

On the 2d KPZ and Stochastic Heat Equation via directed polymers

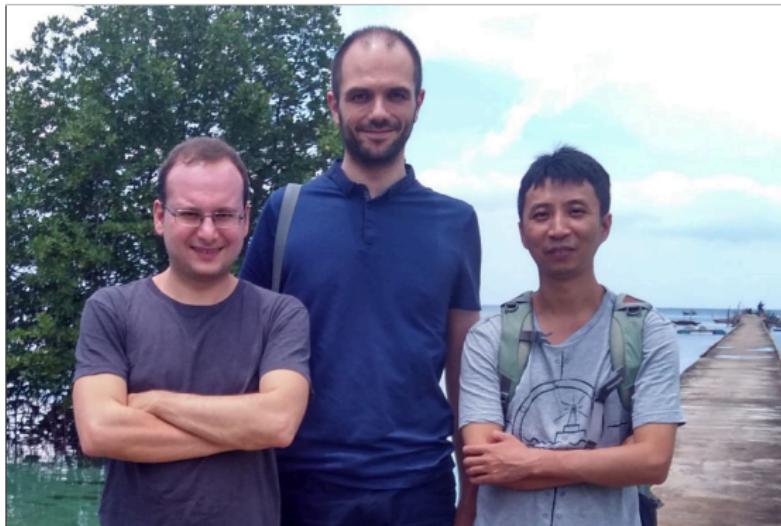
Francesco Caravenna

Università degli Studi di Milano-Bicocca

Etats de la Recherche: Mécanique Statistique

Paris, IHP ~ 10-14 December 2018

Collaborators



Nikos Zygouras (Warwick) and Rongfeng Sun (NUS)

Overview

I will talk about two **stochastic PDEs** on \mathbb{R}^d (mainly $d = 2$)

- ▶ **Kardar-Parisi-Zhang Equation (KPZ)**
- ▶ **Multiplicative Stochastic Heat Equation (SHE)**

In a nutshell

- ▶ KPZ and SHE **ill-defined** due to singular terms
- ▶ Regularized versions (mollified, or discretized)
- ▶ Do regularized solutions converge? (as regularization is removed)

Not a minicourse in stochastic analysis! \rightsquigarrow Statistical Mechanics

Overview

Main focus on dimension $d = 2$. Recent progress on “subcritical” regime
... and some results in the “critical” regime (many questions still open!)

Edwards-Wilkinson fluctuations

Regularized solutions converge to explicit Gaussian random field

Plan

- ▶ Main results + general picture in dim. $d = 1$, $d = 2$, $d \geq 3$
- ▶ Connection and intuition with Directed Polymer
- ▶ Sketch of the proof + main tools

References

- ▶ [CSZ 17]
Universality in marginally relevant disordered systems
AAP 2017
- ▶ [CSZ 18a]
On the moments of the (2+1)-dimensional directed polymer and Stochastic Heat Equation in the critical window
arXiv, Aug 2018
- ▶ [CSZ 18b]
The two-dimensional KPZ equation in the entire subcritical regime
arXiv, Dec 2018

($d = 2$) [Bertini Cancrini 98] [Chatterjee Dunlap 18]

($d \geq 3$) [Magnen Unterberger 18] [Gu Ryzhik Zeitouni 18]

[Mukherjee Shamov Zeitouni 16] [Comets Cosco Mukherjee 18]

KPZ Equation

Random interface growth

[Kardar-Parisi-Zhang PRL'86]

$$\partial_t h(t, x) = \frac{1}{2} \Delta h(t, x) + \frac{1}{2} |\nabla h(t, x)|^2 + \beta \xi(t, x) \quad (\text{KPZ})$$

$h(t, x)$ = interface height at time $t \geq 0$, space $x \in \mathbb{R}^d$

$\xi(t, x)$ = space-time white noise

(δ -correlated Gaussian field \rightsquigarrow Continuum analogue of i.i.d. random field)

