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Overview

This talk is about a stochastic PDE on R
d : (mainly d = 2)

◮ the Kardar-Parisi-Zhang Equation (KPZ)

Very interesting, yet ill-defined object

Plan:

1. Consider a regularized version of the equation

2. Study the limit of the solution, when regularisation is removed

Stochastic Analysis ! Statistical Mechanics
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White noise

Space-time white noise ξ = ξ(t, x) on R
1+d

Random distribution of negative order (Schwartz) [not a function!]

Gaussian: 〈φ, ξ〉 =

∫

R1+d

φ(t, x) ξ(t, x) dt dx ∼ N (0, ‖φ‖2
L2)

Cov[ ξ(t, x), ξ(t ′, x ′) ] = δ(t − t ′) δ(x − x ′)

Case d = 0: ξ(t) = d
dtB(t) where (Bt) is Brownian motion
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The KPZ equation

KPZ [Kardar Parisi Zhang 86]

∂th = 1
2 ∆xh + 1

2 |∇xh|2 + β ξ (KPZ)

Model for random interface growth

h = h(t, x) = interface height at time t ≥ 0, space x ∈ R
d

ξ = ξ(t, x) = space-time white noise β > 0 noise strength

|∇xh|2 ill-defined

For smooth ξ

u(t, x) := eh(t,x) (Cole-Hopf)
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The multiplicative Stochastic Heat Equation (SHE)

SHE (t > 0, x ∈ R
d)

∂tu = 1
2 ∆xu + β u ξ (SHE)

Product u ξ ill-defined

(d = 1) SHE is well-posed by Ito integration [Walsh 80’s]

u(t, x) is a function  “KPZ solution” h(t, x) := log u(t, x)

(d = 1) SHE and KPZ well-understood in a robust sense (“pathwise”)

Regularity Structures (Hairer)

Paracontrolled Distributions (Gubinelli, Imkeller, Perkowski)

Energy Solutions (Goncalves, Jara), Renormalization (Kupiainen)
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Higher dimensions d ≥ 2

In dimensions d ≥ 2 there is no general theory

We mollify the white noise ξ(t, x) in space on scale ε > 0

ξε(t, ·) := ξ(t, ·) ∗ ̺ε

Solutions hε(t, x), uε(t, x) are well-defined. Convergence as ε ↓ 0 ?

We need to tune disorder strength β = βε

βε =



















β̂
1

√

| log ε |
(d = 2)

β̂ ε
d−2
2 (d ≥ 3)

β̂ ∈ (0,∞)
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Back to KPZ

We now plug ξ  ξε and β  βε into KPZ

We also subtract a diverging constant (“Renormalization”)

Renormalized and Mollified KPZ






∂th
ε = 1

2∆hε + 1
2 |∇hε|2 + βε ξ

ε − c β2
ε ε

−d

hε(0, ·) ≡ 0
(ε-KPZ)

We present some convergence results for hε(t, x) as ε ↓ 0

Without renormalization, the solution hε(t, x) does not converge!
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Main results

Space dimension d = 2 βε =
β̂

√

| log ε |
β̂ ∈ (0,∞)

I. Phase transition [CSZ 17]

KPZ solution hε(t, x) undergoes a phase transition at β̂c =
√
2π

II. Sub-critical regime [CSZ 17] [CSZ 18b]

For all β̂ < β̂c : convergence of hε(t, x) as ε ↓ 0 (LLN + CLT)

Analogous results for the SHE solution uε(t, x)

Critical regime β̂ = β̂c ? Recent progress for SHE (nothing for KPZ)
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Main result I. Phase transition

Space dimension d = 2 βε =
β̂

√

| log ε |
β̂ ∈ (0,∞)

Theorem (Phase transition for 2d KPZ) [CSZ 17]

◮ For β̂ <
√
2π hε(t, x)

d−−→
ε↓0

σ Z − 1
2 σ

2

Z ∼ N(0, 1) σ2 := log
2π

2π − β̂2

hε(t, xi )
d−−→

ε↓0
asympt. independent (for distinct points xi ’s)

◮ For β̂ ≥
√
2π hε(t, x)

d−−→
ε↓0

−∞
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Law of large numbers

Consider the sub-critical regime β̂ <
√
2π

◮ E[hε(t, x)] = − 1
2σ

2 + o(1)

◮ hε(t, x) asymptotically independent for distinct x ’s

Corollary: LLN (β̂ <
√
2π)

hε(t, ·) d−−−→
ε↓0

− 1
2 σ

2 as a distribution on R
2

∫

R2

hε(t, x)φ(x) dx
d−−−→

ε↓0
− 1

2 σ
2

∫

R2

φ(x) dx
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A picture

x ∈ R
2

h
ǫ(t, x)

