Theorem [C., Sun, Zygouras (in progress)]

Let W denote white noise on R1*2 and W€ its space regularization

We(dt, dx) ;:/ ey (X;y> W(de,dy),

R2 62

with J € C=(R?). Let u/(t,x) solve the regularized 2d SHE

w
ou,

ot

1
:EAue‘/V+)\W6uel/V, u(0,")=1.
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

We have a form of universality across different models. This also extends
to the solution of the 2d stochastic heat equation (SHE).

Theorem [C., Sun, Zygouras (in progress)]

Let W denote white noise on R1*2 and W€ its space regularization

We(dt, dx) ;:/ ey (X;y) W(de,dy),

R2 62

with J € C=(R?). Let u/(t,x) solve the regularized 2d SHE

ou 1.y € W w —
ot - EAue +AW u. , u, (O’ ) =1.
A2 : .
Then, rescaling A = — VT for fixed (t, x), the solution u'V(t,x)
log(1/e)

converges in law as € — 0 to the same limit (log-normal/zero) as before.
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Disordered Systems Partition Function The marginal regime

Main result (Il): the marginal case

We have a form of universality across different models. This also extends
to the solution of the 2d stochastic heat equation (SHE).

Theorem [C., Sun, Zygouras (in progress)]

Let W denote white noise on R1*2 and W€ its space regularization

We(dt, dx) ;:/ ey (X;y) W(de,dy),

R2 62

with J € C=(R?). Let u/(t,x) solve the regularized 2d SHE

dul’ 1
get :EAue‘/V+)\W6uel/V, u(0,")=1.
A2

Then, rescaling A = , for fixed (t, x), the solution u'V(t,x)

log(1/e)
converges in law as € — 0 to the same limit (log-normal/zero) as before.

Moreover, u!V(t,x) and vV (t',x") are asymptotically independent
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The marginal regime

The critical regime A=1

What happens if A = 17 Heuristically, u?/(t, x) should converge as ¢ — 0
to a distribution-valued random field with log-correlations.
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The marginal regime

The critical regime A=1

What happens if A = 17 Heuristically, u?/(t, x) should converge as ¢ — 0
to a distribution-valued random field with log-correlations.

We can (re)prove the following result [Bertini-Cancrini '98]: defining

(W, ) =Y d(ex) u(t,x)

x€Z?

for ¢ € C(R?),
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The marginal regime

The critical regime A=1

What happens if A = 17 Heuristically, u?/(t, x) should converge as ¢ — 0
to a distribution-valued random field with log-correlations.

We can (re)prove the following result [Bertini-Cancrini '98]: defining

(W, ) =Y d(ex) u(t,x)
x€Z?
for ¢ € C2°(R?), then
fim Cov [(ut¥, ). (ul )] = [ 6(x) ly) lx ) dedy,

R2xR2

with (explicit) f such that f(t) ~ Clog1 as t — 0.
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The marginal regime

Sketch of the proof

Pinning model with o =

N=
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The marginal regime

Sketch of the proof

Pinning model with o = % Polynomial chaos expansion gives approx.

N
w Wm W
R D S e N S e e TT
-2 2 a2 Umva-m
=14+ h + Iy +...

Assume the w, Gaussian (for simplicity).
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The marginal regime

Sketch of the proof

Pinning model with o = % Polynomial chaos expansion gives approx.

N
w Wm W
Z¢ L, ~140 TN E — ...
N ; Vot Um/om

=1+ h + h +..

Assume the w,, Gaussian (for simplicity). /; is Gaussian with variance

N ~
1 < A
Var(h) =A*Y = ~ AlogN — \?, since A~
; n Vl0og N
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The marginal regime

Sketch of the proof

Pinning model with o = % Polynomial chaos expansion gives approx.

N
w Wm W
R D S e N S e e TT
-2 2 a2 Umva-m
=14+ h + Iy +...

