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Overview

I will talk about two stochastic PDEs on R
d (mainly d = 2)

◮ Kardar-Parisi-Zhang Equation (KPZ)

◮ Multiplicative Stochastic Heat Equation (SHE)

In a nutshell

◮ KPZ and SHE ill-defined due to singular terms

◮ Regularized versions (mollified, or discretized)

◮ Do regularized solutions converge? (as regularization is removed)

Not a minicourse in stochastic analysis!  Statistical Mechanics
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Overview

Main focus on dimension d = 2. Recent progress on “subcritical” regime

. . . and some results in the “critical” regime (many questions still open!)

Edwards-Wilkinson fluctuations

Regularized solutions converge to explicit Gaussian random field

Plan

◮ Main results + general picture in dim. d = 1, d = 2, d ≥ 3

◮ Connection and intuition with Directed Polymer

◮ Sketch of the proof + main tools
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KPZ Equation

Random interface growth [Kardar-Parisi-Zhang PRL’86]

∂th(t, x) =
1

2
∆h(t, x) +

1

2
|∇h(t, x)|2 + β ξ(t, x) (KPZ)

h(t, x) = interface height at time t ≥ 0, space x ∈ R
d

ξ(t, x) = space-time white noise

(δ-correlated Gaussian field  Continuum analogue of i.i.d. random field)

β > 0 noise strength

Singular term |∇h(t, x)|2 undefined (∇h is a distribution)

Take ξ(t, x) smooth. KPZ is linearized by Cole-Hopf transformation

u(t, x) := eh(t,x)
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Stochastic Heat Equation (SHE)

Multiplicative Stochastic Heat Equation (SHE) t ≥ 0, x ∈ R
d

∂tu(t, x) =
1

2
∆u(t, x) + β u(t, x) ξ(t, x) (SHE)

Linear equation, in principle easier

SHE well-posed in d = 1 by Ito theory (stochastic integration)

Initial datum u(0, x) ≡ 1 (for simplicity)

Mild formulation: u(t, x) = 1 + β

∫ t

0

∫

R

gt−s(x − y) u(s, y) ξ(ds, dy)

where gt(x) =
1√
2πt

e−
x2

2t heat kernel on R
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One space dimension d = 1

◮ SHE solution u(t, x) well-defined, random continuous function

◮ Continuous and strictly positive [Mueller 91]

Explicit Wiener chaos representation

u(t, x) = 1 +

∞∑

k=1

βk

∫∫

0<t1<...<tk<t

(x1,...,xk )∈R
k

gt1(x1) gt2−t1(x2 − x1) . . .

k∏

i=1

ξ(dti , dxi )

Forget the definition of KPZ equation, focus on its solution

Cole-Hopf “solution” of KPZ

h(t, x) := log u(t, x)

This is indeed the “right” solution
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One space dimension d = 1

In support of KPZ Cole-Hopf solution

◮ Arises as a limit of interacting particle systems [Bertini Giacomin ’97]

◮ Fluctuations of 1d exactly solvable models of interface growth

 KPZ universality class Surveys: [Corwin ’12] [Quastel Spohn ’15]

Robust justification by solution theories for singular stochastic PDEs

◮ Regularity Structures [Hairer ’13] [Hairer ’14]

◮ Paracontrolled Distributions [Gubinelli Imkeller Perkowski ’15]

◮ Energy Solutions [Goncalves Jara ’14]

◮ Renormalization Approach [Kupiainen ’16]

All these approaches only work for KPZ in d = 1 (sub-critical)
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The general setting

General dimensions d : how to find a “solution” of KPZ and SHE ?

Mollify (regularize) the white noise ξ(t, x) in space on scale ε > 0

ξε(t, x) :=
(
ξ(t, ·) ∗ jε

)
(x)

◮ jε(x) := ε−d j(ε−1x) j ∈ C∞
c (Rd) probability density

◮ t 7→ W ε(t, x) :=

∫ t

0

ξε(ds, x) Brownian motions

(correlated in x , variance σ2
ε := ε−d ‖j‖2

L2)

Replace ξ by ξε  (KPZ) and (SHE) well-posed by Ito theory

Do mollified solutions hε(t, x) and uε(t, x) have a limit as ε ↓ 0 ?

Disorder strength β = βε needs to be renormalized!
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Mollified equations

Mollified SHE




∂tu
ε =

1

2
∆uε + βε u

ε ξε

uε(0, ·) ≡ 1

(ε-SHE)

By Ito’s formula hε(t, x) := log uε(t, x) satisfies

Mollified KPZ




∂th
ε =

1

2
∆hε +

1

2
|∇hε|2 + βε ξ

ε − Cε

hε(0, ·) ≡ 0

(ε-KPZ)

Cε := β2
ε σ

2
ε = β2

ε ε
−d ‖j‖2

L2
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Key problem

Can we choose βε ∈ (0,∞) so that

uε(t, x) and hε(t, x) admit non-trivial limits as ε ↓ 0 ?

