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Overview

Two stochastic PDEs on R? (mainly d = 2)

» Kardar-Parisi-Zhang Equation (KPZ)

» Stochastic Heat Equation (SHE) with multiplicative noise

Very interesting yet ill-defined equations

Plan:

1. Consider a regularized version of these equations

2. Study the limit of the solution, when regularisation is removed

Stochastic Analysis «~ Statistical Mechanics J
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KPZ and SHE

White noise

Space-time white noise £ = £(t, x) on R4 )

Random distribution of negative order (Schwartz) [not a function!]

Gaussian: (&, 0) = /|Rl+d &(t,x) (t,x)dtdx ~ N(0,|¢]2.)
Cov[&(t, x), (', x" )] = (t — t') 6(x — x')

Case d =0: &(t) = £B(t)  where (By) is Brownian motion

¢ = scaling limit of i.i.d. RVs indexed by Z1t9 J
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White noise




KPZ and SHE

The KPZ equation

KPZ [Kardar Parisi Zhang 86]

Och = 2 Ach + 3 |Veh|> + B¢ (KPZ)

Model for random interface growth
h = h(t,x) = interface height at time t > 0, space x € R?

& = £(t,x) = space-time white noise £ > 0 noise strength

|V h|? ill-defined )

For smooth &
u(t, x) := et (Cole-Hopf)
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KPZ and SHE

The multiplicative Stochastic Heat Equation (SHE)

SHE (t>0, xeRY
O = S Au+ Bug (SHE)
Product u& ill-defined )

(d = 1) SHE is well-posed by lto integration [Walsh 80's]

u(t,x) is a function ~»  “KPZ solution” h(t, x) := log u(t, x)

(d = 1) SHE and KPZ well-understood in a robust sense  (“pathwise™)

Regularity Structures (Hairer)
Paracontrolled Distributions (Gubinelli, Imkeller, Perkowski)
Energy Solutions (Goncalves, Jara), Renormalization (Kupiainen)
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KPZ and SHE

Higher dimensions d > 2

In dimensions d > 2 there is no general theory

We mollify the white noise £(t, x) in space on scale £ > 0
gg(ta ) = §(t7 ) * Oe

Solutions h®(t, x), u®(t,x) are well-defined. Convergence ase | 07

Renormalization: we need to tune disorder strength as ¢ | 0

L (d:2)
B=B.—0 as { Vllogel B € (0,0)
pe=  (d23)
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KPZ and SHE

Mollified and renormalized equations

Mollified and renormalized SHE

O = LA0° + B E°

(e-SHE)
us(0,) =1
ut(t,x) >0 Cole-Hopf h°(t, x) := log u°(t, x) ~ lto formula
Mollified and renormalized KPZ
Och® = AN + L|VA ) + B — cpie e
(=-KPZ)
h#(0,-) =0
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KPZ and SHE

Main results

. . 15} A
Space dimension d = 2 Be = —— £ € (0,00)
Vlloge|
|. Phase transition for SHE and KPZ [CSZ 17]

Solutions u®(t,x) and h%(t,x) undergo phase transition at (. = v/2m

II. Sub-critical regime of SHE and KPZ [CSZ 17] [CSZ 20+]
(B < fe) LLN + fluctuations of solutions u®(t,x) and h°(t,x)
lI1. Critical regime of SHE [CSZ 19]

(B3=05.)  Non-trivial limit(s) of SHE u*(t, x) via moment bounds
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KPZ and SHE
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Sub-critical regime

Main result |. Phase transition

N

Space dimension d = 2 Be = I — 5 € (0,00
p Togdl (0,00)
Theorem (Phase transition for SHE) [CSZ 17]
» (B < V27) ue(t, x) % exp (0 Z — 3 0?)
2
Z ~ N(0,1) 0% = log —
2w — (32
ut(t, x;) %) asympt. independent (for distinct points x;'s)
(=
» (B> 2n7) uf(t, x) %) 0
&
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Sub-critical regime

Main result |. Phase transition

B ~
Space dimension d = 2 Be = —— 5 € (0,00
p Togdl (0,00)
Theorem (Phase transition for KPZ) [CSZ 17]
» (B < V27) he(t, x) % cZ—3o0?
2
Z ~ N(0,1) 0% = log —
2w — (32
h=(t, x;) %) asympt. independent (for distinct points x;'s)
E
> (B> 2n7) h#(t, x) %) — 00
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Sub-critical regime

Law of large numbers

Sub-critical regime 3 < /27 (ase]0)
» E[uf(t,x)] =1 » E[h°(t,x)] = —L10” +0(1)
> u°(t,x) asymptotically » h°(t,x) asymptotically

independent for distinct x's independent for distinct x's

Corollary: LLN as ¢ | 0 (B < V2r)

as a distribution on R? ui(t,r) 25 1 he(t,") —2 —10°

/[Rz BE(t, x) (x) dx —s —gaz/w (x) dx
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Sub-critical regime

A picture

27 he(t, x)
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Sub-critical regime

Main result Il. Fluctuations for SHE

Rescaled SHE solution U(t,x) == (u°(t,x) — 1) /-

atus — %Axue + 58 4 Bsuega

Theorem (Fluctuations for SHE) [CSZ 17]
for B < v2r Us(t,) % v(t,-)  as a distrib.
E.

v = Gaussian = solution of additive SHE (Edwards-Wilkinson)

v = 20V + 7€ where v = 27r2f32 > 1
Remarkably (3.1 &5 does not vanish as € | 0! (- = 0)
Converges to /72 —1&’ independent white noise (“resonances”)
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Sub-critical regime

Main result Il. Fluctuations for KPZ

Rescaled KPZ solution HE(t,x) == (h°(t,x) — E[h°]) /-

Theorem (Fluctuations for KPZ) [CSZ 20+]
for B < v2m HE(t,-) % v(t,-) as a distrib.
=

v = Gaussian = solution of additive SHE (Edwards-Wilkinson)

v = 3DV + 7§ where = 2:1’32 > 1

OH = O + € + B (VHP —c=?)

converges to
indep. white noise
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Sub-critical regime

Fluctuations: from SHE to KPZ

Proof based on Wiener Chaos expansions, not available for KPZ
he(t, x) = log u®(t,x) (Cole-Hopf)
We might hope that
h*(t,) =log (1 + (u°(t,-) — 1)) =~ (v°(t,") = 1) ?

