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Overview

This talk is about a stochastic PDE on R%: (mainly d = 2)
» the Kardar-Parisi-Zhang Equation (KPZ)

Very interesting, yet ill-defined object

Plan:

1. Consider a regularized version of the equation

2. Study the limit of the solution, when regularisation is removed

Stochastic Analysis «~ Statistical Mechanics J
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White noise

Space-time white noise ¢ = &(t, x) on R} J

Random distribution of negative order (Schwartz) [not a function!]
Gaussian:  (¢,€) = / 6(£, %) £(, x) dedx ~ N0, |6]%)
|R1+d
Cov[&(t,x), (1, x")] = 6(t — t') 6(x — X)

Case d =0: &(t) = &B(t)  where (B;) is Brownian motion
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KPZ

The KPZ equation

KPZ [Kardar Parisi Zhang 86]

Och = 2 Ach + 3 |Veh|> + B¢ (KPZ)

Model for random interface growth
h = h(t,x) = interface height at time t > 0, space x € R?

& = £(t,x) = space-time white noise £ > 0 noise strength

|V h|? ill-defined )

For smooth &
u(t, x) := et (Cole-Hopf)
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KPZ

The multiplicative Stochastic Heat Equation (SHE)

SHE (t>0, xeRY
O = S Au+ Bug (SHE)
Product u& ill-defined )

(d = 1) SHE is well-posed by lto integration [Walsh 80's]

u(t,x) is a function ~»  “KPZ solution” h(t,x) := log u(t, x)

(d = 1) SHE and KPZ well-understood in a robust sense  (“pathwise™)

Regularity Structures (Hairer)
Paracontrolled Distributions (Gubinelli, Imkeller, Perkowski)
Energy Solutions (Goncalves, Jara), Renormalization (Kupiainen)
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KPZ

Higher dimensions d > 2

In dimensions d > 2 there is no general theory

We mollify the white noise £(t, x) in space on scale £ > 0
gg(ta ) = §(t7 ) * Oe

Solutions h®(t, x), u®(t,x) are well-defined. Convergence ase | 07

We need to tune disorder strength 3 = .

A 1
B——— (d=2)

B.=4 Vlloge] B € (0,00)
BeT (d >3)
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KPZ

Back to KPZ

We now plug & ~» £° and B ~~ . into KPZ
We also subtract a diverging constant (“Renormalization”)
Renormalized and Mollified KPZ

Och® = 3Ah° + F|VHP + B.6° — e

(e-KPZ)
he(0,) =0

We present some convergence results for h*(t,x) ase ] 0

Without renormalization, the solution h(t, x) does not converge!
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KPZ

Main results

B
V|loge|

|. Phase transition [CSZ 17]

Space dimension d = 2 Be = Be (0,00)

KPZ solution h®(t,x) undergoes a phase transition at . = /27

lI. Sub-critical regime [CSZ 17] [CSZ 18b]

For all B < f3.: convergence of h*(t,x) ase | 0 (LLN + CLT)

Analogous results for the SHE solution u°(t, x)

Critical regime 3 = . 7 Recent progress for SHE (nothing for KPZ)
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Results

Main result |. Phase transition

3 R
Space dimension d =2 Be = _r 5 € (0,00)
Vlloge|
Theorem (Phase transition for 2d KPZ) [CSZ 17]
> For B < \2n he(t, ) % oZ—10
€.
2
Z ~ N(0,1) 0% = log —
2w — (32
h=(t, x;) %) asympt. independent (for distinct points x;'s)
E
> For 3 >27 h#(t, x) %) — 00
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Results

Law of large numbers

Consider the sub-critical regime B <2r
» E[h°(t,x)] = 7%02 +0o(1)

> he(t,x) asymptotically independent for distinct x's

Corollary: LLN (B < v2r)

he(t,) —— —1o2
(7)5,L0 20

as a distribution on R?