YES! (. . . )

βε =





β̂ (fixed) d = 1
√
2π β̂√
log ε−1

d = 2

β̂ ε
d−2
2 d ≥ 3

β̂ ∈ (0,∞)

Note that βε → 0 for d = 2 and d ≥ 3

Choice of βε will be clear later ( directed polymers)
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Main result I. Phase transition for SHE

Space dimension d = 2 βε =

√
2π β̂√
log ε−1

β̂ ∈ (0∞)

Theorem (SHE one-point distribution) [CSZ 17]

Phase transition (“weak to strong disorder”) with critical value β̂c = 1

Fix t > 0, x ∈ R
2 : uε(t, x)

d−−→
ε↓0




exp

(
σβ̂ Z − 1

2 σ
2
β̂

)
if β̂ < 1

0 if β̂ ≥ 1

Z ∼ N(0, 1) σ2
β̂
:= log 1

1−β̂2

Subcritical regime β̂ < 1. For distinct x1, . . . , xn ∈ R
2

uε(t, xi ) become asymptotically independent (!) as ε ↓ 0
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Main result I. Phase transition for KPZ

Space dimension d = 2 βε =

√
2π β̂√
log ε−1

β̂ ∈ (0∞)

Theorem (KPZ one point distribution) [CSZ 17]

Phase transition (“weak to strong disorder”) with critical value β̂c = 1

Fix t > 0, x ∈ R
2 : hε(t, x)

d−−→
ε↓0




σβ̂ Z − 1

2 σ
2
β̂

if β̂ < 1

−∞ if β̂ ≥ 1

Z ∼ N(0, 1) σ2
β̂
:= log 1

1−β̂2

Subcritical regime β̂ < 1. For distinct x1, . . . , xn ∈ R
2

hε(t, xi ) become asymptotically independent (!) as ε ↓ 0
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Sub-critical regime β̂ < 1

For β̂ < 1 uε(t, x) and hε(t, x) are very irregular functions of x

Look at uε(t, ·) and hε(t, ·) as random distributions on R
2

E[uε(t, x)] ≡ 1 E[hε(t, x)] = − 1
2 σ

2
β̂
+ o(1) as ε ↓ 0

Law of large numbers

uε(t, ·) d−−→
ε↓0

1 hε(t, ·) d−−→
ε↓0

− 1
2 σ

2
β̂

as distributions

∀φ ∈ Cc(R
2) :

∫

R2

uε(t, x)φ(x) dx
d−−→

ε↓0

∫

R2

φ(x) dx

∫

R2

hε(t, x)φ(x) dx
d−−→

ε↓0

(
− 1

2 σ
2
β̂

) ∫

R2

φ(x) dx

Fluctuations?
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Main result II. Fluctuations for SHE

Recall that βε =

√
2π β̂√
log ε−1

sub-critical β̂ ∈ (0, 1)

Rescaled SHE solution Uε(t, x) :=
1

βε

(
uε(t, x)− E[uε]

)

Theorem (EW fluctuations for SHE) [CSZ 17]

∀φ ∈ Cc(R
2)

∫

R2

Uε(t, x)φ(x) dx
d−−→

ε↓0

∫

R2

v (c
β̂
)(t, x)φ(x) dx

cβ̂ = 1√
1−β̂2

v (c)(t, x) solution of Additive SHE

∂tv
(c)(t, x) =

1

2
∆v (c)(t, x) + c ξ(t, x) (EW)

known as Edwards-Wilkinson equation
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Explicit reformulation

EW solution well-defined (in any dimension)

v (c)(t, x) =

∫ t

0

∫

R2

gt−s(x − y) ξ(ds, dy) gt(x) =
1

2πt
e
−

|x|2

2t

It is a (distribution valued) Gaussian process

∫

R2

v (c)(t, x)φ(x) dx ∼ N
(
0, c2 σ2

φ

)

◮ σ2
φ =

∫
(R2)2

φ(x)Kt(x , y)φ(y) dx dy

◮ Kt(x , y) :=

∫ t

0

g2u(x − y) du ∼ 1
4π log 4t

|x−y |2

We will understand better how EW emerges from SHE
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Fluctuations: from SHE to KPZ?

Mollified SHE solution uε(t, x) admits explicit Wiener-Chaos expansion

Key tool to prove EW fluctuations, not available for KPZ sol. hε(t, x)

How to prove EW fluctuations for KPZ?

