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Overview

Two stochastic PDEs on R
d (mainly d = 2)

◮ Kardar-Parisi-Zhang Equation (KPZ)

◮ Stochastic Heat Equation (SHE) with multiplicative noise

Very interesting yet ill-defined equations

Plan:

1. Consider a regularized version of these equations

2. Study the limit of the solution, when regularisation is removed

Stochastic Analysis ! Statistical Mechanics
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White noise

Space-time white noise ξ = ξ(t, x) on R
1+d

Random distribution of negative order (Schwartz) [not a function!]

Gaussian: 〈ξ, φ〉 =

∫

R1+d

ξ(t, x)φ(t, x) dt dx ∼ N (0, ‖φ‖2
L2)

Cov[ ξ(t, x), ξ(t ′, x ′) ] = δ(t − t ′) δ(x − x ′)

Case d = 0: ξ(t) = d
dtB(t) where (Bt) is Brownian motion

ξ = scaling limit of i.i.d. RVs indexed by Z
1+d
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White noise
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The KPZ equation

KPZ [Kardar Parisi Zhang 86]

∂th = 1
2 ∆xh + 1

2 |∇xh|2 + β ξ (KPZ)

Model for random interface growth

h = h(t, x) = interface height at time t ≥ 0, space x ∈ R
d

ξ = ξ(t, x) = space-time white noise β > 0 noise strength

|∇xh|2 ill-defined

For smooth ξ

u(t, x) := eh(t,x) (Cole-Hopf)
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The multiplicative Stochastic Heat Equation (SHE)

SHE (t > 0, x ∈ R
d)

∂tu = 1
2 ∆xu + β u ξ (SHE)

Product u ξ ill-defined

(d = 1) SHE is well-posed by Ito integration [Walsh 80’s]

u(t, x) is a function  “KPZ solution” h(t, x) := log u(t, x)

(d = 1) SHE and KPZ well-understood in a robust sense (“pathwise”)

Regularity Structures (Hairer)

Paracontrolled Distributions (Gubinelli, Imkeller, Perkowski)

Energy Solutions (Goncalves, Jara), Renormalization (Kupiainen)
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Higher dimensions d ≥ 2

In dimensions d ≥ 2 there is no general theory

We mollify the white noise ξ(t, x) in space on scale ε > 0

ξε(t, ·) := ξ(t, ·) ∗ ̺ε

Solutions hε(t, x), uε(t, x) are well-defined. Convergence as ε ↓ 0 ?

Renormalization: we need to tune disorder strength as ε ↓ 0

β = βε → 0 as







β̂
√

| log ε |
(d = 2)

β̂ ε
d−2
2 (d ≥ 3)

β̂ ∈ (0,∞)
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Mollified and renormalized equations

Mollified and renormalized SHE






∂tu
ε = 1

2∆uε + βε u
ε ξε

uε(0, ·) ≡ 1
(ε-SHE)

uε(t, x) > 0 Cole-Hopf hε(t, x) := log uε(t, x)  Ito formula

Mollified and renormalized KPZ






∂th
ε = 1

2∆hε + 1
2 |∇hε|2 + βε ξ

ε − c β2
ε ε

−d

hε(0, ·) ≡ 0
(ε-KPZ)
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Main results

Space dimension d = 2 βε =
β̂

√

| log ε|
β̂ ∈ (0,∞)

I. Phase transition for SHE and KPZ [CSZ 17]

Solutions uε(t, x) and hε(t, x) undergo phase transition at β̂c =
√
2π

II. Sub-critical regime of SHE and KPZ [CSZ 17] [CSZ 20+]

(β̂ < β̂c) LLN + fluctuations of solutions uε(t, x) and hε(t, x)

III. Critical regime of SHE [CSZ 19]

(β̂ = β̂c) Non-trivial limit(s) of SHE uε(t, x) via moment bounds
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Main result I. Phase transition

Space dimension d = 2 βε =
β̂

√

| log ε|
β̂ ∈ (0,∞)

Theorem (Phase transition for SHE) [CSZ 17]

◮ (β̂ <
√
2π) uε(t, x)

d−−→
ε↓0

exp
(
σ Z − 1

2 σ
2
)

Z ∼ N(0, 1) σ2 := log
2π

2π − β̂2

uε(t, xi )
d−−→

ε↓0
asympt. independent (for distinct points xi ’s)

◮ (β̂ ≥
√
2π) uε(t, x)

d−−→
ε↓0

0

Francesco Caravenna 2d KPZ and SHE 27 January 2020



KPZ and SHE Sub-critical regime Critical regime Directed Polymer

Main result I. Phase transition

Space dimension d = 2 βε =
β̂

√

| log ε|
β̂ ∈ (0,∞)