/RZ (£ x) 60 dx — o7 /R 6(x) dx
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Results

A picture

27 he(t, x)
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Results

Main result Il. Fluctuations

Rescale HE(t,x) = (h°(t,x) — E[h°])/f-

Theorem (Sub-critical Fluctuations for 2d KPZ) [CSZ 18b]
for § < V2m HE(t,-) % v(t,-) as a distrib.
=

v = Gaussian = solution of Edwards-Wilkinson equation

v = 10wV + 7§ where = zﬂzf@z > 1

e MH® = 3DH + & + {B-|VAH | — cBe7?}
Last term {...} produces “extra” white noise! (Independent of &)
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Results

Other works

Alternative proof by [Gu 18] via Malliavin calculus (only for small 3)

[Chatterjee and Dunlap 18] first considered fluctuations for 2d KPZ
They proved tightness of ¢ (only for small /3)

We identify the limit (EW) in the entire sub-critical regime B <2r

Results in dimensions d > 3 by many authors
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Results
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Techniques

Renormalized KPZ vs. SHE

Renormalized and Mollified KPZ

Beh® = AN + JIVH] + B.£5 — cBee™?

(=-KPZ)
h*(0,-) =0
We can write h°(t,x) =: log u®(t,x) and apply Ito’s formula
Mollified SHE
Ot = AU + Bt E°
(e-SHE)

uc(0,-) =1

Facts: v®(t,x) >0 and E[v*(t,x)]=1 ~» I subseq. limits
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Techniques

Directed Polymers

We can study the SHE solution u®(t, x) via Directed Polymers

> s = (sp)n>0 simple random walk path

> Indep. standard Gaussian RVs w(n, x)
(Disorder)

> Hy(w,s) =Y w(n,sn)

n=1

Directed Polymer Partition Functions (NeN, zez%

1 142
o BHy(w,s)— 182N
Z5(N, z) = ) s—(; :S) BHN(w,9)—1
s.r.w.ipa&;.;/;/’it?\l So=2
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Techniques

Directed Polymers and KPZ

Partition functions Z23(N, z) are discrete analogues of u®(t, x) (SHE)

» Similar to Feynman-Kac formula for SHE

> They solve a lattice version of the SHE

Theorem

We can approximate (in L?)

ut(t,x) =~ Z3(N, z) and he(t,x) ~ log Z3(N, z)

where we set N=c2t, z=¢lx, B.=¢2 8

Our results are first proved for partition functions Z3(N, z)
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Techniques

In conclusion

We study KPZ using partition functions of Directed Polymers

We use tools from “discrete stochastic analysis”

» Polynomial chaos (analogous to Wiener chaos)
> 4th Moment Theorems to prove Gaussianity

» Hypercontractivity + Concentration of Measure

together with “classical” probabilistic techniques, esp. Renewal Theory

Robustness + Universality

Next challenges
» Critical regime B=2r

» Robust (pathwise) analysis of sub-critical regime § < v/27
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Techniques

Thanks.
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Techniques

Renormalization of KPZ

We have considered the Renormalized Mollified KPZ
Och® = AN + VA + B¢ — cple?

As € | 0 we formally obtain (!)
d¢h=3Ah + |VA? + 0& — o0

Are we entitled to “change the equation”? We started from  (ill-posed)
d¢h=3Ah + 3|Vh]> + ¢

For smooth £ we can look at a family of equations (A,B €R)
Och=3Ah + 3|Vh? + AL + B

Renormalization = appropriate “reference frame" A., B. for &°

Francesco Caravenna 2d KPZ and SHE 30 October 2019



Techniques

Feynman-Kac for SHE

Recall the mollified SHE

A stochastic Feynman-Kac formula holds

v (t,x) £ Eslxlexp (355—“’22 /06 t/Rz o(Bs —y)&(ds,dy) — q-V-)]

where o € C2°(R?) is the mollifier and B = (Bs)s>o is Brownian motion

We can identify w®(t,x) ~ 23(N,z) with

=D =il ="
N=¢e""t z=¢€ "X Be=e2 (3
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