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Black & Scholes model

Black & Scholes model for the price St of a financial asset:

dSt = St (r dt + σ dBt)

I σ (the volatility) and r (the interest rate) are constant

I (Bt)t≥0 is a standard Brownian motion.

Therefore (St)t≥0 is a geometric Brownian motion, i.e., the
detrended log-price Xt := log St − r ′t (with r ′ := r − σ2/2) is BM:

dXt = σ dBt =⇒ Xt = X0 + σBt .

Basic example: Dow Jones Industrial Average (DJIA).
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DJIA time series (1935-2009)

Exponential growth of the DJIA [log plot]:

1940 1960 1980 2000

10
0

20
0

50
0

20
00

50
00

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

DJIA time series (1935-2009)

DJIA after linear detrend [log plot]:
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Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price Xt := log St − d t B&S: dXt = σ dBt

I The volatility σ is not constant: it may have high peaks
(“shocks” in the market).

Empirical volatility: σt :=
1

100

t∑
i=t−99

(xi − xi−1)2
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DJIA time series (1935-2009)

Empirical volatility [σt vs. t]
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Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price Xt := log St − d t B&S: dXt = σ dBt

I The volatility σ is not constant: it may have high peaks
(“shocks” in the market).

I The increments (Xt+h − Xt), called log-returns, for small h
have a distribution with heavy (power-law) tails.

Empirical daily (h = 1) tail: q(y) :=
1

T1 − T0

T1∑
i=T0+1

1{xi−xi−1>y}
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DJIA time series (1935-2009)

Daily log-return tail [log q(y) vs. log y ]
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Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price Xt := log St − d t B&S: dXt = σ dBt

I The volatility σ is not constant: it may have high peaks
(“shocks” in the market).

I The increments (Xt+h − Xt), called log-returns, for small h
have a distribution with heavy (power-law) tails.

I Log-returns corresponding to disjoint time intervals are
uncorrelated. . .

ρ(t) :=
1

T1 − T0 − t

T1−t∑
i=T0+1

(xi − xi−1)(xi+t − xi+t−1)

s2x
.
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DJIA time series (1935-2009)

Decorrelation of daily log-returns [ρ(t) vs. t]
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Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price Xt := log St − d t B&S: dXt = σ dBt

I The volatility σ is not constant: it may have high peaks
(“shocks” in the market).

I The increments (Xt+h − Xt), called log-returns, for small h
have a distribution with heavy (power-law) tails.

I Log-returns corresponding to disjoint time intervals are
uncorrelated. . . but not independent!

The correlation between |Xt+h − Xt | and |Xs+h − Xs |, called
volatility autocorrelation, has a slow decay in |t − s|, up to
moderate values of |t − s| (clustering of volatility).
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DJIA time series (1935-2009)

Volatility autocorrelation over 1–120 days [log plot]
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DJIA time series (1935-2009)

Volatility autocorrelation over 1–120 days [log-log plot]
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Further properties: diffusive scaling

Let us look more closely at the empirical log-return distribution
over h days, for an observed time series (xt)1≤t≤T :

p̂h(·) :=
1

T − h

T−h∑
t=1

δxt+h−xt (·) ,

where δx(·) denotes the Dirac measure at x ∈ R

For h small (up to a few days) p̂h(·) has power-law tails.

It turns out that p̂h obeys approximately a diffusive scaling relation:

Xt+h − Xt
d
≈
√

h (Xt+1 − Xt) → p̂h(dr) ' 1√
h

g

(
r√
h

)
dr

where g is a non-Gaussian density.
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DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1 day)
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DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2 days)
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DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2-5 days)
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DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2-5-10 days)
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DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2-5-10-25 days)

●●●●●●●●
●●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●●
●●●●●●●●

−0.03 −0.02 −0.01 0.00 0.01 0.02 0.03

0
10

20
30

40
50

60

● 1 day
2 days
5 days
10 days
25 days

Daily log-return standard deviation ≈ 0.01 −→ Range: -3 to +3 st. dev.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Further properties: multiscaling of moments

Consider the empirical q-th moment of the log-return over h days:

m̂q(h) :=
1

T − h

T−h∑
i=1

|xi+h − xi |q =

∫
|r |q p̂h(dr)

From the diffusive scaling Xt+h − Xt
d
≈
√

h (Xt+1 − Xt) it is
natural to guess

m̂q(h) ≈ hq/2 for h small .

This is true only if q ≤ q∗ (with q∗ ' 3 for the DJIA).

If q > q∗ we have the anomalous scaling (or multiscaling)

m̂q(h) ≈ hA(q) with A(q) <
q

2
.
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DJIA time series (1935-2009)

Scaling exponent A(q) (linear regression of log m̂q(h) vs. log h)
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Some comments

I The mentioned stylized facts are common to the main
financial indexes (DJIA, S&P 500, FTSE 100, NIKKEI 225).