$\beta > 0$ noise strength

Singular term $|\nabla h(t, x)|^2$ undefined (∇h is a distribution)

Take $\xi(t, x)$ smooth. KPZ is linearized by Cole-Hopf transformation

$$u(t, x) := e^{h(t, x)}$$

Stochastic Heat Equation (SHE)

Multiplicative Stochastic Heat Equation (SHE) $t \geq 0, x \in \mathbb{R}^d$

$$\partial_t u(t, x) = \frac{1}{2} \Delta u(t, x) + \beta u(t, x) \xi(t, x) \quad (\text{SHE})$$

Linear equation, in principle easier

SHE well-posed in $d = 1$ by Ito theory (stochastic integration)

Initial datum $u(0, x) \equiv 1$ (for simplicity)

Mild formulation: $u(t, x) = 1 + \beta \int_0^t \int_{\mathbb{R}} g_{t-s}(x - y) u(s, y) \xi(ds, dy)$

where $g_t(x) = \frac{1}{\sqrt{2\pi t}} e^{-\frac{x^2}{2t}}$ heat kernel on \mathbb{R}

One space dimension $d = 1$

- ▶ SHE solution $u(t, x)$ well-defined, random **continuous function**
- ▶ Continuous and strictly positive

[Mueller 91]

Explicit Wiener chaos representation

$$u(t, x) = 1 + \sum_{k=1}^{\infty} \beta^k \iint_{\substack{0 < t_1 < \dots < t_k < t \\ (x_1, \dots, x_k) \in \mathbb{R}^k}} g_{t_1}(x_1) g_{t_2 - t_1}(x_2 - x_1) \dots \prod_{i=1}^k \xi(dt_i, dx_i)$$

Forget the definition of KPZ equation, focus on its **solution**

Cole-Hopf “solution” of KPZ

$$h(t, x) := \log u(t, x)$$

This is indeed the “right” solution

One space dimension $d = 1$

In support of KPZ Cole-Hopf solution

- ▶ Arises as a limit of interacting particle systems [Bertini Giacomin '97]
- ▶ Fluctuations of 1d exactly solvable models of interface growth
~~ KPZ universality class Surveys: [Corwin '12] [Quastel Spohn '15]

Robust justification by solution theories for singular stochastic PDEs

- ▶ Regularity Structures [Hairer '13] [Hairer '14]
- ▶ Paracontrolled Distributions [Gubinelli Imkeller Perkowski '15]
- ▶ Energy Solutions [Goncalves Jara '14]
- ▶ Renormalization Approach [Kupiainen '16]

All these approaches only work for KPZ in $d = 1$ (sub-critical)

The general setting

General dimensions d : how to find a “solution” of KPZ and SHE ?

Mollify (regularize) the white noise $\xi(t, x)$ in space on scale $\varepsilon > 0$

$$\xi^\varepsilon(t, x) := (\xi(t, \cdot) * j_\varepsilon)(x)$$

- ▶ $j_\varepsilon(x) := \varepsilon^{-d} j(\varepsilon^{-1}x)$ $j \in C_c^\infty(\mathbb{R}^d)$ probability density
- ▶ $t \mapsto W^\varepsilon(t, x) := \int_0^t \xi^\varepsilon(ds, x)$ Brownian motions

(correlated in x , variance $\sigma_\varepsilon^2 := \varepsilon^{-d} \|j\|_{L^2}^2$)

Replace ξ by ξ^ε \rightsquigarrow (KPZ) and (SHE) well-posed by Ito theory

Do mollified solutions $h^\varepsilon(t, x)$ and $u^\varepsilon(t, x)$ have a limit as $\varepsilon \downarrow 0$?

Disorder strength $\beta = \beta_\varepsilon$ needs to be renormalized!

