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Introduction

Modeling of polymer chains, that is long linear molecules made up of a sequence
of simpler units called monomers, has, for a lot of time, received a lot of attention
in physics, chemistry, biology, ... Mathematics belongs to this list too. For example,
probabilistic models that naturally arise in statistical mechanics have been widely
studied by mathematicians for the very challenging and novel problems that they
pose. This is true to the extent that, in probability, the word polymer has become
synonymous with self-avoiding walk, a basic and extremely difficult mathemati-
cal entity. The interaction of a polymer with the environment leads to even more
challenging questions: these are often tackled in the framework of directed walks.
Restricting attention to directed trajectories is a way of enforcing the self-avoiding
constraint that leads to much more tractable models. Still, the interaction with the
environment may quickly lead to extremely difficult questions.

A particularly interesting situation is that of an inhomogeneous polymer (or
copolymer) in the proximity of an interface between two selective solvents. The
polymer is inhomogeneous in that its monomers may differ in some characteristics
and, consequently, the interaction with the solvents and the interface may vary from
monomer to monomer. In interesting cases there can be a phase transition between a
state in which the polymer sticks very close to the interface (localized regime) and a
state in which it wanders away from it (delocalized regime). The typical mechanism

underlying such phase transitions is an energy/entropy competition.

The main task of this Ph.D. thesis is to introduce and study random walk models
of polymer chains with the purpose of understanding this competition in a deep and
quantitative way. Since a random walk can be regarded as an example of an abstract
polymer, the idea of modeling real polymers using random walks is quite natural
and it has proved to be very successful.

The models we are going to consider are modifications of a basic model intro-
duced in the late eighties by T. Garel, D. A. Huse, S. Leibler and H. Orland [34] that



2 INTRODUCTION

in turn had translated into the language of theoretical physics ideas that were devel-
oping in the applied sciences. Despite the fact that the definition of these models is
extremely elementary, their analysis is not simple at all. For a number of interesting
issues there is still no agreement in the physical literature. From a mathematical
viewpoint it has taken quite a lot of time and effort to rigorously derive their basic
properties, and several interesting questions are still open.

In this Ph.D. thesis we present new results that answer some of these questions.
The approach taken here is essentially probabilistic, and it is interesting to note how
the analysis performed has required the application of a wide range of techniques in-
cluding Large Deviations and Concentration Inequalities (Ch. 2), Perron—Frobenius
Theory (Ch. 3), Renewal Theory (Ch. 4) and Fluctuation Theory for random walks
(Ch. 5 and 6). A numerical and statistical study has also been performed (Ch. 2).
Reciprocally, the study of the models stimulates the extension of these techniques,
see, for instance, the Local Limit Theorem for random walks conditioned to stay

positive presented in Chapter 6.

The thesis is organized as follows. The definition of the models we consider is
given in detail in Chapter la, where we also give some motivation and we collect
the known results from the literature. The following five chapters contain original

results. A detailed outline of the thesis may be found in Section 5 of Chapter 1a.



Introduction (en Francais)

La modélisation des polymeres, c’est-a-dire des longues chaines de molécules
élémentaires (les monomeres), a fait 1'objet de nombreuses études en physique,
chimie, biologie, ... Les mathématiques ne font pas exception. De nombreux modeles
probabilistes issus de la mécanique statistique ont ainsi été étudiés par les mathé-
maticiens pour les problemes tres intéressants et complexes qu’ils posent. Cela est
vrai au point que dans le domaine des probabilités le mot polymeére est devenu syno-
nyme de marche aléatoire auto—évitante, une entité mathématique élémentaire par
sa définition mais stimulante par sa complexité. L’interaction d'un polymere avec le
milieu conduit a des problemes encore plus difficiles, souvent traités dans le cadre
des marches dirigées. En effet, restreindre 1'étude aux trajectoires dirigées permet
d’obtenir simplement des polymeres auto-évitants, tout en rendant techniquement
possible I'analyse du modele. D’autre part, 'introduction d'une interaction avec le
milieu conduit a des situations tout a fait non triviales.

Une situation particulierement intéressante est celle ot un polymere inhomogene
(ou copolymere) est placé a proximité d’une interface séparant deux solvants sélectifs.
L’inhomogénéité du polymere signifie que tous les monomeres ne sont pas équivalents,
en particulier I'interaction avec les solvants et 'interface peut différer d'un monomere
a l'autre. Dans les cas les plus intéressants il peut y avoir une transition de phase
entre un état ou le polymere reste tres proche de l'interface (régime localisé) et un
état ou il évolue dans un des solvants, loin de U'interface (régime délocalisé). Typi-
quement, le mécanisme a la base de cette transition de phase est une compétition

entre énergie et entropie.

L’objectif de cette these est de présenter plusieurs modeles de polymeres élaborés
a partir de marches aléatoires et de les étudier dans le but de comprendre cette
compétition en profondeur, suivant une approche quantitative. Dans la mesure o
la marche aléatoire est un exemple de polymere abstrait, 'idée de représenter les

polymeres par des marches aléatoires est plutot naturelle et s’est révélée tres efficace.
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Les modeles qu’on considérera sont des modifications d’un modele basique in-
troduit a la fin des années quatre-vingts par T. Garel, D. A. Huse, S. Leibler et
H. Orland [34], qui ont traduit dans le langage de la physique théorique les idées
qui étaient en train de se développer dans les sciences appliquées. En dépit du fait
que la définition de ces modeles est élémentaire, leur analyse est loin d’étre facile.
Ainsi, sur certaines questions fondamentales il n’y a pas encore de consensus parmi
la communauté physique. Du coté mathématique un certain temps et beaucoup
d’efforts ont été nécessaires pour établir rigoureusement les propriétés de base de
ces modeles, et plusieurs questions restent toujours sans réponse.

Dans cette these nous présentons des résultats nouveaux qui donnent une réponse
a quelques—unes de ces questions. L’approche adoptée est essentiellement proba-
biliste, et il est intéressant de remarquer comment dans I’analyse de ces modeles on
a eu 'occasion d’appliquer une vaste gamme de techniques, y compris les Grandes
Déviations et les Inégalités de Concentration (Ch. 2), la Théorie de Perron-Frobenius
(Ch. 3), la Théorie du Renouvellement (Ch. 4) et la Théorie des Fluctuations pour
les marches aléatoires (Ch. 5 et 6). Une étude numérique et statistique a aussi été
réalisée (Ch. 2). Réciproquement, ’analyse de ces modeles stimule le développement
de ces techniques : citons par exemple le Théoreme Limite Local pour des marches

aléatoires conditionnées a rester positives prouvé dans le Chapitre 6.

La these est organisée de la maniere suivante. Les définitions des modeles que
nous considérons sont données en détail dans le Chapitre 1b, ou nous présentons
de plus un certain nombre de raisons qui nous ont conduit a étudier ces modeles
et résumons les résultats déja établis dans le domaine. Les cing chapitres suivants
(écrits en Anglais) contiennent pour leur part des résultats originaux. Enfin, un

résumé détaillé de la these est donné dans la Section 5 du Chapitre 1b.



CHAPTER 1a

Inhomogeneous polymer chains

In this first chapter, we introduce the class of models that are the center of our
analysis, providing some motivations for their study and recalling the known results

in the literature. The exposition takes inspiration from [35].

1. Introduction and motivations

1.1. Polymers and random walks. The notion of polymer has originated in
the field of chemistry to indicate a natural or synthetic compound consisting of large
molecules which are made up of a linked series of repeated simple molecules called
monomers. However this concept has spread out and nowadays polymers appear
in a variety of different fields with the broader meaning of linear structures which
are built up by joining together a large number of simpler structures (everything
possibly in an abstract sense). A very relevant example of an abstract polymer is
given by a random walk, where the increments are thought of as monomers.

As a matter of fact both the above meanings of polymers, the concrete one
and the abstract one, are of interest to us. In fact our main purpose is to build
probabilistic models based on random walks that try to mimic the phenomenology
of true chemical polymers in some interesting situations. We stress from now that
the models we are going to consider are very simple and nevertheless they pose very

challenging problems.

1.2. Copolymers at selective interfaces. The polymer set—up to which we
mainly dedicate our attention is the problem of a copolymer in the proximity of an
interface between two selective solvents, say oil and water. “Copolymer” is simply
a synonym of inhomogeneous polymer, that is a polymer whose monomers are not
identical but can be of different types. In our case we suppose that the monomers
can differ in only one characteristics: they may be hydrophobic (+) or hydrophilic
(—) (see Figure la.l) and to be definite we assume that there is a majority of

hydrophobic monomers.
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Oil Interface

Water

FIGURE 1A.1. A copolymer in the proximity of an interface between

two selective solvents.

At first one could be led to think that the copolymer should prefer to live in oil,
because of the substantial hydrophobicity of the chain. However a second scenario is
also possible: the polymer could decide to stick very close to the interface, in order
to place each monomer (or at least a big part of them) in the right solvent, that is +
in oil and — in water. Observe that this second strategy produces an energetic gain,
arising from the fact that a greater fraction of monomers is placed in the preferred
solvent, but it also entails an entropic cost, because the polymer has access to a
much smaller portion of the configuration space (the trajectories that stay close to
the interface are much less than those who are free to wander in oil).

It should be clear that we are facing a typical energy/entropy competition: our
aim is to build a probabilistic model of this situation following the paradigms of
Statistical Mechanics. This will allow us a quantitative study of this competition, in
order to decide —in function of the characteristic of the polymer chain and of other
physical quantities, such as the temperature— which one is the winning strategy, that
is the strategy followed by the polymer.

We stress from now that our interest is in describing the thermodynamic behavior
of the copolymer at a fixed time: nothing will be said in this thesis about the problem

of dynamical evolution.

1.3. Random walk models. Let us be a bit more specific about how to build
a random walk model for our copolymer (the precise definitions will be given in
the next section). We first take a random walk with values in R? (or a sublattice
of it) and we fix a large integer N, the size of the polymer. The idea is to look at
the random walk trajectories up to epoch N as describing the configurations of the

polymer chain when there are no interactions. Then we modify the law of the walk
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in the way prescribed by Statistical Mechanics, that is by giving to each trajectory
an exponential weight (Boltzmann factor) which takes into account the interaction
of the copolymer with the solvents. This new law is the copolymer measure, which
describes the statistical behavior of the copolymer in thermodynamic equilibrium.

A basic issue is how to choose the random walk. To avoid trivialities we assume
that the space in which the random walk lives is at least two—dimensional, that
is d > 2. Moreover, since real polymers do occupy a physical space, one would
rather like to deal with self-avoiding walks. In the lattice case, by this we mean a
random walk which is conditioned not to visit again the sites it has already visited
(defining self-avoiding walks in the continuum case requires some more care, but we
don’t want to get in details at this point).

However the point is that self-avoiding walks are a very difficult object to deal
with. One possibility to bypass the problem is to impose a much simpler excluded
volume constraint, by working with directed walks. By this we mean walks in which
one of the coordinates is forced to be strictly increasing: a typical example is the case
of (1 + m)—dimensional directed walks, that is {(n, S,)}, where {S,}, is a random
walk in R™. Although this may appear a too drastic solution, it has been widely
used in the literature and it is the one that we will adopt too: more precisely, we
will work with an (1 + 1)-dimensional directed walk.

Of course another possibility could be to give up any excluded volume constraint
and to work with genuine random walks. However we stress that, for the model
we consider, working with a d-dimensional random walk {S,}, is equivalent to
work with a suitable (1 + 1)—dimensional directed walk (this point will be clarified
in Chapter 5). This consideration gives somehow more value to the directed walk

approach.

2. Copolymers at selective interfaces

We are going to define a random walk model for the copolymer near a selective

interface, that will be the main object of this work.

2.1. Definition of the model. Let S = {S,},—01.. be a simple symmetric

random walk on Z, that is

So=0 Snzzn:Xj,
j=1
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where { X} is a sequence of IID random variables with P (X; =1) =P (X; = —-1) =
1/2. We take the directed walk point of view, looking at the trajectories of {(n, S,)},
as the configurations of our polymer chain.

For A >0,h >0, N € 2N and w = {w,};-12... € RN we introduce the copolymer
measure P;\V}L by giving the density w.r.t. P:

apy" 1
dg, (S) = —Z)"h exp (H;VL(S))
N,w

N
= =0 exp( Z wn, + h)sign (S, )) , (la.1)
ZNw n=1

where sign (Ss,) is set to be equal to sign (Sa,-1) for any n such that Sy, = 0 (this
is a natural choice, as it is explained in the caption of Fig. 1a.2). The term Z’VZJ is

simply a normalization constant to make Pf‘\,]z} a probability measure, that is

exp( Z (wn + h)sign (S, ))] ,

n=1

7Nk
ZN,w -

and it is called the partition function of the model.

We refer to the caption of Fig. 1a.2 for a visual interpretation of the copolymer
measure (la.l). The expression in the exponential, in the r.h.s. of (1a.1) is called the
Hamiltonian (we stress that there is a minus sign of difference with respect to the
physicists’ conventions). Let us discuss the meaning of the parameters appearing in

.. Mo
the definition of P N

e N is of course the size of the copolymer;

e the parameter A tunes the overall strength of the interaction, and physically

it corresponds to the inverse of the temperature;

e sign(w, + h) tells whether the n—th monomer is hydrophobic (+) or hy-
drophilic (=), and |w, + h| gives the intensity of the hydrophobicity (or
hydrophily) of the monomer. The reason for writing (w,, + h) is to isolate in
the parameter h the overall asymmetry of the hydrophobicity /hydrophily,

as it will be clear in a moment.

It remains to specify how to choose the sequence w, that will be referred to as the
charges or the environment of our copolymer. Two possibilities will be considered

in this thesis:
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FIGURE 1A.2. The process we have introduced is a model for a non—
homogeneous polymer, or copolymer, near an interface, the horizontal
axis, between two selective solvents, say oil (white) and water (grey).
In the drawing the monomer junctions are the small black rounds and
the monomers are the bonds of the random walk. The big round in
the middle of each monomer gives the sign of the charge (white =
positive charge = hydrophobic monomer, black = negative charge =
hydrophilic monomer). When h > 0 water is the unfavorable solvent
and the question is whether the polymer is delocalized in oil or if it
is still more profitable to place a large number of monomers in the
preferred solvent, leading in such a way to the localization at the
interface phenomenon. The conventional choice of sign(0) we have
made reflects the fact that the charge is assigned to bonds rather than

points.

e periodic set—up: w is a fixed periodic sequence, that is for some 7' € N we
have wory, = w, for all n € N: the least such T will be denoted by T, and
will be called the half-period of the sequence w (the choice of an even period
is due to the periodicity of the simple random walk). Up to a redefinition
of the parameter h, we can (and will) assume that the sequence is centered,
namely ZiTzl wy, = 0. Moreover to avoid trivialities we suppose that wa,, 1+

way, # 0 for some n (remember the periodicity of the walk);

e random set—up: w is a typical realization of an IID sequence of random

variables, whose law is denoted by P. We suppose that

M(a) :=E[exp (awy)] <00 VaeR, (1a.2)
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that E[w;] = 0 (which simply amounts to redefine h) and we also fix
E[w;?] = 1. We stress that we are dealing with quenched randomness, that
is the sequence w is chosen at the beginning, according to P, and then is

Ah
kept fixed to define the copolymer measure Py .

The differences of the two set-up will be discussed in detail in the sequel.

2.2. The free energy approach. We suppose that the sequence of charges w,
periodic or random, has been fixed and we turn to the study of the copolymer mea-
sure P]AV}L when the size N of the copolymer is very large (that is we are interested in
asymptotic results as N — oo, the so—called thermodynamic limit). More precisely,
we would like to understand, in function of the parameters A > 0 and h > 0, whether
the typical trajectories of the copolymer stay close to the interface (localized regime)

or if they rather prefer to wander away in the solvents (delocalized regime).

In order to have a quantitative criterion to decide between the two situations, it
is convenient to introduce the specific free energy of the system, defined by
1 ~
fo\h) = lim —log Z. (1a.3)

N—oo
Ne2N

Let us be more precise:

e when the sequence w is periodic, the existence of such a limit follows by

standard superadditive arguments, see e.g. [35];

e in the random setting, the existence of the above limit in the P (dw)—almost
sure sense and in IL; (IP) follows by Kingman’s Superadditive Ergodic The-
orem, see [35]. Moreover we stress that in this case the limit does not
depend on w, a phenomenon called self-averaging. Therefore in the sequel
when treating the random case the w—dependence of the free energy will be

omitted.

In both the periodic and the random setting, by convexity arguments one easily sees

that the free energy is a continuous function of A and h.

The basic observation is that

fo(Ah) > Ah (1a.4)
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In fact if we set Q = {S: S, > 0forn=1,2,..., N}, by restricting the integration

over Qf (for even values of N) we get

N
1 ~ 1
Nlog ZR,IL > NlogE exp ()\ (wy, + h) sign(Sn)> QL
L n:i (1a.b)
= NZ(wn—l—h) + NlogP Q%) M= b,

n=1
where in the random case the limit has to be understood in the P(dw)—almost sure
sense, having used the law of large numbers. We have also applied the well known
fact that P (€2;) behaves like N~'/2 for N large [28, Ch. III].
The steps in (1a.5) show that Ak is the contribution to the free energy coming
from paths delocalized in oil. This consideration leads to the following partition of

the phase diagram:

e the localized region: £ = {(A\,h) : fo(\ h) > Ah};
e the delocalized region: D = {(\,h) : f,(\, h) = Ah}.

This definition of (de)localization in terms of the free energy may seem a bit indirect
and it is not a priori obvious whether it corresponds to a really (de)localized behavior
of the typical paths of the polymer measure: we will come back in § 2.6 to this

important issue.

Now the program is to study in detail the phase diagram, both in the periodic
and in the random setting. Notice that a priori it is not even obvious that £ # (),
while of course D D {(\,h) : A = 0}. We start with a basic result, valid in both
settings, which says that indeed £ # () and gives the existence of a critical line,

which will be a central object of our analysis.

PROPOSITION la.l. Both in the periodic and in the random setting, there exists

a continuous increasing function h.. : [0,00) — [0, 00) with h.(0) = 0 such that

D={(\h):h>hN}  L={\h):h<h(N)}.

In particular we have the interesting result that for h = 0 and A > 0 the copolymer
is localized (a fact that was first proven by Sinai in [62]).

About the proof of Proposition la.1, we point out that just by simple convexity
arguments one can prove the existence of the critical line h.(-) and the fact that
for A > 0 it can be written as h.(A) = U(M\)/A, with U(-) a convex function such
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that U(0) = 0, cf. [9, § 1.2]. From this representation some elementary properties
of the critical line follow easily, like for instance the fact that there exists ¢ € (0, o]
such that h.(-) is continuous and nondecreasing in (0, ¢) while h.(\) = oo for A > /.
It remains to prove that ¢ = oo and that A — h.(\) is actually increasing and
continuous also at A = 0: the easiest way to get these results is to combine convexity
arguments with the bounds on h.(-) described in § 2.4 and § 2.5.

In the following sections we are going to study the properties of the critical
line h.(-), and we will see that a closer look shows important differences between the
periodic setting and the random one. However before proceeding it is convenient to

make some preliminary transformations on our model.

2.3. A new partition function. The content of this section is valid both for
the periodic and for the random setting. From (1a.4) it is natural to introduce the

excess free energy F,, defined by
Fu(Ah) == fo(A h)— AR,

so that the condition for localization (resp. delocalization) becomes F, (X, h) > 0
(resp. Fu(A, h) = 0). It is clear that we can obtain F, as the free energy of our
copolymer, once we redefine the Hamiltonian H}\V}L — H?‘V}L — AN (observe that
adding to the Hamiltonian a term that does not depend on S has no influence on the
copolymer measure). However it is more convenient to redefine the Hamiltonian in a
slightly different way, by subtracting the term \ 27]:[:1(‘*% + h) instead of just ARV,

As this term does not depend on S too, we can write

apy" N
];)va (S) = %}L exp ()\Z (wn —+ h) (Slgn(Sn) _ 1))

n=1

N
1
= — 5 exp (-mz (wn + h) An> (1a.6)
ZN’w n=1

with A, = (1 —sign(Sy)) /2 = L{sign(s,)=—1} and with a new partition function Z])\‘,}L
given by

Zy" = E (1a.7)

N

exp (—2/\ Z (wn + h) An>
n=1
N

= Z’}IL exp ( — )\Z(wn + h)) .
n=1
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Hence from (1a.3) we get

1
lim_—log ZN" = f(\h) — Ah = Fo,(\, h) (1a.8)
N

where in the random case this limit has to be interpreted in the P(dw)-a.s. or in
the LL; (IP) sense.

We will see that the new partition function Zy, turns out to be substantially
more uscful than Z Nw (this fact had been already realized in [12]). For this reason,
in the following with partition function we will always mean Zy, and in the same
way F, (A, k) will be for us the free energy tout court.

We will use repeatedly also the partition function associated to the model pinned

at the right endpoint:

Zﬁ,};(x) =E

exp <—2)\Z (wn + h) An> ; SN = x] . (1a.9)

It is worth recalling that one can substitute Z])\‘,IL with Zj\\,}L(ZL‘), any fixed even z
(with the same parity of N), in (1a.8) and the limit is unchanged, see e.g. [12]
or [35].

2.4. The phase diagram in the periodic case. As a matter of fact, the
periodic case is essentially simpler than the random case. The reason is that by
expressing the partition function in terms of the random walk excursions, the prob-
lem can be reduced to a finite-dimensional setting, as it has been first point out
n [11] (this approach will be exploited in detail in Chapter 4). The net result is
that the free energy of the model is expressible as the solution of a finite-dimensional
Perron—Frobenius problem, from which sharp estimates for the critical line can be
obtained.

To express the results, we introduce the Abelian group S := Z/(T,,Z) (we recall
that 27, is the period of the sequence w), and we define the following S x S matrix

which is well defined by choosing representatives a € a and b € # with a < b. We
also introduce for z € N, a, 3 € Sand A\, h >0

142 — 2(A\=, Ah
O (x) = log( e 2( 57 x))>
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Then, denoting by K(z) := P(m = 2z) where 7, := inf{n > 0 : S, = 0} is the
first return time to zero of the random walk, we define for b > 0 the following S x S
matrix with nonnegative entries:
A, pb; A h) = Z exp (@3%(2@ — b(27)) K(22) L(zep-a) ,

zeN
and we denote by Z(b; A, h) its Perron—Frobenius eigenvalue, cf. [5]. Observe that Z
is a decreasing function of b and h, since A, 5 are so for all a, 3. Then the free energy
of the model is given by the following theorem (cf. [11, Th. 1.2]):

THEOREM la.2. For \,h > 0 we denote by b = E(A,h) the unique solution of
the implicit equation Z(b; \, h) = 1, if such a solution exists, and we set g()\, h)=0
otherwise. Then E(A, h) is exactly the free energy of the model:

Fu(\ ) = b\ h).

It follows in particular that the critical line h = h.(\) is determined by the implicit
equation Z(0, A, h.(\)) = 1, and from this relation one can extract the asymptotic
behavior of h.(A) both for A — 0 and for A — oo (cf. [11, Th. 1.3]):

THEOREM 1a.3. There exist two positive constants my, > 0, M, > 0 such that:

as A — 0 he(A) = myA°(1+0(1))

< _ Wan w2n> (M, +0(1)) .

A he(A) =
as A — oo (A) max 5 S

These results give a satisfactory characterization of the phase diagram of the
copolymer in the periodic setting. We point out that the original proof of Theo-
rem la.2, cf. [16], is based on Large Deviations techniques. We do not report it
here because in Chapter 4 we present an approach based on Renewal Theory that
allows a much more detailed analysis for a wide class of periodic inhomogeneous
polymer models, including the periodic copolymer near a selective interface, and
Theorem 1a.2 will come as a byproduct of our main results (cf. Theorem 4.5 in
Chapter 4).

2.5. The phase diagram in the random case. From now on, when speaking
of the random case we will omit the w—dependency on the free energy, that will be
simply denoted by F(\, h). We sum up in the following theorem what is known about

the critical line of the random model (see Fig. 1a.3 for a graphical representation).
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b0 e [2/3,1

Y

0 A

F1GURE 1A.3. The phase diagram in the random case.

THEOREM la.4. For every A > 0 the following bounds hold true:

log M (—4)/3) < ho()) < %logM(—Q)\) — ROV, (1a.10)

1
h(\) =
In particular the slope at the origin of h.(-) belongs to [2/3,1], in the sense that the
inferior limit of ho(X)/X\ as A\, 0 is not smaller than 2/3 and the superior limit is

not larger than 1.

We recall that M(-) it the moment generating function of wy, see (1a.2), and we
observe that the last statement in the theorem follows easily from (1a.10) applying
the asymptotic expansion M(a) = 1 + a?/2 + O(a®) as @ — 0 (remember that we
have fixed E[w?] = 1).

Notice that the main difference with the periodic case, cf. Theorem 1a.3, is given
by the behavior of h.(\) as A — 0: we could say that when X is small for the
copolymer it is easier to localize in the random case than in the periodic one. This is
easily understood by considering that for A small a major role is played by the long
excursions of the walk, and observing that the energetic contribution to an excursion
of length L is O(v/L) in the random case by the CLT, while in the periodic case it
is of course O(1).

We point out that in [36], using Concentration Inequalities techniques, it has
been proven that the limit of h.(\)/A as A — 0 actually exists and it is independent
of the distribution of wy, at least when w; is a bounded symmetric random variable
or when w; is a standard Gaussian variable. Moreover we will see that the slope

at the origin is also closely related to the phase diagram of a Brownian copolymer
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model which emerges as a scaling limit of our copolymer model as A\, h — 0, see § 3.2
below. This universal character of the slope at the origin makes this quantity very

interesting.

Theorem la.4 is a mild generalization of the results proven in [12] and [9]: the
extension lies in the fact that w; is not necessarily symmetric and it requires minimal
changes. Despite of the fact that the lower bound h(-) and the upper bound h(-)
differ only by a scale factor, their origin is actually quite different, as we are going
to see. We also point out that in the physical literature both the conjectures that
he(:) = h(-) [50, 64] and that h.(-) = h(-) [34, 69] have been set forth.

2.5.1. The upper bound. For completeness we report the proof given in [12] of
the upper bound h.(-) < h(-). As a matter of fact, it is completely elementary: using
the fact that the limit in (1a.8) holds also in L (P) and applying Jensen’s inequality
we can write

1 AR : 1 Ak
e R ) < _ ’
F(\ h) ]\}1_120 NE log Zy,, < h]r\lfajolip N logEZy., ,

and from (1a.7) we have

EZM — E la.11
N,w

n=1

exp <i (log M(—=2X\) — 2Xh) An>

Then the upper bound follows immediately, because for A > h()) the argument of
the exponential is nonpositive and hence EZ])\‘,Z < 1. Moreover if h < h(})) it is
easy to check that limy_.o (log EZR,]L) /N > 0, hence h()) is indeed the best upper
bound one can derive from (1a.11).

This approach to get an upper bound by performing the integration E over the
disorder before taking the logarithm is a standard tool in the Statistical Mechanics
of disordered systems and it is known as annealed bound. We stress however that
in our case this approach is not as trivial as it may appear: for instance it is easy
to check that by making the same steps with the old partition function Z’VZJ one
would end up with an useless bound. The reason is that Z]’t,}fu has been obtained by
adding to the Hamiltonian the term —A ZnNzl(wn + h), that does not depend on S
(and therefore it leaves the copolymer measure invariant) but that has a strong
dependence on w, which is able to change in a drastic way the annealed bound.

At this point it is clear that one could go further, searching for other w—depending
terms to add to the Hamiltonian in order to improve the upper bound. Unfortunately

the standard application of this technique, known as constrained annealing, to our
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copolymer model cannot improve the basic annealed bound h(-) on the critical line:
this point is the object of Chapter 3, where this technique is explained in more
detail.

Of course the difficulties in improving the upper bound &(-) could be due to
the fact that h(-) is indeed the true critical line. However, the numerical analysis

performed in Chapter 2 suggests that this is not the case.

2.5.2. The lower bound. The proof given in [9] of the lower bound h.(-) > h(:)
is obtained by computing explicitly the energy—entropy contribution to the parti-
tion function given by a suitable strategy of the copolymer. Roughly speaking, the
strategy chosen is to force the copolymer to spend most of his time in the upper
half plane, making it descend in the lower half plane only in correspondence of long
stretches of the sequence of charges w = {w,}, that have an atypically negative
sample mean. The statistics of such stretches is governed by the so—called Large De-
viations functional [21] for sums of IID random variables distributed like wy, which
is nothing but the Legendre transform of log M(-): this is the reason why also the
lower bound A(+) is of this form.

We do not report here the details of the proof because we will give an alternative
proof of the lower bound in Chapter 2: see Section 3 for an outline and § 6.2 for
the details. We stress that the idea behind the above strategy (and also behind
our proof) takes inspiration from a (non rigorous) renormalization scheme for one—
dimensional disordered systems applied to the copolymer model by C. Monthus [50].
This approach was first proposed by D. S. Fisher in the context of quantum Ising
model with transverse random magnetic field [30] and then applied to random walk
in random environment [45] with remarkable success.

We point out that the lower bound A(-) on the critical line appears to be a very
robust one: several attempts have been performed to enrich the above strategy (that
is to keep many more random walk trajectories) in order to get a better lower bound,
but all of them have failed. There could be of course the possibility that h.(-) = A(-),
but we anticipate that in Chapter 2 we present several numerical observations and

a rigorous statistical test which strongly suggest that indeed h.(-) > h(-).

2.6. The path behavior. The question of whether splitting the phase diagram
into the regions £ and D, which are defined in terms of the free energy, does cor-
respond to really different behaviors of the typical paths of the copolymer measure

has a positive answer, at least if we do not consider the critical case, that is if we
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consider the path behavior for (A, h) € £ and for (A, k) in the interior of D (that will
be called strictly delocalized region). However, while the localized regime is rather
well understood, the delocalized one remains somewhat elusive. We first consider

the periodic setting.

