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Introduction

Black & Scholes model

Black & Scholes model for the price S; of a financial asset:
dSt == St (rdt + O'dBt)

» o (the volatility) and r (the interest rate) are constant

> (Bt)t>0 is a standard Brownian motion.
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Black & Scholes model

Black & Scholes model for the price S; of a financial asset:
dSt == St (rdt + O'dBt)

» o (the volatility) and r (the interest rate) are constant

> (Bt)t>0 is a standard Brownian motion.

Therefore (S¢)¢>0 is a geometric Brownian motion, i.e., the
detrended log-price X; :=log S — r't (with r' ;= r — 02/2) is BM:

dXt:O'dBt — Xt:X0+O'Bt.

Basic example: Dow Jones Industrial Average (DJIA).
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Introduction

DJIA time series (1935-2009)

Exponential growth of the DJIA [log plot]:
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Introduction

DJIA time series (1935-2009)

DJIA after linear detrend [log plot]:
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Introduction

Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.
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Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price X; := log S; — d B&S: dX;=o0dB; |

» The volatility o is not constant: it may have high peaks
(“shocks” in the market).

Empirical volatility: &; :=
pirical volatility: & 100 ’ ;99( - Xi—1)

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction

DJIA time series (1935-2009)

Empirical volatility [o¢ vs. t]
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Introduction

Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price X; := log S; — d B&S: dX; = odB;

N

» The volatility o is not constant: it may have high peaks
(“shocks” in the market).

» The increments (X1, — X¢), called log-returns, for small h
have a distribution with heavy (power-law) tails.

T
1
Empirical daily (h = 1) tail:  g(y) := T-T > sy
i=To+1

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction

DJIA time series (1935-2009)

Daily log-return tail [logG(y) vs. logy]
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Introduction

DJIA time series (1935-2009)

Decorrelation of daily log-returns [p(t) vs. t]
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Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price X; := log S; — d B&S: dX;=o0dB; |

» The volatility o is not constant: it may have high peaks
(“shocks” in the market).

» The increments (X1, — X¢), called log-returns, for small h
have a distribution with heavy (power-law) tails.

» Log-returns corresponding to disjoint time intervals are
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Introduction

Beyond the Black & Scholes model

Despite its success, this model is not consistent with a number of
stylized facts that are empirically detected in many real time series.

Detrended log-price X; := log S; — d B&S: dX;=o0dB; |

» The volatility o is not constant: it may have high peaks
(“shocks” in the market).

» The increments (X1, — X¢), called log-returns, for small h
have a distribution with heavy (power-law) tails.

» Log-returns corresponding to disjoint time intervals are
uncorrelated. . . but not independent!

The correlation between | X;1p — Xi| and [ Xsip — X/, called

volatility autocorrelation, has a slow decay in |t — s|, up to
moderate values of |t —s| (clustering of volatility).
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Introduction

DJIA time series (1935-2009)

Volatility autocorrelation over 1-120 days [log plot]
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Introduction

DJIA time series (1935-2009)

Volatility autocorrelation over 1-120 days [log-log plot]
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Introduction

Further properties: diffusive scaling

Let us look more closely at the empirical log-return distribution
over h days, for an observed time series (x¢)1<¢<T:

ﬁh() = ﬁ 5Xt+h—Xt(')?

where 0,(-) denotes the Dirac measure at x € R
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Introduction

Further properties: diffusive scaling

Let us look more closely at the empirical log-return distribution
over h days, for an observed time series (x¢)1<¢<T:

Pn(°) = T_h 5Xt+h—><t(')’

where 0,(-) denotes the Dirac measure at x € R

For h small (up to a few days) px(-) has power-law tails.

It turns out that py obeys approximately a diffusive scaling relation:
d . r
Xigh — Xp = \/B(Xt+]_ —X:) = pp(dr)~—g () dr

where g is a non-Gaussian density.
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Introduction

DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1 day)

o _]
3 o

o _|
©

40
|

20

10
o

oo
o
%0000

T T T T T T I
-0.03 -0.02 -0.01 0.00 0.01 0.02 0.03

Daily log-return standard deviation ~ 0.01 — Range: -3 to +3 st. dev.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction

DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2 days)

o
©

o
Tel

20 30 40

10

000

A o 1day
A 2 days

- AN oA

c%%

T T T T T T
-0.03 -0.02 -0.01 0.00 0.01 0.02

I
0.03

Daily log-return standard deviation ~ 0.01 — Range: -3 to +3 st. dev.

Francesco Caravenna

Scaling and Multiscaling in Financial Series

March 12, 2012



Introduction

DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2-5 days)
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Introduction

DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2-5-10 days)
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Introduction

DJIA time series (1935-2009)

Rescaled empirical density of log-returns (1-2-5-10-25 days)
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Introduction

Further properties: multiscaling of moments

Consider the empirical g-th moment of the log-return over h days:

N
fg(h) = Z xion = xl® = [ 11 pa(ar
i=1
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Further properties: multiscaling of moments

Consider the empirical g-th moment of the log-return over h days:
T—
o) = 7 3 b = JALENCY
i=1

d
From the diffusive scaling Xpyp — X¢ = \/E(Xtﬂ — X;) itis
natural to guess

fg(h) =~ h?2  for h small.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction

Further properties: multiscaling of moments

Consider the empirical g-th moment of the log-return over h days:
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o) = 7 3 b = JALENCY
i=1

d
From the diffusive scaling Xpyp — X¢ = \/E(Xtﬂ — X;) itis
natural to guess

fg(h) =~ h?2  for h small.

This is true only if g < g* (with g* ~ 3 for the DJIA).
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Introduction

Further properties: multiscaling of moments

Consider the empirical g-th moment of the log-return over h days:

mq(h T h Z |Xl+h _Xl|q /|r|qph dr

d
From the diffusive scaling Xpyp — X¢ = \/E(Xtﬂ — X;) itis
natural to guess

fg(h) =~ h?2  for h small.

This is true only if g < g* (with g* ~ 3 for the DJIA).
If ¢ > g* we have the anomalous scaling (or multiscaling)

9

mg(h) = K@ with A(q) < 5
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Introduction

DJIA time series (1935-2009)

Scaling exponent A(q) (linear regression of log A1,(h) vs. log h)
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Some comments

» The mentioned stylized facts are common to the main
financial indexes (DJIA, S&P 500, FTSE 100, NIKKEI 225).
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Some comments

» The mentioned stylized facts are common to the main
financial indexes (DJIA, S&P 500, FTSE 100, NIKKEI 225).

» Scaling features (esp. multiscaling of moments) have been
strongly stressed in the econophysics literature.

In particular, the interactions we had with F. Baldovin and A.
Stella motivated our original interest.

Goal: identify a model (as simple as possible) that fits well all
mentioned stylized facts.

Baldovin & Stella’s standpoint: the scaling properties should
primarily guide the construction of the model.
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Alternative models: stochastic volatility

Stochastic volatility processes: the constant o is replaced by a
stochastic process (o)¢>0, usually independent of the BM B:

dXt =0t dBt

This defines a wide class of models (including ours!).
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Stochastic volatility processes: the constant o is replaced by a
stochastic process (o)¢>0, usually independent of the BM B:

dXt =0t dBt

This defines a wide class of models (including ours!).

Much studied is the case of a generalized Ornstein-Uhlenbeck
(O-U) processes (Barndorff-Nielsen & Shephard)

do? = —ao?dt +dLy,

where L; is a subordinator (increasing Lévy process).
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Alternative models: stochastic volatility

Stochastic volatility processes: the constant o is replaced by a
stochastic process (o)¢>0, usually independent of the BM B:

dXt =0t dBt

This defines a wide class of models (including ours!).

Much studied is the case of a generalized Ornstein-Uhlenbeck
(O-U) processes (Barndorff-Nielsen & Shephard)

do? = —ao?dt +dLy,

where L; is a subordinator (increasing Lévy process).

Multiscaling of moments?