I Scaling features (esp. multiscaling of moments) have been
strongly stressed in the econophysics literature.

In particular, the interactions we had with F. Baldovin and A.
Stella motivated our original interest.

Goal: identify a model (as simple as possible) that fits well all
mentioned stylized facts.

Baldovin & Stella’s standpoint: the scaling properties should
primarily guide the construction of the model.
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Alternative models: stochastic volatility

Stochastic volatility processes: the constant σ is replaced by a
stochastic process (σt)t≥0, usually independent of the BM B:

dXt = σt dBt

This defines a wide class of models (including ours!).

Much studied is the case of a generalized Ornstein-Uhlenbeck
(O-U) processes (Barndorff-Nielsen & Shephard)

dσ2t = −ασ2t dt + dLt ,

where Lt is a subordinator (increasing Lévy process).

Multiscaling of moments?
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Alternative models: multifractal models

Multiscaling of moments (as well as many other features) is
properly reproduced by the so-called multifractal models
[Mandelbrot, Calvet, Fisher].

These are suitable (independent) random time-changes of BM:

Xt := WIt

I W = (Ws)s≥0 is a Brownian motion

I I = (Is)s≥0 is a continuous, increasing process (usually
independent of W ) displaying multifractal features.

The paths of I = (Is)s≥0 are a.s. non absolutely continuous.
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Stochastic volatility and random time-change

Fact: every stochastic volatility process is an independent random
time change of a (different) Brownian motion:

dXt = σt dBt =⇒ Xt = W It ,

where It := 〈X 〉t =

∫ t

0
σ2s ds (Wt := XI−1(t)) .

[Every continuous martingale is a time-changed BM (Dambis/Dubins-Schwarz)]

Viceversa, every independent random time change of BM Xt = WIt

is a stochastic volatility process dXt = σt dBt if (and only if) the
time-change process It has absolutely continuous paths.

Our goal: define a simple stochastic volatility process that fits all
the above-mentioned stylized facts.
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Our model

Our parameters are D ∈ (0, 1/2), λ ∈ (0,∞), σ ∈ (0,∞).

More generally, σ can be taken as a probability on (0,∞)

We need three independent sources (B, T ,Σ) of randomness:

I a standard Brownian motion B = (Bt)t≥0;

I a Poisson point process T = (τn)n∈Z on R with intensity λ;

I an i.i.d. sequence of r.v.s Σ = (σn)n≥0 with marginal law σ.

(The parameter D enters later.)

Our model X = (Xt)t≥0 for the log-price of an index is

dXt = vt dBt

where {vt = vt(T ,Σ)}t≥0 is defined in a moment (and is
independent of B).
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Our model

We label τ0 < 0 < τ1 < . . . and for t ≥ 0 we set

i(t) := sup{n ≥ 0 : τn ≤ t} = #
(
T ∩ [0, t]

) (
∼ Po(λt)

)
,

so that τi(t) is the last point in T before t.

The starting point is the generalized O-U equation driven by i(t):

dv2
t = −α v2

t dt + β di(t) , α, β > 0 .

Random jumps of size β are followed by exponential damping.

We want to let β →∞ (very high volatility peaks). How to get a
non-degenerate limiting equation? α→∞ does not work.
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Our model

A natural solution is to take a superlinear drift term, for fixed α:

dv2
t = −α (v2

t )γ dt + ∞di(t) , α > 0, γ > 1 .

The pathwise solution is well-defined: for t ∈ (τn, τn+1)

v2
t = const.(α, γ)

1

(t − τn)1/(γ−1)
.

[In order for the SDE dXt = vt dBt to make sense, the trajectories

t 7→ v2
t must be locally integrable −→ we must impose γ > 2.]

We can now complete the definition of our process, expressing α
and γ in terms of our parameters D ∈ (0, 12) and σ ∈ (0,∞).
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Definition of our model

We define γ = γ(D) ∈ (2,∞) and α = α(σ,D) ∈ (0,∞) by

γ = 2 +
2D

1− 2D
, α = 1−2D

(2D)1/(1−2D)

1

σ1/(1−2D)
.

Definition

Our process X = (Xt)t≥0 is the solution to the (Wiener) SDE

dXt = vt dBt , X0 := 0 (say) .

The volatility process {vt}t≥0 is the solution to the (S)DE

dv2
t = −α (v2

t )γ dt + ∞di(t) .

More generally:

dv2
t = −α(σi(t)) (v2

t )γ dt + ∞di(t) .

The value of the constant α is renewed at each jump of i(t).
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An alternative description

Recall: every stochastic volatility process is an independent random
time change of a (different) Brownian motion W = (Wt)t≥0.

dXt = vt dBt =⇒ Xt = W It ,

where It := 〈X 〉t =

∫ t

0
v2
s ds (and Wt := XI−1(t)) .

I I = (It)t≥0 increasing process with absol. continuous paths;

I W = (Wt)t≥0 standard Brownian motion;

I I = (It)t≥0 and W = (Wt)t≥0 are independent.

