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Overview

I will talk about two stochastic PDEs on R (mainly d = 2)

» Kardar-Parisi-Zhang Equation (KPZ)

» Multiplicative Stochastic Heat Equation (SHE)

In a nutshell

» KPZ and SHE ill-defined due to singular terms
» Regularized versions (mollified, or discretized)

» Do regularized solutions converge? (as regularization is removed)

<

Not a minicourse in stochastic analysis! ~- Statistical Mechanics J

Francesco Caravenna 2d KPZ and SHE via directed polymers 10-14 December 2018



Overview

Main focus on dimension d = 2. Recent progress on “subcritical” regime

. and some results in the “critical” regime (many questions still open!)

Edwards-Wilkinson fluctuations

Regularized solutions converge to explicit Gaussian random field

Plan

» Main results + general picture in dim. d =1, d=2,d >3
» Connection and intuition with Directed Polymer

» Sketch of the proof + main tools
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KPZ and SHE

KPZ Equation

Random interface growth [Kardar-Parisi-Zhang PRL'86]

Deh(t, x) = %Ah(t, X) + %|Vh(t7x)|2 + BE( %) (KPZ)

h(t,x) = interface height at time t > 0, space x € RY

&(t, x) = space-time white noise
(6-correlated Gaussian field ~~ Continuum analogue of i.i.d. random field)

B > 0 noise strength

Singular term |V h(t, x)|? undefined (Vh is a distribution) J

Take £(t, x) smooth. KPZ is linearized by Cole-Hopf transformation

u(t,x) = eh(t:x)
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KPZ and SHE

Stochastic Heat Equation (SHE)

Multiplicative Stochastic Heat Equation (SHE) t>0, xeR?

Oru(t,x) = %Au(t,x)+ﬂu(t,x)§(t,x) (SHE)

Linear equation, in principle easier

SHE well-posed in d =1 by lto theory (stochastic integration) J

Initial datum u(0, x) = 1 (for simplicity)

it p
Mild formulation: u(t,x) =1+ ,3/ /gt,s(x y)u(s,y)&(ds, dy)
Jo JRr

where gi(x) = e % heat kernel on R
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KPZ and SHE

One space dimension d =1

» SHE solution u(t, x) well-defined, random continuous function

» Continuous and strictly positive [Mueller 91]

Explicit Wiener chaos representation

OO " p k
u(t,x) =1 +Z 3k // 8t (x1) 8t—t, (2 — x1) . H (dt;, dx;)
k=1 S i=1

0<ti<..<t<t
(/\/\.....x,‘u)fUif:

Forget the definition of KPZ equation, focus on its solution

Cole-Hopf “solution” of KPZ

h(t, x) := log u(t, x)

This is indeed the “right” solution
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KPZ and SHE

One space dimension d =1

In support of KPZ Cole-Hopf solution

> Arises as a limit of interacting particle systems  [Bertini Giacomin '97]
» Fluctuations of 1d exactly solvable models of interface growth

~> KPZ universality class Surveys: [Corwin '12] [Quastel Spohn '15]

Robust justification by solution theories for singular stochastic PDEs

» Regularity Structures [Hairer '13] [Hairer '14]
» Paracontrolled Distributions [Gubinelli Imkeller Perkowski '15]
» Energy Solutions [Goncalves Jara '14]
» Renormalization Approach [Kupiainen '16]

All these approaches only work for KPZ in d =1 (sub-critical) J
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KPZ and SHE

The general setting

General dimensions d: how to find a “solution” of KPZ and SHE ?

Mollify (regularize) the white noise &(t, x) in space on scale ¢ > 0

ge(t’ X) = (€(t7 ) *JE)(X)

> jo(x) =% x)  j e C(RY) probability density

t
> t— We(t, x) ::/ £°(ds, x) Brownian motions
0

)

Replace £ by ¢&¢ ~~  (KPZ) and (SHE) well-posed by Ito theory

(correlated in x, variance o2 := =9 ||/

Do mollified solutions h®(t,x) and u(t,x) have a limitase | 0 ?