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction

Alternative models: multifractal models

Multiscaling of moments (as well as many other features) is
properly reproduced by the so-called multifractal models
[Mandelbrot, Calvet, Fisher].
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Multiscaling of moments (as well as many other features) is
properly reproduced by the so-called multifractal models
[Mandelbrot, Calvet, Fisher].

These are suitable (independent) random time-changes of BM:

Xt = Wlt

» W = (W;s)s>0 is a Brownian motion
» | = (Is)s>0 is a continuous, increasing process (usually
independent of W) displaying multifractal features.

March 12, 2012

Francesco Caravenna Scaling and Multiscaling in Financial Series



Introduction

Alternative models: multifractal models

Multiscaling of moments (as well as many other features) is
properly reproduced by the so-called multifractal models
[Mandelbrot, Calvet, Fisher].

These are suitable (independent) random time-changes of BM:

Xt = Wlt

» W = (W;s)s>0 is a Brownian motion

» | = (Is)s>0 is a continuous, increasing process (usually
independent of W) displaying multifractal features.

The paths of | = (/5)s>0 are a.s. non absolutely continuous.
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Stochastic volatility and random time-change

Fact: every stochastic volatility process is an independent random
time change of a (different) Brownian motion:

dXt = O'tdBt — Xt = WIH
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Stochastic volatility and random time-change

Fact: every stochastic volatility process is an independent random
time change of a (different) Brownian motion:

dXt == O'tdBt — Xt == WIt’
t
where lp = (X)e = / o2ds (We = Xj—1()) -
0

[Every continuous martingale is a time-changed BM (Dambis/Dubins-Schwarz)]
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dXt = O'tdBt — Xt = WIH

t
where lp = (X)e = / o2ds (We = Xj—1()) -
0

[Every continuous martingale is a time-changed BM (Dambis/Dubins-Schwarz)]

Viceversa, every independent random time change of BM X; = W,
is a stochastic volatility process dX; = o dB; if (and only if) the
time-change process /; has absolutely continuous paths.
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Stochastic volatility and random time-change

Fact: every stochastic volatility process is an independent random
time change of a (different) Brownian motion:

dXt = O'tdBt — Xt = WIH

t
where lp = (X)e = / o2ds (We = Xj—1()) -
0

[Every continuous martingale is a time-changed BM (Dambis/Dubins-Schwarz)]

Viceversa, every independent random time change of BM X; = W,
is a stochastic volatility process dX; = o dB; if (and only if) the
time-change process /; has absolutely continuous paths.

Our goal: define a simple stochastic volatility process that fits all
the above-mentioned stylized facts.
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The Model

Our model

Our parameters are D € (0,1/2), A € (0,00), o € (0,00).

More generally, o can be taken as a probability on (0, c0)
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More generally, o can be taken as a probability on (0, c0)
We need three independent sources (B, 7, X) of randomness:

» a standard Brownian motion B = (B;)¢>0;

» a Poisson point process 7 = (7p)nez on R with intensity A;

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



The Model

Our model

Our parameters are D € (0,1/2), A € (0,00), o € (0,00).

More generally, o can be taken as a probability on (0, c0)

We need three independent sources (B, 7, X) of randomness:
» a standard Brownian motion B = (B;)¢>0;
» a Poisson point process 7 = (7p)nez on R with intensity A;

> an i.i.d. sequence of r.v.s ¥ = (0,)p>0 with marginal law o.
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» a Poisson point process 7 = (7p)nez on R with intensity A;

> an i.i.d. sequence of r.v.s ¥ = (0,)p>0 with marginal law o.

(The parameter D enters later.)
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Our model

Our parameters are D € (0,1/2), A € (0,00), o € (0,00).

More generally, o can be taken as a probability on (0, c0)

We need three independent sources (B, 7, X) of randomness:
» a standard Brownian motion B = (B;)¢>0;
» a Poisson point process 7 = (7p)nez on R with intensity A;
> an i.i.d. sequence of r.v.s ¥ = (0,)p>0 with marginal law o.

(The parameter D enters later.)

Our model X = (X¢)>o for the log-price of an index is
dXt = V; dBt

where {v; = v¢(T,X)}+>0 is defined in a moment (and is
independent of B).
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The Model

Our model

We label i < 0 < 71 < ... and for t > 0 we set
i(t) == sup{n>0: 7, <t} = #(TNJ0,t]) (~ Po(At)),

so that 7j(;) is the last point in 7 before t.
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i(t) == sup{n>0: 7, <t} = #(TNJ0,t]) (~ Po(At)),
so that 7j(;) is the last point in 7 before t.
The starting point is the generalized O-U equation driven by i(t):
dv? = —avZdt + pdi(t), a,>0.

Random jumps of size 3 are followed by exponential damping.
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The Model

Our model

We label i < 0 < 71 < ... and for t > 0 we set
i(t) == sup{n>0: 7, <t} = #(TNJ0,t]) (~ Po(At)),
so that 7j(;) is the last point in 7 before t.
The starting point is the generalized O-U equation driven by i(t):
dv? = —avZdt + pdi(t), a,>0.

Random jumps of size 3 are followed by exponential damping.

We want to let J — oo (very high volatility peaks). How to get a
non-degenerate limiting equation?
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The Model

Our model

We label i < 0 < 71 < ... and for t > 0 we set
i(t) == sup{n>0: 7, <t} = #(TNJ0,t]) (~ Po(At)),
so that 7j(;) is the last point in 7 before t.
The starting point is the generalized O-U equation driven by i(t):
dv? = —avZdt + pdi(t), a,>0.

Random jumps of size 3 are followed by exponential damping.

We want to let J — oo (very high volatility peaks). How to get a
non-degenerate limiting equation? « — oo does not work.

Francesco Caravenna
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The Model

Our model

A natural solution is to take a superlinear drift term, for fixed a:

dv? = —a(v?)7dt 4+ codi(t), a>0,y>1.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



The Model

Our model

A natural solution is to take a superlinear drift term, for fixed a:
dv? = —a(v?)7dt 4+ codi(t), a>0,y>1.

The pathwise solution is well-defined: for t € (74, Tht1)

1

v = const.(a, ) (t — )0 -
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The Model

Our model

A natural solution is to take a superlinear drift term, for fixed a:
dv? = —a(v?)'dt 4+ codi(t), a>0, y>1.
The pathwise solution is well-defined: for t € (74, Tht1)

1

v = const.(a, ) (t — )0 -

[In order for the SDE dX; = v; dB; to make sense, the trajectories
t — v must be locally integrable — we must impose v > 2.]
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The Model

Our model

A natural solution is to take a superlinear drift term, for fixed a:
dv? = —a(v?)'dt 4+ codi(t), a>0, y>1.

The pathwise solution is well-defined: for t € (74, Tht1)

1

v = const.(a, ) (t — )0 -

[In order for the SDE dX; = v; dB; to make sense, the trajectories
t — v must be locally integrable — we must impose v > 2.]

We can now complete the definition of our process, expressing «
and 7 in terms of our parameters D € (0, 3) and ¢ € (0, 00).
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The Model

Definition of our model

We define v = (D) € (2,00) and o = a0, D) € (0,00) by

2D 1-2D 1
1=2T 7500 0T @ L1jaan) |
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The Model
Definition of our model

We define v = (D) € (2,00) and o = a0, D) € (0,00) by

’ 2D 1-2D 1
T=2T 0000 YT @oyom Liji-en) -

Definition
Our process X = (X¢)¢>0 is the solution to the (Wiener) SDE

dX; = v¢+dB;, Xo = 0 (say).
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The Model
Definition of our model

We define v = (D) € (2,00) and o = a0, D) € (0,00) by

’ 2D 1-2D 1
T=2T 0000 YT @oyom Liji-en) -

Definition
Our process X = (X¢)¢>0 is the solution to the (Wiener) SDE

dX; = v¢+dB;, Xo = 0 (say).