Mollified equations

Mollified SHE

$$\begin{cases} \partial_t u^\varepsilon = \frac{1}{2} \Delta u^\varepsilon + \beta_\varepsilon u^\varepsilon \xi^\varepsilon \\ u^\varepsilon(0, \cdot) \equiv 1 \end{cases} \quad (\varepsilon\text{-SHE})$$

By Ito's formula $h^\varepsilon(t, x) := \log u^\varepsilon(t, x)$ satisfies

Mollified KPZ

$$\begin{cases} \partial_t h^\varepsilon = \frac{1}{2} \Delta h^\varepsilon + \frac{1}{2} |\nabla h^\varepsilon|^2 + \beta_\varepsilon \xi^\varepsilon - C_\varepsilon \\ h^\varepsilon(0, \cdot) \equiv 0 \end{cases} \quad (\varepsilon\text{-KPZ})$$

$$C_\varepsilon := \beta_\varepsilon^2 \sigma_\varepsilon^2 = \beta_\varepsilon^2 \varepsilon^{-d} \|j\|_{L^2}^2$$

Key problem

Can we choose $\beta_\varepsilon \in (0, \infty)$ so that
 $u^\varepsilon(t, x)$ and $h^\varepsilon(t, x)$ admit non-trivial limits as $\varepsilon \downarrow 0$?
 YES! (...)

$$\beta_\varepsilon = \begin{cases} \hat{\beta} \text{ (fixed)} & d = 1 \\ \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}} & d = 2 \\ \hat{\beta} \varepsilon^{\frac{d-2}{2}} & d \geq 3 \end{cases} \quad \hat{\beta} \in (0, \infty)$$

Note that $\beta_\varepsilon \rightarrow 0$ for $d = 2$ and $d \geq 3$

Choice of β_ε will be clear later

(\rightsquigarrow directed polymers)

Main result I. Phase transition for SHE

Space dimension $d = 2$ $\beta_\varepsilon = \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}}$ $\hat{\beta} \in (0\infty)$

Theorem (SHE one-point distribution)

[CSZ 17]

Phase transition ("weak to strong disorder") with critical value $\hat{\beta}_c = 1$

Fix $t > 0, x \in \mathbb{R}^2$: $u^\varepsilon(t, x) \xrightarrow[\varepsilon \downarrow 0]{d} \begin{cases} \exp(\sigma_{\hat{\beta}} Z - \frac{1}{2} \sigma_{\hat{\beta}}^2) & \text{if } \hat{\beta} < 1 \\ 0 & \text{if } \hat{\beta} \geq 1 \end{cases}$

$$Z \sim N(0, 1) \quad \sigma_{\hat{\beta}}^2 := \log \frac{1}{1 - \hat{\beta}^2}$$

Subcritical regime $\hat{\beta} < 1$. For distinct $x_1, \dots, x_n \in \mathbb{R}^2$

$u^\varepsilon(t, x_i)$ become asymptotically independent (!) as $\varepsilon \downarrow 0$

Main result I. Phase transition for KPZ

Space dimension $d = 2$ $\beta_\varepsilon = \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}}$ $\hat{\beta} \in (0\infty)$

Theorem (KPZ one point distribution)

[CSZ 17]

Phase transition ("weak to strong disorder") with critical value $\hat{\beta}_c = 1$

Fix $t > 0, x \in \mathbb{R}^2$: $h^\varepsilon(t, x) \xrightarrow[\varepsilon \downarrow 0]{d} \begin{cases} \sigma_{\hat{\beta}} Z - \frac{1}{2} \sigma_{\hat{\beta}}^2 & \text{if } \hat{\beta} < 1 \\ -\infty & \text{if } \hat{\beta} \geq 1 \end{cases}$

$$Z \sim N(0, 1) \quad \sigma_{\hat{\beta}}^2 := \log \frac{1}{1 - \hat{\beta}^2}$$

Subcritical regime $\hat{\beta} < 1$. For distinct $x_1, \dots, x_n \in \mathbb{R}^2$