2.6.1. The periodic case. Strong path localization statement can be obtained ap-
plying the technique used in [62] by Sinai to study the random case. More precisely,
if (A, h) € L then for every ¢ > 0 there exist positive constants Ny > 0, Ly > 0 such
that for all N > N

sup P?‘VIL(|SR| >L) < exp(—(Fo(\h)—¢)L) VL > L. (la.12)
Furthermore, the Large Deviations approach taken in [11] gives detailed information
on the returns to zero under the copolymer measure, that form a set with positive
density, see [11, § 1.7].

On the other hand, for the delocalized phase the available results are less precise:
the only result known in complete generality is that in the strictly delocalized regime

the polymer spends almost all the time above any prefixed level, that is for any L > 0

. \h
lim Ey
N—oo ’

N

1

N 2 1(SnzL>] =1. (1a.13)
n=1

Much stronger results are known to hold in more specific instances: for example
in [51] the case of w,, = (—1)" is considered, for a copolymer model which differs
from the ours in the definition of sign(0) (we refer to [11, § 1.5] for more details on
the implications of this change). The authors compute the law of the returns to zero
under the polymer measure, from which using the ideas in [40] or the general and
more robust approach we take in Chapter 4 one can extract the Brownian scaling
limits of the model. More precisely, one can prove that for (A, k) in the interior of D
the law of the process {S|in)/ \/N}te[o,l} under the polymer measure P?‘V}ZJ converges
weakly to the law of the Brownian meander process (that is the law of a standard
Brownian motion conditioned not to enter the lower half plane, cf. [60]). The analysis
can be performed in the critical case too, that is when h = h.()), showing that this
time the scaling limit process is the absolute value of a Brownian motion.

We point out that the proof of these results has been obtained essentially by
explicit computations, because by taking the marginals of a period—2 copolymer

over the even sites one gets to an homogeneous pinning model, which is known to
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be exactly solvable [40] (see also § 3.1 below). However it is widely believed that
these results should hold for any periodic w.

In Chapter 4 we are going to show that this is indeed the case, proving that both
the strictly delocalized and the critical Brownian scaling limit holds in complete
generality for a wide class of periodic inhomogeneous polymer models, including
the copolymer near a selective interface (and also pinning/wetting models, that will
be described in § 3.1 below). Furthermore we will also give a precise description of
the local path properties of the copolymer measure (thermodynamic limit) in all

regimes, including the localized case.

2.6.2. The random case. Also in the random case it is known that for (A, h) € £
the copolymer paths are localized in a strong sense. The random analogue of (1a.12)
has been proved by Sinai in [62] for the case A > 0,h = 0 (but the method can be
extended to the whole localized region, cf. [35]), and it requires some care to state it
properly. It is convenient to work with two—sided sequence of charges, that is for the
sake of this section we assume that w = {w, }nez is an element of the space 2 := RZ
and P is of course the product probability measure on 2. We also define for n € N
the translation 6™ on Q by (6"w)g := wpyk. Then Sinai’s result reads as follows: for
every £ > 0 there exist positive random variables Ny(w), Lo(w) : 2 — N such that

for P-almost every w and for all N > Ny(w) the following relation holds:

vn € {log"N,...,N —log? N} VL > Ly(6"(w))
/\h (la.14)
PJ\},w(‘Sn‘ >L) < eXp(— (F()\,h)—g)L),

where v > 0 is an absolute constant (depending neither on € nor on w).

Some observations are in order. The restriction on the values of n is made only for
convenience: an analogous statement holding for all n < N is possible but the nota-
tions become more involved. The key point is rather the condition L > L (Hn(w)),
which is saying that the “radius of localization” depends on n, and can actually
be arbitrarily large because the the random variable Lg is essentially unbounded.
This fact may make the estimate (la.14) appear unsatisfactory, but in fact it is
unavoidable, and the reason for this is to be sought in the presence of arbitrary long
atypical stretches in the sequence w: in fact if a site n is surrounded by a stretch
{Wn—k, - - -, Wnyk } With an atypically positive sample mean, this will have a repulsive
effect pushing S, to height of order ~ vk (in Chapter 2 we will see that one can

also take advantage of atypical stretches).
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However the situation is not so bad. On the one hand, the random variable L
can be chosen such that E[exp(aLy)] < oo for some a > 0 and therefore for P-
a.e. w we have that eventually Lg(6"w) < a~'logn: thus the radius of localization
is in any case much smaller than the polymer size. On the other hand, by Birkhoft’s
Ergodic Theorem we have that, for every K > 0, P(dw)-a.s.

N—oo

N
lim Z 1{L0(6"w)>K} = ]P)(LQ > K) ,
n=1

hence by choosing K large we have that the localization radius is smaller than K
most of the time.

We observe that strong localization results are available also for the thermody-
namic limit of the copolymer measure: we do not report them here and we refer
to [8] and [1] for details.

Turning to the delocalized regime, we point out that almost no result is at
present available for the critical case. In the strictly delocalized case the situation is
somewhat better: for instance it is known that (1a.13) holds for P-almost every w.
However this is quite a weak information on the paths, above all if compared to
what is available for the periodic case (and more generally for related non disordered
models, see e.g. [22] and references therein), namely Brownian scaling.

The standard way to prove this scaling limit for the strictly delocalized regime
is to show that under the copolymer measure P;\V}L the epoch of the last visit to the
lower half plane is o(/N). For non disordered models actually much more is true: in
fact in the limit N — oo the polymer becomes transient and it visits the lower half
plane, or any point below a fixed level, only a finite number of times. The situation
appears to be different for the random copolymer: in fact in [36] it has been shown
that for h < h()\) the number of visit to the lower half plane for the quenched
averaged measure EE?‘\,]L[ -]is O(log N). This fact alone does not suffice to yield the
scaling limit, because besides showing that there are o(/N) visit to the lower half
plane, one should prove that they all happen close to the origin: we refer to [36] for
more details and for a discussion on what is still missing.

We stress that in answering this kind of questions an important role is played by
the asymptotic behavior as N — oo of the partition function Zy,, in the interior of
the delocalized phase. In the non-disordered case it is known that Zy, ~ N “1/2 gee
for instance Theorem 4.5 of Chapter 4. On the other hand, this asymptotic behavior

is known not to hold anymore in the random case: more precisely, for every (A, h)
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in the interior of D there exists ¢ > 0 and a subsequence {7y(w)}y such that

Nl/ziEZTN(UJ),w — 00 as N — o0, see Proposition 4.1 in [36].

The issue of the delocalized path behavior in the random case is taken up again
in § 4.1 of Chapter 2.

3. Other related polymer models

3.1. Pinning at an interface and wetting models. Another problem that
has received much attention is the situation in which a polymer chain is attracted (or
repelled) by an interface, which may be penetrable or impenetrable. We can model
this situation by giving a reward (or a penalization) to each monomer lying on the
interface, and this reward/penalization may vary from one monomer to another if
the polymer chain is heterogeneous. As in the copolymer model analyzed so far, this
modification may alter the paths of the walk inducing a localization/delocalization
transition.

Let us define a probabilistic model for these situations when the interface is flat
(for us it will be the z—axis). We start with the case when the interface is penetrable
(pinning models): as in the preceding section, we take a simple random walk {5, },
with law P, and for N € 2N, 8 € R and w = {w, }nen € RY we define the new
law Pfi,’w by

B N
dz)g’w (S) o exp (ﬁ;wn1(5n0)> ) (la.15)

The case of an impenetrable interface is obtained by restricting to paths that stay

nonnegative up to epoch N, that is multiplying the r.h.s. above by 1(s,>0....55x>0)-
This second case will be called a wetting model, as it can be also interpreted as the
model of an interface interacting with an impenetrable wall.

Again we will stick to the case when the sequence charges w is either (determinis-
tic and) periodic or (quenched) random. Of course the main interest is in understand-
ing the behavior of the above measure when N is large. Localization/delocalization
can be defined in terms of the corresponding free energy, exactly as in the previous
section.

A particularly simple case is the homogeneous one, that is when the sequence w
is constant: w, = w; for all n € N, and up to a redefinition of the parameter A
we may assume that w; = 1. We point out that in this case both the pinning and

the wetting models are completely solvable, not only for the purpose of finding
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the phase diagram (see e.g. [35] for an elementary derivation) but also for a very
detailed analysis of the polymer path behavior [40, 22]. We do not spend much
time here on this issue, because in Chapter 4 we will treat in full detail the case of
periodic w. Nevertheless we make some observations: using convexity arguments it
is easy to check that the phase diagram in the homogeneous case is encoded in a
single number (. such that for 8 > . (resp. § < f5.) the polymer is localized (resp.

delocalized). Moreover:

e in the pinning case G, = 0, that is an arbitrarily small reward is sufficient

to localize the polymer;
e in the wetting case on the contrary (. > 0.

The reason why the wetting model is more difficult to localize than the pinning
model is that conditioning the walk to stay nonnegative up to step N induces a
repulsion effect of order v/N on the paths, a phenomenon which goes under the
name of entropic repulsion. In our one dimensional setting, a more precise version
of this statement is provided by the following invariance principle [10]: the process
{S\nt]/V'N }icjo) conditionally on the event {S; >0, ..., Sy > 0} converges weakly
as N — oo to the Brownian meander process, that is to a Brownian motion condi-
tioned to stay nonnegative [60]. In Chapter 6 we will prove a local version of this
weak convergence.

As already anticipated, the periodic version of these models will be analyzed in
Chapter 4. On the other hand, nothing will be said in this thesis about the random
case. We only mention that, as in the copolymer case, in the physical literature there
is no agreement on the phase diagram of the model, especially for small values of
the coupling constants: for more details on this issue and for the available rigorous

results see [2, 57] and references therein.

To conclude we would like to point out the relevance that random walk models
have for the modeling of DNA molecules. DNA is normally in a double-stranded
state, however it may happen that the two strands get detached, for example when
the temperature is sufficiently high (denaturation transition) or due to the effect
of an external force (pulling induced unzipping). Since the interaction between the
two strands may be described (at least at a first level) by an Hamiltonian of the
form (1a.15), the energy/entropy competition that gives origin to such phase tran-
sitions may be understood in terms of suitable modifications of the pinning/wetting

models just described.
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3.2. A Brownian motion model: the coarse graining issue. One of the
main results in the paper of Bolthausen and Den Hollander [12] is that in the limit
of weak coupling the copolymer model described in Section 2 can be approximated
by a continuous model built with Brownian motions instead of random walks. This
continuous model is defined in complete analogy with the discrete one: we take two
Brownian motions B = {B;}+>0 (the polymer) and 5 = {f;}:>0 (the charges), with
respective laws P and ﬁ, and for t > 0, A\,h > 0 and a ﬁ—typical path {03}, we
introduce the polymer measure f’j; on paths of length ¢ defined by

P,y 1 '
d—fD(B) = ?ﬁh exp ()\/0 sign(B;) (dfs + hds)) )
where the integral with respect to s is an Ito integral. The partition function of the

model is of course

Zt):bh = Eexp ()\ /t sign(8,) (dfs + hds)) ,
0

and the free energy f(\, h) is defined as

1 Ah
SO R) = lim — log Z7',

t—oo T

where the limit holds both P-a.s. and in L;(P) and f(), k) is nonrandom (see [35]
for a detailed proof of the existence of such a limit).

As in the discrete case, we have

FAh) = Ah,

and consequently we distinguish between a delocalized regime (]7()\, h) = Ah) and

a localized regime (f(\, h) > Ah). Notice however that the scaling properties of

Brownian motions entail that for all a > 0

- 1 ~
f(/\a h) = ?f(a)‘v ah) P

from which it follows immediately that the critical curve of this model is a straight
line, that is

~ =M ifh>KA\
dK.>0: f(\h) )
> M ifh< K\

Despite the apparent simplicity of the phase diagram, we could say that this contin-
uous model retains the full complexity of the discrete model, which is hidden in the

constant K. This statement is made precise by the following fundamental theorem
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(cf. [12, Th. 5 and 6]), which also clarifies in which sense the continuous model is

an approximation of the discrete one.

THEOREM 1a.5. Let us consider the free energy f(\, h) of the discrete model (see
eq. (1a.3) ) in the case when P(w; = +1) = P(wy = —1) = 1/2, and the corresponding
critical line h = he(\) (see Prop. (1a.1)). Then the following relations hold:

1 ~
liH(l)—Q (aX,ah) = f(A\,h) YA h>0 (1a.16)
a—0 Q
- he(N)
/ L _
h.(0) = }E)r(l) = K.. (1a.17)

In particular by (1a.10) it follows that 2/3 < K. < 1.

We point out that (1a.17) does not follow directly from (1a.16): in fact the scaling
limit of the free energy expressed by (1a.16) yields only the lower bound A.(0) > K...
The proof of (1a.17) is achieved through sharp comparison inequalities between f
and ]7 and requires very delicate estimates.

We stress that Theorem 1a.5 has been proven for the case when the charges have
a symmetric Bernoulli law, but its validity should be very general. The intuitive
idea is that as A, h — 0 what really matters are the long excursions of the walk, and
consequently the microscopic details of the model should become irrelevant.

For instance, as we already mentioned, in [36] it has been proven with Concen-
tration Inequalities techniques that actually (1a.17) holds whenever w; is bounded
and symmetric (and such that E[w;] = 0 and E[w;?] = 1) or if w; is a standard
Gaussian. Alternatively, the original proof of Theorem la.5 given in [12] can be
adapted to show that indeed both (1a.16) and (1a.17) hold for any choice of the law
of w; satisfying (1a.2) and such that E[w;] = 0, E[w;?] = 1.

In Chapter 5 we introduce another kind of variation on the discrete model,
namely we will change the law P of the underlying walk, taking into account general
random walks on R whose increments are bounded and have a continuous law. This
change too is supposed not to have any influence on the conclusions of Theorem 1a.5,
however giving a complete proof of this fact appears to be very challenging. Some
partial steps have been done in the direction of proving (1a.16) alone: we refer to

Chapter 5 for more details on this issue.
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4. An overview of the literature

The copolymer in the proximity of an interface problem has a long literature,
mostly in the area of chemistry and physics, but possibly the first article that at-
tracted the attention of mathematicians is [34]. The first mathematical study on
the subject has been performed by Sinai in [62], where he shows that for h = 0
and A > 0 (we are referring to the parameter of the model introduced in Section 2)
the copolymer with random charges is localized in a strong pathwise sense (see § 2.6
above). Further path investigations and a detailed analysis of the free energy (always
for the random case and in the symmetric setting h = 0) have been performed by
Albeverio and Zhou in [1].

As already mentioned, our attention on the random copolymer has been mainly
focused on the issue of investigating the phase diagram, which entails studying
the copolymer for h > 0. In this direction the fundamental paper is the one by
Bolthausen and den Hollander [12], where the existence and some basic properties
of the critical line h.(-) (including the upper bound in (1a.10)) have been proven.
However the main result of [12] is the coarse graining of the free energy, expressed by
Theorem 1a.5 of § 3.2 below. The other fundamental result on the phase diagram in
the random case, namely the lower bound in (1a.10), has been proven by Bodineau
and Giacomin in [9].

The strategy used in [9] takes inspiration from the physical paper by Mon-
thus [50], where the lower bound curve A(-) has been introduced for the first time,
as a conjecture for the true critical line. Again from the physical literature, we point
out that the conjecture h.(-) = h(-) has been set forth also in [64] on the ground
of replica computations, while the complementary conjecture that h.(-) = h(-) has
been formulated in [69] and in [34].

Coming back to mathematical papers, a path analysis for the whole localized
region £ in the random case has been performed by Biskup and den Hollander in [8]:
the keywords of their approach are thermodynamic limit and Gibbs measures. On
the other hand, path results for the delocalized region appear to be much more
challenging: recent progresses in this direction have been obtained by Giacomin and
Toninelli in [36].

Turning to the case of periodic charges, the issue of determining the phase dia-

gram has received a complete solution in the paper [11] by Bolthausen and Giacomin
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(see § 2.4). We refer to this paper also for references to previous works on periodic
copolymers.

In the literature one finds also a large number of numerical works on copolymers,
see for example [19, 65] and references therein: with respect to the numerical ap-
proach we take in Chapter 2, the attention is often shifted toward different aspects,
notably the issue of critical exponents and the more complex model in which the
polymer is not directed but rather self-avoiding.

Finally, about other polymer models dealing with pinning/adsorption phenom-
ena we mention [40], [22], [2], [71, 72] and references therein.

5. Outline of the thesis
The exposition is organized as follows.

e In Chapter 2 we combine numerical computations with rigorous arguments
to study the phase diagram and the path behavior of the copolymer near
a selective interface model defined in Section 2. We consider the case of
random charges. We provide several evidences for the fact that the critical
line lies strictly in between the two known bounds given in (1a.10) and for
the fact that the scaling limit towards the Brownian meander process holds
in the strictly delocalized region. In particular the conjecture that h.(-) =
h(-) can be excluded with a high level of confidence, thanks to a rigorous
statistical test with explicit error bounds. We also give an alternative self-
contained proof of the lower bound h.(-) > A(-).

The article [17] has been taken from the content of this chapter.

e In Chapter 3 we address the issue of improving the annealed upper bound
for disordered systems (see § 2.5.1) by adding to the Hamiltonian disorder—
dependent terms, a technique known as constrained annealing. We show
that for a number of disordered linear chain models (including the copoly-
mer near selective interfaces and the pinning/wetting model described in
the preceding sections) the standard application of this technique using em-
pirical averages of local functions cannot improve the basic annealed bound

on the critical curve.

The article [16] has been taken from the content of this chapter.
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e In Chapter 4 we consider a general model of a heterogeneous polymer in
the proximity of an interface (including as special cases the copolymer near
a selective interface and the pinning/wetting model) in the case of periodic
charges. We propose an approach based on Renewal Theory that yields
sharp estimates on the partition function of the model in all the regimes,
including the critical one. From these results we obtain a very precise de-
scription of both the thermodynamic limit and the scaling limits of the

polymer measure.

The preprint [18] has been taken from the content of this chapter.

e In Chapter 5 we consider a modification of the copolymer near a selective
interface model in which the reference measure P is not any more the law
of the simple symmetric random walk on Z. More precisely, we allow P to
be the law of a general real random walk whose typical step is centered,
bounded and has an absolutely continuous law. We focus on the case of
random charges. Besides giving a proof of the existence of the free energy, we
study the phase diagram of the model, pointing out the close analogies with
the simple random walk case. We finally consider the issue of extending to
this model the coarse graining of the free energy expressed by Theorem 1a.5
(work in progress), giving some partial result in this direction and discussing

what is missing.

e In Chapter 6 we prove a local limit theorem for random walks conditioned
to stay positive which is valid in great generality (whenever the walk is
attracted to the Gaussian law). This theorem provides a local refinement
of the well-known weak convergence of random walks conditioned to stay
positive towards the Brownian meander process. Besides being an interest-
ing result in itself, it is an important tool for the purpose of dealing with
polymer models built over general random walks, like the one considered in
Chapter 5.

The article [15] has been taken from the content of this chapter.






CHAPTER 1b
Chaines polymériques inhomogenes

Dans ce chapitre (qui n’est que la traduction en Francais du chapitre précédent)
nous présentons les différents types de modeles que nous considérerons, en donnant
quelques motivations pour leur étude et en rappelant les résultats déja établis dans

la littérature. Notre exposé s’inspire de [35].

1. Introduction et motivations

1.1. Polymeres et marches aléatoires. La notion de polymere est a l'origine
une notion chimique. Ainsi, en chimie un polymere est une macro-molécule, d’origine
naturelle ou synthétique, constituée d’une séquence linéaire de molécules plus pe-
tites, appelées monomeres. Ce concept s’est généralisé : les polymeres apparaissent
désormais dans une variété de domaines différents et désignent globalement une
structure linéaire construite en juxtaposant un grand nombre de structures sim-
ples (tout cela éventuellement dans un sens abstrait). Un exemple fondamental de
polymere abstrait est celui de la marche aléatoire, dont les accroissements constituent
les monomeres.

Dans la suite nous nous intéresserons aux deux aspects ci-dessus, concret et abs-
trait. Notre but est en effet de construire des modeles basés sur une marche aléatoire
qui permettraient de reproduire la phénoménologie des polymeres chimiques dans
certaines situations. Nous attirons 'attention sur le fait que les modeles que nous
allons considérer sont élémentaires et qu’ils posent néanmoins des problemes tres

intéressants et complexes.

1.2. Copolymeres a proximité d’une interface sélective. La situation sur
laquelle nous focaliserons notre attention est celle d'un copolymeére a proximité
d’une interface séparant deux solvants sélectifs, comme par exemple I’huile et I'eau.
“Copolymere” est simplement un synonyme de polymere inhomogene, c’est-a-dire
un polymere dont les monomeres ne sont pas tous identiques. Dans notre cas on
supposera que les monomeres peuvent différer par une seule caractéristique : ils

29
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Huile Interface

FiGURE 1B.1. Un copolymere a proximité d’une interface sélective.

peuvent étre soit hydrophiles (+) soit hydrophobes (—) (voir Figure 1b.1). Dans la
suite, nous supposerons que les monomeres hydrophobes sont majoritaires.

On pourrait tout d’abord penser que le copolymere devrait préférer vivre dans
I’huile, du fait de I’hydrophobie globale de la chaine. Cependant un autre scénario
est envisageable : le polymere pourrait rester tres proche de l'interface et placer
chaque monomere (du moins, une majorité d’entre eux) dans son solvant préféré,
c’est-a-dire + dans l'huile et — dans ’eau. Observons que cette deuxieme stratégie
permet un gain d’énergie, du fait qu’une plus grande fraction des monomeres est
placée dans le solvant correspondant, mais elle implique aussi une perte d’entropie,
dans la mesure ou le polymere a acces a une partie beaucoup plus petite de I'espace
des configurations (les trajectoires qui restent proches de l'interface sont en effet
beaucoup moins nombreuses que les trajectoires libres de fluctuer dans I’huile).

Il devrait étre clair qu’il y a une compétition entre énergie et entropie : notre
but est de construire un modele probabiliste rendant compte de cette situation, en
suivant les principes de la Mécanique Statistique. Cela nous permettra d’étudier de
fagon quantitative cette compétition, pour décider —en fonction des caractéristiques
du polymere et d’autres quantités physiques, comme la température— quelle est la
stratégie gagnante, c’est-a-dire celle effectivement suivie par le polymere.

Nous soulignons que nous ne nous intéressons qu’au comportement thermody-
namique du copolymere a un temps fixé — dans cette these nous ne considérerons

jamais le probleme de I’évolution dynamique.

1.3. Modeles basés sur une marche aléatoire. Soyons un peu plus précis
quant a la construction d’un modele de copolymere basé sur une marche aléatoire (les
définitions exactes seront données dans la prochaine section). On considere d’abord

une marche aléatoire a valeur dans R? (ou dans un sous-réseau de R?) et on fixe un
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entier N grand, i.e. la taille du polymere. L’idée est de considérer les trajectoires
de la marche aléatoire jusqu’au temps N comme décrivant les configurations de
la chailne polymérique quand il n’y a pas d’interactions. Nous modifions ensuite la
loi de la marche suivant les principes de la Mécanique Statistique, c’est-a-dire que
nous donnons a chaque trajectoire un poids exponentiel (facteur de Boltzmann)
prenant en compte 'interaction du copolymere avec les solvants. Cette nouvelle loi
est la mesure du copolymeére, elle décrit le comportement statistique du copolymere
a ’équilibre thermodynamique.

Le choix de la marche aléatoire est une question fondamentale. Pour éviter les
cas triviaux, on suppose que l'espace ou vit la marche est au moins bidimensionnel,
c’est-a-dire d > 2. D’autre part, comme les polymeres réels occupent de l’espace
physique, nous aimerions considérer des marches aléatoires auto—évitantes. Dans le
cas ou la marche se déplace dans un réseau, cela nécessite de conditionner la marche
a ne pas visiter deux fois un méme site (définir une marche auto—évitante dans le
cas général est plus délicat ; nous n’entrerons pas dans les détails a ce stade).

Une difficulté importante réside dans le fait que les marches auto—évitantes sont
des objets tres complexes. Une maniere de contourner le probleme est de simplifier la
contrainte, en considérant des marches dirigées — c¢’est-a-dire, des marches dont une
composante est strictement croissante. Un exemple typique est celui de la marche
dirigée (1 + m)—dimensionnelle, c’est-a-dire du processus {(n,S,)}, ou {S,}, est
une marche aléatoire dans R™. Cette approche peut sembler drastique, mais elle est
tres répandue dans la littérature et nous ’adopterons dorénavant nous aussi : plus
précisément, nous travaillerons avec des marches dirigées (1 + 1)—dimensionnelles.

Bien entendu, une autre possibilité serait de renoncer aux contraintes d’exclusion
de volume en travaillant avec des marches aléatoires. Néanmoins, nous attirons
Iattention sur le fait que dans notre cas, le modele construit a partir d’une marche
aléatoire d—dimensionnelle {S,},, est équivalent a celui élaboré a partir d'une marche
dirigée opportune (1 + 1)-dimensionnelle (cette question est discutée plus en détail
dans le Chapitre 5). Cette constatation justifie notre choix d’une approche basée sur

les marches dirigées.
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2. Copolymeres a proximité d’une interface sélective

Dans cette section nous définissons un modele de copolymere a proximité d une
interface sélective basé sur une marche aléatoire. Ce modele sera le sujet principal
de cette these.

2.1. Définition du modéle. Soit {5, },—0 1, une marche aléatoire symétrique

simple sur Z, c’est-a-dire

So=0 Su=>Y_X;

j=1
ou les variables {X;}; sont IID et telles que P(X; =1) = P(X; =—-1) = 1/2.
Nous adoptons le point de vue “dirigé”, en considérant les trajectoires de {(n,S,)}n
comme les configurations de la chaine polymérique.

Pour A >0, h >0, N € 2N et w = {w;};=12.. € RY nous définissons la mesure

du copolymere PJA\,}L en donnant sa densité par rapport a P :

APy, 1 A
(S = = e (L (9))
] N
= i exp ()\ (wn + h) sign (Sn)> , (1b.1)
N,w n=1
ou on définit sign (Ss,) := sign (Sa,_1) pour tous les n tels que Sy, = 0 (ce qui

est un choix naturel, voir la Fig. 1b.2). Le terme Z’t,i n’est qu'une constante de

. . . . Ah 1oy 2
normalisation qui fait de Py, une mesure de probabilité :

exp ()\ Z (wn + h) sign (S,J)] .

n=1

7N
Zyo, = E

On appelle ZR,Z la fonction de partition du systeme.

Nous renvoyons a la Fig. 1b.2 pour une interprétation visuelle de la mesure du
copolymere. Dans I’équation (1b.1), 'expression qui apparait dans I’'exponentielle est
appelée Hamiltonien du systeme (les conventions des physiciens different d’un signe
moins). Discutons plus en détail la signification des parametres qui apparaissent

dans la définition de Pf‘\;ﬁuz
e N est bien entendu la taille du copolymere ;

e le parametre A représente la force globale de l'interaction, et correspond

d’un point de vue physique a l'inverse de la température ;
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FIGURE 1B.2. Le processus qu'on a introduit est un modele de
polymere inhomogene, ou copolymére, & proximité d’une interface (ici
'axe des abscisses) entre deux solvants sélectifs, disons I’huile (blanc)
et 'eau (gris). Les liens entre les monomeres sont représentés par les
points noirs tandis que les accroissements de la marche aléatoire cor-
respondent aux monomeres proprement dits. La couleur du disque au
centre de chaque monomere indique le signe de la charge (blanc =
charge positive = monomere hydrophobe, noir = charge négative =
monomere hydrophile). Quand h > 0 I'eau est le solvant défavorable
et la question est de savoir si le polymere est délocalisé dans 1’huile
ou bien au contraire s’il a plus intérét a placer un grand nombre de
monomeres dans le solvant préféré, ce qui conduit au phénomene de
localisation a I'interface. Enfin, la définition de sign(0) que nous in-
diquions plus haut est motivée par le fait que la charge est portée par

les monomeres et non par leurs extrémités.

e sign(w, + h) indique si le n—-iéme monomere est hydrophobe (+) ou hy-
drophile (—), et |w, + h| donne lintensité de I’hydrophobicité (ou hy-
drophilie) du monomere. Le choix dune telle écriture (w, + h) permet
d’isoler dans le parametre h I'asymétrie globale de ’hydrophobicité/hydro-

philie — nous reviendrons sur ce point dans un instant.

Nous devons maintenant indiquer comment choisir la suite w, ¢’est-a-dire la suite des
charges, ou encore le désordre du copolymere. Deux possibilités seront considérées

dans cette these:

e cas périodique : w est une suite périodique fixée, c’est-a-dire qu’il existe

T € N tel que wory, = w, pour tout n € N : le plus petit T satisfaisant
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cette condition sera noté T, et nommé demi-période de w (le choix d’une
période paire est du a la périodicité de la marche aléatoire simple). A une
modification du parametre h pres, nous supposerons que la suite est centrée :
2T — 0 et viter 1 frivi ] exdist
Yoo wy =0, et pour éviter les cas triviaux nous supposerons qu'’il existe n

tel que wo,—1 + we, # 0 (rappelons la périodicité de la marche aléatoire) ;

e cas aléatoire : w est une réalisation typique d’une suite IID de variables

aléatoires de loi P. On suppose que
M(a) :=Eexp (awy)] <o  VaeR, (1b.2)

que E [w;] = 0 (il suffit de modifier &) et que E[w;?] = 1. Soulignons que nous
travaillons avec un aléa de type quenched, c¢’est-a-dire que nous considérons
tout d’abord une réalisation de w sous la mesure P, avant de définir la

s Ah
mesure du copolymere Py .

Les différences entre les deux cas seront discutées en détail dans la suite.

2.2. L’énergie libre. Supposons que la suite des charges w, périodique ou
aléatoire, est fixée. Nous passons a I’étude de la mesure du copolymere P}\V}L pour une
taille N du copolymere tres grande (c’est-a-dire que nous sommes intéressés par les
résultats asymptotiques dans la limite N — oo, dite limite thermodynamique). Plus
précisément, on aimerait comprendre, en fonction des parametres A > 0 et h > 0, si
les trajectoires typiques du copolymere restent proche de l'interface (régime localisé)

ou si elles préferent plutot fluctuer dans les solvants (régime délocalisé).