The volatility process {v:}+>0 is the solution to the (S)DE
dv? = —a(v?)7dt + codi(t).
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Intrc n The Model ain Results 5 Bivariate Model

Definition of our model

We define v = (D) € (2,00) and o = a0, D) € (0,00) by

’ 2D 1-2D 1
vy=2+ 1-oD" & = (2D)v/(-20) s1/(1—2D)

Definition
Our process X = (X¢)¢>0 is the solution to the (Wiener) SDE
dX; = v¢+dB;, Xo = 0 (say).
The volatility process {v:}+>0 is the solution to the (S)DE
dv? = —a(v?) dt + ocodi(t).
More generally:

dv? = —a(0i()) (v3)7dt + ocodi(t).

The value of the constant « is renewed at each jump of i(t).
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The Model

An alternative description

Recall: every stochastic volatility process is an independent random
time change of a (different) Brownian motion W = (W;)¢>0.

dXt = Vt dBt — Xt = W/t7
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The Model

An alternative description

Recall: every stochastic volatility process is an independent random
time change of a (different) Brownian motion W = (W;)¢>0.

dXt = Vt dBt — Xt = W/t7
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The Model

An alternative description

Recall: every stochastic volatility process is an independent random
time change of a (different) Brownian motion W = (W;)¢>0.

dXt = Vt dBt — Xt = W/t7
t
where lp = (X)e = / v2ds (and Wi = Xj—1(p) -
0

» | = (It)¢>0 increasing process with absol. continuous paths;
» W = (W;)>0 standard Brownian motion;
» | = (It)r>0 and W = (W;)>o are independent.
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The Model

An alternative description

Recall: every stochastic volatility process is an independent random
time change of a (different) Brownian motion W = (W;)¢>0.

dXt = Vt dBt — Xt = W/t7

t
where lp = (X)e = / v2ds (and Wi = Xj—1(p) -
0

» | = (It)¢>0 increasing process with absol. continuous paths;
» W = (W;)>0 standard Brownian motion;
» | = (It)r>0 and W = (W;)>o are independent.

Henceforth we work with (W, T, X) instead of (B,7T,X).
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The Model

An alternative description

Recall: every stochastic volatility process is an independent random
time change of a (different) Brownian motion W = (W;)¢>0.

dXt = Vt dBt — Xt = W/t7
t
where lp = (X)e = / v2ds (and Wi = Xj—1(p) -
0

» | = (It)¢>0 increasing process with absol. continuous paths;
» W = (W;)>0 standard Brownian motion;
» | = (It)r>0 and W = (W;)>o are independent.

Henceforth we work with (W, T, X) instead of (B,7T,X).

Remark: explicit formula for v == explicit formula for /;
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The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

» W = (W;)r>0 standard Brownian motion;
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The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

» W = (W;)r>0 standard Brownian motion;

» T = (7n)nez Poisson point process on R with intensity \;
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The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)
» W = (W;)r>0 standard Brownian motion;
» T = (Tn)nez Poisson point process on R with intensity A;

» ¥ = (0n)n>o0 i.i.d. sequence of r.v.s with marginal law o.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

» W = (W;)r>0 standard Brownian motion;
» T = (7n)nez Poisson point process on R with intensity \;

» ¥ = (0n)n>o0 i.i.d. sequence of r.v.s with marginal law o.

Our process X = (X¢)>0 is defined by | X; = W,
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The Model
Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

» W = (W;)r>0 standard Brownian motion;
» T = (7n)nez Poisson point process on R with intensity \;

» ¥ = (0n)n>o0 i.i.d. sequence of r.v.s with marginal law o.

Our process X = (X¢)>0 is defined by | X; = W), | where
It = I,(T,X) is explicit function of 7, X (hence indep. of W).

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

» W = (W;)r>0 standard Brownian motion;
» T = (7n)nez Poisson point process on R with intensity \;

» ¥ = (0n)n>o0 i.i.d. sequence of r.v.s with marginal law o.

Our process X = (X;)¢>0 is defined by where
It = I,(T,X) is explicit function of 7, X (hence indep. of W).

t— Iy contin., Ilhp=0, forhe€[mTo1]: lrtn= Iy, + 05 2 p2D
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The Model

Alternative definition of our model

Recall D € (0,1/2), A € (0,00), 0 € M1((0,00)) and (W, T,X)

» W = (W;)r>0 standard Brownian motion;
» T = (7n)nez Poisson point process on R with intensity \;

» ¥ = (0n)n>o0 i.i.d. sequence of r.v.s with marginal law o.

Our process X = (X;)¢>0 is defined by where
It = I,(T,X) is explicit function of 7, X (hence indep. of W).

t— Iy contin., Ilhp=0, forhe€[mTo1]: lrtn= Iy, + 05 2 p2D

2D
Iy = Jl'z(t) (t—7iw)" + Zoi—l (= sl = o6 (=70
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The Model

The process (/) ¢>0

Iy

\j
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The Model

The process (/;)>0

A
I
To 7I—1 T T e
|
— %It = (2D)O"-2(t) (th,-(t))szl singularities <>  shocks
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Introduction The Model Main Results Simulations Bivariate Model Conclusions

Basic properties of our model

» The process X has stationary mixing increments.
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Introduction The Model Main Results Simulations Bivariate Model Conclusions

Basic properties of our model

» The process X has stationary mixing increments.
» The process X is a stochastic volatility process:
dXt = Vi dBt y

where

[/
¢ 1 V2D o;
ve = /I'(t) = 7it)

= | ————dW,, = —,
C e VIUW) (t = 7i9) ™"

and (B¢)t>o is a standard Brownian motion.

B

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Introduction The Model Main Results Simulations Bivariate Model Conclusions

Basic properties of our model

» The process X has stationary mixing increments.
» The process X is a stochastic volatility process:
dXt = Vi dBt y

where

[/
¢ 1 V2D o;
ve = /I'(t) = 7it)

= | ————dW,, = —,
C e VIUW) (t = 7i9) ™"

and (B¢)t>o is a standard Brownian motion.

B

» The process X is a zero-mean, square-integrable martingale,
provided E(0?) = [ o?v(do) < oc.
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Introduction The Model Main Results Simulations Bivariate Model Conclusions

Basic properties of our model

» The process X has stationary mixing increments.
» The process X is a stochastic volatility process:
dXt = Vi dBt y

where

[/
¢ 1 V2D o;
ve = /I'(t) = 7it)

= | ————dW,, = —,
C e VIUW) (t = 7i9) ™"

and (B¢)t>o is a standard Brownian motion.

B

» The process X is a zero-mean, square-integrable martingale,
provided E(0?) = [ o?v(do) < oc.

» E[|X:|9] < 400 iff E(09) < +oo. Heavy tails???
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Main Results

Outline

3. Main Results
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Introduction The Model Main Results Simulations Bivariate Model Conclusions

Approximate Diffusive Scaling

Theorem

> [large time] If E(0?) < oo (typical), as h T co we have the
convergence in distribution

(Xt+h — Xt) d N '/\/'(07 C2) - /\172D E(O_Z) I'(2D + 1) .

vh htoo
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Introduction The Model Main Results Simulations Bivariate Model Conclusions

Approximate Diffusive Scaling

Theorem

> [large time] If E(0?) < oo (typical), as h T oo we have the
convergence in distribution

Kean —X) 9, j0,c?) = x- (e?)rn +1).

vh htoo

> [small time] As h | 0 we have the convergence in distribution

(Xexn —Xt) o
vh hi0

where f(-) is the density of the random variable

\/2D071D*1/2 Wi .

f(x) dx,
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Main Results

Approximate Diffusive Scaling

The small-time asymptotic density f(-) is an explicit mixture of
centered Gaussian densities:

f(x)dx g \/2D07'1D*1/2 Wy
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Main Results

Approximate Diffusive Scaling

The small-time asymptotic density f(-) is an explicit mixture of
centered Gaussian densities:

f(x)dx g \/2D07'1D*1/2 Wy

Note that f(x) has always polynomial tails:

1
-D

/]x]qf(x)dx <oo &= g<q =7

Nl
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Main Results

Approximate Diffusive Scaling

The small-time asymptotic density f(-) is an explicit mixture of
centered Gaussian densities:

f(x)dx g \/2D07'1D*1/2 Wy

Note that f(x) has always polynomial tails:
1
-D

/]x]qf(x)dx <oo &= g<q =7

Nl

There is a crossover phenomenon in the log-return distribution,
from power-law (small time) to Gaussian (large time).
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Main Results

Approximate Diffusive Scaling

The small-time asymptotic density f(-) is an explicit mixture of
centered Gaussian densities:

f(x)dx g \/2D0'71Dil/2 Wy

Note that f(x) has always polynomial tails:
1
- D

/]x]qf(x)dx <oo &= g<q =7

Nl

There is a crossover phenomenon in the log-return distribution,
from power-law (small time) to Gaussian (large time).