$h^\varepsilon(t, x_i)$ become asymptotically independent (!) as $\varepsilon \downarrow 0$

Sub-critical regime $\hat{\beta} < 1$

For $\hat{\beta} < 1$ $u^\varepsilon(t, x)$ and $h^\varepsilon(t, x)$ are very irregular functions of x

Look at $u^\varepsilon(t, \cdot)$ and $h^\varepsilon(t, \cdot)$ as random distributions on \mathbb{R}^2

$$\mathbb{E}[u^\varepsilon(t, x)] \equiv 1 \quad \mathbb{E}[h^\varepsilon(t, x)] = -\frac{1}{2} \sigma_{\hat{\beta}}^2 + o(1) \text{ as } \varepsilon \downarrow 0$$

Law of large numbers

$$u^\varepsilon(t, \cdot) \xrightarrow[\varepsilon \downarrow 0]{d} 1 \quad h^\varepsilon(t, \cdot) \xrightarrow[\varepsilon \downarrow 0]{d} -\frac{1}{2} \sigma_{\hat{\beta}}^2 \quad \text{as distributions}$$

$$\forall \phi \in C_c(\mathbb{R}^2) : \quad \int_{\mathbb{R}^2} u^\varepsilon(t, x) \phi(x) dx \xrightarrow[\varepsilon \downarrow 0]{d} \int_{\mathbb{R}^2} \phi(x) dx$$

$$\int_{\mathbb{R}^2} h^\varepsilon(t, x) \phi(x) dx \xrightarrow[\varepsilon \downarrow 0]{d} \left(-\frac{1}{2} \sigma_{\hat{\beta}}^2 \right) \int_{\mathbb{R}^2} \phi(x) dx$$

Fluctuations?

Main result II. Fluctuations for SHE

Recall that $\beta_\varepsilon = \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}}$ sub-critical $\hat{\beta} \in (0, 1)$

Rescaled SHE solution $\mathcal{U}^\varepsilon(t, x) := \frac{1}{\beta_\varepsilon} (u^\varepsilon(t, x) - \mathbb{E}[u^\varepsilon])$

Theorem (EW fluctuations for SHE)

[CSZ 17]

$$\forall \phi \in C_c(\mathbb{R}^2) \quad \int_{\mathbb{R}^2} \mathcal{U}^\varepsilon(t, x) \phi(x) dx \xrightarrow[\varepsilon \downarrow 0]{d} \int_{\mathbb{R}^2} v^{(\text{c}_\beta)}(t, x) \phi(x) dx$$

$$c_{\hat{\beta}} = \frac{1}{\sqrt{1 - \hat{\beta}^2}} \quad v^{(\text{c})}(t, x) \text{ solution of Additive SHE}$$

$$\partial_t v^{(\text{c})}(t, x) = \frac{1}{2} \Delta v^{(\text{c})}(t, x) + \text{c} \xi(t, x) \quad (\text{EW})$$

known as Edwards-Wilkinson equation

Explicit reformulation

EW solution well-defined (in any dimension)

$$v^{(c)}(t, x) = \int_0^t \int_{\mathbb{R}^2} g_{t-s}(x - y) \xi(ds, dy) \quad g_t(x) = \frac{1}{2\pi t} e^{-\frac{|x|^2}{2t}}$$

It is a (distribution valued) Gaussian process

$$\int_{\mathbb{R}^2} v^{(c)}(t, x) \phi(x) dx \sim N(0, c^2 \sigma_\phi^2)$$

- $\sigma_\phi^2 = \int_{(\mathbb{R}^2)^2} \phi(x) K_t(x, y) \phi(y) dx dy$
- $K_t(x, y) := \int_0^t g_{2u}(x - y) du \sim \frac{1}{4\pi} \log \frac{4t}{|x-y|^2}$

We will understand better how EW emerges from SHE

Fluctuations: from SHE to KPZ?