Disorder strength 5 = (3. needs to be renormalized!
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KPZ and SHE

Mollified equations

Mollified SHE

2 (e-SHE)

By Ito’s formula h®(t, x) := log u®(t, x) satisfies

Mollified KPZ
Och® = lAhE L l|Vh€|2 + B.£5 - C
2 2 (e-KPZ)
h*(0,-) =0

C:=p2o2=p2e||j|%
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KPZ and SHE

Key problem

Can we choose f3. € (0,00) so that
u®(t,x) and h%(t,x) admit non-trivial limits as ¢ | 0 ?

YES! (...)

B (fixed) d=1
V27 3 .

== 9=z Be()
B d>3

Note that 5. —+ 0 ford =2 and d > 3

Choice of 3. will be clear later (~ directed polymers)
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Main Results

Main result |. Phase transition for SHE

V27 3 .
Space dimension d = 2 Be = VB 5 € (0c0)
\/loge1
Theorem (SHE one-point distribution) [CSZ 17]

Phase transition (“weak to strong disorder”) with critical value . = 1

exp(c;Z—102) ifjp<1
Fix t >0,x € R?: us(t,x) — ( ’ 2 ﬂ) R
0 1o if 3>1
2. 1
Z ~ N(0,1) 05 = log P
Subcritical regime < 1. For distinct xi, ..., x, € R?

ut(t,x;) become asymptotically independent (!) ase | 0
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Main Results

Main result |. Phase transition for KPZ

L V21 .

Space dimension d = 2 Be = _vomh 5 € (000)
\/loge1

Theorem (KPZ one point distribution) [CSZ 17]

Phase transition (“weak to strong disorder”) with critical value . = 1

0,7 — 102 |f/6A’<1
Fixt>0xeR:  hi(tx) < 77 20 0
€10 00 if 3>1
2 . 1
Z ~ N(0,1) 05 = log P

Subcritical regime < 1. For distinct xi, ..., x, € R?

h*(t,x;) become asymptotically independent (!) as € | 0

Francesco Caravenna
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Main Results

Sub-critical regime 3 < 1

For 5 <1 wu®(t,x) and h*(t,x) are very irregular functions of x

Look at u®(t,-) and h*(t,-) as random distributions on R?

Elus(t,x)] =1 E[h*(t,x)] = —3 02 +o(1) asel0

Law of large numbers

d d C
ut(t,) — 1 R (t,) — —L152 as distributions
(t) 2 (t) L -4

Vo € C.(R?) : /R UE(t,x) p(x) dx —5 [ p(x)dx

el0 R2

/[R2 he(t, x) ¢(x) dx aiLo> (— %02) @(x) dx

Fluctuations?
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Main Results

Main result Il. Fluctuations for SHE

V2T ﬁ
\/loge—!

1
Rescaled SHE solution U (t, x) = ﬁ—(us(t,x) — E[u?])

€

Recall that Be = sub-critical /3 € (0,1)

Theorem (EW fluctuations for SHE) [CSZ 17]

Vo € Co(R?) /Rzus(t,x) o(x)dx —s /[R Vi) (¢, x) é(x) dx

el0
¢ =~ v9(t, x) solution of Additive SHE
O (£, x) = %Av(c)(t,x) + c&(t,x) (EW)

known as Edwards-Wilkinson equation
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Main Results

Explicit reformulation

EW solution well-defined (in any dimension)
(e)( _ _ L -5
vi9(t, x) gt—s(x — y)&(ds,dy) gi(x) = s
R2 1

It is a (distribution valued) Gaussian process
/ vI(t, x) ¢(x) dx ~ N(0,c? 03
R2

> 05 = Jgey #(x) Ke(x, ) ¢(y) dxdy

t
> Ki(oy) = [ gule—y)du~ & log
0

We will understand better how EW emerges from SHE )
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Main Results

Fluctuations: from SHE to KPZ?