Henceforth we work with (W , T ,Σ) instead of (B, T ,Σ).

Remark: explicit formula for v2
t =⇒ explicit formula for It
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s ds (and Wt := XI−1(t)) .

I I = (It)t≥0 increasing process with absol. continuous paths;

I W = (Wt)t≥0 standard Brownian motion;

I I = (It)t≥0 and W = (Wt)t≥0 are independent.

Henceforth we work with (W , T ,Σ) instead of (B, T ,Σ).

Remark: explicit formula for v2
t =⇒ explicit formula for It
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I Σ = (σn)n≥0 i.i.d. sequence of r.v.s with marginal law σ.

Our process X = (Xt)t≥0 is defined by Xt = WIt where

It = It(T ,Σ) is explicit function of T ,Σ (hence indep. of W ).

t 7→ It contin., I0 = 0, for h ∈ [τn, τn+1] : Iτn+h = Iτn + σ2n h2D

It := σ2
i(t)

(
t − τi(t)

)2D
+

i(t)∑
k=1

σ2
k−1 (τk − τk−1)2D − σ2

0 (−τ0)2D
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The process (It)t≥0

τ1 τ2 τ3τ0

It

t

v2
t = d

dt It = (2D)σ2
i(t)

(
t − τi(t)

)2D−1
singularities ↔ shocks
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Basic properties of our model

I The process X has stationary mixing increments.

I The process X is a stochastic volatility process:

dXt = vt dBt ,

where

Bt :=

∫ It

0

1√
I ′(I−1(u))

dWu , vt :=
√

I ′(t) =

√
2D σi(t)(

t − τi(t)
) 1

2−D
,

and (Bt)t≥0 is a standard Brownian motion.

I The process X is a zero-mean, square-integrable martingale,
provided E (σ2) =

∫
σ2ν(dσ) <∞.

I E [|Xt |q] < +∞ iff E (σq) < +∞. Heavy tails???
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Approximate Diffusive Scaling

Theorem

I [large time] If E (σ2) <∞ (typical), as h ↑ ∞ we have the
convergence in distribution

(Xt+h − Xt)√
h

d−−−−→
h↑∞

N (0, c2) c2 = λ1−2D E(σ2) Γ(2D + 1) .

I [small time] As h ↓ 0 we have the convergence in distribution

(Xt+h − Xt)√
h

d−−−→
h↓0

f (x) dx ,

where f (·) is the density of the random variable

√
2D σ τ

D−1/2
1 W1 .
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Approximate Diffusive Scaling

The small-time asymptotic density f (·) is an explicit mixture of
centered Gaussian densities:

f (x) dx
d
=
√

2D σ τ
D−1/2
1 W1

Note that f (x) has always polynomial tails:∫
|x |qf (x)dx <∞ ⇐⇒ q < q∗ :=

1
1
2 − D

There is a crossover phenomenon in the log-return distribution,
from power-law (small time) to Gaussian (large time).

Although E [|Xt |q] < +∞ ∀q when E (σq) < +∞ ∀q, for small t
the empirical distribution of Xt does display power-law tails up to
several standard deviations! (Xt ≈

√
tf (
√

tx), see below.)
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Multiscaling of Moments

Theorem

Assume E (σq) < +∞. The moment mq(h) := E (|Xt+h − Xt |q) is
finite and has the following asymptotic behavior as h ↓ 0:

mq(h) ∼


Cq h

q
2 if q < q∗

Cq h
q
2 log( 1h ) if q = q∗

Cq hDq+1 if q > q∗

, where q∗ :=
1

(12 − D)
.

I We can write mq(h) ≈ hA(q) with scaling exponent A(q)

A(q) := lim
h↓0

log mq(h)

log h
=

{
q/2 if q ≤ q∗

Dq + 1 if q ≥ q∗
.

I Cq explicit function of D, λ and E (σq) (used in estimation)
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Decay of Correlations

Theorem

The correlation of the absolute values of the increments of the
process X has the following asymptotic behavior as h ↓ 0:

lim
h↓0

ρ(|Xs+h − Xs |, |Xt+h − Xt |)

=: ρ(t − s) =
2

π Var(σ |W1|SD−1/2)
e−λ|t−s| φ(λ|t − s|) .

where
φ(x) := Cov

(
σ SD−1/2 , σ

(
S + x

)D−1/2)
and σ, S ∼ Exp(1) are independent and independent of W .

I The function φ(·) has a slower than exponential decay.
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Estimation of the Parameters

The parameters of our model are D, λ and the law of σ, that we
want to estimate on the DJIA time series (1935–2009).

We focus on 4 real parameters: D, λ, E (σ) and E (σ2),

that we estimate using the quantities A(q), C1, C2, ρ(t).