Mollified SHE solution $u^\varepsilon(t, x)$ admits explicit Wiener-Chaos expansion

Key tool to prove EW fluctuations, not available for KPZ sol. $h^\varepsilon(t, x)$

How to prove EW fluctuations for KPZ?

Naive idea

$$h^\varepsilon(t, x) = \log u^\varepsilon(t, x) \quad u^\varepsilon(t, x) \rightarrow 1 \text{ (as a distribution)}$$

$$\text{Taylor expansion} \quad h^\varepsilon(t, x) \approx (u^\varepsilon(t, x) - 1) ?$$

NO, because $u^\varepsilon(t, x)$ is not close to 1 pointwise

However, with careful analysis, we can correct and control the expansion

~~~ The same EW fluctuations hold for KPZ

# Main result II. Sub-critical fluctuations for KPZ

Recall that  $\beta_\varepsilon = \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}}$  sub-critical  $\hat{\beta} \in (0, 1)$

Rescaled KPZ solution  $\mathcal{H}^\varepsilon(t, x) := \frac{1}{\beta_\varepsilon} (h^\varepsilon(t, x) - \mathbb{E}[h^\varepsilon])$

**Theorem (EW fluctuations for KPZ)**

[CSZ 18b]

$$\forall \phi \in C_c(\mathbb{R}^2) \quad \int_{\mathbb{R}^2} \mathcal{H}^\varepsilon(t, x) \phi(x) dx \xrightarrow[\varepsilon \downarrow 0]{d} \int_{\mathbb{R}^2} v^{(c_{\hat{\beta}})}(t, x) \phi(x) dx$$

- $c_{\hat{\beta}} = \frac{1}{\sqrt{1 - \hat{\beta}^2}}$  (same constant as before)
- $v^{(c)}(t, x)$  solution of Additive SHE

# Summary so far

- ▶ Transition at scale  $\beta_\varepsilon = \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}}$  with explicit critical point  $\hat{\beta}_c = 1$
- ▶ Edwards-Wilkinson fluctuations

$$\frac{h^\varepsilon(t, x) - \mathbb{E}[h^\varepsilon]}{\beta_\varepsilon} \quad \text{and} \quad \frac{u^\varepsilon(t, x) - \mathbb{E}[u^\varepsilon]}{\beta_\varepsilon} \xrightarrow[\varepsilon \downarrow 0]{d} v^{(c_{\hat{\beta}})}(t, x)$$

- ▶ Explicit  $c_{\hat{\beta}} = \frac{1}{\sqrt{1 - \hat{\beta}^2}}$
- ▶ Fluctuations in the entire subcritical regime  $0 < \hat{\beta} < 1$

We now discuss related results in the literature

# A variation on KPZ

Recently Chatterjee and Dunlap [CD 18] considered a variation

$$\partial_t \tilde{h}^\varepsilon = \frac{1}{2} \Delta \tilde{h}^\varepsilon + \frac{1}{2} \beta_\varepsilon |\nabla \tilde{h}^\varepsilon|^2 + \xi^\varepsilon$$

The same  $\beta_\varepsilon = \frac{\sqrt{2\pi} \hat{\beta}}{\sqrt{\log \varepsilon^{-1}}}$  now multiplies the **non-linearity** instead of  $\xi^\varepsilon$

## Theorem

[Chatterjee Dunlap 18]

For  $\hat{\beta}$  sufficiently small, the centered solution  $\tilde{h}^\varepsilon(t, \cdot) - \mathbb{E}[\tilde{h}^\varepsilon]$  admits subsequential limits in law as  $\varepsilon \downarrow 0$  (as a random distribution on  $\mathbb{R}^2$ )