Assume the w,, Gaussian (for simplicity). /; is Gaussian with variance

N ~

1 < A
Var(h) =A*Y = ~ AlogN — \?, since A~ ——
; n Vl0og N

The term /, is trickier. Using integrals instead of sums, we can write

/ W (ds) W(du) _ W(ds) / W(s + dt)
s€[1,N] \/g ue[s+1,/v]vu—5_ s€[1,N] \E te[1,N] \/E
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The marginal regime

Sketch of the proof

We now change variables s = N? and t = N®, so that

A 2
/ A / W(ds) / W (s + dt)
p a4 _— —_—
Viog N se[1,N] Vs te[1,N] Vit
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Sketch of the proof

We now change variables s = N? and t = N®, so that

A 2
/ A / W(ds) / W (s + dt)
p a4 —_— —_— _—
Viog N se[1,N] Vs te[1,N] Vit

2/ W(dN?) W(N? + dNP)
acf0,1) VN?log N Jpco,p +/Nblog N
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a€[0,1] be[0,1]
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The marginal regime

Sketch of the proof

We now change variables s = N? and t = N®, so that

A 2
/ A / W(ds) / W (s + dt)
p a4 _— —_—
Viog N se[1,N] Vs te[1,N] Vit

2/ W(dN?) W(N? + dNP)
acf0,1) VN?log N Jpco,p +/Nblog N

_ e / W(da) / W, (db)
a€[0,1] be[0,1]

Note that I/(-) is white noise; for fixed a, W, (-) is also white noise.

Il
>
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The marginal regime

Sketch of the proof

We now change variables s = N? and t = N®, so that

A 2
/ A / W(ds) / W (s + dt)
p a4 _— —_—
Viog N se[1,N] Vs te[1,N] Vit

2/ W(dN?) W(N? + dNP)
acf0,1) VN?log N Jpco,p +/Nblog N

_ e / W(da) / W, (db)
a€l0,1] be[0,1]

Note that I/(-) is white noise; for fixed a, W, (-) is also white noise.

Il
>

> If a> b, then N? +dN® is a tiny window close to N?, hence W,()
is asymptotically independent of W( ) and W(da) W ,(db) becomes
asymptotically a 2d white noise W(?)(da, db).
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The marginal regime

Sketch of the proof

We now change variables s = N? and t = N®, so that

A 2
/ A / W(ds) / W (s + dt)
p a4 _— —_—
Viog N se[1,N] Vs te[1,N] Vit

2/ W(dN?) W(N? + dNP)
acf0,1) VN?log N Jpco,p +/Nblog N

_ e / W(da) / W, (db)
a€l0,1] be[0,1]

Note that I/(-) is white noise; for fixed a, W, (-) is also white noise.

Il
>

> If a> b, then N? +dN® is a tiny window close to N?, hence W,()
is asymptotically independent of W( ) and W(da) W ,(db) becomes
asymptotically a 2d white noise W(?)(da, db).

> If a < b, then N? + dN? is essentially dN?, hence W/a()
asymptotically coincides with W(-).
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The marginal regime

Sketch of the proof

Then

[
>

I ~ X2 < / W®)(da,db) + / W(da)W(db)>
0<b<a<l 0<a<b<1

\2 <Vv(2>({0 <b<a<l})+ %W([o, 1])2>

12
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The marginal regime

Sketch of the proof

Then

[
>

I ~ X2 < / W®)(da,db) + / W(da)W(db)>
0<b<a<l 0<a<b<1

\2 <Vv(2>({0 <b<a<l})+ %W([o, 1])2>

12

One can perform analogous computations at every order k, splitting the
domain of integration into subdomains, that give rise to independent
white noise of all dimensions.
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The marginal regime

Sketch of the proof

Then

[
>

I ~ X2 < / W®)(da,db) + / W(da)W(db)>
0<b<a<l 0<a<b<1

\2 <Vv(2>({0 <b<a<l})+ %W([o, 1])2>

12

One can perform analogous computations at every order k, splitting the
domain of integration into subdomains, that give rise to independent
white noise of all dimensions.

Collecting all the terms and reorganizing the sum, we reconstruct the
explicit Wiener chaos series of a log-normal random variable.
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The marginal regime

Thanks
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r Developments

Outline

4. Further Developments
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Further Developments

Motivating models: Ising

Pointwise convergence of k-point function, with exponent v = %, toward

k .
g)(xl, ...,Xk) conformally covariant,

was proved in [Chelkak, Hongler, lzyurov '12].
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with external field (Awx + h)xe
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Further Developments

Motivating models: Ising

Pointwise convergence of k-point function, with exponent v = %, toward
X1,...,%k) conformally covariant,
was proved in [Chelkak, Hongler, lzyurov '12].