Although E [|X¢|9] < 400 Vg when E (09) < +o0 Vg, for small t
the empirical distribution of X; does display power-law tails up to
several standard deviations! (X; &~ v/tf(y/tx), see below.)
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Main Results

Multiscaling of Moments

Theorem

Assume E (09) < +00. The moment mg(h) := E(|Xern — Xe|9) is
finite and has the following asymptotic behavior as h | 0:

Cq h? ifq<q" !
mq(h) ~ Cq h% |0g(%) ifq=qg* , where q* = —(l — D) .
CqhPatt — ifq>q" i
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Main Results
Multiscaling of Moments

Theorem

Assume E (09) < +00. The moment mg(h) := E(|Xern — Xe|9) is
finite and has the following asymptotic behavior as h | 0:

Cq h? ifq<q" !
mq(h) ~ Cq h% |0g(%) ifq=qg* , where q* = —(l — D) .
CqhPatt — ifq>q" i

» We can write mgy(h) = hA(9) with scaling exponent A(q)

| h 2 if g <qg*
A(q) :=lim 108 Mq'h) mq(h) = a/ na=4q .
ho  logh Dg+1 ifg>gqg*
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Main Results
Multiscaling of Moments

Theorem

Assume E (09) < +00. The moment mg(h) := E(|Xern — Xe|9) is
finite and has the following asymptotic behavior as h | 0:

Cq h? ifq<q .
mg(h) ~ { C, ha |0g(%) ifqg=q*, where q* := a-D)
CqhPott  ifq>q* 2

» We can write mgy(h) = hA(9) with scaling exponent A(q)

I h 2 if g <qg*
A(q) :=lim 7ogmq( ): a/ rq9=9 .
Dg+1 ifqg>q*

» Cq explicit function of D, A and E(09) (used in estimation)

Francesco Caravenna
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The Model Main Results Simulations Bivariate Model

Decay of Correlations

Theorem

The correlation of the absolute values of the increments of the
process X has the following asymptotic behavior as h | 0:

im p(1Xen = Xel, [ Xern = Xe)

2

—A|t—s| At — )
7 Var(o |Wy| SD—1/2) € P(Alt —s|)

= p(t—s) =

where
¢(x) := Cov (o §b-12 4 (S+x) D—1/2)

and o, S ~ Exp(1) are independent and independent of W.
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The Model Main Results Simulations Bivariate Model

Decay of Correlations

Theorem

The correlation of the absolute values of the increments of the
process X has the following asymptotic behavior as h | 0:

im p(1Xen = Xel, [ Xern = Xe)

2

—A|t—s| At — )
7 Var(o |Wy| SD—1/2) € P(Alt —s|)

= p(t—s) =

where
¢(x) := Cov (o §b-12 4 (S+x) D—1/2)

and o, S ~ Exp(1) are independent and independent of W.

» The function ¢(-) has a slower than exponential decay.
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Simulations

Outline

4. Estimation and Simulations
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Simulations

Estimation of the Parameters

The parameters of our model are D, A and the law of o, that we
want to estimate on the DJIA time series (1935-2009).
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Simulations

Estimation of the Parameters

The parameters of our model are D, A and the law of o, that we
want to estimate on the DJIA time series (1935-2009).

We focus on 4 real parameters: D, \, E(c) and E(c?),
that we estimate using the quantities A(q), G, G, p(t).
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Simulations

Estimation of the Parameters

The parameters of our model are D, A and the law of o, that we
want to estimate on the DJIA time series (1935-2009).

We focus on 4 real parameters: D, \, E(c) and E(c?),
that we estimate using the quantities A(q), G, G, p(t).

[Recall the multiscaling of moments mg(h) = E(|X,|9) ~ Cq HA(9)]
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Simulations
Estimation of the Parameters

The parameters of our model are D, A and the law of o, that we
want to estimate on the DJIA time series (1935-2009).

We focus on 4 real parameters: D, \, E(c) and E(c?),
that we estimate using the quantities A(q), G, G, p(t).

[Recall the multiscaling of moments mg(h) = E(|X,|9) ~ Cq HA(9)]

1. Scaling exponent A(q) function of D:

q/2 if g <g*
Alq) = . .
Dg+1 ifg>gq
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Simulations
Estimation of the Parameters

The parameters of our model are D, A and the law of o, that we
want to estimate on the DJIA time series (1935-2009).

We focus on 4 real parameters: D, \, E(c) and E(c?),
that we estimate using the quantities A(q), G, G, p(t).

[Recall the multiscaling of moments mg(h) = E(|X,|9) ~ Cq HA(9)]

1. Scaling exponent A(q) function of D:

q/2 if g <g*
Alq) = . . -
Dg+1 ifg>gq

2. Constants C; and G, functions of D, \, E(c) and E(c?):

¢ = % VDT(X + D)E(0)\/° G =2DT(2D) E(o?) A 2P
™
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Simulations

Estimation of the Parameters

3. Volatility autocorrelation p(t) function of D, A, E(c), E(c?):

2

—At
At
T Var(o w512y € D)

p(t) =

with ¢(-) (quite) easily computable.
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Simulations

Estimation of the Parameters

3. Volatility autocorrelation p(t) function of D, A, E(c), E(c?):

2

—At
At
T Var(o w512y € D)

p(t) =

with ¢(-) (quite) easily computable.

We evaluate the corresponding statistics /Z(q) G, G, p(t) on
the (detrended log-)DJIA time series (x;)1<i<T—=18849
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Simulations

Estimation of the Parameters

3. Volatility autocorrelation p(t) function of D, A, E(c), E(c?):

2
7 Var(o |Wy| SP—1/2)

p(t) = e M (At)

with ¢(-) (quite) easily computable.

We evaluate the corresponding statistics /Z(q) G, G, p(t) on
the (detrended log-)DJIA time series (x;)1<i<T—=18849

log Mq(h) ~ A(q) (log h) +log C,  g(h) - h Z Ixin — x|
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Simulations

Estimation of the Parameters

3. Volatility autocorrelation p(t) function of D, A, E(c), E(c?):

2
7 Var(o |Wy| SP—1/2)

p(t) = e M (At)

with ¢(-) (quite) easily computable.

We evaluate the corresponding statistics /Z(q) G, G, p(t) on
the (detrended log-)DJIA time series (x;)1<i<T—=18849

log Mq(h) ~ A(q) (log h) +log C,  g(h) - h Z Ixieh — xi|°

p(t) := Corr((Xit1 — Xi)1<i<T-1-t» (Xitt+1 — Xite)1<i<T-1-¢ )
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Simulations
Estimation of the Parameters

Loss function: (T = 40)

L(D,\ E(0), E(c?)) = ;{<2_1>2+ (2_1>2}

WACCRE RN e CeR)
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Simulations
Estimation of the Parameters

Loss function: (T = 40)

L(D, X, E(c), E(0?)) = % {<2 _ 1>2 + (2 - 1)2}
LGS T R ()

Estimator: minimization constrained on E(0?) > E(0)>?.

—_—

(D, X, E(0), E(02)) = argmin L(D, \, E(0), E(0?))
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Simulations
Estimation of the Parameters

Loss function: (T = 40)

L(D,\ E(0), E(c?)) = ;{<2_1>2+ (2_1>2}

WACCRE RN e CeR)

Estimator: minimization constrained on E(0?) > E(0)>?.

—_—

(D, X, E(0), E(02)) = argmin L(D, \, E(0), E(0?))