[Recall the multiscaling of moments mq(h) = E (|Xh|q) ∼ Cq hA(q)]

1. Scaling exponent A(q) function of D:

A(q) =

{
q/2 if q ≤ q∗

Dq + 1 if q ≥ q∗
.

2. Constants C1 and C2 functions of D, λ, E (σ) and E (σ2):

C1 =
2√
π

√
D Γ( 1

2
+ D)E(σ)λ1/2−D C2 = 2D Γ(2D)E(σ2)λ1−2D .
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Estimation of the Parameters

3. Volatility autocorrelation ρ(t) function of D, λ, E (σ), E (σ2):

ρ(t) =
2

π Var(σ |W1| SD−1/2)
e−λt φ(λt)

with φ(·) (quite) easily computable.

We evaluate the corresponding statistics Â(q), Ĉ1, Ĉ2, ρ̂(t) on
the (detrended log-)DJIA time series (xi )1≤i≤T=18849

log m̂q(h) ∼ Â(q) (log h) + log Ĉq m̂q(h) :=
1

T − h

T−h∑
i=1

|xi+h − xi |q

ρ̂(t) := Corr
(

(xi+1 − xi )1≤i≤T−1−t , (xi+t+1 − xi+t)1≤i≤T−1−t
)
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1

T − h

T−h∑
i=1

|xi+h − xi |q

ρ̂(t) := Corr
(

(xi+1 − xi )1≤i≤T−1−t , (xi+t+1 − xi+t)1≤i≤T−1−t
)

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Estimation of the Parameters

3. Volatility autocorrelation ρ(t) function of D, λ, E (σ), E (σ2):

ρ(t) =
2

π Var(σ |W1| SD−1/2)
e−λt φ(λt)

with φ(·) (quite) easily computable.

We evaluate the corresponding statistics Â(q), Ĉ1, Ĉ2, ρ̂(t) on
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Estimation of the Parameters

Loss function: (T = 40)

L(D, λ,E (σ),E (σ2)) =
1

2

{(
Ĉ1

C1
− 1

)2

+

(
Ĉ2

C2
− 1

)2}
+

∫ 5

0

(
Â(q)

A(q)
− 1

)2 dq

5
+

400∑
t=1

e−t/T∑400
s=1 e−s/T

(
ρ̂(t)

ρ(t)
− 1

)2

Estimator: minimization constrained on E (σ2) ≥ E (σ)2.(
D̂ , λ̂ , Ê (σ) , Ê (σ2)

)
= arg min L(D, λ,E (σ),E (σ2))

D̂ ' 0.16 λ̂ ' 0.00097 Ê (σ) ' 0.108 Ê (σ2) '
(
Ê (σ)

)2
The fit turns out to be very satisfactory, as we now show.
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(
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Ê (σ)

)2
The fit turns out to be very satisfactory, as we now show.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) scaling exponent A(q)
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DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) volatility autocorrelation [log plot]
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DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) volatility autocorrelation [log-log plot]
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Estimation of the Law of σ

The estimated values give E (σ2) ' E (σ)2 → Var(σ) ' 0

The law of σ (hence the model) is therefore completely specified.

We then compare the law of X1 (daily log-return) predicted by our
model with the empirical one evaluated on the DJIA time series.
No further parameter has to be estimated!

The agreement is remarkably good (both bulk and tails).

In particular, (apparent) power-law tails are visible up to several
standard deviations from the mean.
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DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) distribution of daily log return
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DJIA Time Series (1935-2009)

Empirical and theoretical tails of daily log return [log-log plot]
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On the Law of σ

Estimating the law of σ might appear a difficult task in general:
what if we had not found Var(σ) ' 0?

Even when Var(σ) > 0, the details of the law of σ beyond E (σ)
and E (σ2) would not be relevant.

In fact 1/λ ' 1000 working days −→ in 75 years we sample only
18849/1000 ' 18 different variables σk .

This is not enough to see the details of the law of σ.

Different laws for σ with the same E (σ) and E (σ2) give very
similar results.

The law of the log-returns (in the rage of interest) is effectively
determined by the t2D time scaling at the points of T .
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More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(Xt ,Yt)}t≥0 such that X = (Xt)t≥0 and
Y = (Yt)t≥0 are distributed according to our model.

Marginal parameters (DX , λX , σX ), (DY , λY , σY )

Marginal randomness (W X , T X ,ΣX ), (W Y , T Y ,ΣY )

Xt = W X
IXt
,

d

dt
IXt := 2DX σ2iX (t)

(
t − τXiX (t)

)2DX−1
,

Yt = W Y
IYt
,

d

dt
IYt := 2DY σ2iY (t)

(
t − τYiY (t)

)2DY−1
.

Which joint distribution for (W X , T X ,ΣX ), (W Y , T Y ,ΣY )?
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Introduction The Model Main Results Simulations Bivariate Model Conclusions

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(Xt ,Yt)}t≥0 such that X = (Xt)t≥0 and
Y = (Yt)t≥0 are distributed according to our model.