Any limit is **not** the solution of **Additive SHE (EW)** with  $c = 1$   
(what one would get simply removing the non-linearity)

# Relation with our results

Recall “our” KPZ :  $\partial_t h^\varepsilon = \frac{1}{2} \Delta h^\varepsilon + \frac{1}{2} |\nabla h^\varepsilon|^2 + \beta_\varepsilon \xi^\varepsilon - C_\varepsilon$

## Scaling relation

$$\tilde{h}^\varepsilon(t, x) - \mathbb{E}[\tilde{h}^\varepsilon] = \frac{1}{\beta_\varepsilon} (h^\varepsilon(t, x) - \mathbb{E}[h^\varepsilon]) = \mathcal{H}^\varepsilon(t, x)$$

## Theorem

[CSZ 18b]

For **every sub-critical**  $\hat{\beta} < 1$ , the centered solution  $\tilde{h}^\varepsilon(t, \cdot) - \mathbb{E}[\tilde{h}^\varepsilon]$  admits a **unique limit** in law as  $\varepsilon \downarrow 0$  (as a random distribution on  $\mathbb{R}^2$ )

The limit is the solution of **Additive SHE (EW)** with  $c_{\hat{\beta}} = \frac{1}{\sqrt{1-\hat{\beta}^2}} > 1$

# Phase transition for $d \geq 3$

For  $d \geq 3$  the right way to scale  $\beta_\varepsilon$  is

$$\beta_\varepsilon = \hat{\beta} \varepsilon^{\frac{d-2}{2}} \quad \hat{\beta} \in (0, \infty)$$

## Theorem

[Mukherjee Shamov Zeitouni 16]

There exists  $\hat{\beta}_c \in (0, \infty)$  (unknown) such that

$$u^\varepsilon(t, x) \xrightarrow[\varepsilon \downarrow 0]{d} \begin{cases} > 0 & \text{if } \hat{\beta} < \hat{\beta}_c \\ 0 & \text{if } \hat{\beta} > \hat{\beta}_c \end{cases}$$

$$h^\varepsilon(t, x) \xrightarrow[\varepsilon \downarrow 0]{d} \begin{cases} \in \mathbb{R} & \text{if } \hat{\beta} < \hat{\beta}_c \\ -\infty & \text{if } \hat{\beta} > \hat{\beta}_c \end{cases}$$

See also [Comets Cosco Mukherjee 18] for related results

# Edwards-Wilkinson fluctuations in $d \geq 3$

$$\beta_\varepsilon = \hat{\beta} \varepsilon^{\frac{d-2}{2}} \quad \text{sub-critical } \hat{\beta} \in (0, 1)$$

EW fluctuations for KPZ established in [Magnen Unterberger 18]

## Theorem

[Magnen Unterberger 18]

For  $\hat{\beta} < 1$  **sufficiently small**, one has

$$\frac{h^\varepsilon(t, \cdot) - \mathbb{E}[h^\varepsilon]}{\beta_\varepsilon} \xrightarrow[\varepsilon \downarrow 0]{d} v^{(\text{c}_{\hat{\beta}})}(t, \cdot)$$

solution of the Additive SHE (EW) for a suitable noise strength  $\text{c}_{\hat{\beta}}$ .

Analogous EW fluctuations for SHE proved in [Gu Ryzhik Zeitouni 18]  
 (See also [Comets Cosco Mukherjee 18])

# The one-dimensional case

The situation for  $d = 1$  is rather different

$$\beta_\varepsilon = \hat{\beta} \in (0, \infty) \quad (\text{fixed})$$

- No phase transition:

$$u^\varepsilon(t, x) \xrightarrow[\varepsilon \downarrow 0]{d} u(t, x) > 0 \quad \forall \hat{\beta} \in (0, \infty)$$

$$h^\varepsilon(t, x) \xrightarrow[\varepsilon \downarrow 0]{d} h(t, x) > 0 \quad \forall \hat{\beta} \in (0, \infty)$$