Naive idea

hε(t, x) = log uε(t, x) uε(t, x) → 1 (as a distribution)

Taylor expansion hε(t, x) ≈
(
uε(t, x)− 1

)
?

NO, because uε(t, x) is not close to 1 pointwise

However, with careful analysis, we can correct and control the expansion

 The same EW fluctuations hold for KPZ
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Main result II. Sub-critical fluctuations for KPZ

Recall that βε =

√
2π β̂√
log ε−1

sub-critical β̂ ∈ (0, 1)

Rescaled KPZ solution Hε(t, x) :=
1

βε

(
hε(t, x)− E[hε]

)

Theorem (EW fluctuations for KPZ) [CSZ 18b]

∀φ ∈ Cc(R
2)

∫

R2

Hε(t, x)φ(x) dx
d−−→

ε↓0

∫

R2

v (c
β̂
)(t, x)φ(x) dx

◮ cβ̂ = 1√
1−β̂2

(same constant as before)

◮ v (c)(t, x) solution of Additive SHE
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Summary so far

◮ Transition at scale βε =

√
2π β̂√
log ε−1

with explicit critical point β̂c = 1

◮ Edwards-Wilkinson fluctuations

hε(t, x)− E[hε]

βε
and

uε(t, x)− E[uε]

βε

d−−−→
ε↓0

v (c
β̂
)(t, x)

◮ Explicit cβ̂ = 1√
1−β̂2

◮ Fluctuations in the entire subcritical regime 0 < β̂ < 1

We now discuss related results in the literature
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A variation on KPZ

Recently Chatterjee and Dunlap [CD 18] considered a variation

∂t h̃
ε =

1

2
∆h̃ε +

1

2
βε |∇h̃ε|2 + ξε

The same βε =

√
2π β̂√
log ε−1

now multiplies the non-linearity instead of ξε

Theorem [Chatterjee Dunlap 18]

For β̂ sufficiently small, the centered solution h̃ε(t, ·)− E[h̃ε] admits

subsequential limits in law as ε ↓ 0 (as a random distribution on R
2)

Any limit is not the solution of Additive SHE (EW) with c = 1

(what one would get simply removing the non-linearity)
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Relation with our results

Recall “our” KPZ : ∂th
ε =

1

2
∆hε +

1

2
|∇hε|2 + βε ξ

ε − Cε

Scaling relation

h̃ε(t, x)− E[h̃ε] =
1

βε

(
hε(t, x)− E[hε]

)
= Hε(t, x)

Theorem [CSZ 18b]

For every sub-critical β̂ < 1, the centered solution h̃ε(t, ·)− E[h̃ε] admits

a unique limit in law as ε ↓ 0 (as a random distribution on R
2)

The limit is the solution of Additive SHE (EW) with cβ̂ = 1√
1−β̂2

> 1
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Phase transition for d ≥ 3

For d ≥ 3 the right way to scale βε is

βε = β̂ ε
d−2
2 β̂ ∈ (0,∞)

Theorem [Mukherjee Shamov Zeitouni 16]

There exists β̂c ∈ (0,∞) (unknown) such that

uε(t, x)
d−−→

ε↓0

{
> 0 if β̂ < β̂c

0 if β̂ > β̂c

hε(t, x)
d−−→

ε↓0

{
∈ R if β̂ < β̂c

−∞ if β̂ > β̂c

See also [Comets Cosco Mukherjee 18] for related results
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Edwards-Wilkinson fluctuations in d ≥ 3

βε = β̂ ε
d−2
2 sub-critical β̂ ∈ (0, 1)

EW fluctuations for KPZ established in [Magnen Unterberger 18]

Theorem [Magnen Unterberger 18]

For β̂ < 1 sufficiently small, one has

hε(t, ·)− E[hε]

βε

d−−→
ε↓0

v (c
β̂
)(t, ·)

solution of the Additive SHE (EW) for a suitable noise strength cβ̂ .

Analogous EW fluctuations for SHE proved in [Gu Ryzhik Zeitouni 18]

(See also [Comets Cosco Mukherjee 18])

Francesco Caravenna 2d KPZ and SHE via directed polymers 10-14 December 2018 26 / 37



KPZ and SHE Main Results Critical Regime Directed Polymer and SHE

The one-dimensional case

The situation for d = 1 is rather different

βε = β̂ ∈ (0,∞) (fixed)

◮ No phase transition:

uε(t, x)
d−−→

ε↓0
u(t, x) > 0 ∀β̂ ∈ (0,∞)

hε(t, x)
d−−→

ε↓0
h(t, x) > 0 ∀β̂ ∈ (0,∞)

◮ EW fluctuations easily established as β̂ → 0
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The critical regime

What about β̂ = 1?