This convergence holds in LQ(Q"), for bounded open © C R? with
piecewise smooth boundary (we provide a uniform domination)

Recall that we consider random field 2d Ising model at the critical point,
with external field (Awx + h)xe

We fix continuous functions A : Q — (0,00) and h: Q — R and set

A=Ax)6"%  h=h(x)s"/®
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Partition Function The marginal regime Further Developments

Motivating models: Ising

Theorem [C., Sun, Zygouras '13]

As 0 | 0 one has the convergence in law
—3INE 67 7w w
e : Z5ah = Lasi

where W(dx) is white noise on R? and

vaz\;/“,/“q - Z %/ : ./Q:pg‘)(xh o XK) H (:\(X,) W (dx;) + B(x,-)dx,-)
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Disordered Systems Partition Function he marginal regime Further Developments

Motivating models: Ising

Theorem [C., Sun, Zygouras '13]

As 0 | 0 one has the convergence in law
_1|A2s—1/4
(] 2”)\”26 Zw5,>\,h s ZW"

where W(dx) is white noise on R? and

k

A Z kl/ /¢Q sty x) T] (Aoe) W(dx) + h(x) dxi)

i=1
Conformal covariance: if ¢ :  — Q is a conformal map,

w dist. 5w
ZQ,\h - ZQ;Z\,E

where A(x) := [¢/(x)|/8\(¢(x)) and h(x) := |¢'(x)|**/8h((x))
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Further Developments

Continuum free energy and critical exponents

Continuum partition function Zg/

A5 Y@ continuum free energy

1
———logZ

F(\ h) = i v
(A h) = lim, Tep() 108 Ze.

b
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Further Developments

Continuum free energy and critical exponents

Continuum partition function Zg/

A5 Y@ continuum free energy

1
———logZ

F(\ h) = i v
(A h) = lim, Tep() 108 Ze.

b

1
Discrete free energy F(X, h) := lim — log z"
b A,

ze| |
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Further Developments

Continuum free energy and critical exponents

Continuum partition function ZS/A » ~> continuum free energy

b
F(\ h) := lim L gz
" apre Leb(9) €%a5h
Discrete free energy F(X, h) := Iirgd N log 2", ,
y A

Interchanging of limits (Ising)

_ F(X\o%,h6¥) . n

i = R

Francesco Caravenna
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Further Developments

Continuum free energy and critical exponents

Continuum partition function ZS/A » ~> continuum free energy

bW
F(\ h) := lim L gz
1T QR Leb(Q) BT
Discrete free energy F(X, h) := Iirgd N log 2", ,
b A,
Interchanging of limits (Ising)
_ F(X\o%,h6¥) . n
ip %) = eoih
Conjecture
(00)s , 2 OF
IAES % = %()\, 1) refining [Camia, Garban, Newman '12]

Francesco Caravenna

Scaling Limits of Disordered Systems March 19, 2015



Further Developments

Back to pinning models

N NN s

0:7'0 T1 T2 T3 T4 T5 To

T={10 <7 <72 <...} random element of E := {closed subsets of R}
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Back to pinning models

N NN s

OZTQ T1 T2 T3 T4 T5 To

T={10 <7 <72 <...} random element of E := {closed subsets of R}

510 .
Rescaled set (d7, P™) 28 (T, 2™f) a-stable regenerative set J

What happens for the disordered model P“’é,)\7h? (2=(0,1))
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Further Developments

Back to pinning models

N NN s

OZTQ T1 T2 T3 T4 T5 To

T={10 <7 <72 <...} random element of E := {closed subsets of R}

510 .
Rescaled set (d7, P™) 28 (T, 2™f) a-stable regenerative set J

What happens for the disordered model P¥, ; ,7 (2=(0,1))
Restrict o € (1,1). Fix A >0, h € R and set

A= A6%"2  hi=heo — 1)2
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Further Developments

Continuum Disordered Pinning Model [c. Sun, Zygouras '14]

E := {closed subsets of R} equipped with the Hausdorff distance
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Further Developments

Continuum Disordered Pinning Model [c. Sun, Zygouras '14]

E := {closed subsets of R} equipped with the Hausdorff distance

Theorem (existence and universality of the CDPM)

As ¢ | 0, the rescaled discrete set (67, P*,  ,) converges in distribution

on E to a universal random closed set (7, @SVZVS\ B)’ called CDPM

March 19, 2015

Scaling Limits of Disordered Systems

Francesco Caravenna



Further Developments

Continuum Disordered Pinning Model [c. Sun, Zygouras '14]

E := {closed subsets of R} equipped with the Hausdorff distance

Theorem (existence and universality of the CDPM)

As 0 | 0, the rescaled discrete set (07, P“, ; ;) converges in distribution

on E to a universal random closed set (7, ?Pévx B), called CDPM

Theorem (a.s. properties)
The CDPM has any a.s. property of the a-stable regenerative set Z7*°f

ACE, 74 =1 — 295, (A) =1, P(dW)-as.