Marginal parameters (DX , λX , σX ), (DY , λY , σY )

Marginal randomness (W X , T X ,ΣX ), (W Y , T Y ,ΣY )

Xt = W X
IXt
,

d

dt
IXt := 2DX σ2iX (t)

(
t − τXiX (t)

)2DX−1
,

Yt = W Y
IYt
,

d

dt
IYt := 2DY σ2iY (t)

(
t − τYiY (t)

)2DY−1
.

Which joint distribution for (W X , T X ,ΣX ), (W Y , T Y ,ΣY )?

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(Xt ,Yt)}t≥0 such that X = (Xt)t≥0 and
Y = (Yt)t≥0 are distributed according to our model.

Marginal parameters (DX , λX , σX ), (DY , λY , σY )

Marginal randomness (W X , T X ,ΣX ), (W Y , T Y ,ΣY )

Xt = W X
IXt
,

d

dt
IXt := 2DX σ2iX (t)

(
t − τXiX (t)

)2DX−1
,

Yt = W Y
IYt
,

d

dt
IYt := 2DY σ2iY (t)

(
t − τYiY (t)

)2DY−1
.

Which joint distribution for (W X , T X ,ΣX ), (W Y , T Y ,ΣY )?

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(Xt ,Yt)}t≥0 such that X = (Xt)t≥0 and
Y = (Yt)t≥0 are distributed according to our model.

Marginal parameters (DX , λX , σX ), (DY , λY , σY )

Marginal randomness (W X , T X ,ΣX ), (W Y , T Y ,ΣY )

Xt = W X
IXt
,

d

dt
IXt := 2DX σ2iX (t)

(
t − τXiX (t)

)2DX−1
,

Yt = W Y
IYt
,

d

dt
IYt := 2DY σ2iY (t)

(
t − τYiY (t)

)2DY−1
.

Which joint distribution for (W X , T X ,ΣX ), (W Y , T Y ,ΣY )?

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(Xt ,Yt)}t≥0 such that X = (Xt)t≥0 and
Y = (Yt)t≥0 are distributed according to our model.

Marginal parameters (DX , λX , σX ), (DY , λY , σY )

Marginal randomness (W X , T X ,ΣX ), (W Y , T Y ,ΣY )

Xt = W X
IXt
,

d

dt
IXt := 2DX σ2iX (t)

(
t − τXiX (t)

)2DX−1
,

Yt = W Y
IYt
,

d

dt
IYt := 2DY σ2iY (t)

(
t − τYiY (t)

)2DY−1
.

Which joint distribution for (W X , T X ,ΣX ), (W Y , T Y ,ΣY )?

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(Xt ,Yt)}t≥0 such that X = (Xt)t≥0 and
Y = (Yt)t≥0 are distributed according to our model.

Marginal parameters (DX , λX , σX ), (DY , λY , σY )

Marginal randomness (W X , T X ,ΣX ), (W Y , T Y ,ΣY )

Xt = W X
IXt
,

d

dt
IXt := 2DX σ2iX (t)

(
t − τXiX (t)

)2DX−1
,

Yt = W Y
IYt
,

d

dt
IYt := 2DY σ2iY (t)

(
t − τYiY (t)

)2DY−1
.

Which joint distribution for (W X , T X ,ΣX ), (W Y , T Y ,ΣY )?

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

More than one index

The simplest (natural) idea is to correlate only T X and T Y .

T X = T (1) ∪ T (3) T Y = T (2) ∪ T (3)

T (1), T (2), T (3) are independent PPP with rates λ1, λ2, λ3

λX = λ1 + λ3 λY = λ2 + λ3

(W X ,W Y , T (1), T (2), T (3),ΣX ,ΣY ) are independent processes

How do cross correlations behave for such a model?

ρX ,Y (s, t) := lim
h↓0

ρ(|Xs+h − Xs |, |Yt+h − Yt |)
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Cross correlations

Theorem

The cross correlations have the following asymptotic behavior:

For t > s: ρX ,Y (s, t) = C e−λ
Y (t−s) φX ,Y (λY (t − s))

C = 2

π

√
Var(σX |W1| SDX−1/2)Var(σY |W1| SDY −1/2)

φX ,Y (u) := Cov
(
σX (SX )D

X−1/2 , σY
(
SY + u

)DY−1/2)
where SX , SY ∼ Exp(1) are correlated (like τX1 and τY1 ).

I The cross correlations ρX ,Y (t) behave very similarly to the
autocorrelations ρX (t), ρY (t). They coincide in the limiting
case T X = T Y (i.e. T (3) = ∅), DX = DY , σX = σY = cst.

I This is indeed what one observes! (Not obvious a priori.)
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DJIA and FTSE Time Series (1984-2011)

Empirical autocorrelations ρX , ρY and cross correlations ρX ,Y : log plot
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Empirical autocorrelations ρX , ρY and cross correlations ρX ,Y : log-log plot
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Numerical analysis

Do this model fits well the joint time series of DJIA and FTSE?