Afin d’avoir un critere quantitatif pour différencier ces deux situations, il est
pertinent d’introduire 1’énergie libre spécifique du systeme, définie par
1 ~
foWh) = lim —log . (1b.3)

N—oo

Ne2N

Plus précisément :

e quand la suite w est périodique, l'existence d’une telle limite peut étre
prouvée facilement grace a des arguments standards de super-additivité,

voir par exemple [35] ;

e dans le cas aléatoire, 'existence de la limite ci-dessus P (dw)-p.s. et dans
L; (P) découle du Théoreme superadditif de Kingman, voir [35]. De plus,

nous soulignons que dans ce cas la limite ne dépend pas de w — ce phénomene
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est appelé self-averaging. Pour cette raison, lorsque nous traiterons le cas

aléatoire nous omettrons la dépendance en w de 1’énergie libre dans la suite.

Dans les deux cas, périodique et aléatoire, en utilisant des arguments de convexité on

peut montrer facilement que 1’énergie libre est une fonction continue des parametres

et h.
Une observation simple mais fondamentale est que
fo(A h) > Ah. (1b.4)
En effet si on pose QfF = {S : S, > 0 for n = 1,2,..., N}, en restreignant

I'intégration sur 'ensemble Q3 (pour N pair) on obtient

1 ~\h 1
NlogZN’M > NlogE

exp ()\ Z (wy, + h) sign (Sn)> QL

n=1

(1b.5)

N
= %Z(wnth) + %logP(QE) M= Ah,

n=1
ou dans le cas aléatoire la limite s’entend dans le sens P(dw)—presque sur (par la
loi des grands nombres). Cela repose aussi sur le fait bien connu que P (Q}) est de
'ordre de N='/2 pour N grand [28, Ch. III].

L’équation (1b.5) montre que A\h est la contribution a I’énergie libre des trajec-
toires délocalisées dans 1'huile. Cette considération conduit au découpage du dia-

gramme de phase suivant :
e la région localisée : £ = {(\,h) : fu(A h) > Ah}
e la région délocalisée : D = {(\,h) : f,(\, h) = Ah}.

Cette définition de la (dé)localisation a partir de I’énergie libre peut sembler peu
directe, et il n’est pas a priori évident que cela corresponde vraiment a la (dé)loca-
lisation des trajectoires typiques sous la mesure du copolymere : cette question est

fondamentale, nous la traitons dans § 2.6.

Notre programme est d’étudier en détail le diagramme de phase, a la fois dans
le cas périodique et dans le cas aléatoire. Observons qu’a priori il n’est pas évident
que £ # (), tandis que clairement D D {(A, h) : A = 0}. Commencons par un premier
résultat, valide dans les deux cas, qui montre que effectivement £ # () et indique
de plus l'existence d’une courbe critique, qui sera un des objets essentiels de notre

étude.
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PROPOSITION 1b.1. Dans les deux cas, périodique et aléatoire, il existe une fonc-

tion continue et croissante h, : [0,00) — [0, 00) avec h.(0) = 0 telle que

D={(\h):h>hN}  L={\h):h<h(MN)}.

En particulier, pour h = 0 et A > 0 le copolymere est localisé (cela a été prouvé
pour la premiere fois par Sinai dans [62]).

En ce qui concerne la preuve de la Proposition 1b.1, observons que de simples
arguments de convexité permettent de prouver l'existence d’'une courbe critique h.(+)
et le fait que pour A > 0 elle est de la forme h.(\) = U(X)/\, avec U(-) une fonction
convexe telle que U(0) = 0, cf. [9, § 1.2]. A partir de cette représentation, plusieurs
propriétés élémentaires de cette courbe critique découlent facilement, comme par
exemple le fait qu’il existe ¢ € (0, 00] tel que h.(-) est continue et non décroissante
dans l'intervalle (0,/), tandis que h.(\) = oo pour A > /. Il ne reste donc qu’a
prouver que ¢ = oo et que A +— h.(A) est effectivement croissante, et continue
en A = 0 : la voie la plus simple pour obtenir ces résultats est de combiner les

arguments de convexité avec les bornes sur h.(-) décrites dans § 2.4 et § 2.5.

Dans les sections suivantes nous étudierons les propriétés de la courbe critique
he(+), qui présente des différences importantes entre le cas périodique et le cas aléa-

toire. Mais auparavant, nous introduisons quelques modifications sur notre modele.

2.3. Une nouvelle fonction de partition. Le contenu de cette section s’ap-
plique a la fois aux cas périodique et aléatoire. D’apres (1b.4), il est naturel d’intro-

duire 1’énergie libre résiduelle ¥, définie par
Fu(Ah) == fo(A\ h)— AR,

de fagon a ce que la condition pour la localisation (resp. délocalisation) devienne
Fy, (A, h) > 0 (resp. F, (A, h) = 0). Il est clair qu’on peut obtenir F,, comme 'énergie
libre de notre copolymere, en redéfinissant I’'Hamiltonien par H}\V}L — H}\V}L — AAN
(observons que 'ajout & I’Hamiltonien d’un terme qui ne dépend pas de S n’a
pas d’influence sur la mesure du copolymere). Cependant, nous préférons redéfinir

I’Hamiltonien d’'une maniere légerement différente, en lui soustrayant le terme

N

A (wn+h)

n=1
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plutot que AhN. Comme ce terme ne dépend pas non plus de S, on peut écrire

dPy" N
dP’w(S) = 1}; exp <>\Z (wn + h) (Sign(sn) _ 1))

n=1

_ L exp <—2)\ i (wn + h) An> (1b.6)

avec A, = (1 —sign(Sy)) /2 = Lsign(s,)=—1} et avec une nouvelle fonction de parti-

. MNho s
tion Zy, définie par

N
Zﬁ,}L = E |exp (—2/\ Z (wn + h) An> (1b.7)
n=1
_ N
= ZR,IL exp ( — )\Z(wn + h)) .
n=1
Par conséquent, de (1b.3) on obtient
1
lim_—log ZN" = F(\h) — Ah = F,(\, h) | (1b.8)
Nes

ou dans le cas aléatoire cette limite a lieu P(dw)-p.s. et dans L, (P).

Comme nous le verrons, la nouvelle fonction de partition Zy,, se révélera beau-
coup plus utile que Zy,, (cela avait été déja compris dans [12]). Pour cette raison,
dans la suite nous entendrons toujours Zy, par “fonction de partition”, et de la
méme fagon F, (A, h) sera pour nous ’énergie libre tout court.

Nous utiliserons a plusieurs reprises la fonction de partition associée au modele

accroché au point terminal :

Zﬁ,};(x) =E

exp <—2)\Z (wn + h) An> ; Sy = x] . (1b.9)

Nous rappelons qu’on peut substituer Zj’t,i(x) a Zj’t;z, pour chaque z fixé (avec la
méme parité que N), dans (1b.8) sans que la limite soit modifiée, voir par exemple
[12] ou [35].

2.4. Le diagramme de phase dans le cas périodique. Nous verrons que le
cas périodique est en essence plus simple que le cas aléatoire. La raison est que, en
exprimant la fonction de partition en termes des excursions de la marche aléatoire,
on peut se ramener a un probleme fini—-dimensionnel, comme cela a été montré pour

la premiere fois dans [11] (ce point de vue sera exploité en détail dans le Chapitre 4).
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Plus précisément, 1’énergie libre du modele peut s’exprimer comme la solution d’'un
probleme de Perron—Frobenius fini-dimensionnel, et a partir de cela on peut obtenir
des estimations tres précises sur la courbe critique.

Pour présenter ces résultats, nous introduisons le groupe Abelien S := Z/(T,7Z)
(on rappelle que 2T, est la période de la suite w) et définissons la matrice S x S

suivante :

qui ne dépend pas des points a € awet b € § pourvu que a < b. Pour z € N, o, f € S

et A\, h > 0, nous introduisons d’autre part

1+2 —2(AZa,3 + AL
e e )

Puis, en notant K(x) := P(m = 2z), ou 7y := inf{n > 0: S, = 0} est le premier
temps de retour a zéro de la marche, on définit pour b > 0 la matrice S x S suivante,

dont les entrées sont non négatives :

A, pb; A h) = Z exp (@3%(2@ —b(22)) K(22) 1(zep—a) ,
zeN
et on dénote par Z(b; A\, h) sa valeur propre de Perron—Frobenius, cf. [5]. Observons
que Z est une fonction décroissante de b et h dans la mesure ou les entrées A, g
vérifient cette propriété pour tous «, 3. L’énergie libre du modele est donc donnée
par le théoréme suivant (cf. [11, Th. 1.2]) :

THEOREME 1b.1. Pour tous A\,h > 0 on note b = b(\, h) Uunique solution de
Uéquation implicite Z(b; A\, h) = 1 si une telle solution eziste, et on pose Z()\, h)=0

dans le cas contraire. Alors E(A, h) est exactement [’énergie libre de notre modéle :

Fo(A h) = b(\h).

En particulier il s’ensuit que la courbe critique h = h.(\) est déterminée par
I'équation implicite Z(0, A, he(A)) = 1, et a partir de cette relation on peut extraire le

comportement asymptotique de h.(\) a la fois pour A — 0 et pour A — oo (cf. [11,

Th. 1.3]) :
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THEOREME 1b.2. Il existe deux constantes positives m,, > 0, M, > 0 telles que:

quand A — 0 he(A) = muA* (14 0(1))

Wop—1 + w2n> B (Mw + 0(1)) .

quand A — oo he(X) = max ( - 5 S

n=1,...,

Ces résultats donnent une caractérisation tres satisfaisante du diagramme de
phase du copolymere dans le cas périodique. Nous soulignons que la preuve du
Théoreme 1b.1 donnée dans [16] utilise de fagon essentielle la théorie des Grandes
Déviations. Nous ne la reportons pas ici dans la mesure ou dans le Chapitre 4
nous présentons une approche basée sur la Théorie de Renouvellement qui permet
une analyse beaucoup plus détaillée pour une vaste classe de modeles de polymeres
périodiquement, inhomogenes, comprenant en particulier le copolymere périodique
en proximité d’une interface sélective, et le Théoreme 1b.1 sera une conséquence de

nos résultats principaux (voir Théoreme 4.5 dans le Chapitre 4).

2.5. Le diagramme de phase dans le cas aléatoire. Dorénavant quand on
traitera le cas aléatoire on omettra la dépendance en w de 'énergie libre, qui sera
indiquée simplement par F(A, k). Dans le théoréme suivant nous résumons ce qui
a été prouvé dans la littérature concernant la courbe critique du modele aléatoire

(voir Figure 1b.3 pour une représentation graphique).

THEOREME 1b.3. Pour tout A > 0 on a les bornes suivantes :

h(y) = 4)\1/3

En particulier, la pente a lorigine de h.(-) est dans lintervalle [2/3, 1], dans le sens

logM (=4X/3) < h()\) < %logM(—Q/\) = h(\).  (1b.10)

que la limite inférieure de h.(\)/A quand X \, 0 n’est pas plus petite que 2/3 et la

limite supérieure n’est pas plus grande que 1.

On rappelle que M(-) est la fonction génératrice des moments de wy, voir (1b.2).
Observons que la derniere affirmation découle immédiatement de (1b.10) en appli-
quant le développement asymptotique M(a) = 1 + a?/2 + O(a?) pour a — 0 (on
rappelle qu’on a imposé E[w?] = 1).

Remarquons que la différence principale par rapport au cas périodique, cf. Théo-
reme 1b.2; est donnée par le comportement asymptotique de h.(\) pour A — 0 :
on pourrait dire que quand A est petit la localisation du polymere est plus sim-

ple dans le cas aléatoire que dans le cas périodique. On peut comprendre cela en
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FIGURE 1B.3. Le diagramme de phase dans le cas aléatoire.

considérant que quand A est petit un role important est joué par les grandes excur-
sions de la marche et en observant que la contribution énergétique d’une excursion
de longueur L est O(v/L) dans le cas aléatoire (par le Théoreme Central Limite),
tandis que dans le cas périodique elle est bien sur O(1).

Giacomin et Toninelli ont prouvé dans [36], en utilisant des Inégalités de Con-
centration, que la limite de h.(\)/\ quand A — 0 existe et ne dépend pas de la loi de
w1, pourvu que wj soit une variable symétrique bornée ou bien une variable Gaus-
sienne standard. On verra que la pente a l'origine est aussi liée au diagramme de
phase d'un modele de copolymere Brownien, qui apparait comme la limite d’échelle
de notre modele de copolymere quand A\, h — 0, voir § 3.2. Ce caractére universel

de la pente a 'origine rend cette quantité tres intéressante.

Le Théoreme 1b.3 est une simple généralisation des résultats prouvés dans [12]
et [9] : I'extension consiste dans le fait que wy n’est pas nécessairement symétrique et
cela ne demande que de changements minimaux. On notera que la borne inférieure
h(-) et la borne supérieure h(-) different seulement par un facteur d’échelle : néan-
moins leur origine est différente, comme on verra dans un instant. Remarquons que
dans la littérature physique les deux conjectures h.(-) = h(-) [50, 64] et h.(-) =

h(-) [34, 69] ont été proposées.

2.5.1. La borne supérieure. Nous reportons ici la preuve de la borne supérieure
he(:) < h(-) donnée dans [12], qui est tout & fait élémentaire. La limite dans (1b.8)
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a lieu aussi dans L (P) et en appliquant l'inégalité de Jensen on peut écrire

1 1
F(A\,h) = lim NElogZ])\‘;f; < limsuleogEZ]’t;”L,

N—oo N—oo

et de (1b.7) on tire

EZy" =E (1b.11)

exp <i (log M(=2X) — 2Xh) An>

n=1

Comme pour h > h()\) 'argument de I'exponentielle est négatif, EZ])\‘,Z < letla
borne supérieure suit immédiatement. De plus pour h < k() il est facile de vérifier
que limy_. (log EZR,Z) /N > 0 et h()) est donc effectivement la meilleure borne
supérieure qu’on puisse extraire de (1b.11).

Cette maniere d’obtenir une borne supérieure en effectuant 'intégration E par
rapport aux variables du désordre avant de prendre le logarithme est un outil
standard dans la Mécanique Statistique des systemes désordonnés qui est appelé
borne annealed. Néanmoins il faut observer que dans notre cas cette approche
n’est pas completement triviale : par exemple il est facile de voir qu’en suivant
les mémes étapes avec I’ancienne de partition Z)\‘,Z on obtient une borne inutile. La
raison pour cela est que Z])\‘,IL a été obtenue en ajoutant a I’Hamiltonien le terme
-A Zgzl(wn + h), qui d’une part ne dépend pas de S (et donc ne modifie pas la
mesure du copolymere) mais qui d’autre part présente une forte dépendance en w,
capable d’influencer la borne annealed de facon drastique.

A ce point il est clair que l'on pourrait itérer la procédure, en ajoutant a
I’Hamiltonien des termes supplémentaires qui dépendraient de w afin d’améliorer
la borne supérieure. Malheureusement 'application standard de cette technique a
notre modele, appelée constrained annealing, ne peut pas améliorer la borne an-
nealed h(-) sur la courbe critique : ce point est I'objet du Chapitre 3, ol cette
technique est expliquée en détail.

Bien entendu, les difficultés que 1'on rencontre en essayant d’améliorer la borne
supérieure h(-) pourraient étre dues au fait que h(-) est la vraie courbe critique.
Cependant, I'analyse numérique développée dans le Chapitre 2 semble indiquer que

tel n’est pas le cas.

2.5.2. La borne inférieure. La preuve donnée dans [9] de la borne inférieure
he() > h(-) consiste a calculer explicitement la contribution d’énergie/entropie a
la fonction de partition donnée par une stratégie opportune pour le copolymere.

Grossierement, la stratégie choisie consiste a obliger le copolymere a passer la plus
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grande partie de son temps dans le demi—plan supérieur, en le faisant descendre dans
le demi—plan inférieur uniquement sur les longues portions de la suite des charges w =
{wn }» qui ont une moyenne empirique atypiquement négative. La statistique de ces
longues portions est décrite par la fonction de taux des Grandes Déviations [21]
pour des sommes de variables aléatoires IID distribuées comme wy, qui n’est que
la transformée de Legendre de logM(-) : c’est la raison pour laquelle cette forme
fonctionnelle apparait aussi dans la borne inférieure.

Nous ne reportons pas les détails de la preuve, puisque nous donnons une preuve
alternative de la borne inférieure dans le Chapitre 2 : voir Section 3 pour un exposé
des idées de la preuve et § 6.2 pour les détails. Nous soulignons que I'idée derriere la
stratégie décrite ci-dessus (et aussi derriere notre preuve) prend son inspiration d’un
schéma de renormalisation (non rigoureux) pour ’étude des systémes désordonnés
unidimensionnels, qui a été appliqué au modele du copolymere par C. Monthus [50].
Cette approche a été proposée pour la premiere fois par D. S. Fisher dans le contexte
du modele d’Ising quantique avec un champ magnétique transverse [30] et appliquée
ensuite a I’étude de la marche aléatoire dans un milieu aléatoire [45] avec un succes
remarquable.

Nous soulignons que la borne inférieure A(-) sur la courbe critique semble étre
tres robuste : nous avons essayé en vain d’enrichir la stratégie décrite ci—dessus (c’est-
a-dire de garder un nombre plus grand de trajectoires de la marche) pour améliorer
la borne. Bien str il pourrait se trouver que h.(-) = h(-), mais dans le Chapitre 2
nous présentons plusieurs observations numériques et un test statistique rigoureux

qui indiquent clairement que h.(-) > h(-).

2.6. Le comportement des trajectoires. Dans cette section on verra que la
division du diagramme de phase dans les deux régions L et D, qui ont été définies
en fonction de I'énergie libre, correspond en effet a un comportement radicalement
différent des trajectoires typiques de la mesure du copolymere, pour le moins si on ne
considere pas le cas critique, c’est-a-dire si on considere le systeme pour (A, h) € L
ou pour (A, h) dans l'intérieur de la région D (qui sera appelé dans la suite région
strictement délocalisée). On verra que le régime localisé est bien compris, alors que

le régime délocalisé reste plus élusif. Commencons par le cas périodique :

2.6.1. Le cas périodique. Des résultats tres forts de localisation pour les trajec-
toires peuvent étre obtenus en appliquant la technique utilisée dans [62] par Sinai

pour étudier le cas aléatoire. Plus précisément, si (A, h) € L alors pour tout € > 0 il
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existe des constantes positives Ny > 0, Ly > 0 telles que pour tout N > N
sup PN (|Sn] > L) < exp(— (Fo(\h)—e)L) VL>Ly.  (1b.12)
n=1,..., ’
De plus, la méthode utilisant la théorie des Grandes Déviations exploitée dans [11]
donne des informations détaillées sur les retours a zéro sous la mesure du copolymere,
qui forment un ensemble de densité positive, voir [11, § 1.7].
Par contre, les résultats disponibles pour la phase délocalisée sont moins précis :
le seul résultat connu en complete généralité est que dans le régime strictement
délocalisé le polymere passe presque tout son temps au dessus de n’importe quel

niveau préfixé, c’est-a-dire que pour tout L > 0,

N

1

N > 1(SnzL>] =1. (1b.13)
n=1

Des résultats plus forts ont étés obtenus pour des exemples plus spécifiques : par

. \h
lim Ey
N—oo ’

exemple dans [51] le cas w,, = (—1)" a été traité pour un modele de copolymere qui
differe du nétre par la définition de sign(0) (nous renvoyons a [11, § 1.5] pour plus
de détails sur I'implication de cette modification). Les auteurs calculent la loi des re-
tours a zéro sous la mesure du copolymere, d’ott on peut extraire les limites d’échelle
Browniennes du modele en utilisant les idées de [40] ou 'approche générale et plus
robuste que nous adoptons dans le Chapitre 4. Plus précisément, on peut prouver
que pour (A, h) dans I'intérieur de la région D la loi du processus {S|in|/V'N hep,]
sous la mesure du copolymere PJA\,}; converge faiblement vers la loi du méandre
Brownien (c’est-a-dire la loi d’'un mouvement Brownien standard conditionné a ne
pas entrer dans le demi-plan inférieur, cf. [60]). On peut faire I’analyse aussi dans le
cas critique, c’est-a-dire quand h = h.(\), en montrant que dans ce cas le processus
qui apparait comme limite d’échelle est la valeur absolue d’un mouvement Brownien.

Nous soulignons que la preuve de ces résultats a été obtenue essentiellement
par des calculs explicites : en effet en considérant les marginales d'un copolymere de
période 2 sur les sites pairs on obtient un modele d’accrochage/décrochage homogene
qui est exactement résoluble [40] (voir aussi § 3.1 ci—dessous). Néanmoins, on pense
que ces résultats devraient étre vrais pour tout w périodique.

Dans le Chapitre 4 nous prouverons en effet que les deux limites d’échelle Brow-
nienne, dans le cas strictement délocalisé et critique, ont lieu en complete généralité
pour une vaste classe de modeles de polymeres périodiquement inhomogenes, y com-

pris le copolymere a proximité d’une interface sélective (et aussi les modeles de
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mouillage et d’accrochage/décrochage, qui seront étudiés dans § 3.1 ci—dessous). De
plus nous donnerons aussi une description précise des propriétés locales des trajec-
toires de la mesure du copolymere dans la limite thermodynamique pour tous les

régimes, y compris le régime localisé.

2.6.2. Le cas aléatoire. Dans le cas aléatoire il est établi de méme que pour
(A, h) € L les trajectoires du copolymere sont localisées dans un sens fort. L’analogue
aléatoire de I'équation (la.12) a été prouvé par Sinai dans [62] pour le cas A >
0,h = 0 (mais la méthode peut étre étendue & toute la région localisée, cf. [35]).
Une certaine attention est nécessaire pour une formulation correcte : dans cette
section on travaillera avec des suites de charges doublement infinies, c’est-a-dire
qu’on suppose que w = {w, fnez est un élément de l'espace Q := RZ et P est bien
sur la loi produit sur €2. On définit aussi pour n € N la translation #™ sur 2 par
(0"w)k = wpik. On peut alors énoncer le résultat de Sinai : pour tout € > 0 il existe
deux variables aléatoires Ny(w), Lo(w) : @ — N telles que pour P-presque tout w et

pour tout N > Ny(w) on a la relation suivante :

Vn € {log" N,...,N —log" N} VL > Ly(6"(w))
o (1b.14)
Pz\f,w(‘sn‘ > L) < exp ( — (Fw()\, h) — 6) L) ,

ot v > 0 est une constante absolue (qui ne dépend ni de € ni de w).

Quelques observations sont nécessaires. La restriction sur les valeurs de n n’a été
imposée que par soucis de simplicité : il est possible d’étendre la relation ci—dessus a
tout n < N, mais les notations deviennent plus compliquées. Le point clé est plutot
la condition L > L (9” (w)), qui signifie que le “rayon de localisation” dépend de n,
et en effet celui-ci peut étre arbitrairement grand puisque la variable aléatoire Lg
n’est pas bornée. Cette restriction peut faire apparaitre I'estimation (1b.14) comme
insatisfaisante, mais elle est en fait inévitable et la raison pour cela est due a la
présence de portions atypiques arbitrairement longues dans la suite w : en effet si
un site n est entouré par un segment {w, g, ..., W, ik} avec une moyenne empirique
atypiquement positive, cela produira un effet répulsif qui poussera S,, a une hauteur
dordre ~ Vk (dans le Chapitre 2 on verra qu’on peut aussi profiter des segments
atypiques).

Quoi qu’il en soit, la situation n’est pas si mauvaise. D’un co6té, la variable
aléatoire Ly peut étre choisie telle que E[exp(aLo)] < oo pour un « > 0 et donc

pour P-presque tout w on a que Lo("w) < a~'logn pour n assez grand : par
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conséquent le rayon de localisation est dans tous cas beaucoup plus petit que la
taille du copolymere. De l'autre coté, le Théoreme Ergodique de Birkhoff entraine
que pour tout K > 0, P(dw)—p.s.

N
lim Z 1{L0(6"w)>K} = ]P)(LQ > K) ,
n=1

N—oo

donc en choisissant K suffisamment grand on a que le rayon de localisation est plus
petit que K pour la plus grande fraction du temps.

On observe que des résultats de localisation tres forts ont lieu aussi pour la limite
thermodynamique de la mesure du copolymere : nous ne les reportons pas ici, et
renvoyons a [8, 1] pour plus de détails.

Passons au régime délocalisé, en soulignant que pratiquement aucun résultat
n’est pour linstant disponible pour le cas critique. Dans la région strictement
délocalisée la situation est dans un certain sens meilleure : par exemple on sait
que (1b.13) est vraie pour P-presque tout w. De toute fagon, il s’agit d’une in-
formation plutot faible sur le comportement des trajectoires, surtout par rapport
aux résultats correspondants pour le cas périodique (et plus généralement pour les
modele non désordonnés, voir par exemple [22] et les référence citées), c’est-a-dire
la limite d’échelle Brownienne.

La maniere standard de prouver cette limite d’échelle pour le régime stricte-
ment délocalisé est de montrer que sous la mesure du copolymere P?‘VIZJ I'instant
de la derniere visite au demi-plan inférieur est o(N). En fait pour les modeles non
désordonnés on en sait beaucoup plus : dans la limite N — oo le polymere de-
vient transient et il ne visite le demi-plan inférieur (ou tout point au dessous de
n’importe quel niveau préfixé) qu'un nombre fini de fois. La situation est différente
pour le copolymere dans le cas aléatoire : en effet dans [36] il a été montré que
pour A < h(\) le nombre de visites au demi-plan inférieur sous la mesure quenched
moyennée EE?‘V}L[ -] est O(log N). Cela ne suffit pas pour obtenir la limite d’échelle :
on sait que le nombre de visites au demi—plan inférieur est o(/N) mais on ne sait pas
si elles ont toutes lieu & proximité de 1'origine (on renvoie a [36] pour une discussion
plus détaillée de ce qu’il reste a prouver).

Soulignons que dans ces problemes un role tres important est joué par le com-
portement asymptotique de la fonction de partition Zy, quand N — oo, dans
I'intérieur de la région délocalisée. Dans le cas non désordonné on sait que Zy,, ~

N~Y2 voir par exemple le Théoreme 4.5 du Chapitre 4. Par contre, on sait que
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ce genre de comportement asymptotique n’est plus vrai dans le cas aléatoire : plus
précisément pour tout (A, h) dans l'intérieur de la région D il existe € > 0 et une
sous—suite {Ty(w)}y telle que NY2=¢Z__ (., — oo quand N — oo, voir Proposi-
tion 4.1 dans [36].

Le probleme du comportement des trajectoires dans la région délocalisée pour le

cas aléatoire est examiné sous d’autres aspects dans § 4.1 du Chapitre 2.

3. Autres modeles de polymeres

3.1. Accrochage a une interface et modeles de mouillage. Un autre
probleme qui a été 'objet de beaucoup d’attention est la situation ot une chaine
polymérique est attirée (ou repoussée) par une interface, qui peut étre soit pénétrable
soit impénétrable. On peut modéliser cette situation en donnant une récompense (ou
une pénalisation) a chaque monomere situé sur l'interface, cette récompense/péna-
lisation peuvant varier d’'un monomere a ’autre si la chaine est hétérogene. Comme
pour le modele de copolymere analysé dans la section précédente, cette modification
peut altérer considérablement les trajectoires de la marche en faisant apparaitre une
transition de localisation/délocalisation.

Nous allons définir un modele probabiliste pour ces situations quand l'interface
est plate (elle sera pour nous l’axe des abscisses). On commence par le cas ou
'interface est pénétrable (modeéle d’accrochage/décrochage) : comme dans la section
précédente, on prend une marche aléatoire simple {5, }, avec loi P, et pour N € 2N,

BER et w={w,}nen € RY on définit une nouvelle loi Pﬁ,’w par

apP?, N
—5(8) o exp () wilis, o) | - (1b.15)
n=1

Le cas de 'interface impénétrable est obtenu en interdisant aux trajectoires d’entrer
dans le demi—plan inférieur jusqu’a I'instant N, c¢’est-a-dire en multipliant le membre
de droite ci-dessus par 1(g,>o,. sy>0)- Ce deuxieme cas sera appelé un modele de
mouillage, dans la mesure ou il peut étre interprété comme un modele pour une

interface qui interagit avec un mur impénétrable.
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Nous considérerons seulement les cas ou la suite des charges w est soit périodique
(et déterministe) ou aléatoire (quenched), et notre but sera de comprendre le com-
portement de la mesure ci-dessus quand N est grand. Les régimes de localisa-
tion/délocalisation peuvent étre définis en fonction de 'énergie libre, exactement
comme dans le cas du copolymere a proximité d'une interface sélective.

Un cas particulierement simple est le cas homogene, quand la suite w est con-
stante : w,, = w; pour tout n € N, et a une redéfinission pres du parametre A on
peut supposer w; = 1. Remarquons que dans ce cas les deux modeles d’accrocha-
ge/décrochage et de mouillage sont completement résolubles, non seulement en ce
qui concerne l'obtention du diagramme de phase (voir par exemple [35] pour une
dérivation élémentaire de I’énergie libre) mais aussi 'analyse tres détaillée du com-
portement des trajectoires du polymere [40, 22]. Nous ne voulons pas nous étendre
sur cela, puisque dans le Chapitre 4 nous étudierons en détail le cas ou la suite w est
périodique. Néanmoins, observons qu’avec des arguments de convexité il est facile
de montrer que le diagramme de phase dans le cas homogene dépend dun seul
nombre . tel que pour § > (. (resp. pour 5 < (3.) le polymere est localisé (resp.

délocalisé). De plus :

e dans le modele d’accrochage/décrochage (5. = 0 : cela signifie qu'une ré-

compense arbitrairement petite est suffisante pour localiser le polymere ;

e dans le modele de mouillage au contraire . > 0.