Mollified SHE solution u®(t, x) admits explicit Wiener-Chaos expansion
Key tool to prove EW fluctuations, not available for KPZ sol. h*(t, x)

How to prove EW fluctuations for KPZ?
Naive idea
h#(t, x) = log u®(t, x) uf(t,x) — 1 (as a distribution)
Taylor expansion h*(t,x) ~ (u*(t,x) — 1) ?

NO, because u®(t, x) is not close to 1 pointwise

However, with careful analysis, we can correct and control the expansion

~» The same EW fluctuations hold for KPZ J
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Main Results

Main result Il. Sub-critical fluctuations for KPZ

Recall that Be = —— sub-critical 3 € (0,1)
1
Rescaled KPZ solution HE(t,x) = T(h‘s(t, x) — E[h7])

Theorem (EW fluctuations for KPZ) [CSZ 18b]

Vo € C.(R?) /[RZHE(t,x)qb(x)dx - /[R A, x) d(x) dx

(same constant as before)
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Main Results

Summary so far

Var 3
/loge1

» Edwards-Wilkinson fluctuations
1> _ £ 15 _ €
he(t, x) — E[h°] and U (t,x) — E[v?] 4
Bs 55 el0

1
1—42

» Transition at scale 3. = with explicit critical point A = 1

V(C*@)(t, X)

» Explicit c; =
» Fluctuations in the entire subcritical regime 0 < 3 < 1

We now discuss related results in the literature
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Main Results

A variation on KPZ

Recently Chatterjee and Dunlap [CD 18] considered a variation
Te 1 Te 1 Tel2 €
V2T 3
N

Theorem [Chatterjee Dunlap 18]

The same . = now multiplies the non-linearity instead of &%

For /3 sufficiently small, the centered solution h°(t,-) — E[h°] admits
subsequential limits in law as ¢ | 0 (as a random distribution on R?)

Any limit is not the solution of Additive SHE (EW) with ¢ =1

(what one would get simply removing the non-linearity)
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Main Results

Relation with our results

1 1
Recall “our” KPZ : Och® = EAhE + 5 |Vh)? + B.€° — C.

Scaling relation

he (¢, x) — E[h°] = ﬁi (h(t,x) — E[F]) = H°(t, %)

Theorem [CSZ 18b]

For every sub-critical 3 < 1, the centered solution h*(t,-) — E[h°] admits
a unique limit in law as ¢ | 0 (as a random distribution on R?)

The limit is the solution of Additive SHE (EW) with ¢; = \/ﬁ > 1
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Main Results

Phase transition for d > 3

For d > 3 the right way to scale 3. is

d—2
2

B. = e Be (0,00)

Theorem [Mukherjee Shamov Zeitouni 16]
There exists /3. € (0,00) (unknown) such that

>0 ifpB<fe

us(t, x) <, { PO
=0 (0 if 8> Oc

cR ifB<f
he(t,x) —2» ﬁ
0 | oo iff>fe

See also [Comets Cosco Mukherjee 18] for related results
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Main Results

Edwards-Wilkinson fluctuations in d > 3

B. = ez

sub-critical /3 € (0,1)

)

EW fluctuations for KPZ established in [Magnen Unterberger 18]

Theorem [Magnen Unterberger 18]

For B < 1 sufficiently small, one has

() BT g e,
/86 s—i(?v‘(t,)

solution of the Additive SHE (EW) for a suitable noise strength c;.

Analogous EW fluctuations for SHE proved in [Gu Ryzhik Zeitouni 18]
(See also [Comets Cosco Mukherjee 18])
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Main Results

The one-dimensional case

The situation for d = 1 is rather different

B.=/3e€(0,00)  (fixed)

» No phase transition:
U (t, x) % u(t,x) >0 VA e (0,00)
€
ke (t, x) % h(t,x) >0 VA € (0,0)

» EW fluctuations easily established as /3’ —0
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Critical Regime

The critical regime

What about 3 =17
More generally, critical window [Bertini Cancrini 98]

2 9
Bo= ) — (14 Y with 0 €R
loge—1! loge—1!