— -

D~016 A~000097 E(0)~0108 E(02)~ (E(0)) J
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Simulations
Estimation of the Parameters

Loss function: (T = 40)

L(D,\ E(0), E(c?)) = ;{<2_1>2+ (2_1>2}

WACCRE RN e CeR)

Estimator: minimization constrained on E(0?) > E(0)>?.

—_—

(D, X, E(0), E(02)) = argmin L(D, \, E(0), E(0?))

— -

D~016 A~000097 E(0)~0108 E(02)~ (E(0)) J

The fit turns out to be very satisfactory, as we now show.
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Simulations

DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) scaling exponent A(q)

25
|
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Simulations

DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) volatility autocorrelation [log plot]
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Simulations

DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) volatility autocorrelation [log-log plot]
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Simulations

Estimation of the Law of o

The estimated values give E(0?) ~ E(0)?> — Var(c) ~0
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Estimation of the Law of o

The estimated values give E(0?) ~ E(0)?> — Var(c) ~0

The law of o (hence the model) is therefore completely specified.
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Simulations

Estimation of the Law of o

The estimated values give E(0?) ~ E(0)?> — Var(c) ~0
The law of o (hence the model) is therefore completely specified.

We then compare the law of Xj (daily log-return) predicted by our
model with the empirical one evaluated on the DJIA time series.
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Simulations

Estimation of the Law of o

The estimated values give E(0?) ~ E(0)?> — Var(c) ~0
The law of o (hence the model) is therefore completely specified.
We then compare the law of Xj (daily log-return) predicted by our

model with the empirical one evaluated on the DJIA time series.
No further parameter has to be estimated!
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Simulations

Estimation of the Law of o

The estimated values give E(0?) ~ E(0)?> — Var(c) ~0
The law of o (hence the model) is therefore completely specified.
We then compare the law of Xj (daily log-return) predicted by our

model with the empirical one evaluated on the DJIA time series.
No further parameter has to be estimated!

The agreement is remarkably good (both bulk and tails). |

In particular, (apparent) power-law tails are visible up to several
standard deviations from the mean.
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Simulations

DJIA Time Series (1935-2009)

Empirical (circles) and theoretical (line) distribution of daily log return
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Daily log-return standard deviation ~ 0.01 — Range: -3 to 3 st. dev.
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Simulations

DJIA Time Series (1935-2009)

Empirical and theoretical tails of daily log return [log-log plot]
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Daily log-return standard deviation ~ 0.01 — Range: 1 to 12 st. dev.
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Simulations

On the Law of o

Estimating the law of o might appear a difficult task in general:
what if we had not found Var(c) ~ 07
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Simulations

On the Law of o

Estimating the law of o might appear a difficult task in general:
what if we had not found Var(c) ~ 07

Even when Var(o) > 0, the details of the law of o beyond E(o)
and E(a?) would not be relevant. J
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Simulations
On the Law of o

Estimating the law of o might appear a difficult task in general:
what if we had not found Var(c) ~ 07

Even when Var(o) > 0, the details of the law of o beyond E(o)
and E(a?) would not be relevant. J

In fact 1/\ ~ 1000 working days — in 75 years we sample only
18849/1000 ~ 18 different variables oy.
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Simulations

On the Law of o

Estimating the law of o might appear a difficult task in general:
what if we had not found Var(c) ~ 07

Even when Var(o) > 0, the details of the law of o beyond E(o)
and E(a?) would not be relevant. J

In fact 1/\ ~ 1000 working days — in 75 years we sample only
18849/1000 ~ 18 different variables oy.

This is not enough to see the details of the law of o.
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Simulations

On the Law of o

Estimating the law of o might appear a difficult task in general:
what if we had not found Var(c) ~ 07

Even when Var(o) > 0, the details of the law of o beyond E(o)
and E(a?) would not be relevant. J

In fact 1/\ ~ 1000 working days — in 75 years we sample only
18849/1000 ~ 18 different variables oy.

This is not enough to see the details of the law of o.

Different laws for o with the same E(o) and E(c?) give very
similar results.

The law of the log-returns (in the rage of interest) is effectively
determined by the t2P time scaling at the points of 7.
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Bivariate Model

Outline

5. Bivariate Model
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Bivariate Model

More than one index

Ho can we deal with more than one index at the same time?
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Bivariate Model

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).
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Bivariate Model

More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(X, Yt)}e>o0 such that X = (X;)s>0 and
Y = (Yt)t>0 are distributed according to our model.
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Bivariate Model
More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(X, Yt)}e>o0 such that X = (X;)s>0 and
Y = (Yt)t>0 are distributed according to our model.
Marginal parameters (DX, \X oX), (DY,\Y, oY)

Marginal randomness (WX, 7%, £X), (WY, TY,2Y)
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Bivariate Model
More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(X, Yt)}e>o0 such that X = (X;)s>0 and
Y = (Yt)t>0 are distributed according to our model.

Marginal parameters (DX, \X oX), (DY,\Y, oY)
Marginal randomness (WX, 7%, 2X), (WY, TY,£Y)

d 2DX -1
Xe = W, F=20% ok, (t-1%e)

ar (6)
d 2DY -1
Vi=WY, = =20Yoh, (t-¥y)
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Bivariate Model
More than one index

Ho can we deal with more than one index at the same time?

Paolo Pigato has worked on a bivariate model for the time series of
DJIA and FTSE 100 indexes in the period 1984-2011 (6822 data).

Joint process {(X, Yt)}e>o0 such that X = (X;)s>0 and
Y = (Yt)t>0 are distributed according to our model.

Marginal parameters (DX, \X oX), (DY,\Y, oY)

Marginal randomness (WX, 7%, £X), (WY, TY,2Y)

d x X 2 X 2D0%-1
Xt WIX 9 a/t =2D O-iX(t) (t — TiX(t)> s
d 2DY -1
Vi=WY, = =20Yoh, (t-¥y)

Which joint distribution for (WX, 7%, £X), (WY, TY,£Y)?
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Bivariate Model

More than one index

The simplest (natural) idea is to correlate only 7X and 7.
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Bivariate Model

More than one index

The simplest (natural) idea is to correlate only 7X and 7.

TX = 7)) YT TY = 7Q) 70
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Bivariate Model

More than one index

The simplest (natural) idea is to correlate only TX and TY.
TX = 7)) YT TY = 7Q) 70
7@ 7@ 70G) are independent PPP with rates A1, A2, A3
)\X:)\1+)\3 )\Y:/\2+/\3
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Bivariate Model
More than one index

The simplest (natural) idea is to correlate only 7X and 7.

TX=TOUT®  TY=TAYTO
7@ 7@ 70G) are independent PPP with rates A1, A2, A3
AX =X+ A3 AY =X+ A3
(WX, wY, 7 72 76) ¥X ¥Y) are independent processes
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Bivariate Model
More than one index

The simplest (natural) idea is to correlate only 7X and 7.

TX=TOUT®  TY=TAYTO
7@ 7@ 70G) are independent PPP with rates A1, A2, A3
AX =X+ A3 AY =X+ A3
(WX, wY, 7 72 76) ¥X ¥Y) are independent processes

How do cross correlations behave for such a model?

PX’Y(Sv t) == I/:f(q) P([Xspn = Xs[, | Yern — Yel)
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Bivariate Model

Cross correlations

Theorem
The cross correlations have the following asymptotic behavior:

Fort>s: pNY(s,t) = Ce M (=) XY (A (t = 5))

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Bivariate Model

Cross correlations

Theorem
The cross correlations have the following asymptotic behavior:

Fort>s:  pXY(s,t) = Ce M (=) XY (\Y(t = 5))

c= 2
m\/Var(X |Wa| SPX—1/2)Var(a Y [ W4 507 -1/2)

Y (1) i= Cov(o™ (S)P M2, 0¥ (S +u)® %)

where SX SY ~ Exp(1) are correlated (like 7{* and 7).
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Bivariate Model

Cross correlations

Theorem
The cross correlations have the following asymptotic behavior:

Fort>s: pNY(s,t) = Ce M (=) XY (A (t = 5))

c= 2
m\/Var(X |Wa| SPX—1/2)Var(a Y [ W4 507 -1/2)

Y (1) i= Cov(o™ (S)P M2, 0¥ (S +u)® %)

where SX SY ~ Exp(1) are correlated (like 7{* and 7).

