

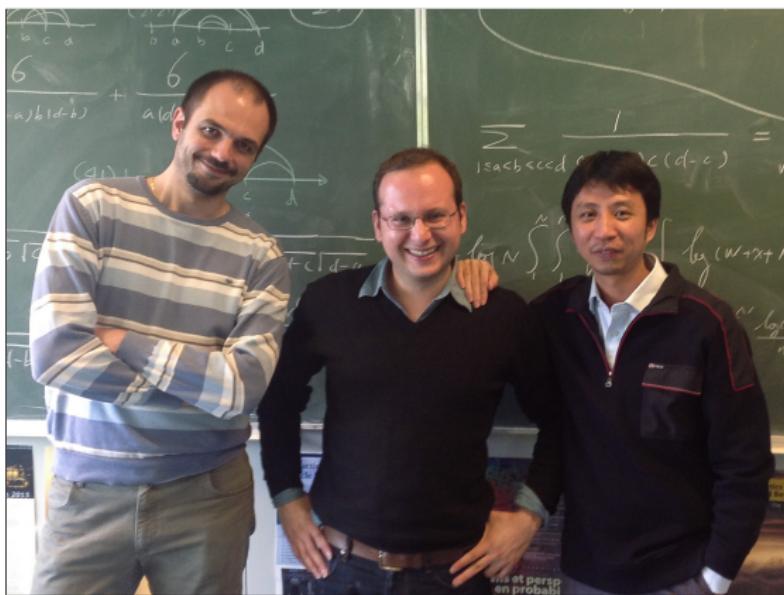
Scaling Limits and Universality for Random Pinning Models

Francesco Caravenna

Università degli Studi di Milano-Bicocca

Sapporo ~ August 9, 2013

Coworkers

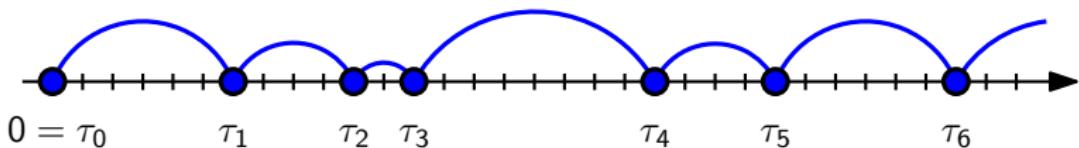


Joint work with Nikos Zygouras (Warwick) and Rongfeng Sun (NUS)

Outline

1. Discrete pinning model
2. Weak disorder regime
3. Continuum partition function
4. Sketch of the proof
5. Continuum pinning model

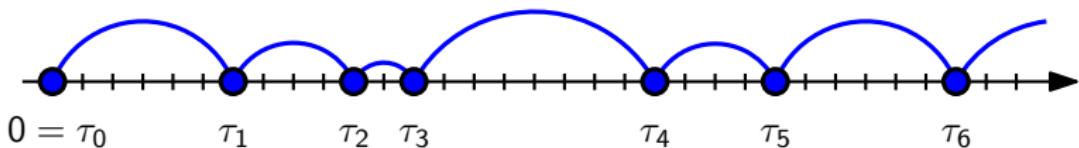
1st ingredient: renewal process



Discrete renewal process $\tau = \{0 = \tau_0 < \tau_1 < \tau_2 < \dots\} \subseteq \mathbb{N}_0$

Gaps $(\tau_{i+1} - \tau_i)_{i \geq 0}$ are i.i.d. and finite (for simplicity)

1st ingredient: renewal process



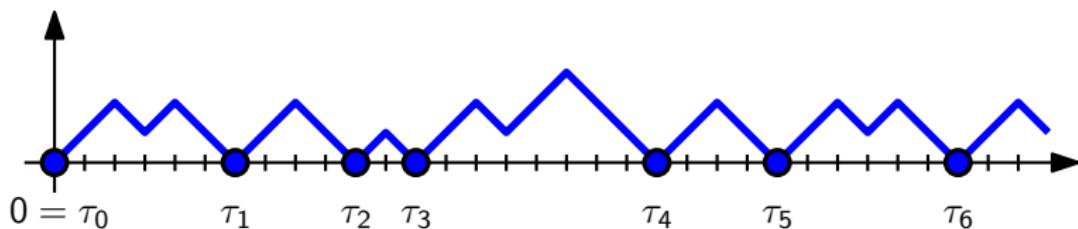
Discrete renewal process $\tau = \{0 = \tau_0 < \tau_1 < \tau_2 < \dots\} \subseteq \mathbb{N}_0$

Gaps $(\tau_{i+1} - \tau_i)_{i \geq 0}$ are i.i.d. and finite (for simplicity)

Polynomial-tail distribution:

$$P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}, \quad c_K > 0, \quad \alpha \in (0, 1) \cup (1, \infty)$$

1st ingredient: renewal process



Discrete renewal process $\tau = \{0 = \tau_0 < \tau_1 < \tau_2 < \dots\} \subseteq \mathbb{N}_0$

Gaps $(\tau_{i+1} - \tau_i)_{i \geq 0}$ are i.i.d. and finite (for simplicity)

Polynomial-tail distribution:

$$P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}, \quad c_K > 0, \quad \alpha \in (0, 1) \cup (1, \infty)$$

$\tau = \{n \in \mathbb{N}_0 : X_n = 0\}$ zero level set of a Markov chain

(SRW on \mathbb{Z}^d , Bessel RWs on \mathbb{N}_0)

2nd ingredient: disorder (or charges)

Disorder $\omega = (\omega_i)_{i \in \mathbb{N}}$: i.i.d. real random variables with law \mathbb{P}

$$\Lambda(\beta) := \log \mathbb{E}[e^{\beta \omega_1}] < \infty \quad \mathbb{E}[\omega_1] = 0 \quad \mathbb{V}\text{ar}[\omega_1] = 1$$

Gaussian case: $\omega_i \sim \mathcal{N}(0, 1)$ $\Lambda(\beta) = \frac{1}{2}\beta^2$

2nd ingredient: disorder (or charges)

Disorder $\omega = (\omega_i)_{i \in \mathbb{N}}$: i.i.d. real random variables with law \mathbb{P}

$$\Lambda(\beta) := \log \mathbb{E}[e^{\beta \omega_1}] < \infty \quad \mathbb{E}[\omega_1] = 0 \quad \mathbb{V}\text{ar}[\omega_1] = 1$$

Gaussian case: $\omega_i \sim \mathcal{N}(0, 1)$ $\Lambda(\beta) = \frac{1}{2}\beta^2$

Actually consider $(\beta \omega_i + h)_{i \in \mathbb{N}}$ with $\beta \geq 0$ (strength), $h \in \mathbb{R}$ (bias)

2nd ingredient: disorder (or charges)

Disorder $\omega = (\omega_i)_{i \in \mathbb{N}}$: i.i.d. real random variables with law \mathbb{P}

$$\Lambda(\beta) := \log \mathbb{E}[e^{\beta \omega_1}] < \infty \quad \mathbb{E}[\omega_1] = 0 \quad \mathbb{V}\text{ar}[\omega_1] = 1$$

Gaussian case: $\omega_i \sim \mathcal{N}(0, 1)$ $\Lambda(\beta) = \frac{1}{2}\beta^2$

Actually consider $(\beta \omega_i + h)_{i \in \mathbb{N}}$ with $\beta \geq 0$ (strength), $h \in \mathbb{R}$ (bias)

Quenched disorder: (τ, \mathbb{P}) and (ω, \mathbb{P}) are independent

Sample a typical ω and use it as a “random environment” for τ

The discrete pinning model

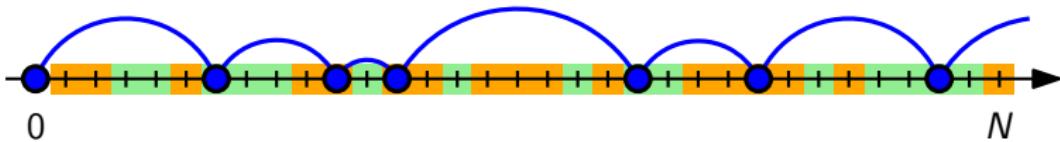
rewards $\omega_n > 0$ penalties $\omega_n < 0$



The discrete pinning model

Free renewal

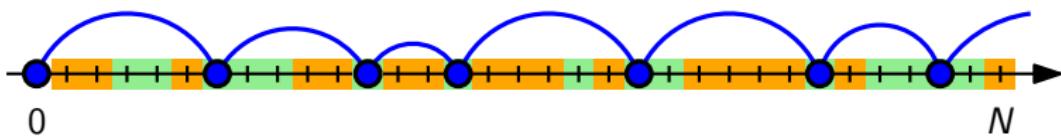
rewards $\omega_n > 0$ penalties $\omega_n < 0$



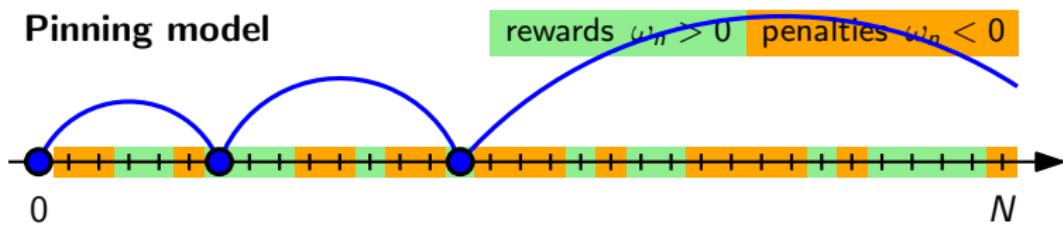
The discrete pinning model

Pinning model

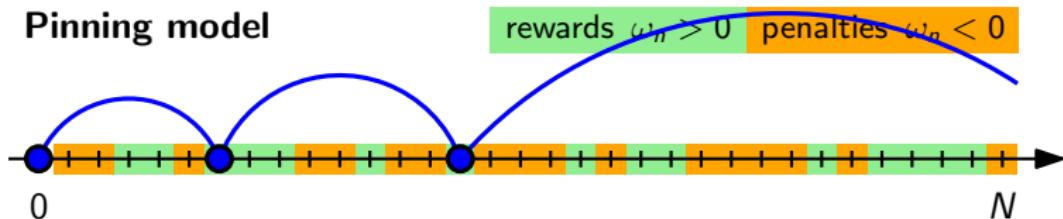
rewards $\omega_n > 0$ penalties $\omega_n < 0$