- EW fluctuations easily established as  $\hat{\beta} \rightarrow 0$

# The critical regime

What about  $\hat{\beta} = 1$ ?

More generally, **critical window** [Bertini Cancrini 98]

$$\beta_\varepsilon = \sqrt{\frac{2\pi}{\log \varepsilon^{-1}} \left( 1 + \frac{\vartheta}{\log \varepsilon^{-1}} \right)} \quad \text{with} \quad \vartheta \in \mathbb{R}$$

Nothing known for KPZ  $h^\varepsilon(t, x)$ , some progress for SHE  $u^\varepsilon(t, x)$

## Key conjecture

$u^\varepsilon(t, \cdot)$  has a limit  $\mathcal{U}(t, \cdot)$  for  $\varepsilon \downarrow 0$ , as a random distribution on  $\mathbb{R}^2$

$$\langle u^\varepsilon(t, \cdot), \phi \rangle := \int_{\mathbb{R}^2} u^\varepsilon(t, x) \phi(x) dx \xrightarrow[\varepsilon \downarrow 0]{d} \int_{\mathbb{R}^2} \mathcal{U}(t, x) \phi(x) dx$$

(actually a random measure, since  $u^\varepsilon \geq 0$ )

# Second moment in the critical window

## What is known

[Bertini Cancrini 98]

Tightness via second moment bounds

$$\mathbb{E}[\langle u^\varepsilon(t, \cdot), \phi \rangle] \equiv \langle 1, \phi \rangle \quad \sup_{\varepsilon > 0} \mathbb{E}[\langle u^\varepsilon(t, \cdot), \phi \rangle^2] < \infty$$

More precisely  $\mathbb{E}[\langle u^\varepsilon(t, \cdot), \phi \rangle^2] \xrightarrow[\varepsilon \downarrow 0]{} \langle \phi, K\phi \rangle < \infty$

Explicit kernel  $K(x, x') \sim C \log \frac{1}{|x - x'|}$  as  $|x - x'| \rightarrow 0$

## Corollary

$\exists$  subsequential limits  $\langle u^{\varepsilon_k}(t, \cdot), \phi \rangle \xrightarrow[k \rightarrow \infty]{d} \langle \mathcal{U}, \phi \rangle$

Can the limit be trivial  $\mathcal{U}(t, \cdot) \equiv 1$ ?

# Main result III. Third moment in the critical window

We determine the sharp asymptotics of [third moment](#)

## Theorem

[CSZ 18a]

$$\lim_{\varepsilon \downarrow 0} \mathbb{E}[\langle u^\varepsilon(t, \cdot), \phi \rangle^3] = C(\phi) < \infty$$

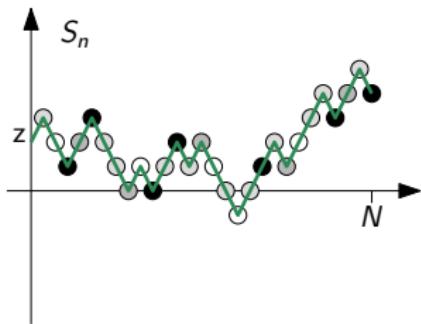
- ▶ [Explicit expression](#) for  $C(\phi)$  (series of multiple integrals)

## Corollary

Any subsequential limit  $u^{\varepsilon_k}(t, \cdot) \xrightarrow{d} \mathcal{U}(t, \cdot)$  has covariance  $\mathcal{K}(x, x')$   
 $\rightsquigarrow \mathcal{U}(t, \cdot) \not\equiv 1$  is non-degenerate !

## Directed Polymer in Random Environment

[Comets 17]



- ▶  $(S_n)_{n \geq 0}$  simple random walk on  $\mathbb{Z}^d$
- ▶ **Disorder:** i.i.d. random variables  $\omega(n, x)$   
zero mean, unit variance

► (-) Hamiltonian  $H_{N,\beta}(\omega, S) := \beta \sum_{n=1}^N \omega(n, S_n) - \lambda(\beta) N$

## Partition Functions

$$(N \in \mathbb{N}, z \in \mathbb{Z}^d)$$