La raison pour laquelle le modele de mouillage est plus difficilement localisé que le
modele d’accrochage/décrochage est que le conditionnement de la marche & rester
non négative jusqu’au pas N produit un effet de répulsion d’ordre v/N sur les tra-
jectoires, un phénomene appelé répulsion entropique. Dans notre situation unidi-
mensionnelle, une version plus précise de ce phénomene est donnée par le principe
d’invariance suivant [10] : le processus {S|n¢/V'N }icjo) conditionné & 1'événement
{S1 > 0,...,Sy > 0} converge en loi quand N — oo vers le méandre Brownien,
c’est-a-dire vers un mouvement Brownien conditionné a rester non négatif [60]. Dans
le Chapitre 6 nous prouverons une version locale de cette convergence en loi.

Nous avons déja annoncé que nous étudierons dans le Chapitre 4 ces modeles
dans le cas périodique. Par ailleurs, dans cette these nous ne considérerons pas le cas
aléatoire. Mentionnons seulement que, de méme que pour le copolymere a proximité
d’un interface sélective, il n’y a pas de consensus dans la littérature physique sur le

diagramme de phase du modele, notamment sur les asymptotiques pour les petites
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valeurs des parametres : pour plus de détails sur ces questions et pour les résultats

rigoureux disponibles nous renvoyons a [2, 57].

En conclusion, soulignons la pertinence des modeles basés sur une marche aléatoi-
re pour la modélisation des molécules d’ADN. L’ADN a normalement une structure
en forme de double hélice, mais il peut arriver que les deux brins composant cette
double hélice se séparent, par exemple quand la température est suffisamment élevée
(transition de dénaturation) ou sous 'effet d'une force externe (pulling induced un-
zipping). Comme l'interaction entre les deux brins peut étre décrite (au moins en
premiére approximation) par un Hamiltonien de la forme (1b.15), la compétition en-
tre énergie et entropie qui conduit a de telles transitions de phase peut étre comprise
en étudiant les modeles d’accrochage/décrochage et de mouillage que nous venons

de décrire.

3.2. Un modele Brownien : la limite d’échelle de I’énergie libre. Un des
principaux résultats de Particle de Bolthausen et Den Hollander [12] est que dans la
limite de faible couplage le modele de copolymere décrit dans la Section 2 peut étre
approximé par un modele continu construit avec des mouvements Browniens en place
des marches aléatoires. Ce modele continu est défini d’'une maniere completement
analogue au modele discret : on prend deux mouvements Browniens B = {B;}>0
(le polymere) et 5 = {0 }1>0 (ses charges), de lois respectives P et P, et pour t > 0,
A h > 0 et {Bs}s trajectoire typique sous IF’, on introduit la mesure du polymere
f’jﬁh sur les trajectoires de longueur ¢, définie par

~\h .
dP—iﬁ(B) = % exp ()\/ sign(B;) (df, + hds)) ,
dP Z 0

ou l'intégrale par rapport a [, est une intégrale d’'It6. La fonction de partition du

modele est donnée par

Zt):bh = Eexp ()\ /t sign(8,) (dfs + hds)) ,
0

et 'énergie libre f(A, h) est définie par
ry 1 A
f(Ah) = tli)rglog log Z75'
ou la limite a lieu a la fois Iﬁ—p.s. et dans L, (IF’) Qui plus est, f(/\, h) n’est pas

aléatoire, c’est-a-dire qu’elle ne dépend pas de [ (voir [35] pour une preuve détaillée
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de 'existence d’une telle limite). Comme dans le cas discret, on a que

ce qui permet de distinguer entre un régime délocalisé (f(A, h) = Ah) et un régime

localisé (f (A, h) > Ah). La propriété d’invariance par changement d’échelle (scaling)

du mouvement Brownien entraine que pour tout a > 0

f(Ah) = ?f(a)\,ah),
d’otur il suit immédiatement que la courbe critique de ce modele est une droite, c¢’est-
a-dire

~ =Ah sih> K.\
dK.>0: f(\h) )
>\ sih< K.\

En dépit de l'apparente simplicité du diagramme de phase, on peut dire que ce
modele continu contient dans la constante K. toute la complexité du modele dis-
cret. Cette affirmation est précisée dans le théoreme fondamental qui suit (cf. [12,
Th. 5 et 6]), qui indique aussi dans quelle mesure le modele continu est une approxi-

mation du modele discret.

THEOREME 1b.4. Soit f(\, h) l’énergie libre du modéle discret (voir éq. (1b.3))
dans le cas ot P(w; = +1) = P(w; = —1) = 1/2, et h = h.(\) la courbe critique

correspondante (cf. Prop. (1b.1)). On a alors les relations suivantes :

1 ~
lir% — flax,ah) = f(A\h) VA h2>0 (1b.16)
a—0 Q
- he(N)
/ L _
h.(0) = }E)r(l) = K.. (1b.17)

En particulier de ’équation (1b.10) il s’ensuit que 2/3 < K, < 1.

Remarquons que I’équation(1b.17) ne découle pas directement de (1b.16) : en
effet la limite d’échelle de 1'énergie libre exprimée par I’équation (1b.16) n’implique
que la borne inférieure h/(0) > K.. La preuve de (1b.17) s’obtient par des inégalités
de comparaison tres précises entre f et fet demande des estimations tres fines.

Soulignons d’autre part que le Théoreme 1b.4 a été prouvé dans le cas ou les
charges ont une loi de Bernoulli symétrique, mais devrait étre valable dans un cadre
beaucoup plus général. L’explication intuitive serait que lorsque A\, h — 0, seules les
grandes excursions de la marche jouent un role fondamental, et par conséquence les

détails microscopiques du modele devraient étre peu importants.
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Ainsi, répétons que dans [36] il a été prouvé a I’aide d’Inégalités de Concentration
que pour que (1b.17) ait lieu il suffit que w; soit bornée et symétrique (et telle
que E[w;] = 0 et E[w;?] = 1) ou bien que w; soit une variable Normale standard. Par
ailleurs, la preuve originale du Théoréme 1b.4 donnée dans [12] peut étre adaptée
pour montrer qu’en effet les deux équations (1b.16) et (1b.17) sont satisfaites pour
n’importe quel choix de la loi de w; satisfaisant (1b.2) et telle que E[w;] = 0, E[w;?] =
1.

Dans le Chapitre 5 nous introduirons un autre type de variante du modele dis-
cret : plus précisément nous changerons la loi P de la marche aléatoire, en con-
sidérant des marches aléatoires réelles dont les accroissements sont bornés et de loi
absolument continue. Intuitivement, cette modification ne devrait pas changer les
conclusions du Théoreme 1b.4 non plus, mais donner un preuve complete de ce fait
n’est pas du tout trivial. Pour I'instant, nous avons réalisé quelques étapes dans la
direction d’une preuve de ’équation (1b.16) : nous renvoyons au Chapitre 5 pour

plus de détails sur ce probleme.

4. Apercu de la bibliographie

Le probleme du copolymere a proximité d’'une interface sélective a une longue
histoire, notamment dans les domaines de la physique et de la chimie, mais le premier
article qui a attiré attention des mathématiciens est probablement [34]. La premiere
étude mathématique sur le sujet a été réalisée par Sinai dans [62] : le résultat
principal de ce papier est que pour h = 0 et A > 0 (A et h sont les parametres du
modele introduit dans la Section 2) les trajectoires typiques du copolymere couvert
de charges aléatoire sont localisées dans un sens tres fort (voir § 2.6 dessus). Dans
le travail ultérieur de Albeverio et Zhou [1], on trouve une étude des trajectoires et
une analyse détaillée de 1'énergie libre (toujours pour le cas aléatoire et pour h = 0).

Comme on ’a vu, dans le cas des charges aléatoires nous avons étés principale-
ment intéressés par le diagramme de phase, ce qui implique 1’étude du copolymere
pour h > 0. L’article fondamental dans cette direction est celui de Bolthausen et
den Hollander [12], ou I'existence et quelques propriétés basiques de la courbe cri-
tique h.(-) (y compris la borne supérieure de (1b.10)) ont été établies. Mais le résultat

le plus important de [12] est certainement la limite d’échelle de I’énergie libre donnée
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par le Théoreme 1b.4 dans § 3.2 ci-dessus. Le second résultat fondamental sur le dia-
gramme de phase dans le cas aléatoire, la borne inférieure de (1b.10), a été prouvé
par Bodineau et Giacomin dans [9].

La stratégie adoptée dans [9] prend son inspiration de l'article physique [50]
de Monthus, ou la borne inférieure h(-) fut introduite pour la premiere fois (sous
la forme d’une conjecture pour la vraie courbe critique). Remarquons que dans la
littérature physique la conjecture h.(-) = h(-) a été proposée aussi dans [64], motivée
par des arguments a base de répliques, tandis que dans [69] et dans [34] la conjecture
complémentaire h.(-) = h(-) a été proposée.

Si nous revenons a la littérature mathématique, une analyse des trajectoires dans
le cas aléatoire pour la région délocalisée £ dans son entier a été obtenue par Biskup
et den Hollander dans [8] : les mots-clés de leur approche sont la limite thermody-
namique et les mesures de Gibbs. D’autre part, les résultats sur les trajectoires dans
la région délocalisée semblent beaucoup plus difficiles a établir. Toutefois, des progres
récents dans cette direction ont été obtenus par Giacomin et Toninelli dans [36].

Dans le cas ou la suite de charges est périodique, la question de la détermination
du diagramme de phase a été résolue completement dans I'article [11] de Bolthausen
et Giacomin (voir § 2.4). Pour des références sur des travaux antérieurs sur le
copolymere périodique, nous renvoyons aussi a cet article.

Dans la littérature on trouve aussi un grand nombre d’articles numérique sur les
copolymeres : on signale par exemple [19, 65]. Par rapport a ’approche numérique
développée dans le Chapitre 2, I'attention est souvent centrée sur des aspects dif-
férents, notamment la détermination des exposants critiques et I’étude de modeles
plus complexes basés sur des marches auto—évitantes plutot que dirigées.

Pour terminer, nous mentionnons [40], [22], [2], [71, 72] et leur références en ce

qui concerne les modeles d’accrochage/décrochage et de mouillage.

5. Organisation de la these
Notre exposé est organisé de la maniere suivante :

e Dans le Chapitre 2 nous présentons une approche combinant des simulations
et des calculs numériques couplés a des arguments rigoureux pour étudier
le diagramme de phase et le comportement des trajectoires du modele de
copolymere a proximité d'une interface sélective, défini dans la Section 2.

Nous considérons le cas ou la suite des charges est aléatoire. Nous donnons
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plusieurs indications sur le fait que la courbe critique est strictement com-
prise entre les deux bornes données dans I’équation (1b.10) et sur le fait que
dans la région strictement délocalisée on a la limite d’échelle vers le méandre
Brownien. En particulier la conjecture h.(-) = h(-) peut étre refusée avec
un tres grand niveau de confiance, grace a un test statistique rigoureux, sur
I’erreur duquel nous obtenons une borne explicite. Dans ce chapitre nous

donnons aussi une preuve alternative de la borne inférieure h.(-) > h(-).

L’article [17] a été tiré du contenu de ce chapitre.

Dans le Chapitre 3 nous examinons la technique du constrained anneal-
ing qui consiste a rajouter a I’Hamiltonien d'un systeme désordonné des
termes dépendant du désordre afin d’améliorer la borne annealed (voir
§ 2.5.1). Nous montrons que pour un grand nombre de modeles désordonnés
de chaines linéaires (y compris le copolymere a proximité d'une interface
sélective et les modeles d’accrochage/décrochage et de mouillage décrits
dans les sections précédentes) I'application standard de cette technique,
basée sur I'utilisation de moyennes empiriques de fonctions locales, ne peut

pas améliorer la borne annealed sur la courbe critique.

L’article [16] a été tiré du contenu de ce chapitre.

Dans le Chapitre 4 nous considérons un modele général de polymere hété-
rogene a proximité d'une interface, qui inclut en particulier le copolymere a
proximité d’une interface sélective et les modeles d’accrochage/décrochage
et de mouillage, dans le cas ou la suite des charges est périodique. Nous
proposons une approche basée sur la Théorie du Renouvellement qui permet
d’établir des estimations tres précises de la fonction de partition du modele
dans tous les régimes, y compris le régime critique. A partir de ces résultats,
nous obtenons une description tres précise de la limite thermodynamique

et des limites d’échelle de la mesure du polymere.
La prépublication [18] a été tirée du contenu de ce chapitre.
Dans le Chapitre 5 nous considérons une modification du modele du co-

polymere a proximité d’une interface sélective ou la mesure de référence P

n’est plus la loi de la marche aléatoire simple sur Z. Plus précisément,
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nous considérons le cas ou P est la loi d’'une marche aléatoire réelle dont
I’accroissement typique est centré, borné et de loi absolument continue.
Nous nous concentrerons sur le cas des charges aléatoires. Nous donnons
d’abord une preuve de l'existence de 1’énergie libre et étudions ensuite le
diagramme de phase du modele, en soulignant les analogies avec le cas
discret. En conclusion nous abordons la question d’étendre a ce modele la
limite d’échelle de I’énergie libre, cf. le Théoreme 1b.4 (travail en cours), en
donnant quelques résultats partiels dans cette direction et en décrivant les

points a résoudre.

Dans le Chapitre 6 nous prouvons un théoreme local limite pour des marches
aléatoires conditionnées a rester positives, dans un cadre tres général (sous
I'unique hypothese que la marche se trouve dans le domaine d’attraction de
la loi Normale). Ce théoreme est un renforcement local de la convergence en
loi vers le méandre Brownien. Ce résultat est intéressant non seulement en
soi, mais constitue aussi un outil important pour les modeles de polymeres
construits sur des marches aléatoires plus générales que la marche aléatoire

simple, comme pour le cas considéré dans le Chapitre 5.

L’article [15] a été tiré du contenu de ce chapitre.






CHAPTER 2

A numerical study of the phase diagram and path behavior

of the copolymer model with random charges

In this chapter we study the copolymer near a selective interface model, defined
in Section 2 of Chapter 1a, in the random case. We combine numerical computations
with rigorous arguments to get to a better understanding of the phase diagram and
of the path behavior. Our main aim is to provide evidences of the fact that the
critical line of the model h,(-) lies strictly in between the two bounds A(-) and h(-),
defined in (1a.10) of Chapter la, and to numerically analyze the delocalization issues

raised in § 2.6 of Chapter la. A detailed outline of the results is given in § 1.2.

The article [17] has been taken from the content of this chapter.

1. Introduction and results

1.1. Prelimiaries. The notations we will use are those introduced in Section 2
of Chapter la. We recall in particular the definitions (1a.7) and (1a.9) of the partition
functions Z])\‘,IL and Z])\‘,Z(x) (we will be mainly interested in the case z = 0). Also

remember that for the critical line h.(-) of our model we have the bounds
h(A) < he(A) < h(N), (2.1)

see Theorem la.4 of Chapter la. For what follows we set

B 1
2mA

R (X) log M (—=2mA) , (2.2)

for m > 0, where we recall that M(«) := E[exp(aw;)]. Observe that the curves h(-)

and h(-) correspond respectively to m = 2/3 and m = 1, and that for every m we

have LA™ (X)[rz0 = m.

Before proceeding, we present a different viewpoint on the process: this turns
out to be useful for the intuition and it will be used in some technical steps. We call
n the first return time of the walk S to 0, that is n :=inf {n > 1: S, = 0}, and set

55
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K(2n) :=P (n=2n) for n € N. It is well known that K(-) is decreasing on the even

natural numbers and
lim 22K (x) = \/2/, (2.3)

z€2N,z—00

see e.g. [28, Ch. 3]. Let the IID sequence {nj}j:m?m

at 0 for S, and we set 7, := 1y + ... + 1. If we introduce also £y = max{j €

denote the inter—arrival times

NU {0} : 7; < N}, then by exploiting the up-down symmetry of the excursions of
S we directly obtain

In 7
Znw(0) = E Hcp()\ Z wn, + )\hnj) Ty =N
j=1

n=7;_1+1

(2.4)

Z Z H <p<)\ 2 wy, + Ah(z; — le)) K(x; — 1),

=0 Z0,..., 2] €2N =1 n=x;—1+1
O0=:xp<...<z:=N

with (t) := (1 + exp(—2t)) /2. Of course the formula for Zy, is just slightly dif-
ferent.
Formula (2.4) reflects the fact that what really matters for the copolymer are

the return times to the interface.

1.2. Outline of the results. Formula (2.1) leaves an important gap, that
hides the only partial understanding of the nature of this delocalization /localization
transition. Our purpose is to go toward filling this gap: our results are both of
theoretical and numerical nature. At the same time we address the delocalization
issues raised in § 2.6 of Chapter la, which are intimately related with the precise

asymptotic behavior of Zy, and of Zy(0). More precisely:

(1) In Section 2 we present a statistical test with explicit error bounds, see
Proposition 2.2, based on super—additivity and concentration inequalities,
to state that a point (A, h) is localized. We apply this test to show that,
with a very low level of error, the lower bound h = h(\) does not coincide
with the critical line.

(2) In Section 3 we give the outline of a new proof of the lower bound h.(-) >
h(-). The details of the proof are in § 6.2 and we point out in particular
Proposition 2.10, that gives a necessary and sufficient condition for local-
ization. This viewpoint on the transition, derived from [36, § 4], helps sub-
stantially in interpreting the irregularities in the behavior of {Zn.}, as

N / oo.
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(3) In Section 4 we pick up the conjecture of Brownian scaling in the delo-
calized regime both in the intent of testing it and in trying to asses with
reasonable confidence that (A, k) is in the interior of D. In particular, we
present quantitative evidences in favor of the fact that the upper bound
h = h()) is strictly greater than the critical line. We stress that this is a
very delicate issue, since delocalization, unlike localization, does not appear
to be reducible to a finite volume issue.

(4) Finally, in Section 5, we report the results of a numerical attempt to deter-
mine the critical curve. While this issue has to be treated with care, mostly
for the reasons raised in point 4 above, we observe a surprising phenom-
enon: the critical curve appears to be very close to h(™(.) for a suitable
value of m. By the universality result proven in [36], building on the free
energy Brownian scaling result proven in [12], the slope at the origin of
he(-) does not depend on the law of w. Therefore if really h™(.) = h.(-),
since the slope at the origin of h(™(-) is m, m is the universal constant we
are looking for. We do not believe that the numerical evidence allows to
make a clear cut statement, but what we observe is compatible with such

a possibility.

We point out that our numerical results are based on a numerical computation of
the partition function Zy,, exploiting the standard transfer-matrix approach (this

item is discussed in more details in § 6.1).

2. A statistical test for the localized phase

2.1. Checking localization at finite volume. At an intuitive level one is led
to believe that, when the copolymer is localized, it should be possible to detect it
by looking at the system before the infinite volume limit. This intuition is due to
the fact that in the localized phase the length of each excursion is finite, therefore
for N much larger that the typical excursion length one should already observe
the localization phenomenon in a quantitative way. The system being disordered of
course does not help, because it is more delicate to make sense of what typicality
means in a non translation invariant set—up. However the translation invariance
can be recovered by averaging and in fact it turns out to be rather easy to give a
precise meaning to the intuitive idea we have just mentioned. The key word here is

super—additivity of the averaged free energy.
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In fact by considering only the S trajectories such that Son = 0 and by applying
the Markov property of S one directly verifies that for any N, M € N

Z2N+2M,w(0> 2 ZQN,w(()) Z2M,92Nw(0>7 (25)

(0w),, = wny1, and therefore

{Elog ZQN,w(())}N 1,2 (2-6)

.....

is a super—additive sequence, which immediately entails the existence of the limit of
E[log Zan . (0)]/2N and the fact that this limit coincides with the supremum of the

sequence. Therefore from the existence of the quenched free energy we have that
1
F(A\ h) = sup —Elog Zon ., (0) . (2.7)
N 2N ’
In a more suggestive way one may say that:
(\,h) € L <= there exists N € N such that Elog Zyy,(0) > 0. (2.8)

The price one pays for working with a disordered system is precisely in taking the
P—expectation and from the numerical viewpoint it is an heavy price: even with the
most positive attitude one cannot expect to have access to Elog Zon ., (0) by direct
numerical computation for N above 10. Of course in principle small values of N may
suffice (and they do in some cases, see Remark 2.1), but they do not suffice to tackle
the specific issue we are interested in. We elaborate at length on this interesting

issue in § 2.4.

REMARK 2.1. An elementary application of the localization criterion (2.8) is
obtained for N = 1: (A\,h) € L if

E [log (% + % exp (—2) (wn + ws + 2h))> S 0. (2.9)

In the case P(w; = +1) = 1/2 from (2.9) we obtain that for A\ sufficiently large
he(A) > 1 — ¢/, with ¢ = (1/4)log(2exp(4) — 1) ~ 1.17. From A(-) we obtain the
same type of bound, with ¢ = (3/4) log2 ~ 0.52. This may raise some hope that for
A large an explicit, possibly computer assisted, computation for small values of N of

Elog Zon ., (0) could lead to new estimates. This is not the case, as we show in § 2.4.
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2.2. Testing by using concentration. In order to decide whether E log Zsy ,(0) >

0 we resort to a Montecarlo evaluation of Elog Zsy,,(0) that can be cast into a sta-
tistical test with explicit error bound by means of concentration of measure ideas.
This procedure is absolutely general, but we have to choose a set—up for the com-
putations and we take the simplest: P(w; = +1) = P(w; = —1) = 1/2. The reason

for this choice is twofold:

e if w; is a bounded random variable, a Gaussian concentration inequality
holds and if w is symmetric and it takes only two values then one can
improve on the explicit constant in such an inequality. This speeds up in a
non negligible way the computations;

e generating true randomness is out of reach, but playing head and tail is
certainly the most elementary case in such a far reaching task (the random

numbers issue is briefly discussed in § 6.1 too).

A third reason to restrict testing to the Bernoulli case is explained at the end of
the caption of Table 2.

We start the testing procedure by stating the null hypothesis:
HO: Elog Zon,(0) <O0. (2.10)

N in HO can be chosen arbitrarily. We stress that refusing HO implies E log Zay ,(0) >
0, which by (2.8) implies localization.

The following concentration inequality for Lipschitz functions holds for the uni-
form measure on {—1,+1}": for every function Gy : {—1,+1} — R such that
|IGy(w) — Gy(W)| < CLip\/(ZiLl(wn — w!)?), where Ci;, a positive constant and

Gn(w) is an abuse of notation for Gy (wy,...,wx), one has
E [exp (o (G (w) — E[Gy(w)])] < exp (a*CEy) (2.11)

for every a. Inequality (2.11) with an extra factor 4 at the exponent can be extracted
from the proof of Theorem 5.9, page 100 in [46]. Such an inequality holds for vari-
ables taking values in [—1, 1]: the factor 4 can be removed for the particular case we
are considering (see [46, p. 110-111]). In our case G y(w) = log Zsn ,(0). By applying
the Cauchy—Schwarz inequality one obtains that Gy is Lipschitz with Cr;, = 22V'N.
Let us now consider an IID sequence {G%) (w)}; with Gg\l,) (w) = Gn(w): if HO holds
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then we have that for every n € N, v > 0 and o = un/8\2N
P <% PR u) < E[exp (5 (On(w) ~ ElGx(@))) ] exp (~a (u — E[G(w)])

(4042)\2]\7 >
<exp| —— —au

n
un
- P\ TTenen )

Let us sum up what we have obtained:

(2.12)

PROPOSITION 2.2. Let us call w, the average of a sample of n independent real-
izations of log ZZ’\]’Vh,w(O). If u, > 0 then we may refuse HO, and therefore (A\,h) € L,

with a level of error not larger than exp (—u2n/16A?N).

2.3. Numerical tests. We report in Table 1 the most straightforward applica-
tion of Proposition 2.2, obtained by a numerical computation of log Zy for a sample
of n independent environments w. We aim at seeing how far above h(-) one can go

and still claim localization, keeping a reasonably small probability of error.

REMARK 2.3. One might be tempted to interpolate between the values in Table
1, or possibly to get results for small values of A in order to extend the result of
the test to the slope of the critical curve in the origin. However the fact that h.())
is strictly increasing does not help much in this direction and the same is true for
the finer result, proven in [11], that h.(\) can be written as U(X\)/A, U(+) a convex

function.

2.4. Improving on h(-) is uniformly hard. One can get much smaller p—
values at little computational cost by choosing h just above h(\). As a matter of fact
a natural choice is for example h = (%50 ()\) > h(\), recall (2.2), for a set of values
of A\, and this is part of the content of Table 2: in particular E log Z;‘J’\l,i(?jﬂ(’\)(O) >0
with a probability of error smaller than 10~ for the values of A between 0.1 and 1.
However we stress that for some of these A’s we have a much smaller p—value, see the
caption of Table 2, and that the content of this table is much richer and it approaches
also the question of whether or not a symbolic computation or some other form of

computer assisted argument could lead to h.(A) > h(X\) for some A, and therefore
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A 0.3 0.6 1
h 0.22 0.41 0.58
p-value | 1.5x10°° 9.5 x 1073 1.6 x 107°
h(\) 0.195 0.363 0.530
h(A) 0.286 0.495 0.662
N 300000 500000 160000
n 225000 330000 970000
C. 1. 99% | 7.179 £ 0.050 | 9.011 + 0.045 | 7.643 £ 0.025
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TABLE 1. According to our numerical computations, the three pairs
(A\,h) are in £ and this has been tested with the stated p-values
(or probability/level of error). We report the values of h(\) and k()
for reference. Of course in these tests there is quite a bit of freedom
in the choice of n and N: notice that N enters in the evaluation of
the p-value also because a larger value of N yields a larger value
of Elog Z2)\J\7}L,w(0)' In the last line we report standard Gaussian 99%
confidence intervals for Elog ZzAj\,}iw(O). Of course the p-value under

the Gaussian assumption turns out to be totally negligible.

for A in an interval. Since such an argument would require N to be small, intuitively
the hope resides in large values of A, recall also Remark 2.1. It turns out that one
needs in any case N larger than 700 in order to observe a localization phenomenon
at h(®60()\). We now give some details on the procedure that leads to Table 2.

First and foremost, the concentration argument that leads to Proposition 2.2
is symmetric and it works for deviations below the mean as well as above. So we
can, in the very same way, test the null hypothesis E log Zan ., (0) > 0 and, possibly,
refuse it if 4, < 0, exactly with the same p-value as in Proposition 2.2. Of course
an important part of Proposition 2.2 was coming from the finite volume localization
condition (2.8): we do not have an analogous statement for delocalization (and we
do not expect that there exists one). But, even if Elog Zon ,(0) < 0 does not imply
delocalization, it says at least that it is pointless to try to prove localization by
looking at a system of that size.

In Table 2 we show two values of the system size N, N, and N_, for which, at
a given A, one has that Elog Zon, ,(0) > 0 and Elog Zon_,(0) < 0 with a fixed
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A 0.05() | 01 | 02 | 04|06 | 1 |20x) |46k | 8(k)
N, | 750000 | 190000 | 40000 | 9500 | 4250 | 1800 | 900 | 800 | 800
N_ | 600000 | 130000 | 33000 | 7500 | 3650 | 1550 | 750 | 700 | 700

TABLE 2. For a given A, both ElogZQ’\]v\};fjj”(/\)(o)

Elog Z;‘ J’\l,lffn()‘)(O) < 0 with a probability of error smaller than 10°

(and in some cases much smaller than that). Instead for the two cases

> (0 and

marked by a (x) the level of error is rather between 1072 and 1073,
For large values of A, the two cases marked with (xx), it becomes com-
putationally expensive to reach small p—values. However, above A = 3
one observes that the values of Zy,(0) essentially do not depend
anymore on the value of X\. This can be interpreted in terms of con-
vergence to a limit (A — oo) model, as it is explained in Remark 2.4.
If we then make the hypothesis that this limit model sharply describes
the copolymer along the curve (X, h™())) for A sufficiently large and
we apply the concentration inequality, then the given values of N,
and N_ are tested with a very small probability of error. Since the
details of such a procedure are quite lengthy we do not report them
here. We have constructed (partial) tables also for different laws of w,
notably w; ~ N(0,1), and they turned out to yield larger, at times
substantially larger, values of N1 (\).

probability of error (specified in the caption of the Table). It is then reasonable to
guess that the transition from negative to positive values of Elog Z. ,,(0) happens for
N € (N_, Ny). There is no reason whastoever to expect that Elog Zy,,(0) should
be monotonic in N but according to our numerical result it is not unreasonable to
expect that monotonicity should set in for N large or, at least, that for N < N_
(respectively N > N, ) Elog Zsn ., (0) is definitely negative (respectively positive).

REMARK 2.4. As pointed out in the caption of Table 2, from numerics one
observes a very sharp convergence to a A independent behavior as A becomes large,
along the line h = h(™ (). This is easily interpreted if one observes that h™()\) =
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FIGURE 2.1. A graphical representation of Table 2. The plot is log—
log, and a A\™¢ behavior is rather evident, c is about 2.08. This can
be nicely interpreted in terms of the coarse graining technique in the
proof of the weak interaction scaling limit of the free energy in [12]:
from that argument one extracts that if A is small the excursions
that give a contribution to the free energy have typical length A2
and that in the limit the polymer is just made up by this type of
excursions. One therefore expects that it suffices a system of size N(\),
with limy\ o A2N(\) = +oo, to observe localization if m < h.(0),
h = h" (X)) = mA(1+o(1)) and X is small.

1 — ((log2)/2mA) + O(exp(—4mA)) so that
al log 2 al
)\ll_)Hc}o exp (—2/\ ; (wn + h) An> = exp ( - ; An> 1{ZnN:1An(1+wn)=0}(S)'

(2.13)

This corresponds to the model where a positive charge never enters the lower half-

plane and where the energy of a configuration is proportional to the number of

negative charges in the lower half-plane.

3. Lower bound strategies versus the true strategy
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3.1. An approach to lower bounds on the critical curve. In this section

we give an outline of a new derivation of the lower bound

h(\) < ho(\), (2.14)

with h(A) defined in (1a.10) of Chapter la. The complete proof may be found in
§ 6.2. The argument takes inspiration from the ideas used in the proof of Propo-
sition 3.1 in [36] and, even if it is essentially the proof of [11] in disguise, in the
sense that the selection of the random walk trajectories that are kept and whose
energy contribution is evaluated does not differ too much (in a word: the strategy
of the polymer is similar), it is however conceptually somewhat different and it will
naturally lead to some considerations on the precise asymptotic behavior of Zy,, in

the delocalized phase and even in the localized phase close to criticality.