Theorem (Phase transition for KPZ) [CSZ 17]

◮ (β̂ <
√
2π) hε(t, x)

d−−→
ε↓0

σ Z − 1
2 σ

2

Z ∼ N(0, 1) σ2 := log
2π

2π − β̂2

hε(t, xi )
d−−→

ε↓0
asympt. independent (for distinct points xi ’s)

◮ (β̂ ≥
√
2π) hε(t, x)

d−−→
ε↓0

−∞
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Law of large numbers

Sub-critical regime β̂ <
√
2π (as ε ↓ 0)

◮ E[uε(t, x)] ≡ 1

◮ uε(t, x) asymptotically

independent for distinct x ’s

◮ E[hε(t, x)] ≡ − 1
2σ

2 + o(1)

◮ hε(t, x) asymptotically

independent for distinct x ’s

Corollary: LLN as ε ↓ 0 (β̂ <
√
2π)

as a distribution on R
2 uε(t, ·) d−−→ 1 hε(t, ·) d−−→ − 1

2 σ
2

∫

R2

hε(t, x)φ(x) dx
d−−→ − 1

2 σ
2

∫

R2

φ(x) dx
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A picture

x ∈ R
2

h
ǫ(t, x)

0

−
1

2
σ2 σ

σ2 = log
2π

2π − β̂2
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Main result II. Fluctuations for SHE

Rescaled SHE solution Uε(t, x) :=
(
uε(t, x)− 1

)
/βε

∂t Uε = 1
2 ∆x Uε + ξε + βε Uε ξε

Theorem (Fluctuations for SHE) [CSZ 17]

for β̂ <
√
2π Uε(t, ·) d−−−→

ε↓0
v(t, ·) as a distrib.

v = Gaussian = solution of additive SHE (Edwards-Wilkinson)

∂tv = 1
2∆xv + γ ξ where γ =

√
2π

2π−β̂2
> 1

Remarkably βε Uε ξε does not vanish as ε ↓ 0 ! (βε → 0)

Converges to
√

γ2 − 1 ξ′ independent white noise (“resonances”)
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Main result II. Fluctuations for KPZ

Rescaled KPZ solution Hε(t, x) :=
(
hε(t, x)− E[hε]

)
/βε

Theorem (Fluctuations for KPZ) [CSZ 20+]

for β̂ <
√
2π Hε(t, ·) d−−−→

ε↓0
v(t, ·) as a distrib.

v = Gaussian = solution of additive SHE (Edwards-Wilkinson)

∂tv = 1
2∆xv + γ ξ where γ =

√
2π

2π−β̂2
> 1

∂t Hε = 1
2 ∆x Hε + ξε + βε (|∇Hε|2 − c ε−2)

︸ ︷︷ ︸

converges to
indep. white noise
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Fluctuations: from SHE to KPZ

Proof based on Wiener Chaos expansions, not available for KPZ

hε(t, x) = log uε(t, x) (Cole-Hopf)

We might hope that

hε(t, ·) = log
(
1 + (uε(t, ·)− 1)

)
≈

(
uε(t, ·)− 1

)
?

NO, because uε(t, x) is not close to 1 pointwise

Correct comparison (non trivial!)

hε(t, ·)− E[hε] ≈
(
uε(t, ·)− 1

)
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Sketch of the proof

We approximate uε(t, x) by “local version” ũε(t, x) which samples noise

ξ in a tiny region around (t, x)

Then we approximate KPZ solution hε(t, x) by Taylor expansion

hε = log uε = log ũε + log

(

1 +
uε − ũε

ũε

)

≈ log ũε +
uε − ũε

ũε
+ Rε

◮ Remainder is small
(
Rε(t, ·)− E[Rε]

)
/βε

d−−→ 0

◮ Local dependence of ũε
(
log ũε(t, ·)− E[log ũε]

)
/βε

d−−→ 0

◮ Crucial approximation
uε(t, ·)− ũε(t, ·)

ũε(t, ·) ≈ uε(t, ·)− 1
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Some Comments

Key tools in our approach are

◮ Wiener chaos + Renewal Theory  sharp L2 computations

◮ 4th Moment Theorems to prove Gaussianity

◮ Hypercontractivity + Concentration of Measure

Alternative proof by [Gu 18] via Malliavin calculus (for small β̂)

[Chatterjee and Dunlap 18] first considered fluctuations for KPZ and

they proved tightness of Hε (for small β̂)

We identify the limit of Hε (EW) (for every β̂ <
√
2π)

Results in dimensions d ≥ 3 by many authors (unknown critical point)
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A variation on KPZ