The discrete pinning model

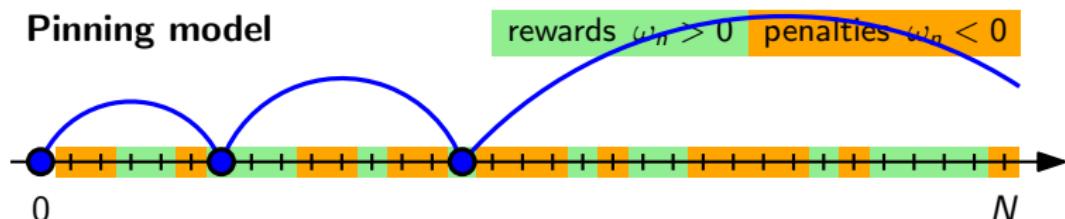


The discrete pinning model



$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

The discrete pinning model



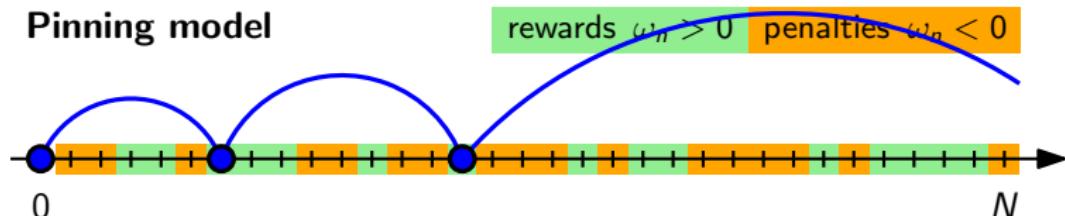
$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

The pinning model

Gibbs change of measure $P_{N,\beta,h}^\omega$ of the renewal distribution P

$$\frac{dP_{N,\beta,h}^\omega}{dP}(\tau) := \frac{1}{Z_{N,\beta,h}^\omega} \exp \left(H_{N,\beta,h}^\omega(\tau) \right)$$

The discrete pinning model



$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

The pinning model

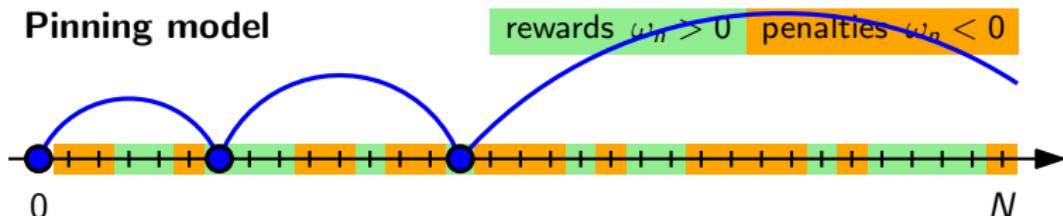
Gibbs change of measure $P_{N,\beta,h}^\omega$ of the renewal distribution P

$$\frac{dP_{N,\beta,h}^\omega}{dP}(\tau) := \frac{1}{Z_{N,\beta,h}^\omega} \exp \left(H_{N,\beta,h}^\omega(\tau) \right)$$

normalization constant (partition function)

– Hamiltonian:
sum of
rewards/penalties
visited by τ

The discrete pinning model



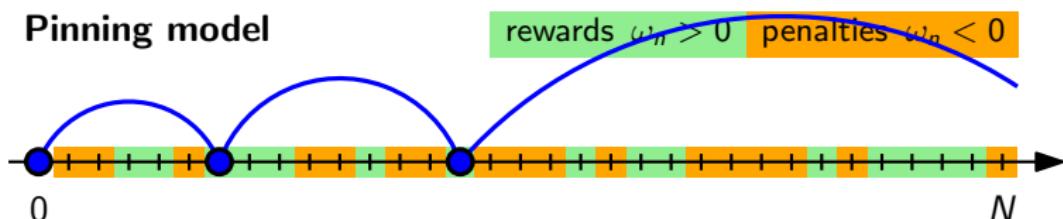
$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

The pinning model

Gibbs change of measure $P_{N,\beta,h}^\omega$ of the renewal distribution P

$$\frac{dP_{N,\beta,h}^\omega}{dP}(\tau) := \frac{1}{Z_{N,\beta,h}^\omega} \exp \left(\sum_{n=1}^N (h + \beta \omega_n) \mathbf{1}_{\{n \in \tau\}} \right)$$

The discrete pinning model



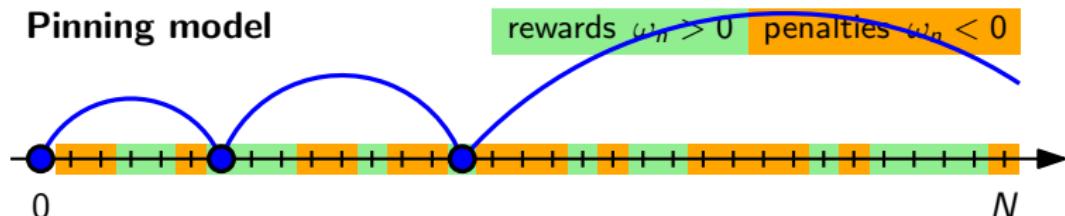
$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

The pinning model

Gibbs change of measure $P_{N,\beta,h}^\omega$ of the renewal distribution P

$$\frac{dP_{N,\beta,h}^\omega}{dP}(\tau) := \frac{1}{Z_{N,\beta,h}^\omega} \exp \left(\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbf{1}_{\{n \in \tau\}} \right)$$

The discrete pinning model



$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

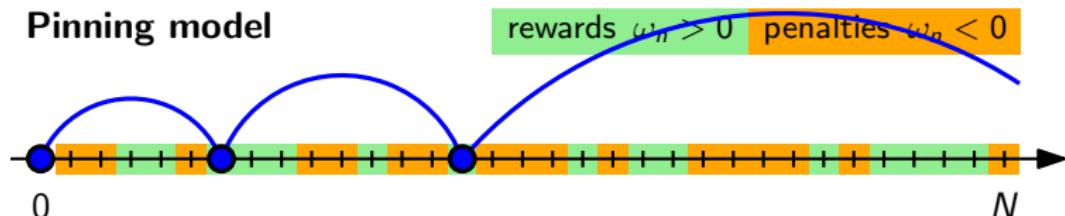
The pinning model

Gibbs change of measure $P_{N,\beta,h}^\omega$ of the renewal distribution P

$$\frac{dP_{N,\beta,h}^\omega}{dP}(\tau) := \frac{1}{Z_{N,\beta,h}^\omega} \exp \left(\sum_{n=1}^N \boxed{(h + \beta \omega_n - \Lambda(\beta)) \mathbf{1}_{\{n \in \tau\}}} \right)$$

reward/penalty to visit site n

The discrete pinning model



$N \in \mathbb{N}$ (system size) $\beta \geq 0$, $h \in \mathbb{R}$ (disorder strength, bias)

The pinning model

Gibbs change of measure $P_{N,\beta,h}^\omega$ of the renewal distribution P

$$\frac{dP_{N,\beta,h}^\omega}{dP}(\tau) := \frac{1}{Z_{N,\beta,h}^\omega} \exp \left(\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbf{1}_{\{n \in \tau\}} \right)$$

$H_{N,\beta,h}^\omega(\tau) = \text{sum of the rewards/penalties visited by } \tau$

The phase transition

How are the typical paths τ of the pinning model $P_{N,\beta,h}^\omega$?

Contact number $\mathcal{C}_N := |\tau \cap (0, N]| = \sum_{n=1}^N \mathbb{1}_{\{n \in \tau\}}$

The phase transition

How are the typical paths τ of the pinning model $P_{N,\beta,h}^\omega$?

Contact number $\mathcal{C}_N := |\tau \cap (0, N]| = \sum_{n=1}^N \mathbb{1}_{\{n \in \tau\}}$

Theorem (phase transition)

\exists continuous, non decreasing, deterministic critical curve $h_c(\beta)$:

- *Localized regime*: for $h > h_c(\beta)$ one has $\mathcal{C}_N \approx N$
- *Deocalized regime*: for $h < h_c(\beta)$ one has $\mathcal{C}_N = O(\log N)$

The phase transition

How are the typical paths τ of the pinning model $\mathbb{P}_{N,\beta,h}^\omega$?

Contact number $\mathcal{C}_N := |\tau \cap (0, N]| = \sum_{n=1}^N \mathbb{1}_{\{n \in \tau\}}$

Theorem (phase transition)

\exists continuous, non decreasing, deterministic critical curve $h_c(\beta)$:

► *Localized regime*: for $h > h_c(\beta)$ one has $\mathcal{C}_N \approx N$

$$\exists \mu_{\beta,h} > 0 : \mathbb{P}_{N,\beta,h}^\omega \left(\left| \frac{\mathcal{C}_N}{N} - \mu_{\beta,h} \right| > \epsilon \right) \xrightarrow[N \rightarrow \infty]{} 0, \quad \omega\text{-a.s.}$$

► *Deocalized regime*: for $h < h_c(\beta)$ one has $\mathcal{C}_N = O(\log N)$

$$\exists A_{\beta,h} > 0 : \mathbb{P}_{N,\beta,h}^\omega \left(\frac{\mathcal{C}_N}{\log N} > A_{\beta,h} \right) \xrightarrow[N \rightarrow \infty]{} 0, \quad \omega\text{-a.s.}$$

Outline

1. Discrete pinning model
2. Weak disorder regime
3. Continuum partition function
4. Sketch of the proof
5. Continuum pinning model

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

Theorem ($P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}$)

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

Theorem ($P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}$)

- ($\alpha < \frac{1}{2}$) **disorder is irrelevant**: $h_c(\beta) = 0$ for $\beta > 0$ small
[Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

Theorem ($P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}$)

- ▶ $(\alpha < \frac{1}{2})$ **disorder is irrelevant**: $h_c(\beta) = 0$ for $\beta > 0$ small
[Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]
- ▶ $(\alpha \geq \frac{1}{2})$ **disorder is relevant**: $h_c(\beta) > 0$ for all $\beta > 0$

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

Theorem ($P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}$)

- ▶ $(\alpha < \frac{1}{2})$ **disorder is irrelevant**: $h_c(\beta) = 0$ for $\beta > 0$ small
[Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]
- ▶ $(\alpha \geq \frac{1}{2})$ **disorder is relevant**: $h_c(\beta) > 0$ for all $\beta > 0$
 - ▶ $(\alpha > 1)$ $h_c(\beta) \sim C \beta^2$ with explicit $C = \frac{\alpha}{1+\alpha} \frac{1}{2E(\tau_1)}$
[Berger, C., Poisat, Sun, Zygouras]

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

Theorem ($P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}$)

- ▶ $(\alpha < \frac{1}{2})$ *disorder is irrelevant*: $h_c(\beta) = 0$ for $\beta > 0$ small
 [Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]
- ▶ $(\alpha \geq \frac{1}{2})$ *disorder is relevant*: $h_c(\beta) > 0$ for all $\beta > 0$
 - ▶ $(\alpha > 1)$ $h_c(\beta) \sim C \beta^2$ with explicit $C = \frac{\alpha}{1+\alpha} \frac{1}{2E(\tau_1)}$
 [Berger, C., Poisat, Sun, Zygouras]
 - ▶ $(\frac{1}{2} < \alpha < 1)$ $C_1 \beta^{\frac{2\alpha}{2\alpha-1}} \leq h_c(\beta) \leq C_2 \beta^{\frac{2\alpha}{2\alpha-1}}$
 [Derrida, Giacomin, Lacoin, Toninelli] [Alexander, Zygouras]

The weak disorder regime

For $\beta = 0$ (homogeneous pinning, no disorder) one has $h_c(0) = 0$

What is the behavior of $h_c(\beta)$ for $\beta > 0$ small ?