NO, because u®(t,x) is not close to 1 pointwise

Correct comparison (non triviall)

he(t,-) — E[p7] = (u°(t,-) —1)
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Sub-critical regime

Sketch of the proof

We approximate u®(t, x) by “local version” i°(t, x) which samples noise
& in a tiny region around (t, x)

Then we approximate KPZ solution h°(t, x) by Taylor expansion

e __ re e ~E
h® = logu® = Iogﬁ5+|og<1+u NE”)% Iogﬁ€+u LR
i

ﬁE

» Remainder is small (R*(t,-) — E[R]) /8- <50
» Local dependence of ii® (log i (t,-) — E[log i°]) /- <0

- - - UE(t7 ) — ag(tv )
» Crucial approximatio ——— 7 ~ u(t,") -1
rucial approximation ) us(t,-)
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Sub-critical regime

Some Comments

Key tools in our approach are
» Wiener chaos + Renewal Theory ~» sharp L? computations
» 4th Moment Theorems to prove Gaussianity

» Hypercontractivity + Concentration of Measure

Alternative proof by [Gu 18] via Malliavin calculus (for small j3)

[Chatterjee and Dunlap 18] first considered fluctuations for KPZ and

they proved tightness of H¢ (for small j3)
We identify the limit of H* (EW) (for every 3 < v/27)

Results in dimensions d > 3 by many authors  (unknown critical point)
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Sub-critical regime

A variation on KPZ

Chatterjee and Dunlap [CD 18] looked at a different KPZ

where /3. tunes the strength of the non-linearity
In our setting, (. tunes the strength of the noise

Och® = AN + VAP + B — cpe

The two equations have the same fluctuations

he(t, x) — E[h°] = ﬁi (h*(t,x) — E[h°]) = H°(t,x)

&
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Critical regime

The critical regime

What about the critical point 3 = /27 ? [Bertini Cancrini 98]

5 V2T <1 9
o v/ |loge| |log e

So-called critical window

) with ¥ € R

Key conjecture for critical SHE

ue(t,-) %) Uy(t,-) (random distribution on R?)
&

Nothing known for KPZ solution h°(t,-)
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Critical regime

Second moment

Known results [Bertini Cancrini 98]

E[(u*(t,),9)] = (1,9) sup E[(u(t,-),¢)*] < o0

e>0

B[ (). 0)2) —5+ (0. K6)  K(xx') ~ Clog 12y

Corollary: tightness

3 subseq. limits  u®*(t,-) kL) U(t,-) as random distributions
—00

Could the limit be trivial U(t,") =17
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Critical regime

Main result Ill. Third moment in the critical window

We computed the sharp asymptotics of third moment

Theorem [CSZ 19]

lim E[(u*(t,"), 9)*] = C(¢) < 0

eJ0

Corollary
Any subseq. limit u*(t,-) LN U(t,-) has the same covariance K(x,x’)

~> U(t,-) #1 is non-trivial

Recently [Gu Quastel Tsai 19] proved convergence of all moments

exploiting link with delta Bose gas [Dell’ Antonio Figari Teta 94]
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Directed Polymer

Directed Polymers

We can study the SHE solution u®(t, x) via Directed Polymers

> s = (sp)n>0 simple random walk path

> Indep. standard Gaussian RVs w(n, x)
(Disorder)

> Hy(w,s) =Y w(n,sn)

n=1

Directed Polymer Partition Functions (NeN, zez%

1 142
o BHy(w,s)— 182N
Z5(N, z) = ) s—(; :S) BHN(w,9)—1
s.r.w.ipa&;.;/;/’it?\l So=2
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Directed Polymer

Directed Polymers and SHE

Partition functions Z23(N, z) are discrete analogues of u®(t, x)

» They solve a lattice version of the SHE

> They look very close to Feynman-Kac formula for SHE

Theorem

We can approximate (in L?)

ut(t,x) =~ Z3(N, z) and he(t,x) ~ log Z3(N, z)

1 d—2
where z=¢ x, [.=eg2 f3

(SHE)

Our results are first proved for partition functions Z3(N, z)
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Directed Polymer

Feynman-Kac for SHE

Recall the mollified SHE

A stochastic Feynman-Kac formula holds

v (t,x) £ Eslxlexp (355—“’22 /06 t/Rz o(Bs —y)&(ds,dy) — q-V-)]

where o € C2°(R?) is the mollifier and B = (Bs)s>o is Brownian motion

We can identify w®(t,x) ~ 23(N,z) with

=D =il ="
N=¢e""t z=¢€ "X Be=e2 (3
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Directed Polymer

In conclusion

Directed Polymers provides a friendly framework for our PDEs

Our results are first proved for Directed Polymer, then for SHE and KPZ

All mentioned tools have “discrete stochastic analysis” analogues:

Polynomial Chaos, 4th Moment Theorems,

Concentration Inequalities, Hypercontractivity
Probabilistic arguments are more transparent in a discrete setting
Robustness + Universality
Next challenges

» Critical regime 3 = /27

> Robust (pathwise) analysis of sub-critical regime § < v/27
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Directed Polymer

Thanks.
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