» The cross correlations pX>Y(t) behave very similarly to the
autocorrelations p*(t), pY (t). They coincide in the limiting
case TX =TY (ie. T®) =0), DX =DY, oX =0 = cst.
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Bivariate Model

Cross correlations

Theorem
The cross correlations have the following asymptotic behavior:

Fort>s: pNY(s,t) = Ce M (=) XY (A (t = 5))

c= 2
m\/Var(X |Wa| SPX—1/2)Var(a Y [ W4 507 -1/2)

Y (1) i= Cov(o™ (S)P M2, 0¥ (S +u)® %)

where SX SY ~ Exp(1) are correlated (like 7{* and 7).

» The cross correlations pX>Y(t) behave very similarly to the
autocorrelations p*(t), pY (t). They coincide in the limiting
case TX =TY (ie. T®) =0), DX =DY, oX =0 = cst.

» This is indeed what one observes! (Not obvious a priori.)
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Bivariate Model

DJIA and FTSE Time Series (1984-2011)

Empirical autocorrelations p*, p¥ and cross correlations p**Y: log plot
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Bivariate Model

DJIA and FTSE Time Series (1984-2011)

Empirical autocorrelations p*, p¥ and cross correlations p**Y: log-log plot
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Bivariate Model

Numerical analysis

Do this model fits well the joint time series of DJIA and FTSE?
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Bivariate Model

Numerical analysis

Do this model fits well the joint time series of DJIA and FTSE?

First step: look separately at the individual time series.

[DJIA was already done, but for a different (longer) time period.]
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Bivariate Model

Numerical analysis

Do this model fits well the joint time series of DJIA and FTSE?

First step: look separately at the individual time series.

[DJIA was already done, but for a different (longer) time period.]

Estimated parameters (X = DJIA, Y = FTSE)
DX ~0.14, AX ~0.0013, X ~0.135 ~ const.
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Bivariate Model
Numerical analysis

Do this model fits well the joint time series of DJIA and FTSE?

First step: look separately at the individual time series.

[DJIA was already done, but for a different (longer) time period.]

Estimated parameters (X = DJIA, Y = FTSE)
DX ~0.14, AX ~0.0013, X ~0.135 ~ const.
DY ~ 0.16, \Y ~0.0018, oY ~0.11 ~ const.
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Bivariate Model

Numerical analysis

Do this model fits well the joint time series of DJIA and FTSE?

First step: look separately at the individual time series.

[DJIA was already done, but for a different (longer) time period.]

Estimated parameters (X = DJIA, Y = FTSE)
DX ~0.14, AX ~0.0013, X ~0.135 ~ const.
DY ~ 0.16, \Y ~0.0018, oY ~0.11 ~ const.

For both indexes, the agreement is very satisfactory.

Again, the fit of the law of the log-returns is very good, even with
no explicit calibration on it.
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Bivariate Model

DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) scaling exponent A(q)
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Bivariate Model

DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log plot]
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Bivariate Model

DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log-log plot]
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Bivariate Model

DJIA Time Series (1984-2011)

Empirical (circles) and theoretical (line) distribution of daily log return
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Bivariate Model

DJIA Time Series (1984-2011)

Empirical and theoretical tails of daily log return [log plot]
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Bivariate Model

FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) scaling exponent A(q)
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Bivariate Model

FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log plot]
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Bivariate Model

FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) volatility autocorrelation [log-log plot]
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Bivariate Model

FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (line) distribution of daily log return
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Bivariate Model

FTSE Time Series (1984-2011)

Empirical and theoretical tails of daily log return [log plot]
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Bivariate Model

Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.
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Bivariate Model

Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.

Recall that 7X =71 U 7G) and 7Y = 7 U TG, therefore
X = )A1 + A3 and )\Y:)\2+)\3.
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Bivariate Model

Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.

Recall that 7X =71 U 7G) and 7Y = 7 U TG, therefore
X = )A1 + A3 and )\Y:)\2+)\3.

How do we estimate the rate A3 of the common part 7(3)?

Problem J
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Bivariate Model

Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.

Recall that 7X =71 U 7G) and 7Y = 7 U TG, therefore
X = )A1 + A3 and )\Y:)\2+)\3.

How do we estimate the rate A3 of the common part 7(3)?

Problem J

The best would be to estimate the random sets 7X and 7 on the
two time series of DJIA and FTSE and see how much they overlap.
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Bivariate Model

Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.

Recall that 7X =71 U 7G) and 7Y = 7 U TG, therefore
X = )A1 + A3 and )\Y:)\2+)\3.

How do we estimate the rate A3 of the common part 7(3)?

Problem J

The best would be to estimate the random sets 7X and 7 on the
two time series of DJIA and FTSE and see how much they overlap.

However, 7X and 7Y are the location of the shock times, which
are not easily and directly observable.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Bivariate Model

Joint behavior

Finally we focus on the joint behavior of the indexes, in particular
on their cross correlations.

Recall that 7X =71 U 7G) and 7Y = 7 U TG, therefore
X = )A1 + A3 and )\Y:)\2+)\3.

How do we estimate the rate A3 of the common part 7(3)?

Problem J

The best would be to estimate the random sets 7X and 7 on the
two time series of DJIA and FTSE and see how much they overlap.

However, 7X and 7Y are the location of the shock times, which
are not easily and directly observable. They may only be an
idealization of our model. .. or are they real?
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Bivariate Model

Locating the shock times

Mario Bonino has devised a smart algorithm to locate the random
set of shock points 7.
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Bivariate Model

Locating the shock times

Mario Bonino has devised a smart algorithm to locate the random
set of shock points 7.

Recall that dX; = v dB; with vZ = I'(t) o (t — 7j(4))?P L.

Basic observation: the volatility v? diverges precisely on the set
T = (7n)nez of shock times.
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Bivariate Model

Locating the shock times

Mario Bonino has devised a smart algorithm to locate the random
set of shock points 7.
Recall that dX; = v;dB; with vZ = I'(t) o (t — Ti(t))ZD’l.
Basic observation: the volatility v? diverges precisely on the set
T = (7n)nez of shock times.
Given a time series (xj)1<j<7, consider the quantity

T

1
VT(t) = ¢ Z (X,'+1 — X,')2
i=t+1
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Bivariate Model

Locating the shock times

Mario Bonino has devised a smart algorithm to locate the random
set of shock points 7.

Recall that dX; = v;dB; with vZ = I'(t) o (t — Ti(t))ZD’l.

Basic observation: the volatility v? diverges precisely on the set
T = (7n)nez of shock times.

Given a time series (xj)1<j<7, consider the quantity

1 r 2 forT—t>1 1 T 2
Vr(t) = T_+ i§1(Xi+1 = Xi) = Tt/ v ds

Therefore, for fixed T > 0, V7 (t) should attain its (first) maximum
at the location t =t = i(T) of the most recent shock time.
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Bivariate Model

Locating the shock times

Mario Bonino has devised a smart algorithm to locate the random
set of shock points 7.

Recall that dX; = v;dB; with vZ = I'(t) o (t — Ti(t))ZD’l.

Basic observation: the volatility vt2 diverges precisely on the set
T = (7n)nez of shock times.

Given a time series (xj)1<j<7, consider the quantity

1 r 2 forT—t>1 1 T 2
Vr(t) = T_+ i§1(Xi+1 = Xi) = Tt/ v ds

Therefore, for fixed T > 0, V7 (t) should attain its (first) maximum
at the location t =t = i(T) of the most recent shock time.

Unfortunately, due to fluctuations, there may be several local
maxima. .. How to locate the right one?
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Bivariate Model

Locating the shock times

Idea: compare locations of the maxima for different values of T.

If tis a “true” shock time, it should be detected as a maximum of
Vr(t) for (almost) every fixed value of T > t.
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Bivariate Model

Locating the shock times

Idea: compare locations of the maxima for different values of T.

If tis a “true” shock time, it should be detected as a maximum of
Vr(t) for (almost) every fixed value of T > t.