Theorem ($P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}}$)

- ▶ $(\alpha < \frac{1}{2})$ *disorder is irrelevant*: $h_c(\beta) = 0$ for $\beta > 0$ small
 [Alexander] [Toninelli] [Lacoin] [Cheliotis, den Hollander]
- ▶ $(\alpha \geq \frac{1}{2})$ *disorder is relevant*: $h_c(\beta) > 0$ for all $\beta > 0$
 - ▶ $(\alpha > 1)$ $h_c(\beta) \sim C \beta^2$ with explicit $C = \frac{\alpha}{1+\alpha} \frac{1}{2E(\tau_1)}$
 [Berger, C., Poisat, Sun, Zygouras]
 - ▶ $(\frac{1}{2} < \alpha < 1)$ $C_1 \beta^{\frac{2\alpha}{2\alpha-1}} \leq h_c(\beta) \leq C_2 \beta^{\frac{2\alpha}{2\alpha-1}}$
 [Derrida, Giacomin, Lacoin, Toninelli] [Alexander, Zygouras]
 - ▶ $(\alpha = \frac{1}{2})$ $e^{-\frac{c_1}{\beta^{2+\epsilon}}} \leq h_c(\beta) \leq e^{-\frac{c_2}{\beta^2}}$ [Giacomin, Lacoin, Toninelli]

The weak disorder regime

Henceforth we focus on $\alpha \in (\frac{1}{2}, 1) \cup (1, \infty)$

The weak disorder regime

Henceforth we focus on $\alpha \in (\frac{1}{2}, 1) \cup (1, \infty)$

Like for $\alpha > 1$, it is natural to conjecture that for $\alpha \in (\frac{1}{2}, 1)$

$$\lim_{\beta \downarrow 0} \frac{h_c(\beta)}{\beta^{\frac{2\alpha}{2\alpha-1}}} = C \quad \text{exists with universal } C$$

The weak disorder regime

Henceforth we focus on $\alpha \in (\frac{1}{2}, 1) \cup (1, \infty)$

Like for $\alpha > 1$, it is natural to conjecture that for $\alpha \in (\frac{1}{2}, 1)$

$$\lim_{\beta \downarrow 0} \frac{h_c(\beta)}{\beta^{\frac{2\alpha}{2\alpha-1}}} = C \quad \text{exists with universal } C$$

Weak disorder

as $\beta, h \rightarrow 0$
correlation length diverges

\rightsquigarrow

Universality

fine microscopic details
should be irrelevant

The weak disorder regime

Henceforth we focus on $\alpha \in (\frac{1}{2}, 1) \cup (1, \infty)$

Like for $\alpha > 1$, it is natural to conjecture that for $\alpha \in (\frac{1}{2}, 1)$

$$\lim_{\beta \downarrow 0} \frac{h_c(\beta)}{\beta^{\frac{2\alpha}{2\alpha-1}}} = C \quad \text{exists with universal } C$$

Weak disorder

as $\beta, h \rightarrow 0$
correlation length diverges

\rightsquigarrow

Universality

fine microscopic details
should be irrelevant

Continuum model?

Scaling limit of $P_{N,\beta,h}^\omega$ as $\beta, h \rightarrow 0$? (cf. BM and SRW)

The weak disorder regime

Henceforth we focus on $\alpha \in (\frac{1}{2}, 1) \cup (1, \infty)$

Like for $\alpha > 1$, it is natural to conjecture that for $\alpha \in (\frac{1}{2}, 1)$

$$\lim_{\beta \downarrow 0} \frac{h_c(\beta)}{\beta^{\frac{2\alpha}{2\alpha-1}}} = C \quad \text{exists with universal } C$$

Weak disorder

as $\beta, h \rightarrow 0$
correlation length diverges

\rightsquigarrow

Universality

fine microscopic details
should be irrelevant

Continuum model?

Scaling limit of $P_{N,\beta,h}^\omega$ as $\beta, h \rightarrow 0$? (cf. BM and SRW)

YES, but the road is not straight...

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

- Free energy $F(\beta, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\beta,h}^{\omega} \geq 0$ $\mathbb{P}(d\omega)$ -a.s.

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

► **Free energy** $F(\beta, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\beta,h}^{\omega} \geq 0$ $\mathbb{P}(d\omega)$ -a.s.

$$Z_{N,\beta,h}^{\omega} \geq \mathbb{E} \left[e^{H_N(\tau)} \mathbb{1}_{\{\tau \cap (0,N] = \emptyset\}} \right]$$

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

- **Free energy** $F(\beta, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\beta,h}^{\omega} \geq 0$ $\mathbb{P}(d\omega)$ -a.s.

$$Z_{N,\beta,h}^{\omega} \geq \mathbb{E} \left[e^{H_N(\tau)} \mathbb{1}_{\{\tau \cap (0,N] = \emptyset\}} \right] = \mathbb{P}(\tau \cap (0, N] = \emptyset)$$

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

- **Free energy** $F(\beta, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\beta,h}^{\omega} \geq 0$ $\mathbb{P}(d\omega)$ -a.s.

$$Z_{N,\beta,h}^{\omega} \geq \mathbb{E} \left[e^{H_N(\tau)} \mathbb{1}_{\{\tau \cap (0, N] = \emptyset\}} \right] = \mathbb{P}(\tau \cap (0, N] = \emptyset) \sim \frac{(\text{const.})}{N^\alpha}$$

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

- ▶ **Free energy** $F(\beta, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\beta,h}^{\omega} \geq 0 \quad \mathbb{P}(d\omega)\text{-a.s.}$

$$Z_{N,\beta,h}^{\omega} \geq \mathbb{E} \left[e^{H_N(\tau)} \mathbb{1}_{\{\tau \cap (0,N] = \emptyset\}} \right] = \mathbb{P}(\tau \cap (0, N] = \emptyset) \sim \frac{(\text{const.})}{N^\alpha}$$

- ▶ **Critical curve** $h_c(\beta) = \sup \{h \in \mathbb{R} : F(\beta, h) = 0\}$

The partition function

As a first step, we look at the **partition function**

$$Z_{N,\beta,h}^{\omega} := \mathbb{E} \left[e^{H_N(\tau)} \right] = \mathbb{E} \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

It is a **random variable** (w.r.t. ω) which tells us everything (!)

- ▶ **Free energy** $F(\beta, h) := \lim_{N \rightarrow \infty} \frac{1}{N} \log Z_{N,\beta,h}^{\omega} \geq 0 \quad \mathbb{P}(d\omega)\text{-a.s.}$

$$Z_{N,\beta,h}^{\omega} \geq \mathbb{E} \left[e^{H_N(\tau)} \mathbb{1}_{\{\tau \cap (0,N] = \emptyset\}} \right] = \mathbb{P}(\tau \cap (0, N] = \emptyset) \sim \frac{(\text{const.})}{N^\alpha}$$

- ▶ **Critical curve** $h_c(\beta) = \sup \{h \in \mathbb{R} : F(\beta, h) = 0\}$

Our first result

Taking $N \rightarrow \infty$ and $\beta_N, h_N \rightarrow 0$ with appropriate rates, $Z_{N,\beta_N,h_N}^{\omega}$ converges in distribution to a universal limit

Outline

1. Discrete pinning model
2. Weak disorder regime
3. Continuum partition function
4. Sketch of the proof
5. Continuum pinning model

Continuum partition function: preparation

Fix $\hat{\beta} \geq 0$, $\hat{h} \in \mathbb{R}$ (macroscopic coupling constants)

Continuum partition function: preparation

Fix $\hat{\beta} \geq 0$, $\hat{h} \in \mathbb{R}$ (macroscopic coupling constants)

Rescaled parameters β_N, h_N

$$\text{if } \alpha \in \left(\frac{1}{2}, 1\right) : \begin{cases} \beta_N := \frac{\hat{\beta}}{N^{\alpha-1/2}} \\ h_N := \frac{\hat{h}}{N^\alpha} \end{cases}$$

$$(h_N \approx \beta_N^{\frac{2\alpha}{2\alpha-1}})$$

Continuum partition function: preparation

Fix $\hat{\beta} \geq 0$, $\hat{h} \in \mathbb{R}$ (macroscopic coupling constants)

Rescaled parameters β_N, h_N

$$\text{if } \alpha \in \left(\frac{1}{2}, 1\right) : \begin{cases} \beta_N := \frac{\hat{\beta}}{N^{\alpha-1/2}} \\ h_N := \frac{\hat{h}}{N^\alpha} \end{cases} \quad \text{if } \alpha > 1 : \begin{cases} \beta_N := \frac{\hat{\beta}}{\sqrt{N}} \\ h_N := \frac{\hat{h}}{N} \end{cases}$$

$$(h_N \approx \beta_N^{\frac{2\alpha}{2\alpha-1}}) \quad (\textcolor{red}{h_N \approx \beta_N^2})$$

Continuum partition function: preparation

Fix $\hat{\beta} \geq 0$, $\hat{h} \in \mathbb{R}$ (macroscopic coupling constants)