Example: A = {A CR: Hausdorff dim. of A= a}
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Disordered Systems Partition Function The marginal regime Further Developments

Continuum Disordered Pinning Model [c. Sun, Zygouras '14]

E := {closed subsets of R} equipped with the Hausdorff distance

Theorem (existence and universality of the CDPM)

As 0 | 0, the rescaled discrete set (07, P“, ; ;) converges in distribution

on E to a universal random closed set (7, ?Pé‘/x i,), called CDPM

Theorem (a.s. properties)
The CDPM has any a.s. property of the a-stable regenerative set Z7*°f
ACE, 7™f(A)=1 — 295, (A) =1, P(dW)-as.

Example: A = {A CR: Hausdorff dim. of A= a}

Theorem (singularity)

The CDPM 2/ . law is singular w.r.t. ™ for P-a.e. W
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Further Developments

Construction strategy

Macroscopic observables (finite-dimensional distributions) expressed using
partition functions with suitable boundary conditions

0 x t y N

cond C
0.x  (y—x)F Zy.N

ng,)\,h("’): ZON
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Further Developments

Construction strategy

Macroscopic observables (finite-dimensional distributions) expressed using
partition functions with suitable boundary conditions

0 x t y N
cond C 7
w 0,x —x)l+a y,N
P 87)\1h(.”) == (y )

Zo.n

Scaling limit (at the process level) of (Z{5, Z,. Jo<x<y<n ~
Definition of CDPM via “finite-dimensional distributions”

The same can be done for DPRE, cf. [Alberts, Khanin, Quastel '12]
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Further Developments

Continuum random field Ising model?

Analogous procedure for Ising?

Need joint scaling limit of partition functions for “many” domains
and boundary conditions J
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Further Developments

Continuum random field Ising model?

Analogous procedure for Ising?

Need joint scaling limit of partition functions for “many” domains
and boundary conditions

Possible alternative approach: define continuum disordered law 325‘;‘4 P

. . . . . W
assigning its k-point function 6"9’3\7’3 [o'xl . UXJ?

A generalization of our theorem about the scaling limit of partition
functions yields the corresponding scaling limit of correlations:

d

w L . .
5 Sash [0, +++ 0y, | := Wiener chaos expansion

Ew,;,)\,h [le T UXJ

Scaling Limits of Disordered Systems March 19, 2015
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Further Developments

Disorder relevance vs. irrelevance

Why the restriction @ > 3 for pinning? [And a € (1,2] for DPRE]
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» The regime a < % is disorder-irrelevant for pinning models

If A > 0 is small, the disordered model P*_  , has same properties
(e.g. critical exponents) as the non-disordered model (A = 0)
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(e.g. critical exponents) as the non-disordered model (A = 0)

Conj.: scaling limit of P, ,  is non-disordered  [Proved for DPRE]

» The regime a > l is disorder-relevant for pinning models

For any A > 0, the disordered model P“_ , , has different properties
(e.g. critical exponents) than the non- disordered model (A=0)

Our results fit this picture nicely: even though A — 0 as § | 0,
disordered survives in the scaling limit
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Further Developments

Disorder relevance vs. irrelevance

Why the restriction @ > 3 for pinning? [And a € (1,2] for DPRE]
» The regime a < % is disorder-irrelevant for pinning models

If A > 0 is small, the disordered model P*_  , has same properties
(e.g. critical exponents) as the non-disordered model (A = 0)

Conj.: scaling limit of P, ,  is non-disordered  [Proved for DPRE]

» The regime a > l is disorder-relevant for pinning models

For any A > 0, the disordered model P*,  , has different properties
(e.g. critical exponents) than the non- disordered model (A=0)

Our results fit this picture nicely: even though A — 0 as § | 0,
disordered survives in the scaling limit

Our restriction involving L2 convergence of k-point function (y < )
matches with Harris criterion v < 5 2 for disorder relevance

_ 1
(v correlation length exponent ~» v = E)
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