Concretely, given the time series (xj)1<i<T, We set
gr = argmax{Vr(t): T —2000<t<T—22}
gr—1:=argmax{Vr(t): (T —1)—2000 <t < (T —1)-22}
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Bivariate Model

Locating the shock times

Idea: compare locations of the maxima for different values of T.

If tis a “true” shock time, it should be detected as a maximum of
Vr(t) for (almost) every fixed value of T > t.

Concretely, given the time series (xj)1<i<T, We set
gr = argmax{Vr(t): T —2000<t<T—22}
gr—1:=argmax{Vr(t): (T —1)—2000 <t < (T —1)-22}

If our predictions are right, the set {gr,g7_1,87_2,...} should
consist of only few distinct values (each attained by several g;'s)
corresponding to the shock points, i.e. the points of 7.
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Bivariate Model

Locating the shock times

Idea: compare locations of the maxima for different values of T.

If tis a “true” shock time, it should be detected as a maximum of
Vr(t) for (almost) every fixed value of T > t.

Concretely, given the time series (xj)1<i<T, We set
gr = argmax{Vr(t): T —2000<t<T—22}
gr—1:=argmax{Vr(t): (T —1)—2000 <t < (T —1)-22}

If our predictions are right, the set {gr,g7_1,87_2,...} should
consist of only few distinct values (each attained by several g;'s)
corresponding to the shock points, i.e. the points of 7.

This is indeed (almost) the case! We just need to identify couples
of very close (< 20 days) shock points.
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Bivariate Model

DJIA Time Series (1984-2011)

Shock times TX for the DJIA
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Bivariate Model

FTSE Time Series (1984-2011)

Shock times T for the FTSE

Francesco Caravenna
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Bivariate Model

DJIA and FTSE Time Series (1984-2011)

Shock times 7X and T for the DJIA and FTSE
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Bivariate Model

Locating the shock times

There is a considerable overlap between the (empirical) sets 7%
and 7Y of shock times of the DJIA and FTSE time series.
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Bivariate Model

Locating the shock times

There is a considerable overlap between the (empirical) sets 7%
and 7Y of shock times of the DJIA and FTSE time series.

Recall the estimated values
AX ~0.0013, \Y ~0.0018,
and we want to find A3 such that AX = A\ + A3, AY = X + )\s.
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Locating the shock times

There is a considerable overlap between the (empirical) sets 7%
and 7Y of shock times of the DJIA and FTSE time series.

Recall the estimated values
AX ~0.0013, \Y ~0.0018,

and we want to find A3 such that AX = A1 + A3, AV = X2 + As.
Guess: large value of A\3. More quantitatively, the cross correlation

P (t—s) = l/lfg) P(| Xsqh = Xsl; | Yern — Yel)

depends on A1, A2, A3. By comparison with the empirical cross
correlation, we can choose the best value of As.
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Bivariate Model

Locating the shock times

There is a considerable overlap between the (empirical) sets 7%
and 7Y of shock times of the DJIA and FTSE time series.

Recall the estimated values
AX ~0.0013, \Y ~0.0018,

and we want to find A3 such that AX = A1 + A3, AV = X2 + As.
Guess: large value of A\3. More quantitatively, the cross correlation

P (t—s) = l/lfg) P(| Xsqh = Xsl; | Yern — Yel)

depends on A1, A2, A3. By comparison with the empirical cross
correlation, we can choose the best value of As.

Result: A1 =~ 0.0001, A2 >~ 0.0006, A3 ~ 0.0012 )
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Bivariate Model

DJIA and FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (lines) cross correlations: log plot
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Bivariate Model

DJIA and FTSE Time Series (1984-2011)

Empirical (circles) and theoretical (lines) cross correlations: log-log plot
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Bivariate Model

Locating the shock times

The agreement is again very good.
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Bivariate Model

Locating the shock times

The agreement is again very good.

Actually, it would be good even with A\; =0, i.e. if every shock
time of DJIA were a shock time of FTSE.
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6. Conclusions
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Conclusions

We have proposed a model with the following features:

> It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Conclusions

We have proposed a model with the following features:

> It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.

> It is easy to simulate.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Conclusions

We have proposed a model with the following features:
> It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.
> It is easy to simulate.

» Despite of the few parameters, it accounts for various
phenomena observed in real time series.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Conclusions

We have proposed a model with the following features:
> It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.
> It is easy to simulate.

» Despite of the few parameters, it accounts for various
phenomena observed in real time series.

> Several generalizations can be considered (correlations
between ¥, 7 and W, modified time-change t — 20, .. .).

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Conclusions

We have proposed a model with the following features:
> It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.
> It is easy to simulate.

» Despite of the few parameters, it accounts for various
phenomena observed in real time series.

> Several generalizations can be considered (correlations
between ¥, 7 and W, modified time-change t — 20, .. .).

Next steps [under investigation]:

» Enrich the model (— multifractal volatility)

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Conclusions

We have proposed a model with the following features:
> It is analytically tractable. In particular, sharp asymptotics for
scaling relations and correlations are obtained.
> It is easy to simulate.

» Despite of the few parameters, it accounts for various
phenomena observed in real time series.

> Several generalizations can be considered (correlations
between ¥, 7 and W, modified time-change t — 20, .. .).

Next steps [under investigation]:
» Enrich the model (— multifractal volatility)

» Solve specific financial problems: pricing of options, portfolio
management, ...
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Thanks.
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Conclusions

Variability in subperiods

A natural question on the DJIA time series is the amount of
variability of the data set in subperiods. Is the period 1935-2009
long enough to be close to the ergodic limit?

More concretely: are the statistics of the DJIA time series in
(large) subperiods close to those of the whole period 1935-20097
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Conclusions

Variability in subperiods

A natural question on the DJIA time series is the amount of
variability of the data set in subperiods. Is the period 1935-2009
long enough to be close to the ergodic limit?

More concretely: are the statistics of the DJIA time series in
(large) subperiods close to those of the whole period 1935-20097

It turns out that a considerable variability is present for all the
quantities we observe (multiscaling of moments, decay of
correlations and empirical distribution) if one takes different
(suitably chosen) large time windows of 30 years.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

DJIA Time Series (1935-2009)

Empirical scaling exponent A(q) over sub-periods of 30 years.
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Conclusions

DJIA Time Series (1935-2009)

Volatility autocorrelation over sub-periods of 30 years [log plot]
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Conclusions

DJIA Time Series (1935-2009)

Variability of the distribution in sub-periods of 30 years
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Conclusions

DJIA Time Series (1935-2009)

Variability of the left tail in sub-periods of 30 years
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Conclusions

Variability of estimators

These plots show that the DJIA time series in the period
1935-2009 is not so close to the ergodic limit: empirical averages
over subperiods of 30 years exhibit non negligible fluctuations.
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Variability of estimators

These plots show that the DJIA time series in the period
1935-2009 is not so close to the ergodic limit: empirical averages
over subperiods of 30 years exhibit non negligible fluctuations.

It is relevant to show that this is also consistent with our model. J

We have therefore simulated 75 years of data from our model and
evaluated the quantities of interest (multiscaling of moments,
decay of correlations and empirical distribution) in different
subperiods of 30 years.
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Conclusions

Variability of estimators

These plots show that the DJIA time series in the period
1935-2009 is not so close to the ergodic limit: empirical averages
over subperiods of 30 years exhibit non negligible fluctuations.

It is relevant to show that this is also consistent with our model. J

We have therefore simulated 75 years of data from our model and
evaluated the quantities of interest (multiscaling of moments,
decay of correlations and empirical distribution) in different
subperiods of 30 years.

A significant, comparable variability is present also in our model. J

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Simulated Data (75 years)

Conclusions

Simulated scaling exponent of our model over sub-periods of 30 years
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Conclusions

Simulated Data (75 years)

Simulated volatility autocorrelation of our model over sub-periods of 30 years
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Conclusions

Simulated Data (75 years)

Simulated distribution of our model over sub-periods of 30 years
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Conclusions

Simulated Data (75 years)

Simulated tails of our model over sub-periods of 30 years
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Conclusions

Baldovin & Stella’s Model

1
Empirically: Pr(dr) ~ ﬁg <\;E> dr

Assume g is symmetric and let g* be its Fourier transform.
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Baldovin & Stella’s Model

1
Empirically: ~ pp(dr) ~ ﬁg <\%> dr

Assume g is symmetric and let g* be its Fourier transform.