First step: look separately at the individual time series.

[DJIA was already done, but for a different (longer) time period.]

Estimated parameters (X = DJIA, Y = FTSE)

DX ' 0.14, λX ' 0.0013, σX ' 0.135 ' const.

DY ' 0.16, λY ' 0.0018, σY ' 0.11 ' const.

For both indexes, the agreement is very satisfactory.

Again, the fit of the law of the log-returns is very good, even with
no explicit calibration on it.
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DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) scaling exponent A(q)
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DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log plot]

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log-log plot]
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DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) distribution of daily log return
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DJIA Time Series (1984-2011)

Empirical and theoretical tails of daily log return [log plot]
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FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) scaling exponent A(q)
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FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log plot]
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FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log-log plot]
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FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) distribution of daily log return
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FTSE Time Series (1984-2011)

Empirical and theoretical tails of daily log return [log plot]
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Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.

Recall that T X = T (1) ∪ T (3) and T Y = T (2) ∪ T (3), therefore
λX = λ1 + λ3 and λY = λ2 + λ3.

Problem

How do we estimate the rate λ3 of the common part T (3)?

The best would be to estimate the random sets T X and T Y on the
two time series of DJIA and FTSE and see how much they overlap.

However, T X and T Y are the location of the shock times, which
are not easily and directly observable. They may only be an
idealization of our model. . . or are they real?
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Locating the shock times

Mario Bonino has devised a smart algorithm to locate the random
set of shock points T .

Recall that dXt = vt dBt with v2
t = I ′(t) ∝ (t − τi(t))2D−1.

Basic observation: the volatility v2
t diverges precisely on the set

T = (τn)n∈Z of shock times.

Given a time series (xi )1≤i≤T , consider the quantity

VT (t) :=
1

T − t

T∑
i=t+1

(xi+1 − xi )
2 for T − t � 1' 1

T − t

∫ T

t
v2
s ds

Therefore, for fixed T > 0, VT (t) should attain its (first) maximum
at the location t = t = i(T ) of the most recent shock time.

Unfortunately, due to fluctuations, there may be several local
maxima. . . How to locate the right one?
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Locating the shock times

Idea: compare locations of the maxima for different values of T .

If t is a “true” shock time, it should be detected as a maximum of
VT (t) for (almost) every fixed value of T > t.

Concretely, given the time series (xi )1≤i≤T , we set

gT := argmax
{

VT (t) : T − 2000 ≤ t ≤ T − 22
}

gT−1 := argmax
{

VT (t) : (T − 1)− 2000 ≤ t ≤ (T − 1)− 22
}

. . .

If our predictions are right, the set {gT , gT−1, gT−2, . . .} should
consist of only few distinct values (each attained by several gi ’s)
corresponding to the shock points, i.e. the points of T .

This is indeed (almost) the case! We just need to identify couples
of very close (< 20 days) shock points.
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}

gT−1 := argmax
{

VT (t) : (T − 1)− 2000 ≤ t ≤ (T − 1)− 22
}

. . .

If our predictions are right, the set {gT , gT−1, gT−2, . . .} should
consist of only few distinct values (each attained by several gi ’s)
corresponding to the shock points, i.e. the points of T .

This is indeed (almost) the case! We just need to identify couples
of very close (< 20 days) shock points.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Locating the shock times

Idea: compare locations of the maxima for different values of T .

If t is a “true” shock time, it should be detected as a maximum of
VT (t) for (almost) every fixed value of T > t.

Concretely, given the time series (xi )1≤i≤T , we set

gT := argmax
{

VT (t) : T − 2000 ≤ t ≤ T − 22
}

gT−1 := argmax
{

VT (t) : (T − 1)− 2000 ≤ t ≤ (T − 1)− 22
}

. . .

If our predictions are right, the set {gT , gT−1, gT−2, . . .} should
consist of only few distinct values (each attained by several gi ’s)
corresponding to the shock points, i.e. the points of T .

This is indeed (almost) the case! We just need to identify couples
of very close (< 20 days) shock points.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Locating the shock times

Idea: compare locations of the maxima for different values of T .

If t is a “true” shock time, it should be detected as a maximum of
VT (t) for (almost) every fixed value of T > t.

Concretely, given the time series (xi )1≤i≤T , we set

gT := argmax
{

VT (t) : T − 2000 ≤ t ≤ T − 22
}

gT−1 := argmax
{

VT (t) : (T − 1)− 2000 ≤ t ≤ (T − 1)− 22
}

. . .

If our predictions are right, the set {gT , gT−1, gT−2, . . .} should
consist of only few distinct values (each attained by several gi ’s)
corresponding to the shock points, i.e. the points of T .