0

−
1

2
σ2 σ

σ2 = log
2π

2π − β̂2
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Main result II. Fluctuations

Rescale Hε(t, x) :=
(

hε(t, x)− E[hε]
)

/βε

Theorem (Sub-critical Fluctuations for 2d KPZ) [CSZ 18b]

for β̂ <
√
2π Hε(t, ·) d−−−→

ε↓0
v(t, ·) as a distrib.

v = Gaussian = solution of Edwards-Wilkinson equation

∂tv = 1
2∆xv + γ ξ where γ =

√

2π
2π−β̂2

> 1

∂t Hε = 1
2 ∆x Hε + ξε +

{

βε |∇xHε|2 − c βε ε
−2

}

Last term {. . .} produces “extra” white noise! (Independent of ξ)
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Other works

Alternative proof by [Gu 18] via Malliavin calculus (only for small β̂)

[Chatterjee and Dunlap 18] first considered fluctuations for 2d KPZ

They proved tightness of Hε (only for small β̂)

We identify the limit (EW) in the entire sub-critical regime β̂ <
√
2π

Results in dimensions d ≥ 3 by many authors
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Renormalized KPZ vs. SHE

Renormalized and Mollified KPZ






∂th
ε = 1

2∆hε + 1
2 |∇hε|2 + βε ξ

ε − c β2
ε ε

−d

hε(0, ·) ≡ 0
(ε-KPZ)

We can write hε(t, x) =: log uε(t, x) and apply Ito’s formula

Mollified SHE






∂tu
ε = 1

2∆uε + βε u
ε ξε

uε(0, ·) ≡ 1
(ε-SHE)

Facts: uε(t, x) > 0 and E[uε(t, x)] ≡ 1  ∃ subseq. limits
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Directed Polymers

We can study the SHE solution uε(t, x) via Directed Polymers

sn

N

z

◮ s = (sn)n≥0 simple random walk path

◮ Indep. standard Gaussian RVs ω(n, x)

(Disorder)

◮ HN(ω, s) :=

N
∑

n=1

ω(n, sn)

Directed Polymer Partition Functions (N ∈ N, z ∈ Z
d)

Zβ(N, z) :=
1

(2d)N

∑

s=(s0,...,sN )
s.r.w. path with s0=z

eβHN (ω,s)− 1
2β

2
N
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Directed Polymers and KPZ

Partition functions Zβ(N, z) are discrete analogues of uε(t, x) (SHE)

◮ Similar to Feynman-Kac formula for SHE

◮ They solve a lattice version of the SHE

Theorem

We can approximate (in L2)

uε(t, x) ≈ Zβ(N, z) and hε(t, x) ≈ logZβ(N, z)

where we set N = ε−2t , z = ε−1x , βε = ε
d−2
2 β

Our results are first proved for partition functions Zβ(N, z)
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In conclusion

We study KPZ using partition functions of Directed Polymers

We use tools from “discrete stochastic analysis”

◮ Polynomial chaos (analogous to Wiener chaos)

◮ 4th Moment Theorems to prove Gaussianity

◮ Hypercontractivity + Concentration of Measure

together with “classical” probabilistic techniques, esp. Renewal Theory

Robustness + Universality

Next challenges

◮ Critical regime β̂ =
√
2π

◮ Robust (pathwise) analysis of sub-critical regime β̂ <
√
2π
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Thanks.
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Renormalization of KPZ

We have considered the Renormalized Mollified KPZ

∂th
ε = 1

2∆hε + 1
2 |∇hε|2 + βε ξ

ε − c β2
ε ε

−2

As ε ↓ 0 we formally obtain (!)

∂th = 1
2∆h + 1

2 |∇h|2 + 0 ξ − ∞

Are we entitled to “change the equation”? We started from (ill-posed)

∂th = 1
2∆h + 1

2 |∇h|2 + ξ

For smooth ξ we can look at a family of equations (A,B ∈ R)

∂th = 1
2∆h + 1

2 |∇h|2 + A ξ + B

Renormalization = appropriate “reference frame” Aε, Bε for ξε
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Feynman-Kac for SHE

Recall the mollified SHE







∂tu
ε = 1

2∆uε + βε u
ε ξε

uε(0, ·) ≡ 1

A stochastic Feynman-Kac formula holds

uε(t, x)
d
= Eε−1x

[

exp

(

βε ε
− d−2

2

∫ ε−2
t

0

∫

R2

̺(Bs − y) ξ(ds, dy) − q.v.

)

]

where ̺ ∈ C∞
c
(Rd) is the mollifier and B = (Bs)s≥0 is Brownian motion

We can identify uε(t, x) ≈ Zβ(N, z) with

N = ε−2t z = ε−1x βε = ε
d−2
2 β
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