More generally, critical window [Bertini Cancrini 98]

βε =

√
2π

log ε−1

(
1 +

ϑ

log ε−1

)
with ϑ ∈ R

Nothing known for KPZ hε(t, x), some progress for SHE uε(t, x)

Key conjecture

uε(t, ·) has a limit U(t, ·) for ε ↓ 0, as a random distribution on R
2

〈uε(t, ·), φ〉 :=
∫

R2

uε(t, x)φ(x) dx
d−−→

ε↓0

∫

R2

U(t, x)φ(x) dx

(actually a random measure, since uε ≥ 0)
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Second moment in the critical window

What is known [Bertini Cancrini 98]

Tightness via second moment bounds

E
[
〈uε(t, ·), φ〉

]
≡

〈
1, φ

〉
sup
ε>0

E
[
〈uε(t, ·), φ〉2

]
< ∞

More precisely E
[
〈uε(t, ·), φ〉2

]
−−−→
ε↓0

〈
φ, Kφ

〉
< ∞

Explicit kernel K
(
x , x ′

)
∼ C log 1

|x−x′| as |x − x ′| → 0

Corollary

∃ subsequential limits 〈uεk (t, ·), φ〉 d−−−−→
k→∞

〈 U , φ〉

Can the limit be trivial U(t, ·) ≡ 1 ?
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Main result III. Third moment in the critical window

We determine the sharp asymptotics of third moment

Theorem [CSZ 18a]

lim
ε↓0

E
[
〈uε(t, ·), φ〉3

]
= C (φ) < ∞

◮ Explicit expression for C (φ) (series of multiple integrals)

Corollary

Any subsequential limit uεk (t, ·) d−→ U(t, ·) has covariance K (x , x ′)

 U(t, ·) 6≡ 1 is non-degenerate !
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Directed Polymer in Random Environment [Comets 17]

Sn

N

z

◮ (Sn)n≥0 simple random walk on Z
d

◮ Disorder: i.i.d. random variables ω(n, x)

zero mean, unit variance

λ(β) := logE[eβω(n,x)] < ∞

◮ (-) Hamiltonian HN,β(ω, S) := β

N∑

n=1

ω(n, Sn) − λ(β)N

Partition Functions (N ∈ N, z ∈ Z
d)

ZN,β(z) = E
rw

[
eHN,β(ω,S)

∣∣∣S0 = z
]
=

1

(2d)N

∑

(s0,...,sN ) n.n.: s0=z

eHN,β(ω,s)
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Directed Polymer and SHE

Partition functions ZN,β(z) are discrete analogues of uε(t, x)

◮ They solve a lattice SHE

ZN+1(z)− ZN(z) = ∆ZN(z) + β ω̃(N + 1, z) Z̃N(z)

 Alternative way of regularizing SHE (discretize vs. mollify)

◮ Quantitative analogy via Feynman-Kac formula for SHE

SHE βε = ε
d−2
2 β Directed Polymer
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Feynman-Kac formula for SHE

Recall the ε-mollified SHE





∂tu
ε =

1

2
∆hε + βε u

ε ξε

uε(0, ·) ≡ 1

Feynman-Kac

uε(t, x)
d
= Eε−1x

[
exp

(
βε ε

− d−2
2

∫ ε−2t

0

∫

R2

j(Bs − y) ξ(ds, dy)− . . .

)]

(Bs)s≥0 Brownian motion j(·) ∈ C∞
c (Rd) probability density

uε(t, x) corresponds to ZN,β(z) with

N = ε−2t z = ε−1x βε = ε
d−2
2 β
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Weak and strong disorder for Directed Polymer

For d ≥ 3 there is a phase transition: ∃βc ∈ (0,∞) such that

for β < βc : ZN(z)
a.s.−−−−→

N→∞
Z(z) > 0 (weak disorder)

for β > βc : ZN(z)
a.s.−−−−→

N→∞
0 (strong disorder)

For d = 1, d = 2 we have βc = 0, i.e. only strong disorder:

for any β > 0: ZN(z)
a.s.−−−−→

N→∞
0

[Bolthausen 89] [Comets Shiga Yoshida 03] [Vargas 07] [Lacoin 11] [Comets 17]
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Directed Polymer and SHE

To see weak disorder for d = 1, d = 2 we must take β = βN → 0

βN ≈





β̂

N1/4
without transition d = 1 [Alberts, Khanin, Quastel 14]

β̂√
logN

with transition d = 2 [CSZ 17]

This matches with the scaling for βε for SHE and KPZ

◮ Directed Polymer provides a friendly framework for SHE

◮ Results first proved for Directed Polymer, then for SHE and KPZ

◮ We will sketch some of the proofs highlighting key tools:

Concentration Inequalities Polynomial Chaos Hypercontractivity
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