This is indeed (almost) the case! We just need to identify couples
of very close (< 20 days) shock points.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

DJIA Time Series (1984-2011)

Shock times T X for the DJIA
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FTSE Time Series (1984-2011)

Shock times T Y for the FTSE
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DJIA and FTSE Time Series (1984-2011)

Shock times T X and T Y for the DJIA and FTSE
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Locating the shock times

There is a considerable overlap between the (empirical) sets T X

and T Y of shock times of the DJIA and FTSE time series.

Recall the estimated values

λX ' 0.0013 , λY ' 0.0018 ,

and we want to find λ3 such that λX = λ1 + λ3, λY = λ2 + λ3.

Guess: large value of λ3. More quantitatively, the cross correlation

ρX ,Y (t − s) := lim
h↓0

ρ(|Xs+h − Xs |, |Yt+h − Yt |)

depends on λ1, λ2, λ3. By comparison with the empirical cross
correlation, we can choose the best value of λ3.

Result: λ1 ' 0.0001, λ2 ' 0.0006, λ3 ' 0.0012
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DJIA and FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (lines) cross correlations: log plot
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DJIA and FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (lines) cross correlations: log-log plot
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Locating the shock times

The agreement is again very good.

Actually, it would be good even with λ1 = 0, i.e. if every shock
time of DJIA were a shock time of FTSE.
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Outline
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Conclusions

We have proposed a model with the following features:

I It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.

I It is easy to simulate.

I Despite of the few parameters, it accounts for various
phenomena observed in real time series.

I Several generalizations can be considered (correlations
between Σ, T and W , modified time-change t 7→ t2D , . . . ).

Next steps [under investigation]:

I Enrich the model (→ multifractal volatility)

I Solve specific financial problems: pricing of options, portfolio
management, . . .
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Thanks.
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Variability in subperiods

A natural question on the DJIA time series is the amount of
variability of the data set in subperiods. Is the period 1935-2009
long enough to be close to the ergodic limit?

More concretely: are the statistics of the DJIA time series in
(large) subperiods close to those of the whole period 1935-2009?

It turns out that a considerable variability is present for all the
quantities we observe (multiscaling of moments, decay of
correlations and empirical distribution) if one takes different
(suitably chosen) large time windows of 30 years.
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DJIA Time Series (1935-2009)

Empirical scaling exponent A(q) over sub-periods of 30 years.

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

● ● ● ●
●

●

0 1 2 3 4 5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

● 1935−1964
1957−1986
1979−2008

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

DJIA Time Series (1935-2009)

Volatility autocorrelation over sub-periods of 30 years [log plot]
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DJIA Time Series (1935-2009)

Variability of the distribution in sub-periods of 30 years
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DJIA Time Series (1935-2009)

Variability of the left tail in sub-periods of 30 years
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Variability of estimators

These plots show that the DJIA time series in the period
1935-2009 is not so close to the ergodic limit: empirical averages
over subperiods of 30 years exhibit non negligible fluctuations.

It is relevant to show that this is also consistent with our model.

We have therefore simulated 75 years of data from our model and
evaluated the quantities of interest (multiscaling of moments,
decay of correlations and empirical distribution) in different
subperiods of 30 years.

A significant, comparable variability is present also in our model.
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Simulated Data (75 years)

Simulated scaling exponent of our model over sub-periods of 30 years
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Simulated Data (75 years)

Simulated volatility autocorrelation of our model over sub-periods of 30 years
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Simulated Data (75 years)

Simulated distribution of our model over sub-periods of 30 years
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Simulated Data (75 years)

Simulated tails of our model over sub-periods of 30 years
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Baldovin & Stella’s Model

Empirically: p̂h(dr) ' 1√
h

g

(
r√
h

)
dr .

Assume g is symmetric and let g∗ be its Fourier transform.

Let (Yt)t≥0 be the process with finite dimensional densities

p(x1, t1; x2, t2; . . . ; xn, tn) = h

(
x1√
t1
,

x2 − x1√
t2 − t1

, . . . ,
xn − xn−1√

tn − tn−1

)
,

where h : Rn → R has Fourier transform h∗ given by

h∗(u1, u2, . . . , un) := g∗
(√

u2
1 + . . .+ u2

n

)
.

I If g is standard Gaussian → (Yt)t≥0 is Brownian motion.

I Is the definition well-posed? Conditions on g .
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Baldovin & Stella’s Model

I The increments of Y have diffusive scaling.
Their (rescaled) marginal density is g(·).

I The increments of Y are uncorrelated but not independent.

I However, they are exchangeable: no decay of correlations.

By De Finetti’s theorem in continuous time [Freedman 1963]

the process (Yt)t≥0 is a mixture of Brownian motions:

Yt = σWt

where σ is random and independent of the BM (Wt)t≥0.

A sample path of (Yt)t≥0 cannot be distinguished from a
sample path of a BM with constant volatility: no ergodicity.