Rescaled parameters β_N, h_N

$$\text{if } \alpha \in \left(\frac{1}{2}, 1\right) : \begin{cases} \beta_N := \frac{\hat{\beta}}{N^{\alpha-1/2}} \\ h_N := \frac{\hat{h}}{N^\alpha} \end{cases} \quad \text{if } \alpha > 1 : \begin{cases} \beta_N := \frac{\hat{\beta}}{\sqrt{N}} \\ h_N := \frac{\hat{h}}{N} \end{cases}$$

$$(h_N \approx \beta_N^{\frac{2\alpha}{2\alpha-1}}) \quad (h_N \approx \beta_N^2)$$

Continuum disorder (replacing $(\beta\omega_i + h)_i$)

Take a standard Brownian motion $(W_t)_{t \geq 0}$ and set

$$W_t^{\hat{\beta}, \hat{h}} := \hat{\beta} W_t + \hat{h} t \quad (\text{BM with drift})$$

Continuum partition function: main result

Theorem [C., Sun, Zygouras] – inspired by [Alberts, Khanin, Quastel (2012)]

- (Functional) convergence of discrete partition function

$$Z_{\hat{t}N, \beta_N, h_N}^{\omega} \xrightarrow[N \rightarrow \infty]{d} \mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W =: \text{continuum partition function}$$

Continuum partition function: main result

Theorem [C., Sun, Zygouras] – inspired by [Alberts, Khanin, Quastel (2012)]

- (Functional) convergence of discrete partition function

$$Z_{\hat{t}N, \beta_N, h_N}^{\omega} \xrightarrow[N \rightarrow \infty]{d} \mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W =: \text{continuum partition function}$$

- $\mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W$ is function of W through Wiener chaos expansion

$$\mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W := 1 + \sum_{k=1}^{\infty} \int \cdots \int_{0 < t_1 < \cdots < t_k < \hat{t}} \varphi^{(k)}(t_1, \dots, t_k) dW_{t_1}^{\hat{\beta}, \hat{h}} \cdots dW_{t_k}^{\hat{\beta}, \hat{h}}$$

with explicit function $\varphi^{(k)}$ (scaling of renewal correlations)

Continuum partition function: main result

Theorem [C., Sun, Zygouras] – inspired by [Alberts, Khanin, Quastel (2012)]

- (Functional) convergence of discrete partition function

$$Z_{\hat{t}N, \beta_N, h_N}^{\omega} \xrightarrow[N \rightarrow \infty]{d} \mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W =: \text{continuum partition function}$$

- $\mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W$ is function of W through Wiener chaos expansion

$$\mathcal{L}_{\hat{t}, \hat{\beta}, \hat{h}}^W := 1 + \sum_{k=1}^{\infty} \int \cdots \int_{0 < t_1 < \cdots < t_k < \hat{t}} \varphi^{(k)}(t_1, \dots, t_k) dW_{t_1}^{\hat{\beta}, \hat{h}} \cdots dW_{t_k}^{\hat{\beta}, \hat{h}}$$

with explicit function $\varphi^{(k)}$ (scaling of renewal correlations)

$$\varphi^{(k)}(t_1, \dots, t_k) := \begin{cases} \frac{1}{\mathbb{E}[\tau_1]^k} & \text{if } \alpha > 1 \\ \frac{(C_{\alpha, c_K})^k}{t_1^{1-\alpha} (t_2 - t_1)^{1-\alpha} \cdots (t_k - t_{k-1})^{1-\alpha}} & \text{if } \alpha \in (\frac{1}{2}, 1) \end{cases}$$

Continuum partition function: why?

- ▶ Universal “manageable” object (explicit for $\alpha > 1$)

Continuum partition function: why?

- ▶ Universal “manageable” object (explicit for $\alpha > 1$)
- ▶ Gives properties of the discrete partition function $Z_{N,\beta,h}^\omega$ for β, h small and N large but finite (\rightsquigarrow correlation length)

$$\mathbb{E}[(Z_{N,\beta_N,h_N}^\omega)^\zeta] \xrightarrow{N \rightarrow \infty} \mathbb{E}[(\mathcal{Z}_{1,\hat{\beta},\hat{h}}^W)^\zeta]$$

Continuum partition function: why?

- ▶ Universal “manageable” object (explicit for $\alpha > 1$)
- ▶ Gives properties of the discrete partition function $Z_{N,\beta,h}^\omega$ for β, h small and N large but finite (\rightsquigarrow correlation length)

$$\mathbb{E}[(Z_{N,\beta_N,h_N}^\omega)^\zeta] \xrightarrow{N \rightarrow \infty} \mathbb{E}[(\mathcal{Z}_{1,\hat{\beta},\hat{h}}^W)^\zeta]$$

- ▶ Hints at **universality** for $\alpha \in (\frac{1}{2}, 1)$

Continuum critical curve $\hat{h}_c(\hat{\beta}) \equiv \hat{C} \hat{\beta}^{\frac{2\alpha}{2\alpha-1}}$ (by scaling)

Continuum partition function: why?

- ▶ Universal “manageable” object (explicit for $\alpha > 1$)
- ▶ Gives properties of the discrete partition function $Z_{N,\beta,h}^\omega$ for β, h small and N large but finite (\rightsquigarrow correlation length)

$$\mathbb{E}[(Z_{N,\beta_N,h_N}^\omega)^\zeta] \xrightarrow{N \rightarrow \infty} \mathbb{E}[(\mathcal{Z}_{1,\hat{\beta},\hat{h}}^W)^\zeta]$$

- ▶ Hints at **universality** for $\alpha \in (\frac{1}{2}, 1)$

Continuum critical curve $\hat{h}_c(\hat{\beta}) \equiv \hat{C} \hat{\beta}^{\frac{2\alpha}{2\alpha-1}}$ (by scaling)

Conjecture: for any discrete pinning model ($\frac{1}{2} < \alpha < 1$)

$$\lim_{\beta \downarrow 0} \frac{h_c(\beta)}{\beta^{\frac{2\alpha}{2\alpha-1}}} = \hat{C}$$

Continuum partition function: why?

- ▶ Universal “manageable” object (explicit for $\alpha > 1$)
- ▶ Gives properties of the discrete partition function $Z_{N,\beta,h}^\omega$ for β, h small and N large but finite (\rightsquigarrow correlation length)

$$\mathbb{E}[(Z_{N,\beta_N,h_N}^\omega)^\zeta] \xrightarrow{N \rightarrow \infty} \mathbb{E}[(\mathcal{Z}_{1,\hat{\beta},\hat{h}}^W)^\zeta]$$

- ▶ Hints at **universality** for $\alpha \in (\frac{1}{2}, 1)$

Continuum critical curve $\hat{h}_c(\hat{\beta}) \equiv \hat{C} \hat{\beta}^{\frac{2\alpha}{2\alpha-1}}$ (by scaling)

Conjecture: for any discrete pinning model ($\frac{1}{2} < \alpha < 1$)

$$\lim_{\beta \downarrow 0} \frac{h_c(\beta)}{\beta^{\frac{2\alpha}{2\alpha-1}}} = \hat{C}$$

- ▶ Allows to define the **continuum pinning model** (cf. later)

Outline

1. Discrete pinning model
2. Weak disorder regime
3. Continuum partition function
4. Sketch of the proof
5. Continuum pinning model

A direct approach?

Discrete partition function: $Z_{N,\beta,h}^\omega := E \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$

Replace $\sum_{n=1}^N \rightsquigarrow \int_0^t ds$ $\Lambda(\beta) \rightsquigarrow \frac{1}{2} \beta^2$ $\omega_n \rightsquigarrow ?$ $\tau \rightsquigarrow ?$

Continuum analogues of disorder ω and renewal process τ ?

A direct approach?

Discrete partition function: $Z_{N,\beta,h}^\omega := E \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$

Replace $\sum_{n=1}^N \rightsquigarrow \int_0^t ds$ $\Lambda(\beta) \rightsquigarrow \frac{1}{2} \beta^2$ $\omega_n \rightsquigarrow ?$ $\tau \rightsquigarrow ?$

Continuum analogues of disorder ω and renewal process τ ?

- Continuum disorder: white noise ($\dot{W}_s = \frac{dW_s}{ds}$) $_{s \geq 0}$

A direct approach?

Discrete partition function: $Z_{N,\beta,h}^\omega := E \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$

Replace $\sum_{n=1}^N \rightsquigarrow \int_0^t ds$ $\Lambda(\beta) \rightsquigarrow \frac{1}{2} \beta^2$ $\omega_n \rightsquigarrow ?$ $\tau \rightsquigarrow ?$

Continuum analogues of disorder ω and renewal process τ ?

- ▶ Continuum disorder: white noise ($\dot{W}_s = \frac{dW_s}{ds}$) $_{s \geq 0}$
- ▶ Continuum renewal process: random closed subset $\hat{\tau} \subseteq [0, \infty)$

$\hat{\tau}$:= scaling limit of $\frac{\tau}{N} = \{\frac{\tau_0}{N}, \frac{\tau_1}{N}, \dots\}$ ($N \rightarrow \infty$).

A direct approach?

Discrete partition function: $Z_{N,\beta,h}^\omega := E \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$

Replace $\sum_{n=1}^N \rightsquigarrow \int_0^t ds$ $\Lambda(\beta) \rightsquigarrow \frac{1}{2} \beta^2$ $\omega_n \rightsquigarrow ?$ $\tau \rightsquigarrow ?$

Continuum analogues of disorder ω and renewal process τ ?

- ▶ Continuum disorder: white noise ($\dot{W}_s = \frac{dW_s}{ds}$) $_{s \geq 0}$
- ▶ Continuum renewal process: random closed subset $\hat{\tau} \subseteq [0, \infty)$
 $\hat{\tau}$:= scaling limit of $\frac{\tau}{N} = \{\frac{\tau_0}{N}, \frac{\tau_1}{N}, \dots\}$ ($N \rightarrow \infty$). Explicitly:
 - ▶ ($\alpha > 1$) $\hat{\tau} = [0, \infty)$ “trivial” deterministic set

A direct approach?

Discrete partition function: $Z_{N,\beta,h}^\omega := E \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$

Replace $\sum_{n=1}^N \rightsquigarrow \int_0^t ds$ $\Lambda(\beta) \rightsquigarrow \frac{1}{2} \beta^2$ $\omega_n \rightsquigarrow ?$ $\tau \rightsquigarrow ?$

Continuum analogues of disorder ω and renewal process τ ?