Let (Y:)r>0 be the process with finite dimensional densities

X1 X2 — X1 S — Gl >
9

ﬁ’\/tz—fl’m’\/tn—tnq

p(x1, t1; X2, t2; ... ; Xn, tn) = h (
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Baldovin & Stella’s Model
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Empirically: pp(dr) ~ — <> dr
pirically:  pn(dr) NAW
Assume g is symmetric and let g* be its Fourier transform.

Let (Y:)r>0 be the process with finite dimensional densities

X1 X2 — X1 S — Gl >
9

ﬁ’\/tz—fl’m’\/tn—tnq

where h: R” — R has Fourier transform h* given by

h*(uy, up, ...y up) = g*(y/uf—i-..ﬂ—u%).

p(x1, t1; X2, t2; ... ; Xn, tn) = h (
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Conclusions

Baldovin & Stella’s Model

1 r
Empirically: pp(dr) ~ — <> dr
pirically:  pn(dr) NAW
Assume g is symmetric and let g* be its Fourier transform.

Let (Y:)r>0 be the process with finite dimensional densities

X1 X2 — X1 S — Gl >
9

ﬁ’\/tz—fl’m’\/tn—tnq

where h: R” — R has Fourier transform h* given by

h*(uy, up, ...y up) = g*(ﬂuf—i—...%—u%).

» If g is standard Gaussian — (Y%)t>0 is Brownian motion.

p(x1, t1; X2, t2; ... ; Xn, tn) = h <
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Conclusions

Baldovin & Stella’s Model

1 r
Empirically: pp(dr) ~ — <> dr
pirically:  pn(dr) NAW
Assume g is symmetric and let g* be its Fourier transform.

Let (Y:)r>0 be the process with finite dimensional densities

X1 X2 — X1 S — Gl >
9

ﬁ’\/tz—fl’m’\/tn—tnq

where h: R” — R has Fourier transform h* given by

h*(uy, up, ...y up) = g*(ﬂuf—i—...%—u%).

» If g is standard Gaussian — (Y%)t>0 is Brownian motion.

p(x1, t1; X2, t2; ... ; Xn, tn) = h <

> Is the definition well-posed? Conditions on g.
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Baldovin & Stella’s Model

» The increments of Y have diffusive scaling.
Their (rescaled) marginal density is g(+).
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Conclusions

Baldovin & Stella’s Model

» The increments of Y have diffusive scaling.
Their (rescaled) marginal density is g(+).

» The increments of Y are uncorrelated but not independent.
» However, they are exchangeable: no decay of correlations.

By De Finetti's theorem in continuous time [Freedman 1963]
the process (Y;)¢>o is a mixture of Brownian motions:

Yt:O'Wt

where o is random and independent of the BM (W;)¢>o.
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Their (rescaled) marginal density is g(+).

» The increments of Y are uncorrelated but not independent.
» However, they are exchangeable: no decay of correlations.

By De Finetti's theorem in continuous time [Freedman 1963]
the process (Y;)¢>o is a mixture of Brownian motions:

Yt:O'Wt

where o is random and independent of the BM (W;)¢>o.

A sample path of (Y};)¢>o cannot be distinguished from a
sample path of a BM with constant volatility: no ergodicity.
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Conclusions

Baldovin & Stella’s Model

» The increments of Y have diffusive scaling.
Their (rescaled) marginal density is g(+).

» The increments of Y are uncorrelated but not independent.
» However, they are exchangeable: no decay of correlations.

By De Finetti's theorem in continuous time [Freedman 1963]
the process (Y;)¢>o is a mixture of Brownian motions:

Yt:O'Wt

where o is random and independent of the BM (W;)¢>o.

A sample path of (Y};)¢>o cannot be distinguished from a
sample path of a BM with constant volatility: no ergodicity.

Apart from this issue, there is still no multiscaling of moments.
This is solved introducing a time inhomogeneity in the model.

Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < 73 < 75 < -+ < 7, T 400
and a parameter 0 < D < 1/2. Define a new process (X;)¢>0 by

Xt := Yo for t € [0,7'1)7

X = Y(t—‘l'n)ZD-ﬁ-Zﬂzl(Tk—Tk—ﬂQD for t € [Tn,Tn+1).
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Francesco Caravenna Scaling and Multiscaling in Financial Series March 12, 2012



Conclusions

Baldovin & Stella’s Model
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and a parameter 0 < D < 1/2. Define a new process (X;)¢>0 by

Xt := Yo for t € [0,7'1)7

X = Y(t—‘l'n)ZD-ﬁ-Zﬂzl(Tk—Tk—ﬂQD for t € [Tn,Tn+1).

» For D = 1/2 we have the old model X; = Y;.

» For D < 1/2, the process (X¢)¢>o is obtained from (Y:):>0 by
a nonlinear time-change, refreshed at each time 7,,.
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Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < 73 < 75 < -+ < 7, T 400
and a parameter 0 < D < 1/2. Define a new process (X;)¢>0 by

Xt := Yo for t € [0,7'1)7

Xi = Y(t—‘l'n)ZD-ﬁ-Zﬂzl(Tk—Tk—ﬂQD for t € [Th, Tht1) -

» For D = 1/2 we have the old model X; = Y;.

» For D < 1/2, the process (X¢)¢>o is obtained from (Y:):>0 by
a nonlinear time-change, refreshed at each time 7,,.

> Increments are amplified immediately after the times (7,)n>1
and then progressively damped out.
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Conclusions

Baldovin & Stella’s Model

Fix a (periodic) sequence of epochs 0 < 73 < 75 < -+ < 7, T 400
and a parameter 0 < D < 1/2. Define a new process (X;)¢>0 by

Xt := Yo for t € [0,7'1),

Xi = Y(t—‘l'n)2D+ZZ:1(Tk—Tk—1)2D for t € [Th, Tht1) -

v

For D = 1/2 we have the old model X; = Y;.

For D < 1/2, the process (X;)¢>0 is obtained from (Y;)¢>o by
a nonlinear time-change, refreshed at each time 7,,.

v

Increments are amplified immediately after the times (7,)n>1
and then progressively damped out.

v

v

Interpretation: (7,)n>1 linked to “shocks” in the market.
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Baldovin & Stella’s Model

Despite the time-change, the process (X:):>0 remains not ergodic.
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Despite the time-change, the process (X:):>0 remains not ergodic.
However, Baldovin & Stella show by simulations that this model
(with (7,)n a periodic sequence) fits all mentioned stylized facts.
They actually simulate a different model: an autoregressive version
Of (Xt)tzo.

Other issue: the density of Y is g(-) by construction. However, the
density of Xj is not g(-) and depends on the choice of (7,),.
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Conclusions

Baldovin & Stella’s Model

Despite the time-change, the process (X:):>0 remains not ergodic.

However, Baldovin & Stella show by simulations that this model
(with (7,)n a periodic sequence) fits all mentioned stylized facts.

They actually simulate a different model: an autoregressive version
Of (Xt)tZO-

Other issue: the density of Y is g(-) by construction. However, the
density of Xj is not g(-) and depends on the choice of (7,),.

Our aims

» Define a simple model capturing the essential features of
Baldovin & Stella’s construction.

» Easy to describe and to simulate.

» Rigorous proofs of the mentioned stylized facts.
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Conclusions

Other observables

Is everything going as expected?
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Conclusions

DJIA Time Series (1935-2009)

Empirical and theoretical tails of 5-day log return [log plot]
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Conclusions

DJIA Time Series (1935-2009)

Empirical and theoretical tails of 400-day log return [log plot]
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Conclusions

DJIA Time Series (1935-2009)

Empirical volatility
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Conclusions

Simulated Data (75 years)

Empirical volatility
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