Chatterjee and Dunlap [CD 18] looked at a different KPZ

∂t h̃
ε = 1

2∆h̃ε + 1
2 βε |∇h̃ε|2 + ξε

where βε tunes the strength of the non-linearity

In our setting, βε tunes the strength of the noise

∂th
ε = 1

2∆hε + 1
2 |∇hε|2 + βε ξ

ε − c β2
ε ε

−d

The two equations have the same fluctuations

h̃ε(t, x)− E[h̃ε] =
1

βε

(
hε(t, x)− E[hε]

)
= Hε(t, x)
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The critical regime

What about the critical point β̂ =
√
2π ? [Bertini Cancrini 98]

βε =

√
2π

√

| log ε|

(

1 +
ϑ

| log ε|

)

with ϑ ∈ R

So-called critical window

Key conjecture for critical SHE

uε(t, ·) d−−−→
ε↓0

Uϑ(t, ·) (random distribution on R
2)

Nothing known for KPZ solution hε(t, ·)
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Second moment

Known results [Bertini Cancrini 98]

E
[
〈uε(t, ·), φ〉

]
≡

〈
1, φ

〉
sup
ε>0

E
[
〈uε(t, ·), φ〉2

]
< ∞

E
[
〈uε(t, ·), φ〉2

]
−−−→
ε↓0

〈
φ, Kφ

〉
K
(
x , x ′

)
∼ C log 1

|x−x′|

Corollary: tightness

∃ subseq. limits uεk (t, ·) d−−−−→
k→∞

U(t, ·) as random distributions

Could the limit be trivial U(t, ·) ≡ 1 ?
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Main result III. Third moment in the critical window

We computed the sharp asymptotics of third moment

Theorem [CSZ 19]

lim
ε↓0

E
[
〈uε(t, ·), φ〉3

]
= C (φ) < ∞

Corollary

Any subseq. limit uεk (t, ·) d−→ U(t, ·) has the same covariance K (x , x ′)

 U(t, ·) 6≡ 1 is non-trivial

Recently [Gu Quastel Tsai 19] proved convergence of all moments

exploiting link with delta Bose gas [Dell’Antonio Figari Teta 94]
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Directed Polymers

We can study the SHE solution uε(t, x) via Directed Polymers

sn

N

z

◮ s = (sn)n≥0 simple random walk path

◮ Indep. standard Gaussian RVs ω(n, x)

(Disorder)

◮ HN(ω, s) :=

N∑

n=1

ω(n, sn)

Directed Polymer Partition Functions (N ∈ N, z ∈ Z
d)

Zβ(N, z) :=
1

(2d)N

∑

s=(s0,...,sN )
s.r.w. path with s0=z

eβHN (ω,s)− 1
2β

2
N
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Directed Polymers and SHE

Partition functions Zβ(N, z) are discrete analogues of uε(t, x) (SHE)

◮ They solve a lattice version of the SHE

◮ They look very close to Feynman-Kac formula for SHE

Theorem

We can approximate (in L2)

uε(t, x) ≈ Zβ(N, z) and hε(t, x) ≈ logZβ(N, z)

where N = ε−2t , z = ε−1x , βε = ε
d−2
2 β

Our results are first proved for partition functions Zβ(N, z)
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Feynman-Kac for SHE

Recall the mollified SHE







∂tu
ε = 1

2∆uε + βε u
ε (ξ ∗ ̺ε)

uε(0, ·) ≡ 1

A stochastic Feynman-Kac formula holds

uε(t, x)
d
= Eε−1x

[

exp

(

βε ε
− d−2

2

∫ ε−2
t

0

∫

R2

̺(Bs − y) ξ(ds, dy) − q.v.

)]

where ̺ ∈ C∞
c
(Rd) is the mollifier and B = (Bs)s≥0 is Brownian motion

We can identify uε(t, x) ≈ Zβ(N, z) with

N = ε−2t z = ε−1x βε = ε
d−2
2 β
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In conclusion

Directed Polymers provides a friendly framework for our PDEs

Our results are first proved for Directed Polymer, then for SHE and KPZ

All mentioned tools have “discrete stochastic analysis” analogues:

Polynomial Chaos, 4th Moment Theorems,

Concentration Inequalities, Hypercontractivity

Probabilistic arguments are more transparent in a discrete setting

Robustness + Universality

Next challenges

◮ Critical regime β̂ =
√
2π

◮ Robust (pathwise) analysis of sub-critical regime β̂ <
√
2π

Francesco Caravenna 2d KPZ and SHE 27 January 2020



KPZ and SHE Sub-critical regime Critical regime Directed Polymer

Thanks.
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