- ▶ Continuum disorder: white noise ($\dot{W}_s = \frac{dW_s}{ds}$) $_{s \geq 0}$
- ▶ Continuum renewal process: random closed subset $\hat{\tau} \subseteq [0, \infty)$
 $\hat{\tau}$:= scaling limit of $\frac{\tau}{N} = \{\frac{\tau_0}{N}, \frac{\tau_1}{N}, \dots\}$ ($N \rightarrow \infty$). Explicitly:
 - ▶ ($\alpha > 1$) $\hat{\tau} = [0, \infty)$ “trivial” deterministic set
 - ▶ ($0 < \alpha < 1$) $\hat{\tau} = \alpha\text{-stable regenerative set}$
 $=$ closure of the image of α -stable subordinator

A direct approach?

Discrete partition function: $Z_{N,\beta,h}^\omega := E \left[e^{\sum_{n=1}^N (h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$

Replace $\sum_{n=1}^N \rightsquigarrow \int_0^t ds$ $\Lambda(\beta) \rightsquigarrow \frac{1}{2} \beta^2$ $\omega_n \rightsquigarrow ?$ $\tau \rightsquigarrow ?$

Continuum analogues of disorder ω and renewal process τ ?

- ▶ Continuum disorder: white noise ($\dot{W}_s = \frac{dW_s}{ds}$) $_{s \geq 0}$
- ▶ Continuum renewal process: random closed subset $\hat{\tau} \subseteq [0, \infty)$
 $\hat{\tau}$:= scaling limit of $\frac{\tau}{N} = \{\frac{\tau_0}{N}, \frac{\tau_1}{N}, \dots\}$ ($N \rightarrow \infty$). Explicitly:
 - ▶ ($\alpha > 1$) $\hat{\tau} = [0, \infty)$ “trivial” deterministic set
 - ▶ ($0 < \alpha < 1$) $\hat{\tau} = \alpha\text{-stable regenerative set}$
 $=$ closure of the image of α -stable subordinator

[Zero level set of Brownian Motion ($\alpha = \frac{1}{2}$) or Bessel process]

A naive guess

Continuum partition function?

$$\mathcal{Z}_{\hat{t}, \hat{\beta}, \hat{h}}^W := E \left[\exp \left(\int_0^{\hat{t}} (\hat{h} + \hat{\beta} \dot{W}_s - \frac{1}{2} \hat{\beta}^2) \mathbb{1}_{\{s \in \hat{\tau}\}} ds \right) \right]$$

A naive guess

Continuum partition function?

$$\mathcal{Z}_{\hat{t}, \hat{\beta}, \hat{h}}^W := E \left[\exp \left(\int_0^{\hat{t}} (\hat{h} + \hat{\beta} \dot{W}_s - \frac{1}{2} \hat{\beta}^2) \mathbb{1}_{\{s \in \hat{\tau}\}} ds \right) \right]$$

There are (serious) problems

- ▶ For $\alpha \in (0, 1)$ the random set $\hat{\tau}$ has zero Lebesgue measure

Meaning of $\int_0^{\hat{t}} \dot{W}_s \mathbb{1}_{\{s \in \hat{\tau}\}} ds$?

A naive guess

Continuum partition function?

$$\mathcal{Z}_{\hat{t}, \hat{\beta}, \hat{h}}^W := E \left[\exp \left(\int_0^{\hat{t}} (\hat{h} + \hat{\beta} \dot{W}_s - \frac{1}{2} \hat{\beta}^2) \mathbb{1}_{\{s \in \hat{\tau}\}} ds \right) \right]$$

There are (serious) problems

- For $\alpha \in (0, 1)$ the random set $\hat{\tau}$ has zero Lebesgue measure

Meaning of $\int_0^{\hat{t}} \dot{W}_s \mathbb{1}_{\{s \in \hat{\tau}\}} ds$?

- Case $\alpha > 1$ seems easier: $\mathbb{1}_{\{s \in \hat{\tau}\}} \approx \frac{1}{E(\tau_1)}$ (renewal theorem)

Guess: $\mathcal{Z}_{\hat{t}, \hat{\beta}, \hat{h}}^W \stackrel{d}{=} \exp \left[\hat{h} \frac{\hat{t}}{E(\tau_1)} + \hat{\beta} W_{\frac{\hat{t}}{E(\tau_1)}} - \frac{1}{2} \hat{\beta}^2 \frac{\hat{t}}{E(\tau_1)} \right]$

A naive guess

Continuum partition function?

$$\mathcal{Z}_{\hat{t}, \hat{\beta}, \hat{h}}^W := E \left[\exp \left(\int_0^{\hat{t}} (\hat{h} + \hat{\beta} \dot{W}_s - \frac{1}{2} \hat{\beta}^2) \mathbb{1}_{\{s \in \hat{\tau}\}} ds \right) \right]$$

There are (serious) problems

- For $\alpha \in (0, 1)$ the random set $\hat{\tau}$ has zero Lebesgue measure

Meaning of $\int_0^{\hat{t}} \dot{W}_s \mathbb{1}_{\{s \in \hat{\tau}\}} ds$?

- Case $\alpha > 1$ seems easier: $\mathbb{1}_{\{s \in \hat{\tau}\}} \approx \frac{1}{E(\tau_1)}$ (renewal theorem)

Guess: $\mathcal{Z}_{\hat{t}, \hat{\beta}, \hat{h}}^W \stackrel{d}{=} \exp \left[\hat{h} \frac{\hat{t}}{E(\tau_1)} + \hat{\beta} W_{\frac{\hat{t}}{E(\tau_1)^2}} - \frac{1}{2} \hat{\beta}^2 \frac{\hat{t}}{E(\tau_1)^2} \right]$

No! Some care is required.

Sketch of the proof (1/3)

High temperature (cluster) expansion:

$$Z_{N,\beta,h}^\omega = \mathbb{E} \left[\prod_{n=1}^N e^{(h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right]$$

Sketch of the proof (1/3)

High temperature (cluster) expansion:

$$Z_{N,\beta,h}^\omega = \mathbb{E} \left[\prod_{n=1}^N e^{(h + \beta \omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right] = \mathbb{E} \left[\prod_{n=1}^N \left(1 + g(\omega_n) \mathbb{1}_{\{n \in \tau\}} \right) \right]$$

$$g(\omega_n) := e^{h + \beta \omega_n - \Lambda(\beta)} - 1$$

Sketch of the proof (1/3)

High temperature (cluster) expansion:

$$\begin{aligned}
 Z_{N,\beta,h}^\omega &= \mathbb{E} \left[\prod_{n=1}^N e^{(h+\beta\omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right] = \mathbb{E} \left[\prod_{n=1}^N (1+g(\omega_n) \mathbb{1}_{\{n \in \tau\}}) \right] \\
 &= 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) \mathbb{P}(\{n_1, \dots, n_k\} \subseteq \tau)
 \end{aligned}$$

Polynomial expansion in the variables $g(\omega_n)$

$$g(\omega_n) := e^{h+\beta\omega_n - \Lambda(\beta)} - 1$$

Sketch of the proof (1/3)

High temperature (cluster) expansion:

$$\begin{aligned}
 Z_{N,\beta,h}^{\omega} &= \mathbb{E} \left[\prod_{n=1}^N e^{(h+\beta\omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right] = \mathbb{E} \left[\prod_{n=1}^N (1+g(\omega_n) \mathbb{1}_{\{n \in \tau\}}) \right] \\
 &= 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) \mathbb{P}(\{n_1, \dots, n_k\} \subseteq \tau)
 \end{aligned}$$

Polynomial expansion in the variables $g(\omega_n)$

$$g(\omega_n) := e^{h+\beta\omega_n - \Lambda(\beta)} - 1 = e^h \frac{e^{\beta\omega_n}}{\mathbb{E}[e^{\beta\omega_n}]} - 1$$

Sketch of the proof (1/3)

High temperature (cluster) expansion:

$$\begin{aligned}
 Z_{N,\beta,h}^\omega &= \mathbb{E} \left[\prod_{n=1}^N e^{(h+\beta\omega_n - \Lambda(\beta)) \mathbb{1}_{\{n \in \tau\}}} \right] = \mathbb{E} \left[\prod_{n=1}^N (1+g(\omega_n) \mathbb{1}_{\{n \in \tau\}}) \right] \\
 &= 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) \mathbb{P}(\{n_1, \dots, n_k\} \subseteq \tau)
 \end{aligned}$$

Polynomial expansion in the variables $g(\omega_n)$

$$g(\omega_n) := e^{h+\beta\omega_n - \Lambda(\beta)} - 1 = e^h \frac{e^{\beta\omega_n}}{\mathbb{E}[e^{\beta\omega_n}]} - 1$$

$$\mathbb{E}[g(\omega_n)] = h + o(h) \quad \mathbb{V}\text{ar}[g(\omega_n)] = \beta^2 + o(\beta^2)$$

Sketch of the proof (2/3)

Pretend that $g(\omega_n) \sim \mathcal{N}(h, \beta)$ and look at the first term ($k = 1$)

$$\sum_{n=1}^N g(\omega_n) P(n \in \tau)$$

Sketch of the proof (2/3)

Pretend that $g(\omega_n) \sim \mathcal{N}(h, \beta)$ and look at the first term ($k = 1$)

$$\sum_{n=1}^N g(\omega_n) P(n \in \tau) \sim \mathcal{N}\left(h \sum_{n=1}^N P(n \in \tau), \beta^2 \sum_{n=1}^N P(n \in \tau)^2\right)$$

Sketch of the proof (2/3)

Pretend that $g(\omega_n) \sim \mathcal{N}(h, \beta)$ and look at the first term ($k = 1$)

$$\sum_{n=1}^N g(\omega_n) P(n \in \tau) \sim \mathcal{N}\left(h \sum_{n=1}^N P(n \in \tau), \beta^2 \sum_{n=1}^N P(n \in \tau)^2\right)$$

$$P(n \in \tau) \sim \begin{cases} \frac{1}{E[\tau_1]} & \text{if } \alpha > 1 \\ \frac{C}{n^{1-\alpha}} & \text{if } \alpha < 1 \end{cases} \quad \left(P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}} \right)$$

Sketch of the proof (2/3)

Pretend that $g(\omega_n) \sim \mathcal{N}(h, \beta)$ and look at the first term ($k = 1$)

$$\sum_{n=1}^N g(\omega_n) P(n \in \tau) \sim \mathcal{N}\left(h \sum_{n=1}^N P(n \in \tau), \beta^2 \sum_{n=1}^N P(n \in \tau)^2\right)$$

- ▶ Mean and variance $O(1) \rightsquigarrow$ Choice of $\beta = \beta_N$, $h = h_N$

$$P(n \in \tau) \sim \begin{cases} \frac{1}{E[\tau_1]} & \text{if } \alpha > 1 \\ \frac{C}{n^{1-\alpha}} & \text{if } \alpha < 1 \end{cases} \quad \left(P(\tau_1 = n) \sim \frac{c_K}{n^{1+\alpha}} \right)$$