Nothing known for KPZ h®(t, x), some progress for SHE v®(t, x)

)

Key conjecture
ué(t,-) has a limit 2/(t,) for € | 0, as a random distribution on R?

()0 = [ w(e0dx 5 [ (e o) ex

el0 R2

(actually a random measure, since u® > 0)
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Critical Regime

Second moment in the critical window

What is known [Bertini Cancrini 98]

Tightness via second moment bounds

[( °(t,-) ] = <1 > iig [E[(ug(t,~),¢>2] < 0

More precisely [E['zl’(tu).u 2: — (¢, Kp) < o0

Explicit kernel K(x,x") ~ C log %

T as |x — x| =0

Corollary
J subsequential limits (u®*(t,-), ¢) % (U, ¢)
—0c0

Can the limit be trivial U(t,-)=17
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Critical Regime

Main result Ill. Third moment in the critical window

We determine the sharp asymptotics of third moment

Theorem [CSZ 18a]

» Explicit expression for C(¢) (series of multiple integrals)

Corollary
Any subsequential limit u®*(t,-) <, U(t,-) has covariance K(x,x’)

~» U(t,-) Z1 is non-degenerate!
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Directed Polymer and SHE

Directed Polymer in Random Environment [Comets 17]

> (Sn)n>0 simple random walk on z7¢

» Disorder: i.i.d. random variables w(n,x)

zero mean, unit variance

A(B) = log E[e#~(")] < 0o

N
> (-) Hamiltonian  Hy g(w,S) ==/ Zw(n, Sp) — AMB)N
n=1
Partition Functions (NeN, zez9
1
ZN”[»}(Z) =] ErW I:eHNy/'f(w’s)lso = Z:| = (2d)N Z eHN,/'f(w75)
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Directed Polymer and SHE

Directed Polymer and SHE

Partition functions Zy g(z) are discrete analogues of u®(t, x)
> They solve a lattice SHE
Znia(2) — Zn(z) = AZp(2) + BO(N+1,2) Zn(2)
~ Alternative way of regularizing SHE (discretize vs. mollify)

» Quantitative analogy via Feynman-Kac formula for SHE

SHE B.=¢" 3 Directed Polymer J

Francesco Caravenna 2d KPZ and SHE via directed polymers 10-14 December 2018 34 /37



Directed Polymer and SHE

Feynman-Kac formula for SHE

1
ot = AR + B ufE°
Recall the e-mollified SHE 2

Feynman-Kac

u&(t,x)iEelxlexp (66 / / y)&(ds, dy) - )]

(Bs)s>o0 Brownian motion () € C2°(R?) probability density

u=(t, x) corresponds to Zy g(z) with

d—2
N=¢c"2t z=¢"1x Be=€eZ B
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Directed Polymer and SHE

Weak and strong disorder for Directed Polymer

For d > 3 there is a phase transition: 35, € (0, c0) such that

for B < fe: Zn(z) —2— Z(z) >0 (weak disorder)

N—oo

for 8 > .: Zy(2) Na—s> 0 (strong disorder)
— 00

For d =1, d =2 we have 3. =0, i.e. only strong disorder:

for any 3 > 0: Zn(z) 2250
N—oo

[Bolthausen 89] [Comets Shiga Yoshida 03] [Vargas 07] [Lacoin 11] [Comets 17]
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Directed Polymer and SHE

Directed Polymer and SHE

To see weak disorder for d = 1, d = 2 we must take 5 =y — 0

N

p
N1/4
Bn =~ 3
with transition d =2 [CSZ 17]

Vl0og N

This matches with the scaling for 5. for SHE and KPZ

without transition d =1 [Alberts, Khanin, Quastel 14]

» Directed Polymer provides a friendly framework for SHE
» Results first proved for Directed Polymer, then for SHE and KPZ
» We will sketch some of the proofs highlighting key tools:

Concentration Inequalities  Polynomial Chaos  Hypercontractivity
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