The first step in our proof of (2.14) is a different way of looking at localization.
For any fixed positive number C' we introduce the stopping time (with respect to
the natural filtration of the sequence {w,}) T¢ = T (w) defined by

TEM (W) := inf{N € 2N: Z3"(0) > C}. (2.15)

The key observation is that if E[TC] < oo for some C' > 1, then the polymer
is localized. Let us sketch a proof of this fact (for the details, see Proposition 2.10
of § 6.2): notice that by the very definition of T¢ we have Zrc(w)w(0) > C. Now
the polymer that is in zero at T¢(w) is equivalent to the original polymer, with
a translated environment ' = 7w, and setting Th(w) = TC(W') we easily get
27y @)+ T (w)w(0) > C? (we have put Tj(w) := T(w)). Notice that the new envi-
ronment «’ is still typical, since T is a stopping time, so that 75 is independent
of T7 and has the same law. This procedure can be clearly iterated, yielding an
IID sequence {Tj(w)}i=12,. that gives the following lower bound on the partition

function:
2Ty ()4t T () (0) = C™. (2.16)
From this bound one easily obtains that

a.s. 7. 1Og ZT1 (W)+..+Th(w) w(O) log C
A h =2 1 n b >
PR = i e A @) BT

(2.17)

where we have applied the strong law of large numbers, and localization follows since
by hypothesis C > 1 and E[T“] < oo.
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REMARK 2.5. It turns out that also the reciprocal of the claim just proved holds
true, that is the polymer is localized if and only if E[T] < oo, with an arbitrary
choice of C' > 1, see Proposition 2.10. In fact the case E[T“] = co may arise in two

different ways:

(1) the variable T is defective, P[T® = oc] > 0: in this case with positive
probability {Zy(0)}n is a bounded sequence, and delocalization follows
immediately;

(2) the variable T is proper with infinite mean, P[T¢ = oo] = 0, E[T“] = cc:
in this case we can still build a sequence {T;(w)}i=12. .. defined as above
and this time the lower bound (2.16) has subexponential growth. Moreover
it can be shown that in this case the lower bound (2.16) gives the true free
energy, cf. Lemma 2.9, which therefore is zero, so that delocalization follows

also in this case.

As a matter of fact, it is highly probable that in the interior of the delocalized phase
Zn.w(0) vanishes P(dw)-a.s. when N — oo and this would rule out the scenario (2)
above, saying that for C' > 1 the random variable 7¢ must be either integrable or
defective. We take up again this point in Sections 4 and 5: we feel that this issue is

quite crucial in order to fully understand the delocalized phase of disordered models.

REMARK 2.6. Dealing directly with 7¢ may be difficult. Notice however that if

one finds a random time (by this we mean simply an integer—valued random variable)
T =T (w) such that

Zrww(0)>C>1,  with E[T] < oo, (2.18)

then localization follows. This is simply because this implies 7¢ < T and hence
E[T¢] < oo. Therefore localization is equivalent to the condition log Zr(,).(0) > 0
for an integrable random time T'(w): we would like to stress the analogy between

this and the criterion for localization given in § 2.1, see (2.8).

Now we can turn to the core of our proof: we are going to show that for every
(A, h) with h < h(\) we can build a random time 7" = T'(w) that satisfies (2.18).
The construction of T is based on the idea that for h > 0 if localization prevails
is because of rare w—stretches that invite the polymer to spend time in the lower

half-plane in spite of the action of h.
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The strategy we use consists in looking for g—atypical stretches of length at least

M € 2N, where ¢ < —h is the average charge of the stretch. Rephrased a bit more
precisely, we are looking for the smallest n € 2N such that > Lwi/k < g for
some even integer k > M. It is well known that such a random variable grows, in the
sense of Laplace, as exp(X(q)M) for M — oo, where X(q) is the Cramer functional
X(q) := (sltelg{aq —logM(a)}. (2.19)

One can also show without much effort that the length of such a stretch cannot be
much longer than M. Otherwise stated, this is the familiar statement that the longest
g—atypical sub—stretch of wy, ..., wy is of typical length ~ log N/¥(q). So T'(w) is for
us the end—point of a g—atypical stretch of length approximately (logT'(w))/%(q):
by looking for sufficiently long g—atypical stretches we have always the freedom to
choose T'(w) > 1, in such a way that also log T'(w) < T'(w) and this is helpful for the
estimates. So let us bound Zr,) . from below by considering only the trajectories
of the walk that stay in the upper half-plane up to the beginning of the g—atypical
stretch and that are negative in the stretch, coming back to zero at step T'(w) (see
Fig. 2.2: the polymer is cut at the first dashed vertical line). The contribution of

these trajectories is easily evaluated: it is approximately

(W) exp (—2)\(q + h)%) : (2.20)

For such an estimate we have used (2.3) and log T'(w) < T'(w) both in writing the
probability that the first return to zero of the walk is at the beginning of the ¢—
atypical stretch and in neglecting the probability that the walk is negative inside
the stretch. It is straightforward to see that if

—h < ——q—3(q), (2.21)

and if T'(w) is large, then also the quantity in (2.20) is large. We can still optimize
this procedure by choosing ¢ (which must be sufficently negative, i.e. ¢ < —h). By
playing with (2.19) one sees that one can choose gy € R such that for ¢ = gy the right—
hand side in (2.21) equals logM(—4A/3) and if h < logM(—4A/3)/(4\/3) = h(}\)
then gy < —h. This argument therefore is saying that there exists C' > 1 such that

Z1(w)w(0) = C, (2.22)

for every w. It only remains to show that E[T] < oo: this fact, together with a

detailed proof of the argument just presented can be found in § 6.2.
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FIGURE 2.2. Inequality (2.23) comes simply from restricting the eval-
uation of Zr1r. to the trajectories visiting the g—atypical stretch
of length ¢ and by staying away from the unfavorable solvent after
that.

3.2. Persistence of the effect of rare stretches. As pointed out in the
previous section, there is strong evidence that h.(\) > k(). At this stage Fig. 2.3
is of particular interest. Notice first of all that in spite of being substantially above
h(-) the copolymer appears to be still localized, see in particular case A.

The rigorous lower bounds that we are able to prove cannot establish localization
in the region we are considering. All the same, notice that if one does not cut the
polymer at T'(w), as in the argument above, but at T'(w) 4+ L, a lower bound of the
following type

roughly 1 10g T(w) 1
ZT(w)—i—L,w > COHSt.W exp (—2)\(q + h) E(q) ) 112 (223)

is easily established. Of course we are being imprecise, but we just want to convey

the idea, see also Fig. 2.2, that after passing through an atypically negative stretch
of environment (g > 0), the effect of this stretch decays at most like L=Y/2, that is
the probability that a walk stays positive for a time L.

At this point we stress that the argument outlined in § 3.1 and re—used for
(2.23) may be very well applied to h > h(\), except that this time it does not
suffice for (2.22). But it yields nevertheless that for 2 € (A(A), h()\)) the statement
Znw ~ N7Y2 something a priori expected (for example [14]) in the delocalized
regime and true for non disordered systems, is violated. More precisely, one can
find a sequence of random times {r;};, lim;7; = oo such that Z, , > 7,71/

a = a(A, h) > 0 (see Proposition 4.1 in [36]). These random times are constructed
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exactly by looking for g—atypical stretches as above and one can appreciate such an
irregular decay for example in case B of Fig. 2.3, and this in spite of the fact that

the data have been strongly coarse grained.

Therefore the lower bound (2.23), both in the localized and in the delocalized
regime, yields the following picture: the lower bound we found on Zy, grows sud-
denly in correspondence of atypical stretches and after that it decays with an ex-
ponent 1/2; up to another atypical stretch. This matches Fig. 2.3, at least at a

qualitative level, see the caption of the figure.

4. The delocalized phase: a path analysis

Let us start with a qualitative observation: if we set the parameters (A, h) of the
copolymer to (A, A™(\)) with m = 0.9, then the observed behavior of {Zﬁ,}L(O)}N
—suitably averaged over blocks in order to eliminate local fluctuations— is somewhat
close to (const)/N3/2. This is true for all the numerically accessible values of N (up
to N ~ 108), at once for a number of values of A and for a great number of typical
environments w. Of course this is suggesting that for m = 0.9 the curve h(™ ()) lies in
the delocalized region, but it is not easy to convert this qualitative observation into a
precise statement, because we do not have a rigorous finite—volume criterion to state
that a point (A, h) belongs to the delocalized phase (the contrast with the localized
phase, see (2.8), is evident). In other words, we cannot exclude the possibility that
the system is still localized but with a characteristic size much larger than the one
we are observing.

Nevertheless, the aim of this section is to give an empirical criterion, based on an
analysis of the path behavior of the copolymer, that will allow us to provide some
more quantitative argument in favor of the fact that the curve h(™()) lies in the
delocalized region even for values of m < 1. This of course would entail that the
upper bound h()\) defined in (2.1) is not strict.

4.1. Known and expected path behavior. We want to look at the whole
profile {Z]’t;zr (2) }zez rather than only at Zﬁ;zr (0), where by w” we mean the envi-
ronment w in the backward direction, that is (w"), := wni1—, (the reason for this

choice is explained in Remark 2.7 below). The link with the path behavior of the
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copolymer, namely the law of Sy under the polymer measure Pf‘\}ﬁjr, is given by
: _ P?\},}LT(SN =1). (2.24)

We have already remarked in § 2.6 of Chapter la that, although the localized
and delocalized phases have been defined in terms of free energy, they do correspond
to sharply different path behaviors. In the localized phase it is known [62, 8] that
the laws of Sy under P}\\}Z,r are tight, which means that the polymer is essentially at
O(1) distance from the xz—axis. The situation is completely different in the (interior
of the) delocalized phase, where one expects that Sy = O(v/N): in fact the con-
jectured path behavior (motivated by the analogy with the known results for non
disordered models, see in particular [51], [22] and [18]) should be weak convergence
under diffusive scaling to the Brownian meander process (that is Brownian motion
conditioned to stay positive on the interval [0, 1], see [60]). Therefore in the (interior
of the) delocalized phase the law of Sy/ VN under P}\\}Z}T should converge weakly
to the corresponding marginal of the Brownian meander, whose law has density
z exp(—2?/2)1z>0).

In spite of the lack of precise rigorous results, the analysis we are going to describe
is carried out under the hypothesis that, in the interior of the delocalized phase, the
scaling limit towards Brownian meander holds true (as it will be seen, the numerical

results provide a sort of a posteriori confirmation of this hypothesis).

REMARK 2.7. From a certain point of view attaching the environment backwards
does not change too much the model: for example it is easy to check that if one
replaces w by w” in (1a.8), the limit still exists P(dw)-a.s. and in L;(dP). Therefore
the free energy is the same, because {w], }1<,<n has the same law as {w;, }1<n<n, for
any fixed N.

However, if one focuses on the law of Sy as a function of N for a fixed environ-
ment w, the behavior reveals to be much smoother under P}\\}Z,r than under P?‘VIZJ
For instance, under the original polymer measure PJA\,}L it is no more true that in the
localized region the laws of Sy are tight (it is true only most of the time, see [35]
for details). The reason for this fact is to be sought in the presence of long atypical

stretches in every typical w (this fact has been somewhat quantified in [36, Section

4] and it is at the heart of the approach in Section 3) that are encountered along
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the copolymer as N becomes larger. Of course the effect of these stretches is very
much damped with the backward environment.

A similar and opposite phenomenon takes place also in the delocalized phase.
In fancier words, we could say that for fixed w and as N increases, the way Sy ap-
proaches its limiting behavior is faster when the environment is attached backwards:

it is for this reason that we have chosen to work with P;\\},}L*‘

4.2. Observed path behavior: a numerical analysis. In view of the above
considerations, we choose as a measure of the delocalization of the polymer the ¢,
distance A}\\}h(w) between the numerically computed profile for a polymer of size 2N

under P;‘}\};M, and the conjectured asymptotic delocalized profile:

Z/\’hr(l') 1 T 2
AN (w) = P - +< ) ) @) = xe P10 .
V) ;22 20", Van” \Van v () (220)

(2.25)
Loosely speaking, when the parameters (A, h) are in the interior of the the delocalized
region we expect Ay to decrease to 0 as IV increases, while this certainly will not

happen if we are in the localized phase.

The analysis has been carried out at A = 0.6: we recall that the lower and upper
bound of (2.1) give respectively h(0.6) ~ 0.36 and h(0.6) ~ 0.49, while the lower
bound we derived with our test for localization is h = 0.41, see Table 1. However,
as observed in Section 3, Fig. 2.3, there is numerical evidence that h = 0.43 is still
localized, and for this reason we have analyzed the values of h = 0.44,0.45,0.46,0.47
(see below for an analysis on smaller values of h).

For each couple (\,h) we have computed AYV"(w) for the sizes N = a x 106
with a = 1,2,5,10 and for 500 independent environments. Of course some type of
statistical analysis must be performed on the data in order to decide whether there
is a decay of A or not. The most direct strategy would be to look at the sample
mean of a family of IID variables distributed like Ay (w), but it turns out that the
fluctuations are too big to get reasonable confidence intervals for this quantity (in
other words, the sample variance does not decrease fast enough), at least for the
numerically accessible sample sizes. A more careful analysis shows that the variance
is essentially due to a very small fraction of data that have large deviations from

the mean, while the most of the data mass is quite concentrated.
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For this reason we have chosen to focus on the sample median rather than on
the sample mean. Table 3 contains the results of the analysis (see also Fig. 2.4 for
a graphical representation): for each value of h we have reported the standard 95%
confidence interval for the sample median (see Remark 2.8 below for details) for the
four different values of N analyzed. While for h = 0.44 the situation is not clear,
we see that for the values of h greater than 0.45 there are quantitative evidences
for a decrease in Apy: this leads us to the conjecture that the points (A, h) with
A = 0.6 and h > 0.45 (equivalently, the points (X, R(™ (X)) with m > 0.876) lie in

the delocalized region.

K\ N (x106) 1 2 5 10
0.44 0603, .0729] | [.0574,.0682] | [.0572,.0689] | [.0570, .0695]
0.45 [0258, .0286] | [.0207,.0232] | [.0170,.0190] | [.0149, .0171]
0.46 0140, .0154] | [.0108, .0116] |[.00792, .00869] | [.00647, .00731]
0.47 .00905, .00963] | [.00676, .00711] | [.00475, .00508] | [.00364, .00398]

TABLE 3. The table contains the standard 95% confidence interval
for the median of a sample {AV"(w)}, of size 500, where A\ = 0.6
and h, N take the different values reported in the table. For the val-
ues of h > 0.45 the decreasing behavior of Ay is quite evident (the

confidence intervals do not overlap), see also Fig. 2.4.

As already remarked, these numerical observations cannot rule out the possibil-
ity that the system is indeed localized, but the system size is too small to see it.
For instance, we have seen that there are evidences for h = 0.43 to be localized (see
case C of Fig. 2.3). In any case, the exponential increasing of Zy(0) is detectable
only at sizes of order~ 108, while for smaller system sizes (up to~ 107) the quali-
tative observed behavior of Zy(0) is rather closer to (const)/N3/2, thus apparently
suggesting delocalization (see case D of Fig. 2.3).

For this reason it is interesting to look at A?f’h for h = 0.42,0.43 and for
N < 108. For definiteness we have chosen N = ax10° with a = 1,2, 5, 10, performing
the computations for 3000 independent environments: the results are reported in
Table 4 (see also Fig. 2.4). As one can see, this time there are clear evidences for an

increasing behavior of Ay. On the one hand this fact gives some more confidence
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on the data of Table 3, on the other hand it suggests that looking at {Ax}y is a

more reliable criterion for detecting (de)localization than looking at {Zx(0)} .

h\N(x10°) 1 2 5 10
0.42 [.351, 0.382] | [480, 0.517] | [.751, 0.794] | [1.01, 1.06]
0.43 143, 0.155] | [.165, 0.180] | [.197, 0.215] | [.236, 0.264]

TABLE 4. The table contains the standard 95% confidence interval
for the median of a sample {AV"(w)}. of size 3000, where A\ = 0.6
and h, N take the values reported in the table. For both values of h
an increasing behavior of Ay clearly emerges, see also Fig. 2.4 for a

graphical representation.

REMARK 2.8. A confidence interval for the sample median can be obtained in the
following general way (the steps below are performed under the assumption that the
median is unique, which is, strictly speaking, not true in our case, but it will be clear
that a finer analysis would not change the outcome). Let {Y}1<x<, denote a sample
of size n, that is the variables {Y}}, are independent with a common distribution,
whose median we denote by & /o: P (Y1 < §1/2) = 1/2. Then the variable

has a binomial distribution N,, ~ B(n,1/2) and when n is large (for us it will be
at least 500) we can approximate N, /n ~ 1/2+ Z/(2y/n), where Z ~ N(0,1) is a
standard gaussian. Let us denote the sample quantiles by =,, defined for ¢ € (0,1)
by

#{i<n: Y, <E;}=|qn]. (2.27)
If we set a := |®71(0.025)| (P being the standard gaussian distribution function)

then the random interval

[:%72%7 :%H%} (2.28)
is a 95% confidence interval for &; /2, indeed
1 1 1 a 1 a
095=P(Z¢c[-aad)=P(-+—27 [___,_ ]
(2 € [-a.d]) <2+2\/ﬁ 2w 2+2\/ﬁ)
N, 1 a 1 a
~ P — |:_ a5 /= A i| =P(=:1 . < <= a .
(ne 2" 2yn 2*2@) (%—m—fm— %mﬁ)

(2.29)
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5. An empirical observation on the critical curve

The key point of this section is that, from a numerical viewpoint, h.(-) seems
very close to h(™)(-), for a suitable value of m. Of course any kind of statement in
this direction requires first of all a procedure to estimate h.(-) and we explain this
first.

Our analysis is based on the following conjecture:

(A h) €D = lim Z,(0) = 0, P(dw) —as. (2.30)
The arguments in Section 3 suggest the validity of such a conjecture, which is com-
forted by the numerical observation. Since, if (A, h) € L, ZQ’\]\? ,(0) diverges (expo-
nentially fast) P (dw)-almost surely and since Z; ]\If ,(0) is decreasing in h, we define
iLNW()\) as the only A that solves ZQ’\]’Vh,w(O) = 1. We expect that iLNW()\) converges to
he(\) as N tends to infinity, for typical w’s. Of course setting the threshold to the
value 1 is rather arbitrary, but it is somewhat suggested by (2.8) and by the idea
behind the proof of (2.14) (Proposition 2.10 and equation (2.15)).

What we have observed numerically, see Figures 2.5 and 2.6, may be summed

up by the statement
there exists m such that Ay, (A) ~ AT (\). (2.31)

Practically this means that iLNyw()\), for a set of A ranging from 0.05 to 4, may be fit-
ted with remarkable precision by the one parameter family of functions {h(m)(~)}m.
The fitting value of m =: my,, does depend on /N and it is essentially increasing.
This is of course expected since localization requires a sufficiently large system (re-
call in particular Table 2 and Fig. 2.1 — see the caption of Fig. 2.5 for the fitting
criterion). We stress that we are presenting results that have been obtained for one
fixed sequence of w: based on what we have observed for example in Section 2.1 for
different values of A one does expect that for smaller values of A one should use larger
values of N, but changing N corresponds to selecting a longer, or shorter, stretch of
w, that is a different sequence of charges and this may have a rather strong effect on
the value of my,. Moreover there is the problem of deciding which A-dependence
to choose. This may explain the deviations from (2.31) that are observed for small

values of A, but these are in any case rather moderate (see Fig. 2.6).



74 2. A NUMERICAL STUDY OF THE RANDOM COPOLYMER

A source of stronger (and unavoidable) deviations arises in the cases of un-

bounded charges: of course if

h 2 hSat = ne?llili(N} (—(Cdgnfl + WQn)/Q) s (232)

then Zé\ 1\111 ,(0) < 1, regardless of the value of X\. Moreover it is immediate to verify
that limy_, Zz)‘j\,]fw(()) = 400 for h < hgy and therefore lAzN,w()\) " heat as A 7 0o,

We refer to the captions of Fig. 2.6 for more on this saturation effect.

We have tried also alternative definitions of iLNyw()\), namely:

(1) the value of h such that Z; 1\7 . = 1 (or a different fixed value);

(2) the value of h such that the ¢; distance between the distribution of the
endpoint and the distribution of the meander, cf. Section 4, is smaller than
a fixed threshold, for example 0.05.

What we have observed is that (2.31) still holds. What is not independent of
the criterion is my,. Of course believing deeply in (2.31) entails the expectation
that My, converges to the non random quantity h.(0). The results reported in this
section suggest a value of A/(0) larger than 0.83 and the cases presented in Section 4
suggest that it should be smaller than 0.86.

6. Appendix

6.1. The algorithm for computing Zy,. We are going to briefly illustrate
the algorithm we used in the numerical computation of the partition function Zy =
ZJ’E,IZJ We recall its definition:

Zy=E , (2.33)

exp ( —20) (wn + h)An>

where A,, ;= (1 —sign(.S,))/2 and the convention for sign(0) described in the intro-

duction.

Observe that a direct computation of Zy from (2.33) would require to sum
the contributions of 2V random walk trajectories, making the problem numerically
intractable. However, here we can make profitably use of the additivity of our Hamil-
tonian: loosely speaking, if we join together two (finite) random walk segments, the
energy of the resulting path is the sum of the energies of the building segments.

We can exploit this fact to derive a simple recurrence relation for the sequence
of functions {Zy(y) :== Zom(2y), y € Z}MeN, where Zy(z) = Z]A\,Z(x), the latter
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defined in (1a.9), and we recall that we work with even values of N. Conditioning

on Sy and using the Markov property one easily finds

PZuly+1) + $2uly) + 12uly—1) y >0
Zyn(y) = i[ZM(l) + ZM(O)} + Yo [ZM(O) + ZM(_l)] y=0, (234)
ang [iZM(y +1) + %ZM(ZU) + iZM(y — 1)] y <0

where we have put a,; := exp ( — 2\ (wops41 + wopryo + 2h)).
From equation (2.34) and from the trivial observation that Z,(y) = 0 for |y| >
M, it follows that {Zy41(y), y € Z} can be obtained from {Zy(y), y € Z} with

O(M) computations. This means that we can compute Zy in O(N?) steps.!

We point out that sometimes one is satisfied with lower bounds on Zy, for
instance in the statistical text for localization described in Section 2.1. In this case
the algorithm can be further speeded up by restricting the computation to a suitable
set of random walk trajectories. In fact when the system size is N the polymer is at
most at distance O(v/N) (we recall the discussion in Section 4 on the path behavior),
hence a natural choice to get a lower bound on Zy is to only take into account the

contribution coming from those random walk paths {s, },en for which
—Ayn <s,<Byn  forn> Ny, (2.35)

where A, B, Ny are positive constants. Observe that this is easily implemented in
the algorithm described above: it suffices to apply relation (2.34) only for y €
[—AvVM, BV/M], while setting Zy;41(y) = 0 for the other values of . In this way
the number of computations needed to obtain Zy is reduced to O(N?*/?).

The specific values of A, B, Ny we used in our numerical computations are
3,8,1000, and we would like to stress that the lower bound on Zy we got coin-
cides up to the 8 decimal digit with the true value obtained applying the complete
algorithm.

A final important remark is that for the results we have reported we have

used the Mersenne-Twister [48] pseudo-random number generator. However we

IThe  algorithm  just  described can  be  implemented in a  standard
way: the «code we used, written in C, is available on the web page:
http://www.proba. jussieu.fr/pageperso/giacomin/C/prog.html. Graphic representations

and standard statistical procedures have been performed with R [58].
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have also tried other pseudo-random number generators and true randomness from

www.random.org: the results appear not to depend on the generator.

6.2. Proof of the lower bound on h.. We are going to give a detailed proof
of the lower bound (2.14) on the critical curve, together with some related result.
We stress that this appendix can be made substantially lighter if one is interested
only in the if part of Proposition 2.10. In this case the first part of this appendix is
already contained in the first part of § 3.1, up to (2.17), and it suffices to look at
the proof of the lower bound starting from page 80.

We recall that ZJ’E,}L(O) is the partition function corresponding to the polymer
pinned at its right endpoint, see (1a.9), and T¢ = T¢(w) is the first N for which
Znw(0) > C, see (2.15). In particular, for all w such that T¢(w) < oo we have

232 1)0(0) = C. (2.36)
We will also denote by F,, := o(wy,...,w,) the natural filtration of the sequence

{wn}nEN-

6.2.1. A different look at (de)localization. We want to show that (de)localization
can be read from T°. We introduce some notation: given an increasing, 2N-valued

sequence {t; }ien, we set tg := 0 and (y := max{k : t, < N}. Then we define

Znu0) = ZEIM(0) = B | B Emmlnthan g 0,8, =0, Sy = 0]
(nv—1
— Ak AR
N g Zt”l*tiveti“’(o) ZN*th(w),BtCNw(O)’

(2.37)

and we recall that @ denotes the translation on the environment. One sees immedi-

ately that Z Nw(0) < Zy,(0). We first establish a preliminary result.
LEMMA 2.9. If the sequence {t;}; is such that (/N — 0 as N — oo, then

1 ~1t.
lim NlogZ}{\ffj’)"h(O) = F(\R), (2.38)

N—oo

both P(dw)-a.s. and in L, (P).

Proof. By definition we have Zy ,(0) > Z\Nyw(O). On the other hand, we are going
to show that

CN 3
ZNL(0) < 4t A% (H(ti—m.(N—tcN)) ZyiMo),  (239)

i=1
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where A is a positive constant. To derive this bound, we resort to the equation (2.4)
that expresses Zy,,(0) in terms of random walk excursions. We recall that K (2n)
is the discrete probability density of the first return time of the walk S to 0, and
that K(t) > 1/(At3/?), t € 2N, for some positive constant A: it follows that for
ai,...,a; € 2N

Klag+...4ap) <1< A%ay-.. . -a)’? K(ay) - ... K(ay,) . (2.40)

This gives us an upper bound to the entropic cost needed to split a random walk
excursion of length (a; + ...+ ay) into k excursions of lengths ay, .. ., a.

Now let us come back to the second line of (2.4), that can be rewritten as

Znw(0) = > G}, (2.41)

{2:3C{0,...,N}N2N

A first observation is that if we restrict the above sum to the {z;} such that {x;} 2
{t;}, then we get Z\J{\?j(O) Now for each {z;} we aim at finding an upper bound on
the term G({x;}) of the form ¢- G({x;} U {t;}) for some ¢ > 0 not depending on
{z;}. Each term G({z;}), see (2.4), is the product of two terms: an entropic part
depending on K (-) and an energetic part depending on ¢(-). Replacing the entropic

part costs no more than

(N 3
Cont 1= AN (H(ti —ti1) - (N—tCN)> , (2.42)

i=1

thanks to (2.40). On the other hand, the cost for replacing the energetic part is
easily bounded above by

Cenergy = 2V, (2.43)

so that the bound G({z;}) < ¢- G({z;} U {t;}) holds true with ¢ := Cent Cenergy-
Replacing in this way each term in the sum in the r.h.s. of (2.41), we are left with
a sum of terms G({y;}) corresponding to sets {y;} such that {y;} 2 {¢;}. It remains
to count the multiplicity of any such {y;}, that is how many original sets {z;} are
such that {x;} U{t;} = {y;}. Sets {z;} satisfying this last condition must differ only
for a subset of {¢;}, hence the sought multiplicity is 2V (the cardinality of the parts
of {t;}) and the bound (2.39) follows.
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Therefore we get

log Zi' )™ (0)  log Z3%(0) oLl A
i - < (210g24)3% + 3+ log g(ti—ti1)~(N—t<N)

(2.44)

< (zlong)%N 4 3<N]\}L1 log (g ]\il>
N

where in the second inequality we have made use of the elementary fact that once the
sum of k positive numbers is fixed, their product is maximal when all the numbers
coincide (for us k = {y +1). Since by hypothesis (/N — 0 as N — oo, the Lemma
is proved. 0

Now we are ready to prove the characterization of £ and D in terms of T¢. Fix

any C' > 1.

PROPOSITION 2.10. A point (A, h) is localized, that is h < h.()), if and only if
E[T°] < oo.

Proof. We set A := {w: T¢(w) < co}. Observe that for w € A% we have Zy,(0) <
C for every N € 2N, and consequently log Z])\‘,’ﬁ(O)/N —0as N — .

Consider first the case when the random variable T¢ is defective, that is IP’[.AD] >
0 (this is a particular case of E[T] = c0). Since we know that log Z]’t,’Z(O)/N —
F(\, h), P(dw)-a.s., from the preceding observation it follows that F(A, k) = 0 and

the Proposition is proved in this case.

Therefore in the following we can assume that T is proper, that is P(A) = 1,
so that equation (2.36) holds for almost every w. Setting 67! A = {w : w € A},
we have P (01 A) = 1 since P is f-invariant, and consequently P (QZOZOG”“A) =1,
which amounts to saying that (2.36) can be actually strengthened to

ZN0h (0)>C  Vk>0, P(dw)as.. (2.45)

TC (0kw),0kw

Observe that the sequence {(67°@w), },en has the same law as {wy, bnen and it is
independent of Frc. We can define inductively an increasing sequence of stopping
times {7}, }nen by setting Ty := 0 and Ty (w) — Ti(w) := TC(OT@w) =: Sp(w).
We also set (y(w) := max{n : T,(w) < N}. Since {Sk}ren is an IID sequence,
by the strong law of large numbers we have that, P(dw)-a.s., T,(w)/n — E[T¢] as
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n — oo, and consequently (y(w)/N — 1/E[T°] as N — oo (with the convention
that 1/00 = 0).

Now let us consider the lower bound Z Nw(0) corresponding to the sequence
{t;} = {T;(w)}: from (2.37) and (2.45) we get that P(dw)-a.s.