Sketch of the proof (3/3)

Set now $\beta = \beta_N$, $h = h_N$ and conclude ($\frac{1}{2} < \alpha < 1$):

$$Z_{N,\beta,h}^\omega = 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) P(\{n_1, \dots, n_k\} \subseteq \tau)$$

Sketch of the proof (3/3)

Set now $\beta = \beta_N$, $h = h_N$ and conclude ($\frac{1}{2} < \alpha < 1$):

$$Z_{N,\beta,h}^\omega = 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) P(\{n_1, \dots, n_k\} \subseteq \tau)$$

$$\begin{aligned} P(\{n_1, \dots, n_k\} \subseteq \tau) &= P(n_1 \in \tau) P(n_2 - n_1 \in \tau) \cdots P(n_k - n_{k-1} \in \tau) \\ &\sim \frac{C^k}{n_1^{1-\alpha} (n_2 - n_1)^{1-\alpha} \cdots (n_k - n_{k-1})^{1-\alpha}} \end{aligned}$$

Sketch of the proof (3/3)

Set now $\beta = \beta_N$, $h = h_N$ and conclude ($\frac{1}{2} < \alpha < 1$):

$$Z_{N,\beta,h}^\omega = 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) \mathbb{P}(\{n_1, \dots, n_k\} \subseteq \tau)$$

$$\approx 1 + \sum_{k=1}^{\infty} \int \cdots \int_{0 < t_1 < \dots < t_k < 1} \frac{C^k}{t_1^{1-\alpha} (t_2 - t_1)^{1-\alpha} \cdots (t_k - t_{k-1})^{1-\alpha}}$$

$$\begin{aligned} \mathbb{P}(\{n_1, \dots, n_k\} \subseteq \tau) &= \mathbb{P}(n_1 \in \tau) \mathbb{P}(n_2 - n_1 \in \tau) \cdots \mathbb{P}(n_k - n_{k-1} \in \tau) \\ &\sim \frac{C^k}{n_1^{1-\alpha} (n_2 - n_1)^{1-\alpha} \cdots (n_k - n_{k-1})^{1-\alpha}} \end{aligned}$$

Sketch of the proof (3/3)

Set now $\beta = \beta_N$, $h = h_N$ and conclude ($\frac{1}{2} < \alpha < 1$):

$$Z_{N,\beta,h}^\omega = 1 + \sum_{k=1}^N \sum_{1 \leq n_1 < \dots < n_k \leq N} g(\omega_{n_1}) \cdots g(\omega_{n_k}) P(\{n_1, \dots, n_k\} \subseteq \tau)$$

$$\approx 1 + \sum_{k=1}^{\infty} \int \cdots \int \frac{C^k dW_{t_1}^{\hat{\beta}, \hat{h}} \cdots dW_{t_k}^{\hat{\beta}, \hat{h}}}{t_1^{1-\alpha} (t_2 - t_1)^{1-\alpha} \cdots (t_k - t_{k-1})^{1-\alpha}}$$

Recall: $dW_t^{\hat{\beta}, \hat{h}} = \hat{\beta} dW_t + \hat{h} dt$

$$\begin{aligned} P(\{n_1, \dots, n_k\} \subseteq \tau) &= P(n_1 \in \tau) P(n_2 - n_1 \in \tau) \cdots P(n_k - n_{k-1} \in \tau) \\ &\sim \frac{C^k}{n_1^{1-\alpha} (n_2 - n_1)^{1-\alpha} \cdots (n_k - n_{k-1})^{1-\alpha}} \end{aligned}$$

How to make this rigorous? Lindeberg's principle

- ▶ ζ_1, ζ_2, \dots independent rvs in L^2 : $\mathbb{E}(\zeta_i) = \mu_i$, $\text{Var}(\zeta_i) = 1$

How to make this rigorous? Lindeberg's principle

- ▶ ζ_1, ζ_2, \dots independent rvs in L^2 : $\mathbb{E}(\zeta_i) = \mu_i$, $\text{Var}(\zeta_i) = 1$
- ▶ ξ_1, ξ_2, \dots independent Gaussians $\mathcal{N}(\mu_i, 1)$

How to make this rigorous? Lindeberg's principle

- ▶ ζ_1, ζ_2, \dots independent rvs in L^2 : $\mathbb{E}(\zeta_i) = \mu_i$, $\text{Var}(\zeta_i) = 1$
- ▶ ξ_1, ξ_2, \dots independent Gaussians $\mathcal{N}(\mu_i, 1)$
- ▶ **Polynomial chaos** (of fixed order k):

$$\Psi(\zeta) := \sum_{\{n_1, \dots, n_k\}} \psi(n_1, \dots, n_k) \zeta_{n_1} \cdots \zeta_{n_k}$$

How to make this rigorous? Lindeberg's principle

- ▶ ζ_1, ζ_2, \dots independent rvs in L^2 : $\mathbb{E}(\zeta_i) = \mu_i$, $\text{Var}(\zeta_i) = 1$
- ▶ ξ_1, ξ_2, \dots independent Gaussians $\mathcal{N}(\mu_i, 1)$
- ▶ **Polynomial chaos** (of fixed order k):

$$\Psi(\zeta) := \sum_{\{n_1, \dots, n_k\}} \psi(n_1, \dots, n_k) \zeta_{n_1} \cdots \zeta_{n_k}$$

Theorem (generalizing [Mossel, O'Donnell, Oleszkiewicz '10])

$\Psi(\zeta)$ and $\Psi(\xi)$ are close in distribution

How to make this rigorous? Lindeberg's principle

- ▶ ζ_1, ζ_2, \dots independent rvs in L^2 : $\mathbb{E}(\zeta_i) = \mu_i$, $\text{Var}(\zeta_i) = 1$
- ▶ ξ_1, ξ_2, \dots independent Gaussians $\mathcal{N}(\mu_i, 1)$
- ▶ **Polynomial chaos** (of fixed order k):

$$\Psi(\zeta) := \sum_{\{n_1, \dots, n_k\}} \psi(n_1, \dots, n_k) \zeta_{n_1} \cdots \zeta_{n_k}$$

Theorem (generalizing [Mossel, O'Donnell, Oleszkiewicz '10])

$\Psi(\zeta)$ and $\Psi(\xi)$ are close in distribution provided

- ▶ $\sum_i \mu_i^2 < \infty$ and the family $\zeta_1^2, \zeta_2^2, \dots$ is **U.I.**

How to make this rigorous? Lindeberg's principle

- ▶ ζ_1, ζ_2, \dots independent rvs in L^2 : $\mathbb{E}(\zeta_i) = \mu_i$, $\text{Var}(\zeta_i) = 1$
- ▶ ξ_1, ξ_2, \dots independent Gaussians $\mathcal{N}(\mu_i, 1)$
- ▶ **Polynomial chaos** (of fixed order k):

$$\Psi(\zeta) := \sum_{\{n_1, \dots, n_k\}} \psi(n_1, \dots, n_k) \zeta_{n_1} \cdots \zeta_{n_k}$$

Theorem (generalizing [Mossel, O'Donnell, Oleszkiewicz '10])

$\Psi(\zeta)$ and $\Psi(\xi)$ are close in distribution provided

- ▶ $\sum_i \mu_i^2 < \infty$ and the family $\zeta_1^2, \zeta_2^2, \dots$ is **U.I.**
- ▶ every variable ζ_i has **small influence** on Ψ :

$$\text{Inf}_i(\Psi) := \mathbb{E}[\text{Var}(\Psi | \zeta_j, j \neq i)] = \sum_{\{n_1, \dots, n_k\} \ni i} \psi(n_1, \dots, n_k)^2 \ll 1$$

Outline

1. Discrete pinning model
2. Weak disorder regime
3. Continuum partition function
4. Sketch of the proof
5. Continuum pinning model

How to define the continuum pinning model ?

How to define the continuum pinning model ?

$\Omega_0 := \{\text{closed subsets of } \mathbb{R}\}$ is a **compact Polish space**
(Hausdorff distance \rightsquigarrow Fell-Matheron topology)

How to define the continuum pinning model ?

$\Omega_0 := \{\text{closed subsets of } \mathbb{R}\}$ is a **compact Polish space**
(Hausdorff distance \rightsquigarrow Fell-Matheron topology)

- ▶ Renewal distribution \mathbf{P} (law of τ): probability on Ω_0
- ▶ Discrete pinning model $\mathbf{P}_{N,\beta,h}^\omega$: **random** probability on Ω_0
absolutely continuous wrt \mathbf{P} (Gibbs modification of \mathbf{P})

Continuum analogues?

How to define the continuum pinning model ?

$\Omega_0 := \{\text{closed subsets of } \mathbb{R}\}$ is a **compact Polish space**
 (Hausdorff distance \rightsquigarrow Fell-Matheron topology)

- ▶ Renewal distribution P (law of τ): probability on Ω_0
- ▶ Discrete pinning model $P_{N,\beta,h}^\omega$: **random** probability on Ω_0
 absolutely continuous wrt P (Gibbs modification of P)

Continuum analogues?

- ▶ Regenerative distribution \mathcal{P} (law of $\hat{\tau}$): probability on Ω_0
- ▶ Continuum pinning model $\mathcal{P}_{T,\hat{\beta},\hat{h}}^W$: **random** probability on Ω_0 ?

How to define the continuum pinning model ?

$\Omega_0 := \{\text{closed subsets of } \mathbb{R}\}$ is a **compact Polish space**
 (Hausdorff distance \rightsquigarrow Fell-Matheron topology)

- ▶ Renewal distribution P (law of τ): probability on Ω_0
- ▶ Discrete pinning model $P_{N,\beta,h}^\omega$: **random** probability on Ω_0
 absolutely continuous wrt P (Gibbs modification of P)

Continuum analogues?

- ▶ Regenerative distribution \mathcal{P} (law of $\hat{\tau}$): probability on Ω_0
- ▶ Continuum pinning model $\mathcal{P}_{T,\hat{\beta},\hat{h}}^W$: **random** probability on Ω_0 ?

No Hamiltonian \rightsquigarrow No Gibbs measure wrt \mathcal{P}

Alternative definition (using continuum partition function)

Finite-dimensional distributions (f.d.d.)

Every closed $A \subseteq \mathbb{R}$ is identified by $t \mapsto g_t(A)$, $t \mapsto d_t(A)$

Finite-dimensional distributions (f.d.d.)