$$Z_{N,\beta}(z) = \mathbf{E}^{\text{rw}} \left[ e^{H_{N,\beta}(\omega, S)} \middle| S_0 = z \right] = \frac{1}{(2d)^N} \sum_{(s_0, \dots, s_N) \text{ n.n.}: s_0 = z} e^{H_{N,\beta}(\omega, s)}$$

# Directed Polymer and SHE

Partition functions  $Z_{N,\beta}(z)$  are discrete analogues of  $u^\varepsilon(t, x)$

- ▶ They solve a lattice SHE

$$Z_{N+1}(z) - Z_N(z) = \Delta Z_N(z) + \beta \tilde{\omega}(N+1, z) \tilde{Z}_N(z)$$

↔ Alternative way of regularizing SHE (discretize vs. mollify)

- ▶ Quantitative analogy via Feynman-Kac formula for SHE

**SHE**  $\beta_\varepsilon = \varepsilon^{\frac{d-2}{2}} \beta$  Directed Polymer

# Feynman-Kac formula for SHE

Recall the  $\varepsilon$ -mollified SHE

$$\begin{cases} \partial_t u^\varepsilon = \frac{1}{2} \Delta h^\varepsilon + \beta_\varepsilon u^\varepsilon \xi^\varepsilon \\ u^\varepsilon(0, \cdot) \equiv 1 \end{cases}$$

## Feynman-Kac

$$u^\varepsilon(t, x) \stackrel{d}{=} \mathbb{E}_{\varepsilon^{-1}x} \left[ \exp \left( \beta_\varepsilon \varepsilon^{-\frac{d-2}{2}} \int_0^{\varepsilon^{-2}t} \int_{\mathbb{R}^2} j(B_s - y) \xi(ds, dy) - \dots \right) \right]$$

$(B_s)_{s \geq 0}$  Brownian motion       $j(\cdot) \in C_c^\infty(\mathbb{R}^d)$  probability density

$u^\varepsilon(t, x)$  corresponds to  $\mathbf{Z}_{N, \beta}(z)$  with

$$N = \varepsilon^{-2}t \quad z = \varepsilon^{-1}x \quad \beta_\varepsilon = \varepsilon^{\frac{d-2}{2}} \beta$$

# Weak and strong disorder for Directed Polymer

For  $d \geq 3$  there is a phase transition:  $\exists \beta_c \in (0, \infty)$  such that

for  $\beta < \beta_c$ :  $Z_N(z) \xrightarrow[N \rightarrow \infty]{\text{a.s.}} \mathcal{Z}(z) > 0$  (weak disorder)

for  $\beta > \beta_c$ :  $Z_N(z) \xrightarrow[N \rightarrow \infty]{\text{a.s.}} 0$  (strong disorder)

For  $d = 1, d = 2$  we have  $\beta_c = 0$ , i.e. only strong disorder:

for any  $\beta > 0$ :  $Z_N(z) \xrightarrow[N \rightarrow \infty]{\text{a.s.}} 0$

[Bolthausen 89] [Comets Shiga Yoshida 03] [Vargas 07] [Lacoin 11] [Comets 17]

# Directed Polymer and SHE

To see weak disorder for  $d = 1, d = 2$  we must take  $\beta = \beta_N \rightarrow 0$

$$\beta_N \approx \begin{cases} \frac{\hat{\beta}}{N^{1/4}} & \text{without transition} \quad d = 1 \text{ [Alberts, Khanin, Quastel 14]} \\ \frac{\hat{\beta}}{\sqrt{\log N}} & \text{with transition} \quad d = 2 \text{ [CSZ 17]} \end{cases}$$

This matches with the scaling for  $\beta_\varepsilon$  for SHE and KPZ

- ▶ Directed Polymer provides a friendly framework for SHE
- ▶ Results first proved for Directed Polymer, then for SHE and KPZ
- ▶ We will sketch some of the proofs highlighting key tools:

Concentration Inequalities    Polynomial Chaos    Hypercontractivity