(N (w)—
ST Ny Ah g
ZyoN0) = H 21 gtian o100 (0) ZNngN(w)(W)veTgN(W)W(O) (2.46)
n(w) |

where ¢ is a positive constant (to estimate the last term we have used the lower
bound Z,(0) > ¢/k%?, cf. (1a.5)), and consequently
log Z".(0) log Z{W M 0)  1ogC

PAR) = Jim ———— 2 liminf N = E[T9]

(2.47)

It follows that if E[T°] < oo then F(), h) > 0, that is (X, k) is localized.

It remains to consider the case E[T°] = oo, and we want to show that this time
Z ~N.w(0), defined in (2.46), gives a null free energy. In fact, as T (n) is defined as the
first N such that Zy,(0) > C, it follows that Zrc(,,(0) cannot be much greater
than C. More precisely, one has that

ZTC(n),n(O) < C eXP(Q/\|TITC(n)—1 + 77TC(77)|) 5 (248)
and from the first line of (2.46) it follows that

+1 2\
Mlog@ + = <|wT )|+ |y w)— |> (2.49)

1 N
—log Z <
Og N,W(O) — N N

N

We estimate the second term in the r.h.s. in the following way:

1 1 &
N Z (IwTi<w>| + |wT¢<w)—1|> = ﬁgl{aifxm:k}(lwkl + |%—1|>

1/2
<|wk‘ + ‘Wk1|)2> (2.50)

for some positive constant A = A(w) and eventually as N — oo, having used

the Cauchy—Schwartz inequality and the law of large numbers for the sequence
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{|wk|?}ken. Therefore

1 (n(w) +1 (n(w)
¥ N log 0+ Ay [

and since E[T¢] = oo implies (y(w)/N — 0, P(dw)-a.s., we have log Z\N,W(O)/N — 0,
P(dw)-a.s.. Then Lemma 2.9 allows us to conclude that F(A, h) = 0, and the proof
of the Proposition is completed. 0

log Zn.(0) < (2.51)

6.2.2. Proof of the lower bound on h.. To prove equation (2.14), we are going to
build, for every (A, h) such that h < h()\), a random time 7" such that E[T] < oo and
Z%’(}L)M(O) > C, for some C > 1. It follows that T¢ < T, yielding that E[T] < oo
and by Proposition 2.10 (A, h) is localized, that is, h(A) < h.(A).

Given M € 2N and ¢ < —h, we start defining the stopping time

k
This is the first instant at which a g—atypical stretch of length at least M appears

Tv(w) = Targ(w) := inf {n €2N: Jke2N, k> M: w < q} . (2.52)

along the sequence w. The asymptotic behavior of 7, is given by Theorem 3.2.1 in
(21, § 3.2] which says that P(dw)-a.s.

1
OgTTM(w) — Y(q) as M — oo, (2.53)

where ¥(q) is Cramer’s Large Deviations functional for w, (2.19). We also give a

name to the shortest of the terminal stretches in the definition of ;:

ZTM Wi
Ry (w) = Rypg(w) := inf {k: €2N, k> M : Z:TMT*IW < q} , (2.54)

and it is not difficult to realize that Ry, < 2M.

We are ready to give a simple lower bound on the partition function of size
T,y (for any M € 2N and ¢ < —h): it suffices to consider the contribution of the
trajectories that are negative in correspondence of the last (favorable) stretch of
size Ry, and stay positive the rest of the time. Recalling that we use K(-) for the
discrete density of the first return time to the origin and that by (2.3) we have

K(2n) > ¢/n=%? for a constant ¢ > 0, we estimate

1 2
ZN" 0) > =K (717 — Ru) K (Ray) e2Mat)By > = ,=2X\g+h)M
TM(w),w( )— 4 ( M M) ( M) = 47-]:\34/2(2]\4_)3/2
3 1 log M
> exp{§M|:(—4)\/3>q_ O%\;M—(Zl)\/:%)h— og :|}’

(2.55)



6. APPENDIX 81

where ¢ := ¢?/(8/2).
Having in mind (2.53), we define a random index ¢ = ¢, ., depending on the

two parameters A € 2N, ¢ > 0 and on ¢:

1
U(w) = Lyeq(w) = inf {k €N, k> A: Og+’q(”) < S(q) + g} . (256)
and we finally set
T(w) =Tycq(w) := Ty (W) (2.57)

Then for the partition function of size T'(w) we get

T(w),w

Z"(0) > ¢ exp {;A

(—4M/3)q — (q) — (4\/3)h — IOiA . g} } . (2.58)

The fact that E[T4.,] < oo for any choice of A, e,q (with ¢ < —h) is proved
in Lemma 2.11 below. It only remains to show that for every fixed (A, h) such that
h < h(X), or equivalently

(4XN/3)h < log M(—4)/3), (2.59)
the parameters A, €, ¢ can be chosen such that the right—hand side of equation (2.58)

is greater than 1.

The key point is the choice of q. Note that the generating function M(-) is smooth,
since finite on the whole real line. Moreover for all A € R there exists some ¢y € R
such that

log M(—4A/3) = (=4A/3)q0 — %(qo) , (2.60)

and from (2.59) it follows that gy < —h. Therefore we can take ¢ = ¢o, and equation
(2.58) becomes

Zpieyo(0) = ¢ exp {gA [log M(—4A/3) — (4A/3)h — loiA — g] } . (260

It is now clear that for every (A, h), such that (2.59) holds, by choosing ¢ sufficiently
small and A sufficiently large, the right—hand side of (2.61) is greater than 1, and
the proof of (2.14) is complete.

LEMMA 2.11. For every A € 2N, € > 0 and ¢ < —h the random variable T'(w) =
Theq(w) defined below (2.56) is integrable: E[T] < oco.
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Proof. By the definition (2.56) of ¢ = {4 ., we have

Taeq < exp ((3(q) +€) laca) (2.62)

so it suffices to show that for any > 0 the random variable exp(8£€a.,) is inte-
grable.
For any | € 2N, we introduce the IID sequence of random variables {Y!},cx

defined by

nl

Yi=s > w. (2.63)

i=(n—1)l4+1
By Cramer’s Theorem [21] we have that for any fixed ¢ < 0 and € > 0 there exists
lp such that P (Y < q) > e7/®@+</2) for every | > [,. By (2.56) have that

M/
(>0 {n>exp(S@) + D) S ()Y >}, (2.64)

with M := exp((2(q) + €)1), so that
P>1)< (1 — e*l(Z(q)+€/2)) LM/1] < exp (—LM/ZJ e*l(Z(q)+€/2))

< exp (—exp (le/4)),

where the last step holds if [ is sufficiently large (we have also used 1 —x < e™%).

(2.65)

Therefore
P(exp(fl) > N) =P (¢ > (logN)/3) < exp (_N€/4ﬂ) , (2.66)

when N is large, and the proof is complete. 0
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FIGURE 2.3. For A\ = 0.6 (k(0.6) ~ 0.36 and h(0.6) ~ 0.49) , the
behavior of log Zsy, for h = 0.42 (A), 0.43 (C,D) and 0.44 (B). In case
A, the polymer is localized with free energy approximately 3 - 107¢:
the linear growth is quite clear, but a closer look shows sudden jumps,
which correspond to atypically negative stretches of charges. Getting
closer to the critical point, case C, the linear growth is still evident,
but it is clearly the result of sudden growths followed by slow decays
(approximately polynomial with exponent —1/2). Case B suggests
delocalization: a closer analysis reveals a decay of the type N~1/2,
but sharp deviations are clearly visible. Case D is the zoom of the
rectangle in the left corner of C. The similarity between B and D

make clear that claiming delocalization looking at the behaviour of

the partition function is difficult.
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FIGURE 2.4. Graphical representation of the data of Tables 3 (on the
right) and 4 (on the left). The plotted points are the sample medians
against the sample size, the error bars correspond to the confidence

intervals given in Tables 3 and 4.
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A A

FiGURE 2.5. On the left the case of binary symmetric w; and on
the right the case of w; ~ N(0,1), boths for N = 3.2 - 107. The
small circles represent the computed values: the errors on lAzN,w()\)
are negligible and the plotted points are at the centers of the circles.
The continuous line is instead the curve h™(-). In the binary case
m = 0.841 and it has been chosen by solving h(™(4) = HN7W(4). In
the Gaussian case m = 0.802, the maximum of hy(A)/) for the
plotted values of A(> 0). The rather different values of My, may
be somewhat understood both by considering that these two curves
have been obtained for a fixed realization of w and by taking into
account the remark at the end of the caption of Table 2: it appears
that for Gaussian charges one needs longer systems in order to get
closer to the values of m observed in the binary case (in particular:
for the prolongation, with the same random number generator, of the
Gaussian w sample used here up to N = 5 107 one obtains my,, =
0.812).

T
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FIGURE 2.6. Relative errors TNw(A) =

(h(m)(z\) - iALN,w(/\)> /iLNM()\), for the value m = My, explained in
the caption of Fig. 2.5 and for the cases of N = 2.5-10° (x dots),
and N = 3.2- 107 (+ dots). Notice that in the binary case the error
is more important for small values of A (recall Table 2 and Fig. 2.1).
Instead for the Gaussian case there is a deviation both for small
and large values of A: the deviation for large values is due to the
saturation effect explained in the text. Given the fact that hgy, cf.
(2.32), behaves almost surely and to leading order for N — oo as
Vlog N one understand why the slow disappearing of the saturation
effect has to be expected. In both graphs the dotted line above the
axis is at level 0.01. The fitted values for 7y, N = 2.5 10°, are

0.821 in the binary case and 0.778 in the Gaussian case.



CHAPTER 3

On improving the annealed bound

for polymer chains with random charges

In this chapter we address the issue of improving the anneal bound on the criti-
cal line h.(-) of the random copolymer via the so—called constrained annealing, that
means nothing but applying the annealing procedure (which is just Jensen’s inequal-
ity) after having added to the Hamiltonian a disorder—dependent term (sometimes
interpreted as a Lagrange multiplier) in a way that the quenched expressions are
left unchanged, remember § 2.5 of Chapter 1a.

A popular class of multipliers is the one consisting of empirical averages of local
functions of the disorder. These multipliers are particularly suitable for computa-
tions, and it is often believed that in this class one can approximate arbitrarily well
the quenched free energy.

We are going to prove that this is not the case for a wide family of polymer
models, including the copolymer near a selective interface and the pinning/wetting
models defined in Chapter la. More precisely we show that the multipliers in the
above class cannot improve on the basic annealed bound from the viewpoint of
characterizing the phase diagram. For simplicity the proof has been carried out under
the assumption that the random variable w; takes only a finite number of values,
however the statement remains true also the general case, provided one makes some

suitable boundedness assumptions on the multiplier.

The article [16] has been taken from the content of this chapter.

1. The framework and the main result

1.1. The general set—up. A number of disordered models of linear chains un-
dergoing localization or pinning effects can be put into the following general frame-
work. Let S := {S,},_,,. . be a process with S, taking values in 7%, d € N :=
{1,2,...} and law P.

87
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The disorder in the system is given by a sequence w := {w,}, of IID random
variables taking values in a finite set I' with law P, acting on the path of S via
an Hamiltonian that, for a system of size N, is a function Hy, of the trajectory
S, but depending only on Sy, S1,...,Sy. One is interested in the properties of the
probability measures Py, defined by giving the density with respect to P:

dPn,
ap )= Znw

exp (Hyw (5)), (3.1)

where Zy,, := Elexp (Hy, (S))] is the normalization constant. Our attention fo-
cuses on the asymptotic behavior of log Zy .

In the sequel we will assume:

AssuMPTION 3.1. There exists a sequence {D,}, of subsets of Z? such that

P(S, € D, forn=1,2,...,N) Nz 1, namely

1
lim NlogP(Sneanorn:1,2,...,N):0, (3.2)

N—oo

and Hy,(S)=01if S, € D, forn=1,2,...,N.

One sees directly that this hypothesis implies

hNHLiO%f%IOgZN,w > ]\}ii%o%logP (S, € D, forn=1,2,...,N) =0, (3.3)
P(dw)-a.s.. We will assume that {(1/N)log Zy.}, is a sequence of integrable ran-
dom variables that converges in the L' (P(dw)) sense and P(dw)—almost surely to
a constant, the free energy, that we will call f. These assumptions are verified in
the large majority of the interesting situations, for example whenever super/sub—
additivity tools are applicable.

Of course (3.3) says that f > 0 and one is lead to the natural question of whether
f=0or f > 0. In the instances that we are going to consider the free energy may be
zero or positive according to some parameters from which the Hy,, depends: f =0

and f > 0 are associated to sharply different behaviors of the system.

In order to establish upper bounds on f one may apply directly Jensen inequality

(annealed bound) obtaining
N =
f< hNHLIOICI,begE[ZN’W] =: f, (3.4)

and, in our context, if f: 0 then f = 0. The annealed bound may be improved by
adding to Hy(S) an integrable function Ay : TV — R such that E [Ay(w)] = 0:
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while the left-hand side is unchanged, fmay depend on the choice of {Ay}y. We
stress that not only f is left unchanged by Hy o, (S) — Hyw(S) + An(w), but Py,
itself is left unchanged (for every N). Notice that the choice Ay(w) = —log Zy . +
E [log Zy ] yields the equality in (3.4).

In the sequel when we refer to fwe mean that Zy,, is defined with respect to

Hy, satisfying the Basic Hypothesis (no Ay term added).

1.2. The result. What we prove in this note is that

PROPOSITION 3.2. [ff> 0 then for every local function F : TN — R such that
E[F(w)] =0 one has

.1
hNHL lo%f N log EE

exp <HN,W(S) + Z F(an)>] > 0, (3.5)

where (0,w)m = Whtm-

We can sum up this result by saying that when f = 0 but ]7 > ( it is of no use
modifying the Hamiltonian by adding the empirical average of a (centered) local
function.

On a mathematical level it is clear that we are playing with an exchange of limits
and that it is not obvious that the free energy, recall the optimal choice of Ay above,
may be approximated via empirical averages of a local function of the disorder.
But we remark that in the physical literature the approach of approximating the
free energy via what can be viewed as a constrained annealed computation, the
term ZZLO F(0,w) being interpreted as a Lagrange multiplier, is often considered
as an effective way of approximating the quenched free energy. Here we mention in
particular [52] and [44] in which this approach is taken up in a systematic way:
the aim is to approach the quenched free energy by constrained annealing via local
functions F' that are more and more complex, the most natural example being linear

combinations of correlations of higher and higher order.
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The proof of Proposition 3.2 is based on the simple observation that whenever
Ay is centered

% log EE [exp (Hy . (9) + An(w))] >

1 1
N log E [exp (An(w))] + v logP (S, € D, forn=1,2,...,N) = Qn + Py.
(3.6)
By hypothesis Py = o(1) so one has to consider the asymptotic behavior of Q. If

liminfy Qn > 0 there is nothing to prove. So let us assume that liminfy Qn = 0:
in this case the inferior limit of the left-hand side of (3.6) may be zero and we want
to exclude this possibility when f > 0 and Ay(w) = ZLO F(0,w), F local and
centered (of course in this case limy @y does exist). And in Theorem 3.5 below in
fact we show that if log E [exp (An(w))] = o(N), then there exists a local function G
such that F(w) = G(61w) — G(w) so that {32 F(f,w)}x is just a boundary term
and the corresponding constrained annealing is just the standard annealing.

Notice that having chosen T finite frees us from integrability conditions.

REMARK 3.3. We stress that our Basic Hypothesis is more general than it may
look at first. As already observed, one has the freedom of adding to the Hamiltonian
Hy ., (S) any term that does not depend on S (but possibly does depend on w and
N) without changing the model Py,. It may therefore happen that the natural
formulation of the Hamiltonian does not satisfy our Basic Hypothesis, but it does
after a suitable additive correction. This happens for example for the Copolymer
near a selective interface model, as we have seen in § 2.3 of Chapter la (see also
§ 1.5 below): the additive correction in this case is linear in w and it corresponds to
what in [55] is called first order Morita approximation. In these terms, Proposition
3.2 is saying that higher order Morita approximations cannot improve the bound on

the critical curve found with the first order computation.
Let us now look at applications of Proposition 3.2.

1.3. Random rewards or penalties at the origin. Let S, Sy = 0 € Z¢,
be a random walk with centered IID non degenerate increments {X,},, (X,); €
{-1,0,1} for j =1,2,...,d, and

N

Hy,=8Y (1+ew,) 15,0} (3.7)

n=1
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for # > 0 and € > 0. This model is a d—dimensional version (with somewhat different
notations) of the pinning model introduced in § 3.1 of Chapter la. The random
variable wy is chosen such that Elexp(Aw;)] < oo for every A € R, and centered.
We write f(3,¢) for f: by super—additive arguments f exists and it is self-averaging
(this observation is valid for all the models we consider and will not be repeated).
As we already remarked in Chapter la, for ¢ = 0 the model can be solved, see e.g.
[35], and in particular f((3,0) = 0 if and only if § < §.(d) := —log(1 — P(S never
comes back to 0)). Adding the disorder makes this model much more complex: the
annealed bound yields f(8,¢) = 0 if 3 < B.(d) — logE [exp(ew;)] =: .. It is an
open question whether EC coincides with the quenched critical value or not, that is
whether f(3,¢) = 0 implies § < Ec or not. For references about this issue we refer
to [2, 57], see however also the next paragraph: the model we are considering can in
fact be exactly mapped to the wetting problem ([2], [35]). Proposition 3.2 applies
to this context with D,, = {0}° for every n [28, Ch. 3] and says that one cannot

answer this question via constrained annealed bounds.

1.4. Wetting models in 1 + d dimensions. Let S and w as in the previous
example and

N .
1 (T +ew,) 1ys,),= it (S,)q>0forn=1,2,...,N
Hyo = B2 n= ( ) Li(s0a=0p 1t (Sn)a (3.8)

—00 otherwise.
with 8 > 0 and € > 0. If one takes the directed walk viewpoint, that is if one
considers the walk {(n, S,)},, then this is a model of a walk constrained above the
(hyper—)plane x; = 0 and rewarded 3, on the average, when touching this plane. If
d = 1 then this is an effective model for a (1+1)-dimensional interface above a wall
which mostly attracts it. As a matter of fact in this case there is no loss of generality
in considering d = 1, since in the directions parallel to the wall the model is just
the original walk. Once again if ¢ = 0 the model can be solved in detail, see e.g.
[35]. Computing the critical 5 and deciding whether the annealed bound is sharp,
at least for small €, is an unresolved and disputed question in the physical literature,
see e.g. [31], [20] and [68]. Proposition 3.2 applies with the choice D,, = Z% x N.

1.5. Copolymer and adsorption models. Choose S as above and take the
directed walk viewpoint. Imagine that above the axis (x4 > 0) is filled of a solvent

A, while below (z, < 0) there is a solvent B. At x4 = 0 there is the interface. We
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choose w = {A, B} and for example

N
HE(S) = Z (a1 fsign(.)=+1,wn=a} + bLisign(s)=—1,wn=p} + Lis,—0})  (3.9)
n=1
with a, b and ¢ real parameters, sign(.S,,) := sign ((Sn)d) and the convention sign(S,,) =
sign(.S,_1) if (S, )a = 0 already used in Chapter la. In order to apply Proposition 3.2
one has to subtract a disorder dependent term, cf. Remark 3.3: if a > b we change

the Hamiltonian
N
Hyo(S) == H{5(S) =) aly,,—a). (3.10)
n=1

without changing the measure Py, while the free energy has the trivial shift from
f to f —aP (w; = A). One can therefore choose D,, = Z%~! x N and Proposition 3.2
applies. This model has been considered for example in [55].

Note that if ¢ = 0 and d = 1 the model is nothing but the copolymer model

introduced in Chapter la, that is we can cast (3.9) in the form

N
Hyo(S) = XY (w, + h)sign(S,) (3.11)
n=1
with w taking values in R. Once again the Hamiltonian has to be corrected by
subtracting the term A)_ (w, + h) (which is exactly what was done in § 2.3 of
Chapter 1a) in order to apply Proposition 3.2. One readily sees that (3.10) and
(3.11) are the same model when in the second case w takes only the values £1,
A=+land B=—1,and h = (a—b)/(a+b), A = (a +b)/4.

Proposition 3.2 acquires some interest in this context: in fact we have already
remarked that the physical literature is rather split on the precise value of the
critical curve and on whether the annealed bound is sharp or not. We recall that the
numerical analysis performed in Chapter 2 is suggesting that the annealed curve does
not coincide with the quenched one, and in view of Proposition 3.2 this would mean
that constrained annealing via local functions cannot capture the phase diagram of

the quenched system.

1.6. Further models and observations. In spite of substantial numerical
evidence that in several instances f = 0 but f> 0, we are unaware of an interesting

model for which this situation is rigorously known to happen. Consider however the
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case P(w, = £1) = 1/2 and

N
Hyo(S) =8> (1+ ewn) L(g,=n}, (3.12)
n=1

with # and € real numbers and S the simple random walk on Z. We observe that
Proposition 3.2 applies to this case with D,, = {n}D and that the model is solvable
in detail. In particular f(3,e) = (6 — log2) V 0, regardless of the value of €. The
annealed computation instead yields f(ﬁ, e) = (B + logcosh(e) — log2) v 0. Notice
in particular that the critical values of 3, respectively log2 and log 2 — log cosh(g),
differ as long as there is disorder in the system (e # 0). It is interesting to see in
this toy model how Ay has to be chosen very non local in order to improve on the

annealed bound.

REMARK 3.4. We point out that we restricted our examples only to cases in
which S is a simple random walk, but in principle our approach goes through for
much more general models, like walks with correlated increments or self-interacting
walks, see [56] for an example. And of course S,, takes values in Z? only for ease of
exposition and can be easily generalized. It is however unclear whether our argument
applies to the disordered wetting problem in d 4 1 dimensions, d > 1. In this case S
is a random interface, the Hamiltonian is like in (3.8), but n € {0,1,2,...}¢, S, € Z
or R. We set for example S,, = 0 when one of the coordinates of n is zero. The

missing ingredient is an analog of Theorem 3.5 in higher dimensions.

2. On cocycles with null free energy

Let {wy, }nen be an 11D sequence of random variables under the probability mea-
sure P, taking values in a finite space I' (we have switched the notation w — w for
clarity). The law of w; on I' is denoted by v: we will assume that v(a) > 0 for all
acl.

We are interested in families A = {An}nen of random variables of the form of

empirical averages of a centered local function F', that is
N
Ay = F(wn, ... Wns), (3.13)
n=1

where k € {0}UN and F is a real function defined on I'*** such that [ Fdy**+1 = 0.
We will call A= {An}nen a centered cocycle, and with some abuse of notation we

will speak of the cocycle F' to mean the cocycle { Ay} nen defined by (3.13).
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A cocycle F: T*! — R is said to be a coboundary if (when k > 1) there exists
a function G : I'* — R such that

Flay,...,ap1) = Glag, . ..apr1) — Glag, ..., a) (3.14)

forall ay, ..., g1 € I'. When k = 0, we say that F'is a coboundary if it is identically
zero: F(a) =0 for every a € T

For 3 € R we define the free energy L¥(3) of a cocycle F as
1
F — T BAN
LY (B) : ]\}LH;O N logE[e ] . (3.15)

The limit above is easily seen to exist by a standard superadditive argument, and
Jensen’s inequality yields immediately L (3) > 0. Of course, if F' is a coboundary
then the corresponding free energy vanishes for all 5 € R. That also the converse is

true is the object of the following theorem.

THEOREM 3.5. Let F be a centered cocycle, and let L¥(3) be the corresponding
free energy, defined by (3.15). The following conditions are equivalent:

(1) F is a coboundary;
(2) LE(B) =0 for all 3 € R;
(3) L¥(By) = 0 for some By € R\ {0}.

The proof is obtained combining convexity ideas with the following combinatorial

reformulation of the condition that a function be a coboundary.

LEMMA 3.6. A function F : T**' — R is a coboundary if and only if for every
N € N and for every (ny,...,nn) € TV the following relation holds:

N
ZF(nianz@Nla s Miswk) =0, (3.16)

i=1

where for a,b € N we have set a &y b:= (a +b) mod N.

Proof. The if part trivially follows from the definition of a coboundary (see (3.14)),
so we can focus on the only if part. As a matter of fact, we will use the hypothesis
of the Lemma only for two values of N, namely N = 2k and N = 2k + 1.

Let us take k elements vy, ..., € I', arbitrarily chosen, that will be kept fixed

throughout the proof; moreover, let aq, ..., a1 denote generic elements of I'. We
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start rewriting equation (3.16) for N = 2k+1, with (n1,...,n8) = (1, ..., Qgr1, 715 - - -

as
k k

F(Ozl,...,Oék+1):—ZF(OZZ‘_H,...,Oék+1,’}/1,...,’yi)—ZF(’%,...,’}%,OQ,...,OZZ‘).

i=1 =1

(3.17)

In order to determine an alternative expression for the second sum in the r.h.s., we

use again equation (3.16), this time with N = 2k and (91, ...,nny) = (01, ..., e, Y1, - - -

getting

k k
ZF(%,---,%,(M,---,%) = —ZF(&i,...,ak,’yl,...,%). (3.18)

i=1 i=1
If now we introduce a function G : I'* — R, defined by

k

G(Cla---agk) ::_ZF(Civ'-'agkavly-”)/%))

=1

we can combine equations (3.17) and (3.18) to get
Flog,...,axp1) = G(ag, ... apgr) — Gloa, ... ap),

so that the proof is completed. 0

Proof of Theorem 3.5. It has already been remarked that (1) = (2), and of course
(2) = (3) holds trivially. In the following we are going to prove that (3) = (2) = (1).

We start determining an explicit expression for the free energy. For this, we
define a slight modification of the cocycle A defined by (3.13), by setting

N
Ay = F(Wn, Wnayt, - - Wneyk) ; (3.19)

n=1
where by @&y we mean addition modulo N. Of course, only the last k£ addends in
the sum are really changed: as F' is a bounded function (the space I is finite), it
easily follows that the free energies of A and A are the same, so that we can write
1 ~

L7(3) = lim —logZy(8)  where  Zx(8) = Z5(8) = E[eﬁAN] . (3.20)

Now we introduce the T**1 x5+ matrix Ag, defined for a;,v; € T, i = 1,..., k+
1 by

AB [(O[l, SRR ak-l—l)a (’717 s a’}/k-l—l)} = 571,042 T 5'yk,ak+1 'eﬂF(% 7777 Vit1) ‘V(’}/]H_l) . (321)

7716)7

7716)7
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Developing the expectation defining Zy (/) we get

ZN(B) — Z eﬁzfil F(Ciy(i@]\]l 7777 <Z€BN]€) . I/(Cl) e V(CN)

Clyeeey (neT
‘F‘Q(k-kl)
= Te[Af] = ) es)”, (3.22)
i=1
where {e;(3), i = 1,...,|T[**+D} are the (possibly complexes) eigenvalues of the

matrix Ag (counted repeatedly according to their algebraic multiplicity). It’s imme-
diate to check that Ag is an irreducible, aperiodic matrix, and since its entries are
nonnegative we can apply Perron-Frobenius theory [5]: there exists a real positive
simple eigenvalue, say e;(3), such that |e;(3)] < e1(5) for every i > 2. To lighten
the notation, from now on we will let e(3) := e;(f). Combining (3.20) with (3.22)

we get
PRk N
ZN(ﬁ)Ze(ﬁ)N-<1+ > (jég))) ) (3.23)
so that

Zn(B)-e(B)™ -1 as N — co.

From this sharp asymptotics for Zx (/) we obtain in particular the explicit expression

of L¥(3) we were looking for:

L¥(B) = loge(B). (3.24)

This equation shows that L¥(3) is a real analytic function of 8 € R, since
e(/3) is so: this is because the Perron—Frobenius eigenvalue is a simple root of the
characteristic polynomial and the entries of A are real-analytic functions of § € R.

From (3.20) it is clear that log Zn () is a convex function of § € R, for every
N € N. Moreover, we have Zn(3) > 1 for every § € R by Jensen’s inequality, and
trivially Zy(0) = 1. It follows immediately that L (3) is a convex function too,
being the pointwise limit of log Zy(3)/N, that L¥(3) > 0 for every 3 € R, and
L¥(0) = 0.

Let’s assume that condition (3) in the statement of the theorem holds, that is
L¥(8y) = 0 for some 3y > 0 (the case 3y < 0 is completely analogous): the preceding

observations yield L¥(8) = 0 for every 8 € [0, 3], and by analyticity we conclude
that indeed L¥(8) = 0 for every 3 € R. We have thus shown that (3) = (2).
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Now we assume that condition (2) holds: by (3.24) this means e(3) = 1 for every
B € R, and (3.23) we have that

1Zx(B)] < e(B)N - [DPEHD = [PPE+D YN e N, V3 € R. (3.25)

Since log Zn(3) is a convex function, Zy(f) is convex too; furthermore, we have
already remarked that Zy(3) > 1 for every 5 € R and that Zy(0) = 1. Since (3.25)
shows that |Zy ()| is bounded, by elementary convex analysis it follows that Zy
must be constant, therefore Zy () = 1 for all 8 € R and N € N. This means that
for every 5 € R Jensen’s inequality for Zy(/3) it’s not strict: since for any 5 > 0 the
function {z + €%*} is a strictly convex function, this can happen if and only if Ay
is P-a.s. constant, for every N € N. Recalling (3.19) and the fact that by hypothesis
v(a) > 0 for every v € T', this amounts to saying that

N
Z F(T]i)ni@Nla s 777’iEBNl€) = Oa
i=1

for every N € N and for every ny,...,ny € [': applying Lemma 3.6 we conclude that

F'is a coboundary, and the proof is complete. 0






CHAPTER 4

A renewal theory approach to polymers

with periodic distribution of charges

In this chapter we consider a general model of an heterogeneous polymer chain in
the proximity of an interface between two selective solvents, which includes as special
cases the copolymer near a selective interface and the pinning model introduced in
Chapter 1a. The heterogeneous character of the model comes from the fact that the
interaction of each monomer unit is governed by a charge that it carries. We consider
the model in the periodic setting, that is when the charges repeat themselves along
the chain in a periodic fashion. The main question is of course whether the polymer
remains tightly close to the interface (localization) or there is a marked preference
for one solvent (delocalization).