Every closed $A \subseteq \mathbb{R}$ is identified by $t \mapsto g_t(A)$, $t \mapsto d_t(A)$

Finite-dimensional distributions (f.d.d.)

Random closed subsets of \mathbb{R} (= probabilities on Ω_0) characterized by joint distributions of $(g_{t_1}, d_{t_1}, \dots, g_{t_k}, d_{t_k})$ for $k \in \mathbb{N}$, $t_i \in \mathbb{R}$

Finite-dimensional distributions (f.d.d.)

Every closed $A \subseteq \mathbb{R}$ is identified by $t \mapsto g_t(A)$, $t \mapsto d_t(A)$

Finite-dimensional distributions (f.d.d.)

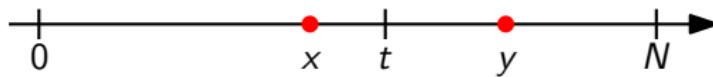
Random closed subsets of \mathbb{R} (= probabilities on Ω_0) characterized by joint distributions of $(g_{t_1}, d_{t_1}, \dots, g_{t_k}, d_{t_k})$ for $k \in \mathbb{N}$, $t_i \in \mathbb{R}$

Continuum pinning model $\mathcal{P}_{T, \hat{\beta}, \hat{h}}^W$ will be defined by its f.d.d.

Discrete pinning model: f.d.d.

$$Z_{[a,b]}^\omega := E[e^{H_{[a,b]}^\omega(\tau)}] \text{ (free)}$$

$$\widehat{Z}_{[0,x]}^\omega := E[e^{H_{[0,x]}^\omega(\tau)} \mathbf{1}_{\{x \in \tau\}}] \text{ (constr.)}$$



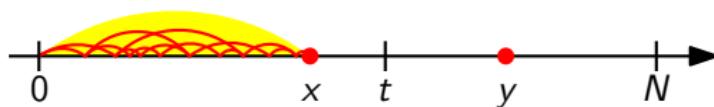
Discrete pinning model

$$P_{N,\beta,h}^\omega(g_t = x, d_t = y) =$$

Discrete pinning model: f.d.d.

$$Z_{[a,b]}^\omega := E[e^{H_{[a,b]}^\omega(\tau)}] \text{ (free)}$$

$$\hat{Z}_{[0,x]}^\omega := E[e^{H_{[0,x]}^\omega(\tau)} \mathbf{1}_{\{x \in \tau\}}] \text{ (constr.)}$$



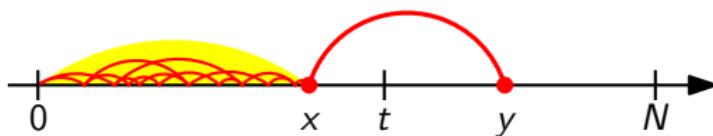
Discrete pinning model

$$P_{N,\beta,h}^\omega(g_t = x, d_t = y) = \hat{Z}_{[0,x]}^\omega$$

Discrete pinning model: f.d.d.

$$Z_{[a,b]}^\omega := E[e^{H_{[a,b]}^\omega(\tau)}] \text{ (free)}$$

$$\hat{Z}_{[0,x]}^\omega := E[e^{H_{[0,x]}^\omega(\tau)} \mathbf{1}_{\{x \in \tau\}}] \text{ (constr.)}$$



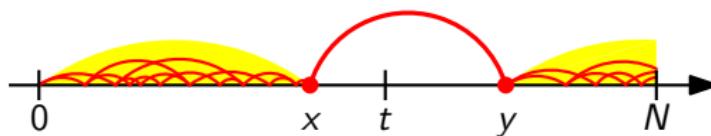
Discrete pinning model

$$P_{N,\beta,h}^\omega(g_t = x, d_t = y) = \hat{Z}_{[0,x]}^\omega K(y - x)$$

Discrete pinning model: f.d.d.

$$Z_{[a,b]}^\omega := E[e^{H_{[a,b]}^\omega(\tau)}] \text{ (free)}$$

$$\hat{Z}_{[0,x]}^\omega := E[e^{H_{[0,x]}^\omega(\tau)} \mathbf{1}_{\{x \in \tau\}}] \text{ (constr.)}$$



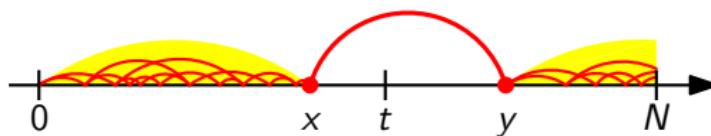
Discrete pinning model

$$P_{N,\beta,h}^\omega(g_t = x, d_t = y) = \hat{Z}_{[0,x]}^\omega K(y-x) Z_{[y,N]}^\omega$$

Discrete pinning model: f.d.d.

$$Z_{[a,b]}^\omega := E[e^{H_{[a,b]}^\omega(\tau)}] \text{ (free)}$$

$$\hat{Z}_{[0,x]}^\omega := E[e^{H_{[0,x]}^\omega(\tau)} \mathbf{1}_{\{x \in \tau\}}] \text{ (constr.)}$$



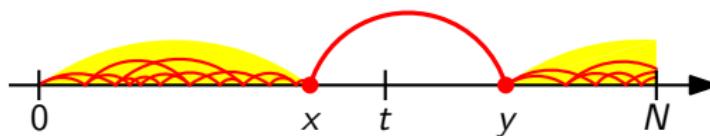
Discrete pinning model

$$P_{N,\beta,h}^\omega(g_t = x, d_t = y) = \frac{\hat{Z}_{[0,x]}^\omega K(y-x) Z_{[y,N]}^\omega}{Z_{[0,N]}^\omega}$$

Discrete pinning model: f.d.d.

$$Z_{[a,b]}^\omega := E[e^{H_{[a,b]}^\omega(\tau)}] \text{ (free)}$$

$$\hat{Z}_{[0,x]}^\omega := E[e^{H_{[0,x]}^\omega(\tau)} \mathbf{1}_{\{x \in \tau\}}] \text{ (constr.)}$$



Discrete pinning model

$$P_{N,\beta,h}^\omega(g_t = x, d_t = y) = \frac{\hat{Z}_{[0,x]}^\omega K(y-x) Z_{[y,N]}^\omega}{Z_{[0,N]}^\omega}$$

F.d.d. expressed in terms of partition functions \hat{Z} and Z
 (that have continuum limits \mathcal{Z} and \mathcal{L} ...)

Continuum pinning model: definition

$$\alpha \in (\frac{1}{2}, 1), \quad T > 0, \quad W = (W_t)_{t \geq 0} \text{ BM}, \quad \hat{\beta} \geq 0, \quad \hat{h} \in \mathbb{R}$$

Continuum pinning model: definition

$$\alpha \in (\frac{1}{2}, 1), \quad T > 0, \quad W = (W_t)_{t \geq 0} \text{ BM}, \quad \hat{\beta} \geq 0, \quad \hat{h} \in \mathbb{R}$$

Continuum pinning model

It is the **random probability** $\mathcal{P}_T^W = \mathcal{P}_{T, \hat{\beta}, \hat{h}}^W$ on Ω_0 with f.d.d.

$$\mathcal{P}_T^W(g_t \in dx, d_t \in dy) = \frac{\widehat{\mathcal{Z}}_{[0, x]}^W \frac{1}{(y-x)^{1+\alpha}} \mathcal{Z}_{[y, T]}^W}{\mathcal{Z}_{[0, T]}^W} dx dy$$

Continuum pinning model: definition

$$\alpha \in (\frac{1}{2}, 1), \quad T > 0, \quad W = (W_t)_{t \geq 0} \text{ BM}, \quad \hat{\beta} \geq 0, \quad \hat{h} \in \mathbb{R}$$

Continuum pinning model

It is the **random probability** $\mathcal{P}_T^W = \mathcal{P}_{T, \hat{\beta}, \hat{h}}^W$ on Ω_0 with f.d.d.

$$\mathcal{P}_T^W(g_t \in dx, d_t \in dy) = \frac{\widehat{\mathcal{L}}_{[0,x]}^W \frac{1}{(y-x)^{1+\alpha}} \mathcal{L}_{[y,T]}^W}{\mathcal{L}_{[0,T]}^W} dx dy$$

\mathcal{P}_T^W is a **random** “perturbation” of the regenerative set $\mathcal{P}|_{[0,T]}$

More/less likely to visit $t \in [0, T]$ where $\hat{\beta} \frac{dW_t}{dt} + \hat{h} \gtrless 0$

Continuum pinning model: definition

$$\alpha \in (\frac{1}{2}, 1), \quad T > 0, \quad W = (W_t)_{t \geq 0} \text{ BM}, \quad \hat{\beta} \geq 0, \quad \hat{h} \in \mathbb{R}$$

Continuum pinning model

It is the **random probability** $\mathcal{P}_T^W = \mathcal{P}_{T, \hat{\beta}, \hat{h}}^W$ on Ω_0 with f.d.d.

$$\mathcal{P}_T^W(g_t \in dx, d_t \in dy) = \frac{\widehat{\mathcal{L}}_{[0, x]}^W \frac{1}{(y-x)^{1+\alpha}} \mathcal{L}_{[y, T]}^W}{\mathcal{L}_{[0, T]}^W} dx dy$$

\mathcal{P}_T^W is a **random** “perturbation” of the regenerative set $\mathcal{P}|_{[0, T]}$

More/less likely to visit $t \in [0, T]$ where $\hat{\beta} \frac{dW_t}{dt} + \hat{h} \gtrless 0$

Conj.: $\mathcal{P}_T^W \xrightarrow[T \rightarrow \infty]{d} \mathcal{P}_{\alpha, \frac{\hat{h}}{\hat{\beta}}}^W$ “**disordered** regenerative set”

Continuum pinning model: main properties

Theorem (scaling limit)

For any discrete pinning model $P_{TN, \beta_N, h_N}^\omega$, the law of the rescaled discrete set $\frac{1}{N}\tau$ converges in distribution to $\mathcal{P}_{T, \hat{\beta}, \hat{h}}^W$ (as $N \rightarrow \infty$)

Continuum pinning model: main properties

Theorem (scaling limit)

For any discrete pinning model $P_{TN, \beta_N, h_N}^\omega$, the law of the rescaled discrete set $\frac{1}{N}\tau$ converges in distribution to $\mathcal{P}_{T, \hat{\beta}, \hat{h}}^W$ (as $N \rightarrow \infty$)

Theorem (a.s. properties)