Apart from this issue, there is still no multiscaling of moments.
This is solved introducing a time inhomogeneity in the model.
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Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < τ1 < τ2 < · · · < τn ↑ +∞
and a parameter 0 < D ≤ 1/2. Define a new process (Xt)t≥0 by

Xt := Yt2D for t ∈ [0, τ1) ,

Xt := Y(t−τn)2D+
∑n

k=1(τk−τk−1)2D
for t ∈ [τn, τn+1) .

I For D = 1/2 we have the old model Xt ≡ Yt .

I For D < 1/2, the process (Xt)t≥0 is obtained from (Yt)t≥0 by
a nonlinear time-change, refreshed at each time τn.

I Increments are amplified immediately after the times (τn)n≥1
and then progressively damped out.

I Interpretation: (τn)n≥1 linked to “shocks” in the market.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < τ1 < τ2 < · · · < τn ↑ +∞
and a parameter 0 < D ≤ 1/2. Define a new process (Xt)t≥0 by

Xt := Yt2D for t ∈ [0, τ1) ,

Xt := Y(t−τn)2D+
∑n

k=1(τk−τk−1)2D
for t ∈ [τn, τn+1) .

I For D = 1/2 we have the old model Xt ≡ Yt .

I For D < 1/2, the process (Xt)t≥0 is obtained from (Yt)t≥0 by
a nonlinear time-change, refreshed at each time τn.

I Increments are amplified immediately after the times (τn)n≥1
and then progressively damped out.

I Interpretation: (τn)n≥1 linked to “shocks” in the market.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < τ1 < τ2 < · · · < τn ↑ +∞
and a parameter 0 < D ≤ 1/2. Define a new process (Xt)t≥0 by

Xt := Yt2D for t ∈ [0, τ1) ,

Xt := Y(t−τn)2D+
∑n

k=1(τk−τk−1)2D
for t ∈ [τn, τn+1) .

I For D = 1/2 we have the old model Xt ≡ Yt .

I For D < 1/2, the process (Xt)t≥0 is obtained from (Yt)t≥0 by
a nonlinear time-change, refreshed at each time τn.

I Increments are amplified immediately after the times (τn)n≥1
and then progressively damped out.

I Interpretation: (τn)n≥1 linked to “shocks” in the market.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < τ1 < τ2 < · · · < τn ↑ +∞
and a parameter 0 < D ≤ 1/2. Define a new process (Xt)t≥0 by

Xt := Yt2D for t ∈ [0, τ1) ,

Xt := Y(t−τn)2D+
∑n

k=1(τk−τk−1)2D
for t ∈ [τn, τn+1) .

I For D = 1/2 we have the old model Xt ≡ Yt .

I For D < 1/2, the process (Xt)t≥0 is obtained from (Yt)t≥0 by
a nonlinear time-change, refreshed at each time τn.

I Increments are amplified immediately after the times (τn)n≥1
and then progressively damped out.

I Interpretation: (τn)n≥1 linked to “shocks” in the market.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < τ1 < τ2 < · · · < τn ↑ +∞
and a parameter 0 < D ≤ 1/2. Define a new process (Xt)t≥0 by

Xt := Yt2D for t ∈ [0, τ1) ,

Xt := Y(t−τn)2D+
∑n

k=1(τk−τk−1)2D
for t ∈ [τn, τn+1) .

I For D = 1/2 we have the old model Xt ≡ Yt .

I For D < 1/2, the process (Xt)t≥0 is obtained from (Yt)t≥0 by
a nonlinear time-change, refreshed at each time τn.

I Increments are amplified immediately after the times (τn)n≥1
and then progressively damped out.

I Interpretation: (τn)n≥1 linked to “shocks” in the market.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Baldovin & Stella’s Model

Despite the time-change, the process (Xt)t≥0 remains not ergodic.

However, Baldovin & Stella show by simulations that this model
(with (τn)n a periodic sequence) fits all mentioned stylized facts.

They actually simulate a different model: an autoregressive version
of (Xt)t≥0.

Other issue: the density of Y1 is g(·) by construction. However, the
density of X1 is not g(·) and depends on the choice of (τn)n.

Our aims
I Define a simple model capturing the essential features of

Baldovin & Stella’s construction.

I Easy to describe and to simulate.

I Rigorous proofs of the mentioned stylized facts.
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Other observables

Is everything going as expected?
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DJIA Time Series (1935-2009)

Empirical and theoretical tails of 5-day log return [log plot]
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DJIA Time Series (1935-2009)

Empirical and theoretical tails of 400-day log return [log plot]
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DJIA Time Series (1935-2009)

Empirical volatility
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Simulated Data (75 years)

Empirical volatility

0 5000 10000 15000

0.
00

0
0.

01
0

0.
02

0
0.

03
0

Local standard deviation of log-returns in a window of 100 days

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012


	Black & Scholes and beyond
	The Model
	Main Results
	Estimation and Simulations
	Bivariate Model
	Conclusions