We propose an approach based on renewal theory that yields sharp estimates
on the partition function of the model in all the regimes (localized, delocalized and
critical). This in turn allows to get a very precise description of the polymer measure,
both in a local sense (thermodynamic limit) and in a global sense (scaling limits):
see § 1.3 for an outline of our results and § 1.5 for a detailed exposition. A key point,
but also a byproduct, of our analysis is the closeness of the polymer measure to a

suitable Markov Renewal Process.

The preprint [18] has been taken from the content of this chapter.

1. Introduction and main results

1.1. Two motivating models. We slightly enlarge our setting with respect
to Chapter la, namely we work with a random walk S := {Sn}n:O,L... with 11D
symmetric increments {X;},>; taking values in {—1,0,+1}. Hence the law of the
walk is identified by p := P (X; =1) (= P (X; = —1)), and we assume that p €
(0,1/2). Note that we have excluded the case p = 1/2 and this has been done in
order to lighten the exposition: all the results we present have a close analog in the
case p = 1/2, however the statements require a minimum of notational care because

99
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of the periodicity of the walk. We also consider a sequence w := {wn}, oy (12,3 of
real numbers with the property that w, = w,,r for some T' € N and for every n: we

denote by T'(w) the minimal value of T'.

Before defining the general model that will be the object of our analysis, we

recall the two motivating models that were introduced in Chapter 1a.

(1) Pinning and wetting models. For A > 0 consider the probability measure
Py, defined by

dPy,, a
P (S) o exp /\anl{snzo} . (4.1)

n=1

The walk receives a pinning reward, which may be negative or positive, each
time it visits the origin. By considering the directed walk viewpoint, that is
{(n, S,)},, one may interpret this model in terms of a directed linear chain
receiving an energetic contribution when it touches an interface. In this con-
text it is natural to introduce the asymmetry parameter h := 22:1 wn/T,
so that one isolates a constant drift term from the fluctuating behavior of w.
The question is whether for large NV the measure Py, is rather attracted or
repelled by the interface (there is in principle the possibility for the walk to
be essentially indifferent of such a change of measure, but we anticipate that
this happens only in trivially degenerate cases while in critical situations a
more subtle scenario shows up).

By multiplying the right-hand side of (4.1) by 1g,>0:n=1,..,n} One gets
to a so called wetting model, that is the model of an interface interacting
with an impenetrable wall. The hard—wall condition induces a repulsion ef-
fect of purely entropic origin which is in competition with attractive energy
effects: one expects that in this case h needs to be positive for the energy
term to overcome the entropic repulsion effect, but quantitative estimates
are not a priori obvious.

There is an extensive literature on periodic pinning and wetting models,
the majority of which is restricted to the T' = 2 case, we mention for example
(33, 54].

(2) Copolymer near a selective interface. Much in the same way we introduce
N
dig’w(S) X exp <)\an sign(Sn)> , (4.2)

n=1
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where if S,, = 0 we set sign(S,,) := sign(S,—1) 1¢s,_,0y- This convention for
defining sign(0), that will be kept throughout the chapter, has the following
simple interpretation: sign(S,,) = +1,0, —1 according to whether the bond
joining S,,_1 and S, lies above, on, or below the x—axis.

Also in this case we take a directed walk viewpoint and then Py, may
be interpreted as a polymeric chain in which the monomer units, the bonds
of the walk, are charged. An interface, the x—axis, separates two solvents, say
oil above and water below: positively charged monomers are hydrophobic
and negatively charged ones are instead hydrophilic. In this case one expects
a competition between three possible scenarios: polymer preferring water,
preferring oil or undecided between the two and choosing to fluctuate in
the proximity of the interface. We will therefore talk of delocalization in
water (or oil) or of localization at the interface. Critical cases are of course
of particular interest.

We select [51, 63| from the physical literature on periodic copolymers,
keeping however in mind that periodic copolymer modeling has a central

role in applied chemistry and material science.

1.2. A general model. We point out that the models presented in § 1.1 are

particular examples of the polymer measure with Hamiltonian

N N N
Ha(S) = D> w0 gnisn=iy + > 0,0y + > 8V L jsigns,=0p,  (4.3)
n=1 n=1

i=+1n=1

0

where W™, W@ and @@ are periodic sequences of real numbers. Observe that,

by our conventions on sign(0), the last term gives an energetic contribution (of
pinning/depinning type) to the bonds lying on the interface.

Besides being a natural model, generalizing and interpolating between pinning
and copolymer models, the general model we consider is the one considered at several

instances, see e.g. [65] and references therein.

REMARK 4.1. The copolymer case corresponds to wt!) = —w(-1) = Aw and
0)

0)

w® = & = 0, while the pinning case corresponds to w® = Aw and WtV =

w = 5O = 0. We stress that the wetting case can be included too, with the

choice w(©® = \w, wi™ = —co for every n and w™ = 5© = 0. Of course plugging

wi Y = —oc into the Hamiltonian (4.3) is a bit formal, but it simply corresponds to
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a constraint on S in the polymer measure associated to Hy, see (4.4) below. For ease
of exposition we will restrict to finite values of the charges w, but the generalization

is straightforward.

REMARK 4.2. We take this occasion for stressing that, from an applied viewpoint,
the interest in periodic models of the type we consider appears to be at least two—
fold. On one hand periodic models are often chosen as caricatures of the quenched
disordered models, like the ones in which the charges are a typical realization of
a sequence of independent random variables (e.g. [2, 12, 35, 65] and references
therein). In this respect and taking a mathematical standpoint, the relevance of
periodic models, which may be viewed as weakly inhomogeneous, for understand-
ing the strongly inhomogeneous quenched set—up is at least questionable and the
approximation of quenched models with periodic ones, in the limit of large period,
poses very interesting and challenging questions. In any case, the precise descrip-
tion of the periodic case that we have obtained in this work highlights limitations
and perspectives of periodic modeling for strongly inhomogeneous systems. One the
other hand, as already mentioned above, periodic models are absolutely natural
and of direct relevance for application, for example when dealing with molecularly

engineered polymers [53, 63].

Starting from the Hamiltonian (4.3), for a = ¢ (constrained) or a = { (free) we

introduce the polymer measure Py, on ZN | defined by

dPi. exp (Hn(5))
T Negy = TRV g i 1) S 4.4
3 ) e (Lta=r) + Lja=c) Lisw=0y) (4.4)
where Z‘(,w = Elexp(Hn) (1{a=fy + L{a=c} L{sy=0})] is the partition function, that is
the normalization constant. Here w is a shorthand for the four periodic sequences
appearing in the definition (4.3) of Hy, and we will use 7' = T'(w) to denote the

smallest common period of the sequences.

The Laplace asymptotic behavior of Z N Plays an important role and the quan-
tity
1 =
fo = lim N log Z (4.5)

N—oo
is usually called free energy. The existence of the limit above follows from a direct

super—additivity argument, and it is easy to check that Z‘i,w can be replaced by vaw
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without changing the value of f,, see e.g. [35]. The standard free energy approach

to this type of models starts from the observation that

fo = lim %logE[eXp(HN(S));Sn>0forn:1,...,N]

N—oo
A ) (4.6)
- - (+1) . -t B
—T(w);w” + Jim = logP (8, > 0forn=1,...,N).

It is a classical result [29, Ch. XIL.7] that P(S, > 0forn = 1,...,N) ~ cN~/2,
as N — oo, for some ¢ € (0,00) (by ay ~ by we mean ay /by — 1). Hence the limit

of the last term of (4.6) is zero and one easily concludes that

T(w)
1 )
D ._ : N (4)
o 2 fD = maxho(),  hu(i):= ) ;wn : (4.7)

Having in mind the steps in (4.6), one is led to the following basic

DEFINITION 4.3. The polymer chain defined by (4.4) is said to be:
e localized (at the interface) if f, > f?;
e delocalized above the interface if f, = h,(+1);
e delocalized below the interface if f,, = h,(—1).

Notice that, with this definition, if h,(+1) = h,(—1) and the polymer is delocalized,

it is delocalized both above and below the interface.

REMARK 4.4. Observe that the polymer measure P%; , is invariant under the
joint transformation S — —S, w™) — WY hence by symmetry we may (and
will) assume that

hy = ho(+1) — hu(=1) > 0. (4.8)

It is also clear that we can add to the Hamiltonian H a constant term (with respect

to S) without changing the polymer measure. Then we set

N
Hy(S) == Hy(S) — Y with,
n=1

which amounts to redefining w,(fl) — 0, Wi (wﬁfl) — wgﬂ))

+1 -
WS )), and we can write

dP$ !
dg,w (S) _ €xXp (Zf}?fN(S>>
N,w

and &) — (&ﬁlo) —

(1{a:f} + 1{a:c}]—{SN=O}) ) (49)
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where Z§ , is a new partition function which coincides with Z N eXP(— SV wq(fl)).

The corresponding free energy F,, is given by
F, := lim ilong‘{,w = f.—f2, (4.10)

N—oo N ’
and notice that in terms of F, the condition for localization (resp. delocalization)
becomes F,, > 0 (resp. F, = 0). From now on, speaking of partition function and

free energy we will always mean Z%  and F,,.

1.3. From free energy to path behavior. In order to understand the spirit
of our approach, let us briefly outline our results (complete results are given in § 1.5
below).

Our first goal is to give necessary and sufficient explicit conditions in terms
of the charges w for the (de)localization of the polymer chain, see Theorem 4.5.
We point out that the content of this theorem is in fact much richer, as it gives
the sharp asymptotic behavior (and not only the Laplace one [11]) as N — oo
of the constrained partition function Z% ,. In particular we show that when the
polymer is delocalized (F, = 0) the constrained partition function Z% , is actually
vanishing as N — oo. Moreover the rate of the decay induces a further distinction
in the delocalized regime between a strictly delocalized regime (Z5,, ~ c1lN —3/2
¢1 € (0,00)) and a critical regime (25, ~ caN~'2, ¢; € (0,00)).

These asymptotic results are important because they allow to address further
interesting issues. For example, it has to be admitted that defining (de)localization
in terms of the free energy is not completely satisfactory, because one would like to
characterize the polymer path properties. In different terms, given a polymer mea-
sure which is (de)localized according to Definition 4.3, to what extent are its typical
paths really (de)localized? Some partial answers to this question are known, at least
in some particular instances: we mention here the case of T'(w) = 2 copolymers [51]
and the case of homogeneous pinning and wetting models [22, 40, 70].

Our main aim is to show that, for the whole class of models we are considering,
free energy (de)localization does correspond to a strong form of path (de)localization.

More precisely, we look at path behavior from two different viewpoints.

e Thermodynamic limit. We show that the measure PY; , converges weakly
as N — oo toward a measure P, on ZY, of which we give an explicit con-

struction, see Section 3. It turns out that the properties of P, are radically
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different in the three regimes (localized, strictly delocalized and critical),
see Theorem 4.7. It is natural to look at these results as those characterizing
the local structure of the polymer chain.

e Brownian scaling limits. We prove that the diffusive rescaling of the polymer
measure PY,  converges weakly in C'([0, 1]) as N — 0o. Again the properties
of the limit process, explicitly described in Theorem 4.8, differ considerably
in the three regimes. Moreover we stress that scaling limits describe global

properties of the chain.

We insist on the fact that the path analysis just outlined has been obtained exploiting
heavily the sharp asymptotic behavior of Z , as N — oo. In this sense our results
are the direct sharpening of the Large Deviations approach taken in [11], where
a formula for ¥, was obtained for periodic copolymers (but the method of course
directly extends to the general case considered here). Such a formula (see § 2.3), that
reduces the problem of computing the free energy to a finite dimensional problem
connected to a suitable Perron—Frobenius matrix, in itself suggests the new approach
taken here since it makes rather apparent the link between periodic copolymers and
the class of Markov renewal processes [5]. On the other hand, with respect to [11],

we leave aside any issue concerning the phase diagram (except for § 1.6 below).

1.4. The order parameter . It is a remarkable fact that the dependence of
our results on the charges w is essentially encoded in one single parameter §“, that
can be regarded as the order parameter of our models. For the definition of this
parameter, we need some preliminary notation. We start with the law of the first

return to zero of the original walk:
7 :=inf{n >0: S, =0} K(n) = P(r=n). (4.11)
It is a classical result [29, Ch. XIL.7] that

3 lim n*? K(n) =: cx € (0,00). (4.12)

n—oo

Then we introduce the Abelian group S := Z/(TZ) and to indicate that an integer n
is in the equivalence class § € S we write equivalently [n] = 5 or n € . Notice
that the charges w, are functions of [n], and with some abuse of notation we can

write wy,) := wy. The key observation is that, by the T-periodicity of the charges w
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and by the definition (4.8) of h,,, we can write

n2

Z ((,U?(l_l) — u)T(Z—H)) = —(ng — nl) h, + E[m],[nﬂ .

n=ni1+1
Thus we have decomposed the above sum into a drift term and a more fluctuating
term, where the latter has the remarkable property of depending on n; and ns only

through their equivalence classes [n;] and [ns]. Now we can define three basic objects:

e for a, 5 € S and ¢ € N we set

(
wéo) + <@éo) — wéﬂ)) ifl=1,¢ef—a
w 1
apll) = wéo) + log b(l + exp ( —lhy, +Ea7g)>:| ifl>1,/lef—a >
\0 otherwise
(4.13)

which is a sort of integrated version of our Hamiltonian;
e for z € N we introduce the S x S matrix M ;(x) defined by

;uﬁ(x> = e(bg’ﬁ(m) K(l‘) 1(x€ﬁfa) ; (414)

e summing the entries of M“ over x we get a S X S matrix that we call B“:

wai= Y M y(). (4.15)

zeN
The meaning and motivation of these definitions, that at this point might appear
artificial, are explained in detail in § 2.2. For the moment we only stress that the
above quantities are explicit functions of the charges w and of the law of the under-
lying random walk (to lighten the notation, the w—dependence of these quantities

will be often dropped in the following).

We can now define our order parameter §“. Observe that B, g is a finite dimen-
sional matrix with nonnegative entries, hence the Perron-Frobenius (P-F) Theorem
(see e.g. [5]) entails that B, s has a unique real positive eigenvalue, called the Perron—
Frobenius eigenvalue, with the property that it is a simple root of the characteristic
polynomial and that it coincides with the spectral radius of the matrix. This is

exactly our parameter:

0“ := Perron-Frobenius eigenvalue of B“ . (4.16)
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1.5. The main results. Now we are ready to state our results. We start char-

acterizing the (de)localization of the polymer chain in terms of §*.

THEOREM 4.5 (Sharp asymptotics). The polymer chain is localized if and only
if 6 > 1. More precisely, the asymptotic behavior of Z3;, as N — oo, [N] = 1 is
gien by

(1) for 6 > 1 (localized regime) Z%, ~ C7, exp (FuN) ;
(2) for 0¥ <1 (strictly delocalized regime) Z§, ~ C5, [ N3?
(3) for 0¥ =1 (critical regime) 7%, ~ C5,/VN ,

where F,, > 0 is the free energy and its explicit definition in terms of w s given
in § 2.3, while C7,, C5, and C, are explicit positive constants, depending on w

and n, whose value is given in Section 2.

REMARK 4.6. Theorem 4.5 is the building block of all the path analysis that
follows. It is therefore important to stress that, in the quenched disordered case, cf.

Remark 4.2, such a strong statement in general does not hold, see [36, Section 4].

Next we investigate the thermodynamic limit, that is the weak limit as N — oo of
the sequence of measures Py , on ZN (endowed with the standard product topology).
The next theorem provides a first connection between free energy (de)localization
and the corresponding path properties.

Before stating the result, we need a notation: we denote by P the set of w such
that:

Pi={w: <1, h,=0, Fapf: X,5#0}, (4.17)

P = PN{s <1}, P~ = Pn{s” =1}

Here P stands for problematic, or pathologic. Indeed, we shall see that for w € P the
results are weaker and more involved than for w ¢ P. We stress however that these
restrictions do not concern localized regime, because P C {w : §* < 1}. We also
notice that for the two motivating models of § 1.1, the pinning and the copolymer
models, w never belongs to P. This is clear for the pinning case, where by definition
3 = 0. On the other hand, in the copolymer case it is known that if A, = 0 and
da,B: ¥ap # 0 then §* > 1: see § 5.4 or [11]. In reality the pathological aspects

observed for w € P may be understood in statistical mechanics terms and we sketch
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an interpretation in § 1.6 below: this goes rather far from the point of view adopted
here, since it is an issue tightly entangled with the analysis of the free energy. It will

therefore be taken up in a further work.

THEOREM 4.7 (Thermodynamic limit). If w ¢ P<, then both the polymer
measures Pg\,’w and Py, converge as N — oo tlo the same limit P, law of an

wrreducible Markov process on Z. which is:
(1) positive recurrent if § > 1 (localized regime) ;
(2) transient if § < 1 (strictly delocalized regime) ;
(3) null recurrent if § =1 (critical regime) .

If w € P< (in particular 6 < 1), for alln € S and a = f,c the measure Py,
converges as N — oo, [N] =n to P4", law of an irreducible transient Markov chain

on 7.

We stress that in all regimes the limit law P, or P has an explicit construction

in terms of M 5(), see Section 3 for details.

We finally turn to the analysis of the diffusive rescaling of the polymer mea-
sure P%, . More precisely, let us define the map XV : RY — C([0,1]):

T|Nt|+1 — TNt

Ny o TNt
X (x) = N2 + (Nt — | Nt)) Nz L€ [0, 1],
where | - | denotes the integer part and o? := 2p is the variance of X; under the

original random walk measure P. Notice that X¥(z) is nothing but the linear in-
terpolation of {xLNtJ/(U\/N)}te%m[o,u- For a = f, ¢ we set:
Qo = Pl o (XM

Then Q% is a measure on C([0, 1]), the space of real continuous functions defined
on the interval [0, 1], and we want to study the behavior as N — oo of this sequence

of measures.
We start fixing a notation for the following standard processes:
e the Brownian motion {B;}, ¢ i

e the Brownian bridge {3}, ., between 0 and 0;
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e the Brownian motion conditioned to stay non-negative on [0,1] or, more

precisely, the Brownian meander {m }¢jo,1], see [60];

e the Brownian bridge conditioned to stay non-negative on [0,1] or, more
precisely, the normalized Brownian excursion {e;}cp,1], also known as the

Bessel bridge of dimension 3 between 0 and 0, see [60] .

Then we introduce a modification of the above processes labeled by a parameter
p € [0,1]:

e the process {ng )}76[071} is the so—called skew Brownian motion of param-
eter p, cf. [60]. More explicitly, B® is a process such that |[B?)| = |B| in
distribution, but in which the sign of each excursion is chosen to be +1
(resp. —1) with probability p (resp. 1 — p) instead of 1/2. In the same way,
the process {Bﬁp )}76[071} is the skew Brownian bridge of parameter p. Notice
that for p = 1 we have B = |B| and 3V = |3| in distribution.

e the process {mip)}fe[o,l] is defined by
P(m® € dw) := pP(m € dw) + (1 —p)P(—m € dw),

ie. m® = gm, where P(c = 1) = 1 —P(¢ = —1) = p and (m,0) are
independent. The process {eﬁp )}76[0,1] is defined in exactly the same manner.

For p = 1 we have m() = m and eV =e.

Finally, we introduce a last process, labeled by two parameters p, ¢ € [0, 1]:

e consider a r.v. U + [0, 1] with the arcsin law: P(U < t) = % arcsin v/¢, and

processes %), m@ as defined above, with (U, 3%, m(?) independent triple.
Then we denote by {Bﬁp ’Q)}Te[o,u the process defined by:

VU Y ifr<U
U

VIi—Um?, ifr>U
—U

1

Bﬁp,q) =

Notice that the process B®9 differs from the p-skew Brownian motion
B® only for the last excursion in [0, 1], whose sign is +1 with probability ¢
instead of p.

We are going to show that the sequence {Q%,} has a weak limit as N — oo
(with a weaker statement if w € P). Again the properties of the limit process differ

considerably in the three regimes 6“ > 1, 6 < 1 and ¢ = 1. However for the precise
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description of the limit processes, for the regimes 6“ = 1 and 0% < 1 we need to
distinguish between a € {f,c} and to introduce further parameters p,, q,,, defined
as follows:
e case 0¥ =1
— p, = p,,, defined in (4.82). We point out two special cases: if h, > 0
then p; = 1, while if h, = 0 and ¥ = 0 then p = 1/2;
— for each n €S, q, := q,, defined by (4.84).
e case 0¥ < 1 :
—w ¢ P<: if h, > 0 we set p, := p5 := 1 while if h, = 0 we set
P =Py = 1/2;
—w € P=: for each n € S and a = f,¢, p, = p5y is defined in (4.71)
and (4.73).

THEOREM 4.8 (Scaling limits). Ifw ¢ P, then the sequence of measures {Q%, }

on C([0,1]) converges weakly as N — oo. More precisely:

(1) for 6 > 1 (localized regime) Q% converges to the measure concentrated

on the constant function taking the value zero ;

(2) for 6¥ < 1 (strictly delocalized regime):
. Q?Vw converges to the law of m®5)

e %, converges to the law of ePs)

(3) for 6 =1 (eritical regime):
i Qﬁv,w converges to the law of B®s) ;

o %, converges to the law of pPo)

If w € P, then for all n € S the measures QY and QE\,W converge as N — oo,
[N] =1 to, respectively:

(1) for ¢¥ < 1, the law of e®55) and m®Sm).

(2) for 6% =1, the law of B®) and B®=%n).

Results on thermodynamic limits in the direction of Theorem 4.7 have been
obtained in the physical literature by exact computations either for homogeneous
polymers or for T' = 2 pinning models and copolymers, see e.g. [51], while Brown-
ian scaling limits have been heuristically derived at several instances, see e.g. [70].

Rigorous results corresponding to our three main theorems have been obtained for
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homogeneous pinning/wetting models in [22, 40]. We would like to stress the very

much richer variety of limit processes that we have obtained in our general context.

1.6. About the regime P. We have seen, cf. Theorem 4.7, that if w € P< the
infinite volume limit (in particular the probability that the walk escapes either to
+00 or to —oo) depends on a = ¢ or f and on the subsequence [N] = n € S. This
reflects directly into Theorem 4.8 and in this case also the P~ regime is affected,
but only for a = f and the change is restricted to the sign of the very last excursion
of the process. It is helpful to keep in mind that w € P if and only if there is a non
trivial unbiased copolymer part, that is A, = 0 but the matrix > is non trivial, and
at the same time the polymer is delocalized. It is known (§ 5.4 and [11]) that in
absence of pinning terms, that is w =5 = 0 for every n, the polymer is localized.
However if the pinning rewards are sufficiently large and negative, one easily sees
that (de)pinning takes over and the polymer delocalizes. This is the phenomenon

that characterizes the regime P and its lack of uniqueness of limit measures.

Lack of uniqueness of infinite volume measures and dependence on boundary
conditions do not come as a surprise if one takes a statistical mechanics viewpoint
and if one notices that the system undergoes a first order phase transition exactly

at P. In order to be more precise let us consider the particular case of

dT(S) X exp <Z (wn + h)sign (S,) — B; 1{Sn=0}> : (4.18)

n=1

with h and (3 two real parameters and w a fixed non trivial centered (25:1 wy, = 0)
periodic configuration of charges. The phase diagram of such a model is sketched
in Figure 4.1. In particular it is easy to show that for A~ = 0 and for [ large and
positive the polymer is delocalized and, recalling that for § = 0 the polymer is lo-
calized, by monotonicity of the free energy in § one immediately infers that there
exists (. > 0 such that localization prevails for 3 < (., while the polymer is delo-
calized (both above and below the interface) if 8 > (.. However the two regimes of
delocalization above or below the interface, appearing for example as soon as h is
either positive or negative and 3 > f3., are characterized by opposite values (£1) of
o0=o0(h,B3) =limy_ o Ex, [N ! ZnN:1 sign (S,)| and of course p is the derivative

of the free energy with respect to h. Therefore the free energy is not differentiable at
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h = 0 and we say that there is a first order phase transition. First order phase tran-
sitions are usually associated to multiple infinite volume limits (phase coexistence).

A detailed analysis of this interesting phenomenon will be given elsewhere.

h

————, e, <y - - - -

FIGURE 4.1. A sketch of the phase diagram for the model (4.18).
In this case, with abuse of notation, P = {(h,3) : h =0, 5 > [.}.
Approaching P in the sense of the dashed arrowed lines one observes
the two sharply different behaviors of paths completely delocalized
above (90 = +1) or below (p = —1) the interface.

1.7. Outline of the exposition. In Section 2 we study the asymptotic be-
havior of Z§ ,, proving Theorem 4.5. In Section 3 we compute the thermodynamic
limits of PY ,, proving Theorem 4.7. In Section 4 we compute the scaling limits of
PY ., proving Theorem 4.8. Finally, in Section 5 we give the proof of some technical

results and some additional material.

2. Sharp asymptotic behavior of the partition function

In this section we are going to derive the precise asymptotic behavior of Z§
in particular proving Theorem 4.5. The key observation is that the study of the
partition function for the models we are considering can be set into the framework
of the theory of Markov renewal processes, see [5, Ch. VIL.4]. We start recalling the

basic notions of this theory and setting the relative notation.
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2.1. Markov Renewal Theory. Given a finite set S (for us it will always be
Z/(TZ)), by a kernel we mean a family of nonnegative S xS matrices F,, g(x) depend-
ing on a parameter z € N. We say that the kernel F, g(x) is semi-Markov if F, .(-)
is a probability mass function on S x N for every a € S, that is if Y,  Fo () = 1.

A semi-Markov kernel F, g(x) has a simple probabilistic interpretation: it defines

a Markov chain {(Jg, T;)} on S x N through the transition kernel given by

P[(Jk-l—laTk-l—l) = (B,ZL‘) } (JkaTk) = (O%y)} - Fa,ﬁ(x)' (419)

In this case we say that the process {Ji, T} is a (discrete) Markov—renewal process,
the {T}} being thought of as interarrival times. This provides a generalization of
classical renewal processes, since the {7}, } are no longer IID but their laws are rather
modulated by the process {Ji}. Since the r.h.s. of (4.19) does not depend on y, it
follows that {Ji} is a Markov chain, and it is called the modulating chain of the
Markov renewal process (observe that in general the process {T}} is not a Markov
chain). The transition kernel of {J} is given by >\ Fu g(x). We will assume that
this chain is irreducible (therefore positive recurrent, since S is finite) and we denote

by {Va}aes its invariant measure.

Given two kernels F' and G, their convolution F' * G is the kernel defined by
(F ot @as(®) i= 323 Fan)Grale —1) = 3. [Fl) - Glo —y)],,,  (420)
yeN ~eS yeN

where - denotes matrix product. Observe that if /' and G are semi-Markov kernels,
then F % (G is semi—Markov too. With standard notation, the n—fold convolution of
a kernel F' with itself will be denoted by F*", the n = 0 case being by definition the
identity kernel [F*], 5(x) := 1(32a)1(z=0)-

A fundamental object associated to a semi—Markov kernel F' the so—called Markov—

Green function (or Markov—renewal kernel), which is the kernel U defined by

o0

Uap() =) [F*] (). (4.21)

k=0
Of course the kernel U is the analog of the Green function of a classical renewal
process, and it has a similar probabilistic interpretation in terms of the associated

Markov renewal process {(J, Tx)}:
Usp(z) =P[Fk>0: To+...+Tp ==, J, = 0], (4.22)

where P, is the law of {(T}, Jx)} conditioned on {Jy = «a, Ty = 0}.
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We need some notation to treat our periodic setting: we say that a kernel F, 3(z)
has period T € N if the set {z : U,o(x) # 0} is contained in T'Z, for the least such T
(this definition does not depend on « because the chain {J;} is supposed to be
irreducible, see the discussion at p. 208 of [5]). It follows that the set {z : U, g(x) #
0} is contained in the translated lattice v(«, 3) + TN, where v(«, 5) € {0, ..., T—1}
(for us it will be v(a, ) = [B — a]).

In analogy to the classical case, the asymptotic behavior of U, s(z) as x — oo is
of particular interest. Let us define the (possibly infinite) mean p of a semi—-Markov
kernel F, 3(x) as

W= Z Zx Vo Fop(x). (4.23)
a,BeS zeN

Then we have an analog of Blackwell’s Renewal Theorem, that in our periodic setting

reads as
. Vg
3 lim U,p(z) = T—, (4.24)
Ea a

cf. Corollary 2.3 p. 10 of [5] for the classical case.

We will see that determining the asymptotic behavior of U, (x) when the kernel
F, 5(z) is no more semi-Markov is the key to get the asymptotic behavior of the

partition function 2% .