Any given a.s. property of the regenerative set \mathcal{P} is an a.s. property of the continuum pinning model \mathcal{P}_T^W , for \mathbb{P} -a.e. W

$$\mathcal{A} \subseteq \Omega_0, \quad \mathcal{P}(\mathcal{A}) = 1 \quad \implies \quad \mathcal{P}_T^W(\mathcal{A}) = 1, \quad \mathbb{P}(\mathrm{d}W)\text{-a.s.}$$

Example: $\mathcal{A} = \{A \subseteq \mathbb{R} : \text{Hausdorff dim. of } A = \alpha\}$

Continuum pinning model: main properties

Theorem (scaling limit)

For any discrete pinning model $P_{TN, \beta_N, h_N}^\omega$, the law of the rescaled discrete set $\frac{1}{N}\tau$ converges in distribution to \mathcal{P}_T^W (as $N \rightarrow \infty$)

Theorem (a.s. properties)

Any given a.s. property of the regenerative set \mathcal{P} is an a.s. property of the continuum pinning model \mathcal{P}_T^W , for \mathbb{P} -a.e. W

$$\mathcal{A} \subseteq \Omega_0, \quad \mathcal{P}(\mathcal{A}) = 1 \quad \implies \quad \mathcal{P}_T^W(\mathcal{A}) = 1, \quad \mathbb{P}(\mathrm{d}W)\text{-a.s.}$$

Example: $\mathcal{A} = \{A \subseteq \mathbb{R} : \text{Hausdorff dim. of } A = \alpha\}$

Theorem (singularity)

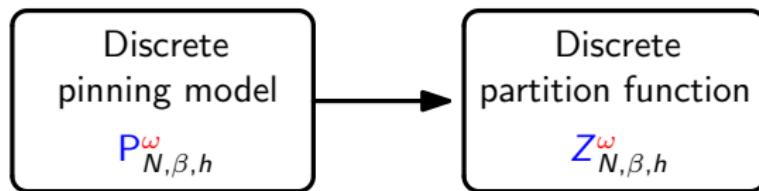
For \mathbb{P} -a.e. W , the continuum pinning model \mathcal{P}_T^W and the regenerative set \mathcal{P} are mutually singular probabilities on Ω_0

Conclusion

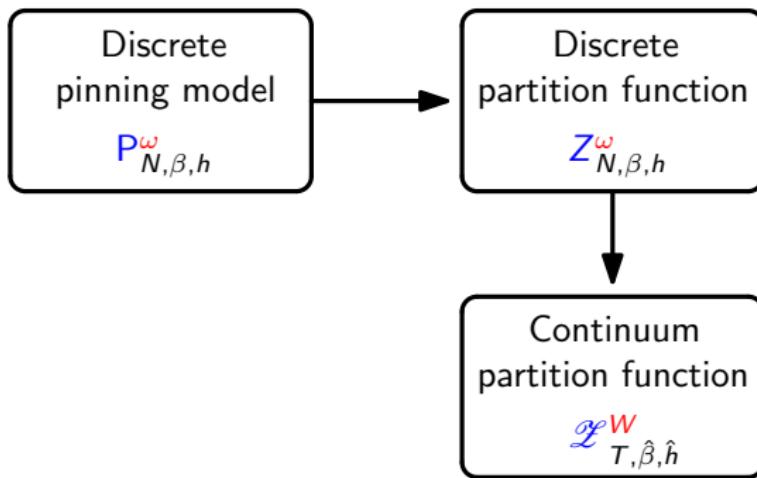
Discrete
pinning model

$$\mathbb{P}_{N,\beta,h}^{\omega}$$

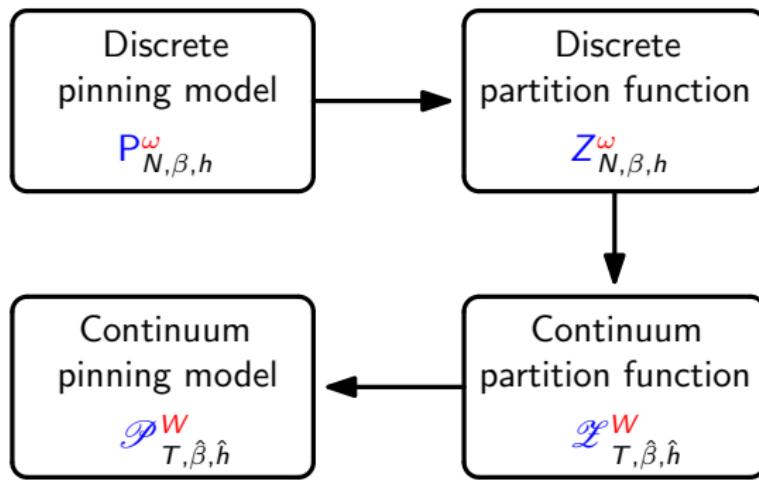
Conclusion



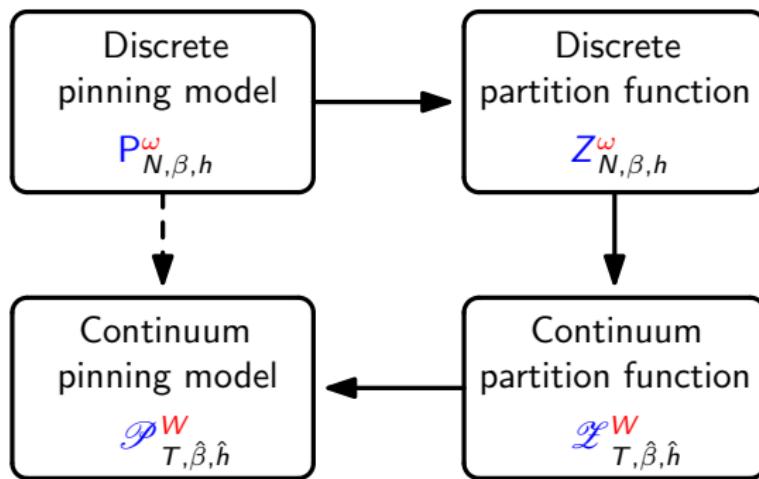
Conclusion



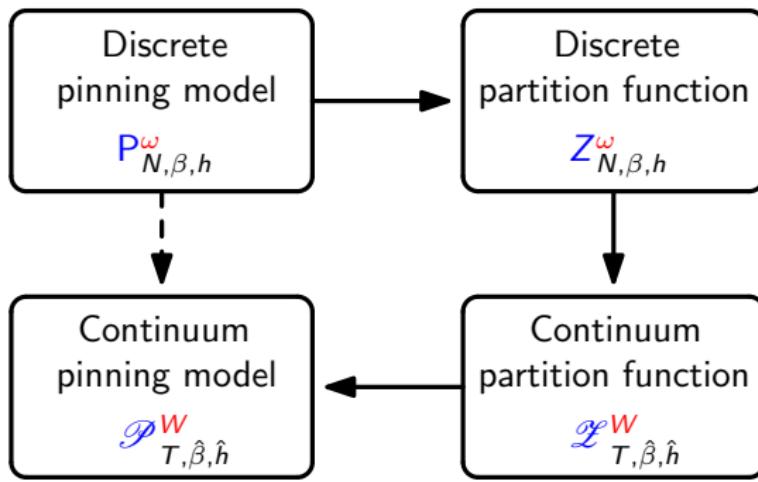
Conclusion



Conclusion



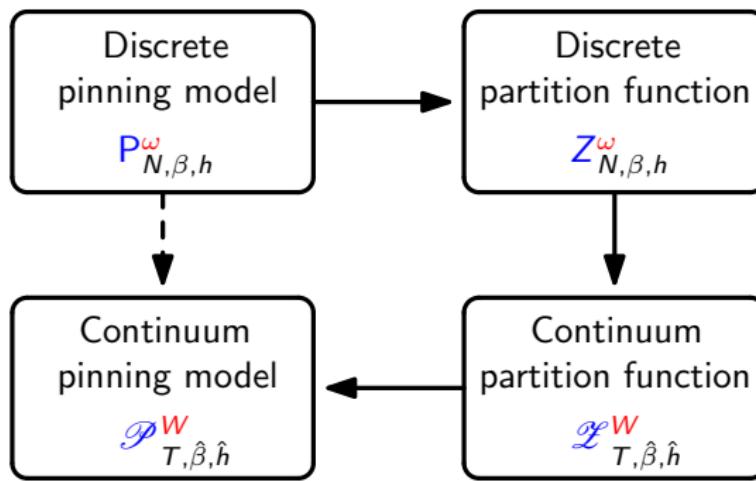
Conclusion



Open problems

- Universality of the critical line $h_c(\beta)$ at weak disorder

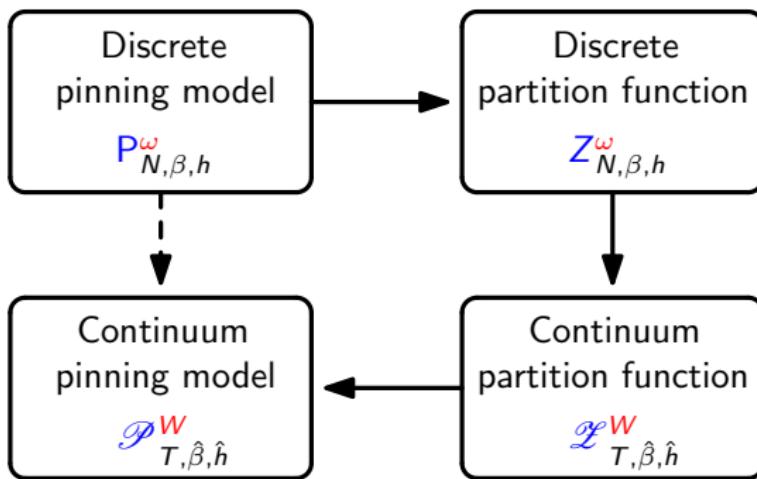
Conclusion



Open problems

- ▶ Universality of the critical line $h_c(\beta)$ at weak disorder
- ▶ Infinite-volume continuum model: $w\text{-}\lim_{T \rightarrow \infty} P^W_{T,\beta,\hat{h}}$?

Conclusion



Open problems

- ▶ Universality of the critical line $h_c(\beta)$ at weak disorder
- ▶ Infinite-volume continuum model: $w\text{-}\lim_{T \rightarrow \infty} \mathcal{P}_{T,\hat{\beta},\hat{h}}^W$?
- ▶ Marginal case $\alpha = \frac{1}{2}$ (in progress)

Thanks