2.2. A random walk excursion viewpoint. Now we are ready to make ex-
plicit the link between the partition function for our model and the Theory of Markov
Renewal Processes. Let us look back to our Hamiltonian (4.3): its specificity comes
from the fact that it can be decomposed in an efficient way by considering the return

times to the origin of S. More precisely we set for j € N
=0 Tjp1 = inf{n > 7;: S, =0},

and for P-typical trajectories of S one has an infinite sequence 7 := {7;}, of stopping
times. We set T; = 7; — 7;_1 and of course {7}};—1 . is, under P, an IID sequence.
By conditioning on 7 and integrating on the up—down symmetry of the random walk
excursions one easily obtains the following expression for the constrained partition

function:
LN

Zyo =E HeXp (\IJW(Tj_l,Tj)); . =N\, (4.25)

J=1
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where (y = sup{k : 7, < N} and we have introduced the integrated Hamiltonian

U¥(nq,ngy), which gives the energetic contribution of an excursion from n; to na:
4
o) + (2 i) 3= +1

1
U¥(ny,ng) = w,(m) + log {2 <1 -+ exp Z (wﬁfl) — wr(fl)))] if ng >ng +1

0 otherwise .
(4.26)

Now we are going to use in an essential way the fact that our charges are T—
periodic. In fact a look at (4.26) shows that the energy U*(ni,ny) of an excursion
from ny to ny is a function only of (ny — ny), [n1] and [ny], where by [-] we mean
the equivalence class modulo 7', see § 1.4. More precisely for ny € a, ny € 3 and
{ = ny —ny we have U¥(ny,ny) = @ 5(£), where & was defined in (4.13). Then
recalling the law K (n) of the first return, introduced in (4.11), we can rewrite (4.25)

as

ZJCV’W = Z Z H K (tj - tj—l) €xXp (éﬁj—ﬂ,[t]’](tj - tj—l)) . (427)

k=1 t0,...,tk EN Jj=1
0=:to<t1<...<tp:=N

This decomposition of Z%; , according to the random walk excursions makes explicit
the link with Markov Renewal Theory. In fact using the kernel M, g(x) introduced

n (4.14) we can rewrite it as

Zw = Z > HMt] (= t-1)

to,...,tx EN
0 o<ty <..<tg: —N

ST M) Mt~ ) MOV i)y (428)

k=1 to,...,tx EN
0=:to<t1<...<tp:=N

I
NE

(M) g (V).

b
Il
o

Therefore it is natural to introduce the kernel Z, g(x) defined by

[e.9]

= [M*] (x) (4.29)

k=0
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so that Z , = Zjg,x)(N). More generally 2, 5() for [z] = 3—a can be interpreted
as the partition function of a directed polymer of size x that starts at a site (M, 0),
with [M] = «, and which is pinned at the site (M + x,0).

Our purpose is to get the precise asymptotic behavior of Z, g(x) as x — oo,
from which we will obtain the asymptotic behavior of Z% , and hence the proof
of Theorem 4.5. It is clear that equation (4.29) is the same as equation (4.21),
except for the fact that in general the kernel M has no reason to be semi-Markov.
Nevertheless we will see that with some transformations one can reduce the problem

to a semi-Markov setting.

It turns out that for the derivation of the asymptotic behavior of Z, s(z) it is
not necessary to use the specific form (4.14) of the kernel M, g(x), the computations
being more transparent if carried out in a general setting. For these reasons, in the
following we will assume that M, s(z) is a generic T-periodic kernel such that the
matrix B, g defined by (4.15) is finite. While these assumption are sufficient to yield
the asymptotic behavior of Z, g(x) when §* > 1, for the cases 0 < 1 and ¢¥ =
it is necessary to know the asymptotic behavior as x — oo of M, s(x) itself. Notice
that our setting is an heavy—tailed one: more precisely we will assume that for every
a, B € S:

3 lim 2%? M,g(z) = Lag € (0,00). (4.30)

r—00

[o—5a
From equation (4.13) it is easy to check that the kernel M, s(z) defined by (4.14)

does satisfy (4.30) (see Section 3 for more details on this issue).

For ease of exposition, we will treat separately the three cases ¢ > 1, o < 1
and 0¥ = 1.

2.3. The localized regime (0 > 1). The key idea is to introduce the following
exponential perturbation of the kernel M (cf. [5, Theorem 4.6]), depending on the

positive real parameter b:
AL () = My p(x)e ™.

Let us denote by A(b) the Perron-Frobenius eigenvalue of the matrix Y- A ;(x).
As the entries of this matrix are analytic and nonincreasing functions of b, A(b) is
analytic and nonincreasing too, hence strictly decreasing because A(0) = §% > 1
and A(oo) = 0. Therefore there exists a single value F,, > 0 such that A( Fw) =1,
and we denote by {Cs}a, {£ata the Perron—Frobenius left and right eigenvectors
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of Y7, Ays(w), chosen to have (strictly) positive components and normalized in
such a way that > (,&, = 1 (of course there is still a degree of freedom in the

normalization, which however is immaterial).

Now we set

g_z = Ma,ﬁ(x) e et E_Z )

and it is immediate to check that I'” is a semi—Markov kernel. Furthermore, we can
rewrite (4.29) as

I3 5(x) = Ayy() (4.31)

[e.9]

Fox 504 >\ * _ _FuT £O¢
Zo5(r) =e :, ;; [(T7)*], 5(x) =€ 5ua,ﬁ(x), (4.32)

where U, g(x) is nothing but the Markov-Green function associated to the semi-
Markov kernel I'; ;(x). Therefore the asymptotic behavior of Z, 5(w) is easily ob-
tained applying Blackwell’s Renewal Theorem (4.24). To this end, let us compute
the mean p of the semi-Markov kernel I'7: it is easily seen that the invariant measure
of the associated modulating chain is given by {(.&s}a, therefore

= 3 Y e T = 3 Y e G M) €

a,B€eS xeN a,BEeS xeN

(30

(for the last equality see for example [11, Lemma 2.1]). Coming back to (4.32), we

€ (0,00),

b=F,

can now apply Blackwell’s Renewal Theorem (4.24) obtaining the desired asymptotic

behavior:
T
Zap(r) ~ €a(s— exp (F, 1) r— o0, [7]=0-a. (4.33)
i

In particular, for « = [0] and § = 7 we have part (1) of Theorem 4.5, where
Con = ST/ 1.

2.4. The strictly delocalized case (§“ < 1). We prove that the asymptotic
behavior of Z, s(z) when 6* < 1 is given by
_ _ 1
Zos(x) ~ ({(1 —B)"'L(1-B) 1L,g> — v — 00, [t]=p—a, (4.34)
where the matrixes L and B have been defined in (4.30) and (4.15). In particular,
taking o = [0] and 5 =7, (4.34) proves part (2) of Theorem 4.5 with

Cs,=[1-B)"'L(1-B)"]

Om”
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To start with, we prove by induction that for every n € N

Z[M*n]aﬁ(x) = [B"]as- (4.35)

zeN

The n =1 case is the definition of B, while for n > 1

ZM*(”+1)(x) = ZZM*” M(z — 2) ZM*” )Z M(z — z)

zeN zeN z<z zeN >z
= § M (z)-B = B"-B = B"™.
z€N

Next we claim that, if (4.30) holds, then for every «, 5 € S

N
—_

El[:fl}r;.f x3/2[M*k]aﬂ(x) _ ‘ [Bz L - B(k 1)— z]

s (4.36)

Il
o

We proceed by induction on k. The k = 1 case is given by (4.30), and we have that

x/2
MO () = 3 (M) M=) + Mo =) M)
y=1
(strictly speaking this formula is true only when z is even, however the odd z case is
analogous). By the inductive hypothesis equation (4.36) holds for every k < n, and
in particular this implies that {#3/2[M**], 5(x)} ey is a bounded sequence. Therefore

we can apply Dominated Convergence and (4.35), getting

T— 00

[a] =B~

3 lim x3/2[M*(”+1)}aﬁ(x)

v y=1 =0
n—1
= > (BM [B'-L-B" V7 4L [B*”}W)
o7 =0

= Z[Bi~L.B”*i}aﬁ.

=0

Our purpose is to apply the asymptotic result (4.36) to the terms of (4.29), hence
we need a bound to apply Dominated Convergence. What we are going to show is
that

2P [M*] | (x) < Ok [BY] (4.37)

a?ﬁ
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for some positive constant C' and for all a,3 € S and z,k € N. Observe that the
r.h.s. above, as a function of k, is a summable sequence because the matrix B has
spectral radius 0 < 1. We proceed again by induction: for the k = 1 case, thanks to
(4.30), it is possible to find C such that (4.37) holds true (this fixes C' once for all).
Now assuming that (4.37) holds for all £ < n we show that it does also for k = n
(we suppose for simplicity that n = 2m is even, the odd n case being analogous).

Then we have (assuming that also x is even for simplicity)

x/2
1'3/2 |:M*2mj| a,ﬂ(l‘) = 2 Z Z [M*m} a,’y(y) .1'3/2 [M*m] ’Y,ﬂ(l‘ N y)
y=1 ~v€eS
/2
< 2.2320m? Z Z [M*m]aw(y) [Bm}w,ﬁ
y=1 ~eS

< C(2m)*[B™], ;.

where we have applied (4.35), and (4.37) is proven.

We can finally obtain the asymptotic behavior of Z, g(x) applying the bound
(4.36) to (4.29), using Dominated Convergence thanks to (4.37). In this way we get

0, = S -8,

i=0 k=i+1 =0

= [1-B)"-L-(1-B)"]

I
™
™
)

:

a7ﬁ ’

and equation (4.34) is proven.

2.5. The critical case (0¥ = 1). In the critical case the matrix B defined
in (4.15) has Perron—Frobenius eigenvalue equal to 1. Let {(s}a, {a}a denote its
corresponding left and right eigenvectors, always chosen to have positive components
and normalized so that > (., = 1. Then it is immediate to check that the kernel

- £
7 5(2) == M, () 5—5 (4.38)
is semi-Markov, and the corresponding Markov-Green function U, g(x) is given by
Upp(x) = [(F ) k}aﬁ(x) = = Z,5(2), (4.39)

k=0 Sa
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where the last equality follows easily from (4.29). We are going to derive the as-
ymptotic behavior of U, s(z), and from the above relation we will get the analogous
result for Z, g(x).

Denoting by {(Ty, J)} under P the Markov—renewal process generated by the
semi-Markov kernel I'] 5(), for U, g(z) we have the probabilistic interpretation

(4.22), that we rewrite for convenience
Usp(z) =P [Fk >0: To+...+ Ty =2, J, =p]. (4.40)

For B € S we introduce the sequence of stopping times {/i,(f )}nZO corresponding to
the visit of the chain {J;} to the state (:

Héﬁ) =1inf{k >0: J, =5} /ﬁfﬂl = inf{k > s : J. =5}, (4.41)

n

and we define the process {Téﬁ )}nZO by setting
Téﬁ) = T() + ...+ Tnéﬁ) Téﬂ) : Tﬁ(ﬁjl+1 + ...+ Tﬁglﬁ) . (442)

The key point is that under P, the random variables {Ty(Lﬁ )} are the interarrival
times of a (possibly delayed) classical renewal process, equivalently the sequence
{T,Sf”}nzl is IID and independent of Téﬂ). We denote for z € N by ¢¥(z) the (mass
function of the) law of TY(Lﬁ ) for n > 1, while the law of Téﬁ ) under P, is denoted
by ¢ (x). Since clearly

{EII{:ZO:TO—I—...—i—Tk:x,Jk:B} = {EInZO:TO(B)—I—...—I—TTEﬂ):x},

from (4.40) we get

o0

Upp() =Pa[3n>0: T,V + .. + TP = 4] = (q@f%m > (q@)*”) (z), (4.43)

n=0
which shows that U, g(x) is indeed the Green function of the classical renewal process

whose interarrival times are the {7\ )}nZO'

Now we claim that the asymptotic behavior of ¢/?)(x) as # — oo, x € 3, is given
by

1
) cs —

¢ (x) ~ —= g = ——
?/? T

see § 5.1 for a proof of this relation. Then the asymptotic behavior of (4.43) is given
by

D CaLayéy >0, (4.44)

a,y

T 1
2T c3 \/E

Uap(z) ~ r—o0, lr]=0-«, (4.45)
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as it follows by [27, Th. B] (the factor T? is due to our periodic setting). Combining
equations (4.39), (4.44) and (4.45) we finally get the asymptotic behavior of Z, g(x):

T2 fa Cﬁ 1
2m 27,7/ Gy Ly &y VT

Taking o = [0] and 8 = 7, we have the proof of part (3) of Theorem 4.5.

Zaplz) ~

r—o00, [z]=0-a. (4.46)

3. Thermodynamic limits

In this section we study the limit as N'— oo of the polymer measure P%; ,, using
the sharp asymptotics for the partition function obtained in the previous section. We
recall that PYy , is a probability measure on Z", which we endow with the product
topology. In particular, weak convergence on ZY means convergence of all finite

dimensional marginals.

We start giving a very useful decomposition of PYy . The intuitive idea is that

a path (S,)n,<ny can be split into two main ingredients:

o the family (7;)r—o1,. of returns to zero of S (defined in § 2.2);

o the family of excursions from zero (Siy.,_, 0 <@ < T — Tp_1)k=1,2,..

Moreover, since each excursion can be either positive or negative, it is also useful to
consider separately the signs of the excursions o := sign(S;, _,+1) and the absolute
values (ex(i) :== |Sitr,_,| 4 =1,..., 7% —Tx—1). Observe that these are trivial for an

excursion with length 1: in fact if 7, = 74,1 + 1 then o, = 0 and ex(0) = ex(1) = 0.

Let us first consider the returns (74)r<,, under Py ,, where (y = sup{k : 7 <
N}. The law of this process can be viewed as a probability measure P on the class
Ap of subsets of {1,..., N}: indeed for A € Ay, writing

A:{tl,...,t‘m}, 0= t0<t1<"'<t|,4‘ SN, (4.47)
we can set
Prw(A) = Py (1=t i <un). (4.48)

The measure py; , describes the zero set of the polymer of size N, and it is analyzed
in detail below. From the inclusion of Ay into {0, 1}, the family of all subsets of N,
P%. can be viewed as a measure on {0, 1}N (this observation will be useful in the

following).
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Now we pass to the signs: we can see that, given (7;);<,,, under P% , the signs
(0k)k<.y form an independent family. Conditionally on (7;),<,,, the law of oy is
specified by:

-if 7, =1+ 7,_1, then o, = 0;
- if 7, > 1+ 7,_1, then o, can take the two values +1 with
1
1+ exp {— (7 — To-1) b + Spre )il b

Observe that when 7,, < N (which can happen only for a = f) there is a last

Py . <0'k = +1 ‘ (Tj)jsbw> = (4.49)

(incomplete) excursion in the interval {0,..., N}, and the sign of this excursion is

also expressed by (4.49) for k = ty41, provided we set 7,1 := N.

Finally we have the moduli: again, once (7x—1, 0% )1<k<.y+1 are given, the excur-
sions (ex)k=1,..y+1 form an independent family. The conditional law of ej(-) on the

event {71 = lo, 7x = {1} and for f = (fi)iz1,..01—¢, 18, for k < iy, given by
P?v,w(ek(') =f ‘ (Tj—lyo'j)lgjgw\,-H)

_ P<Si:fl-: i1, 0 — 0y ’ Si>0: i=1,... 0 —Lly—1, Sgl_eozo).
(4.50)

In the case 7,, < N we have a last excursion e,,1(-): its conditional law, on the

event {r,, =0 < N} and for f = (f;)i=1.. n—s, is given by

P%. (€LN+1(') =f ’ (Tj—l’aj)lsjsml)

= P(Si=fiii=1  N=|Si>0:i=1,..,N=1), oy

We would like to stress that the above relations fully characterize the polymer
measure P . A remarkable fact is that, conditionally on (7%)ren, the joint distri-
bution of (0}, €;),<,, does not depend on N: in this sense, all the N-dependence is
contained in the measure py .

For this reason, this section is mainly devoted to the study of the asymptotic
behavior of the zero set measures p%;, as N — oo. The main result is that pf
and pg\,’w have the same weak limit p, on {0,1} as N — oo (with some restric-
tions when w € P<). Once this is proven, it follows easily that also the polymer
measure Py , converges to a limit measure P, on ZN, constructed by pasting the
excursion over the limit zero set. More precisely, P, is the measure under which the

processes (7;), (o) and (e;) have the following laws:
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e the law of the (7;),en is determined in an obvious way by the limiting zero
set measure p,;

e then, conditionally on the (7;);en, the process (o;);en is an independent one
with marginal laws given by (4.49);

e finally, conditionally on (7;,0;) en, on the event {7,_1 = {y, 7, = {1} with
ly < 04 < oo the law of ey is given by the r.h.s. of (4.50). We have to
consider also the case ¢y < oo, {1 = 00, because in the regime 0 < 1 it
turns out that P, (7, = 00) > 0 (see below and § 5. 2)' in this case the law
of ey is given for any n € N and for f = (fi)i=1,.»

Pw<ek(i):fl- : izl,...,n)(Tj,Jj)j€N> = Pt (S = fi: z’zl,...,n)
= lim P<S fi i —1,...,n’SZ->O: izl,...,N),

N—oo

(4.52)

where the existence of such limit is well known: see e.g. [35].

3.1. Law of the zero level set in the free and constrained cases. Let us
describe more explicitly p% ,(A), using the (strong) Markov property of Py . We
use throughout the chapter the notation (4.47). Recalling the definition (4.14) of
M, 5(t), we have:

o fora =cand A€ Ay: py,(A) #0 if and only if #4 = N, and in this

case:
4]
Pivw(A -1)
Nw =1
e fora=1and A € An:
4] -
P w(A) Zf T Muea(t = tiea) | POV = ) exp (@[t‘A‘],[N}(N —t\A|))-
N,w i=1

where P(n) =" K(k)=>;" ., P(r =k) and we have introduced

1
@aﬂ(f) = log [§<1 + exp ( - fhw + Eaﬂ)>:| 1(g>1) ]-(Eeﬁ—a) s (453)

which differs from ® in not having the terms of interaction with the inter-
face, cf. (4.13).

We are going to show that, for any value of ¢*, the measure p% , on {0,1}"
converges as N — oo (with some restrictions if w € P<) to a limit measure under

which the process ([7x], Tk — Tk—1)ken is a Markov renewal process. Moreover, we will
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compute explicitly the corresponding semi-Markov kernel, showing that the returns
to zero are

(1) integrable if 6* > 1 (localized regime);

(2) defective if §* < 1 (strictly delocalized regime);

(3) non integrable if §* = 1 (critical regime).

Thanks to the preceding observations, this will complete the proof of Theorem 4.7.
We stress that the key result in our derivation is given by the sharp asymptotics of

the partition function Z§ , obtained in the previous section.

Before going into the proof, we give some preliminary material which is useful

for all values of §“. For k € N we define the shift operator:
O : RN — RY, OkC = ot

and it is easy to check that the following relations hold true:

ZN ko = Zmm(N — k), k<N (4.54)
N o~
Z]fv,w = Z Z;w P(N —t) exp (q)[t],[N}(N — t)) , (4.55)
t=0
Pa _ _ Z]%—k,ekw -
Nw (1 =k) = Mow(k) e 1<k<N, a=cft. (4.56)
N,w

Finally, using (4.12), (4.14) and (4.13) it is easy to see that (4.30) holds true, namely

3 Jim 27 Mag(r) = Lag, (4.57)
[a=ha
where:
1
CK 5 <1 + exp (Ea,ﬁ)) exp(wéo)) if hy,=20
Log = 1 (4.58)
CK 5 exp(wéo)) if h, >0

Since also the asymptotic behavior of P(¢) exp(®, g(¢)) will be needed, we set

_ cK(l + exp(Eaﬁ)) if h,=0
Lap =, lim VIP(0) ePesl® — . (4.59)
oo feie cx if hy, >0

as it follows easily from (4.53) and from the fact that P(¢) ~ 2cx/v/{ as £ — oc.
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3.2. The localized regime (6 > 1). We prove point (1) of Theorem 4.7.

More precisely, we prove the following:

PROPOSITION 4.9. If §* > 1 then the polymer measures Pg\,’w and Py, converge
as N — oo to the same limit P, under which ([13], T —Tk—1)ken i @ Markov renewal

process with semi-Markov kernel (I';, 5(v) 1 o, 3 € S,x € N).

For the definition of I'” see (4.31).

3.2.1. Proof of Proposition 4.9. We prove first the case a = c. By (4.54), (4.56)
and by the asymptotics of Z in (4.33) above, we have for all o, 3,7 € S and ¢ € «,
m e (8

Noee LN 000 e Zay(N =1 3

and since the right hand side does not depend on +, then the limit exists as N — oo.
It follows that for ¢ € o, k + ¢ € 3:

ek §
lim PY_ g0 (11 = k) = Myg(k)e ™22 = T2 (k).

N—oo ga
By the Markov property of P} , this yields
dim Py (i =k, = Hr[k gk (ki —kisy), ko =0,

The argument for P?\/,w goes along the very same line: by (4.55),

N-k

e N ZN o =€ N Zuyv—g(N — k — 1) P(t) exp (&’[N—t],[N} (t)>

t=0

= 3 e o) exp (B0 O 2 (8 k)]

nes t=0

Since by (4.33) the expression in brackets converges as N — oo and N € [t] + 7, we

obtain

3 lim eV 2L = € 6‘“'“( > X Pl exp (By4(0) g")'

Ney neS teN
[t]=7—7

Observe that the term in parenthesis is just a function of 7. Having found the precise

asymptotics of Z) ,, we can argue as for P, to conclude the proof. O
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3.3. The critical regime (6* = 1). We prove point (3) of Theorem 4.7. More

precisely, we prove the following:

PROPOSITION 4.10. If§“ =1 then the polymer measures P§\7,w and Py, converge
as N — oo to the same limit P, under which ([13], i —Tk—1)ren 8 @ Markov renewal

process with semi-Markov kernel (I'; 5(z) : o, B € S,z € N).

For the definition of I'= see (4.38).

3.3.1. Proof of Proposition 4.10. We prove first the case a = c. By (4.57) and
and by the asymptotics of Z in (4.46) above, we obtain for all k € a:

T §a G
3 lim NY2 Z,4(N —k) = — o >h .
T | 21 2 e S Loy &
It follows for all o, B,y € Sand ¢ € o, m € 3
Z —m,Omw Z, N —
3 fim Nt _ oy 2V om) G
]\]7\[25;0 ZNfE,sz ]\JIVE?YO Zav'Y(N) 50‘

and since the right hand side does not depend on v, then the limit exists as N — oo.
It follows for £ € o, k+ ¢ € 3:

R § -
lim Py, (= k) = Mas(k) 2> = Tg (k).

N—oo ’ fa

By the Markov property of P} , this yields
J
]\}LI%O P(]:V,w (7'1 = k?l, ceey T = k’j) = le[kz—l}:[kz}(kl - ki—l); k’o = 0.
For PRW, by (4.55) we have for N €  and k < N:

N—k
Dy o = % Ziga(t) PN — k — 1) exp (cp%ﬁ(zv ke t)),
v t=0

By the previous results and using (4.59) we obtain that for every k € N
T Zn Cp Ly /1 dt

k]l 5 1 1

" or an/ G Ly &y Jo t2(1—1t)2

— ¢ z Zn Gy Zn,ﬂ
. 2 an’ Cn Ln,n/ gn’ .

To conclude it suffices to argue as in the constrained case. 0

3 lim ijv—k;,ekw = ¢

N—oo, NeS

(4.60)
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3.4. The strictly delocalized regime (6* < 1). We prove point (2) and the
last assertion of Theorem 4.7. In this case the result is different according to whether
w € P< orw ¢ P< (recall the definition (4.17)). To be more precise, there is first a
weak formulation for all w which gives a thermodynamic limit of Py , depending on
the sequence {N : [N] = n} and on a = f, ¢; secondly, there is a stronger formulation

only for w ¢ P<, which says that such limits coincide for all n € S and a = f, c.

It will turn out that in the strictly delocalized regime there exists a.s. a last
return to zero, i.e. the process (7)ren is defective. In order to express this with
the language of Markov renewal processes, we introduce the sets S := SU {oo} and
N := NU {00}, extending the equivalence relation to N by [cc] = oo. Finally we set
for all a,n € S:

A, =[1-B)'LA-B)"]_, w, = [L(1—=B)"'

a?n

A(fm7 = [(1 —B)*Z}M, ,ugw = Loy,

and for all n € S and a = f, ¢ we introduce the semi-Markov kernel on S x N:

M, (k) A%m/Agw7 aeS, zeN, f=[z] €S
17 () u‘o‘é’n//\‘o‘m a €S, z=o00, =[]
o 1 a=p=[x], z=0
0 otherwise.

\

Notice that I'* is really a semi-Markov kernel, since for o € S:

Y rn) = e " Sy Mestr) Ay - Al B A,

B€S zeN BeS zeN

uin
= o AL —pt,) = 1.
Ao, Aa (ASy — Hay)

We are going to prove the following:

PRrROPOSITION 4.11. Let 6% < 1. Then:

(1) fora=f,c, Py
which ([Te], Tk — Th—1)ken 8 a Markov renewal process with semi-Markov

kernel (T0%(x) : o, € S,z € N).

converges as N — oo, [N] =1 to a measure PL", under

w w
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(2) if w ¢ P<, then PY" =: P, and I =: I'S depend neither on n nor
on a, and both ng’w and PY , converge as N — oo to P, under which

([T], T — Th—1)ken @8 a Markov renewal process with semi-Markov kernel T'<.

REMARK 4.12. Part (2) of Proposition 4.11 is an easy consequence of part (1).
In fact from equations (4.58) and (4.59) it follows immediately that when w ¢ P<

then both matrices (L, 3) and (L, g) are constant in «, and therefore A factorizes

into a tensor product, i.e.

AL, = Aavy a,n €S,

a“no

where (A%)aes and (v2)aes are easily computed. But then it is immediate to check

that the semi-Markov kernel I'"»* =: I'< depends neither on 7 nor on a.

3.4.1. Proof of Proposition 4.11. By the preceding Remark it suffices to prove
part (1). For all k € «, by (4.34) we have

3 lim_ N*? Zog(N—k) = [1=B)'"L(1=B)7"]_ , = Asp (4.61)

[N]=8
In particular, we have for all o, 6,7 € S and ¢ € a, m € :

Z —m,0mw Z N — AC
3 11m ]\i ,om _ l‘m 5777( m) — fﬂ?)
]\]7\76?70 ZN*@,@[UJ ]\]7\76?70 Za,ﬂ(N) Aa,n
Then by (4.56) we get
N Mo, (k) A, c
dim Py (n = ) = ——p—= = T35 (6)
Nen 0,m

By the Markov property of PY; , this generalizes to
J

lim P§, (o =ky,ooory=ky) = [T (ki —kicn), ko =0,

N—oo .
Nen i=1

We prove now the case a = f. Recalling (4.55) above, we see here that
N—k N
NV Z o = S Zipn(t) N2 PN =k — 1) exp (cb[HkHN](N - t)).
t=0

Then by (4.59) we obtain

N—oo
Néen

3 lim N2 Z4 o0 = D Zuen(t) Liewy = [(1=B) 'L = Ay
t=0

(4.62)
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since
YDEMUIED 3 SFESUNE oy R I T
t=0 t=0 k=0 k=0

Arguing as for P ,, we conclude the proof. OJ

4. Scaling limits

In this section we prove that the measures P§; , converge under Brownian rescal-
ing. The results and proof follow very closely those of [22] and we shall refer to this
paper for several technical lemmas.

The first step is tightness of (Q%,)ven in C([0,1]).

LEMMA 4.13. For any w and a = c, f the sequence (Q% ) ven is tight in C([0,1]).

For the standard proof we refer to Lemma 4 in [22].

In the rest of the section we prove Theorem 4.8.

4.1. The localized regime (6 > 1). We prove point (1) of Theorem 4.8. By
Lemma 4.13 it is enough to prove that P4 (|X{¥| > €) — 0 for all ¢ > 0 and
t € [0,1] and one can obtain this estimate explicitly. We point out however that
in this regime one can avoid using the compactness lemma and one can obtain a
stronger result by elementary means: observe that for any k£, n € N such that n > 1

and k£ +n < N, we have

P?V,W(Sk:SkJrn:O, SkJri?éOfOI"L': 1,...,72— 1)

M (S () g

n,0w

and this holds both for a = ¢ and a = f. Inequality (4.64) is obtained by using the
Markov property of .S both in the numerator and the denominator of the expression
(4.9) defining Py , (+) after having bounded Z§; , from below by inserting the event
Sk = Sk+n = 0. Of course lim,,_,(1/n) log IA(k(n) = —F,, uniformly in %k (notice that
Kpir(n) = Ki(n)). Therefore if we fix £ > 0 by the union bound we obtain (we
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recall that {7;}, and ¢y were defined in Section 3)
?\,w( max T; — Tj_1 > (1+5)10gN/Fw)
@\ =12,y

< D >, K
k<N—(14¢)log N/F, n>(1+¢)log N/F,
C

< N max [/(\' n) < —
- Z k=0,... T—1 k(n) < Ne’
n>(14+¢)log N/F.,

for some ¢ > 0.

Let us start with the constrained case: notice that Py ,(dS)-a.s. we have 7,, = N
and hence max;<,, 7, — Tj_1 > max,—1__n |Su|, since [Sp41 — Sn| < 1. Then we
immediately obtain that for any C' > 1/F,,

]\}iinw Py . (nirllaXN |Sp| > C'log N) = 0, (4.65)
which is of course a much stronger statement than the scaling limit of point (1)
of Theorem 4.8. If we consider instead the measure Pg\,’w, the length of the last
excursion has to be taken into account too: however, an argument very close to the
one used in (4.64) yields also that the last excursion is exponentially bounded (with

the same exponent) and the proof of point (1) of Theorem 4.8 is complete.

4.2. The strictly delocalized regime (0 < 1). We prove point (2) of The-
orem 4.8. We set for t € {1,..., N}:

D, :=if{k=1,... N: k>t S,=0} Gy :=suplk=1,....N: k<t, S, =0}

The following result shows that in the strictly delocalized regime, as N — oo, the
visits to zero under PY, , tend to be very few and concentrated at a finite distance

from the origin if a = f and from 0 or N if a = c.

LEMMA 4.14. If 6“ < 1 there exists a constant C' > 0 such that for all L > 0:

limsup Pl (Gy > L) < CL™Y2 (4.66)
N—oo
limsup Py, (Gne > L) < CLV2 (4.67)
N—oo
limsup P§,, (Dyp < N—1L) < CLY2 (4.68)
N—oo

Lemma 4.14 is a quantitative version of point (2) of Theorem 4.7 and it is a rather

straightforward complement: the proof is sketched in § 5.2, in particular (4.94).
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4.2.1. The signs. In order to prove point (2) of Theorem 4.8, it is now enough to
argue as in the proof of Theorem 9 in [22], with the difference that now the excursions
are not necessarily in the upper half plane, i.e. the signs are not necessarily positive.
So the proof is complete if we can show that there exists the limit (as N — oo
along [N] = n) of the probability that the process (away from {0,1}) lives in the
upper half plane. In analogy with Section 3.4, in the general case we have different
limits depending on the sequence [N] =7 and on a = f, ¢, while if w ¢ P< all such
limits coincide.

We start with the constrained case: given Lemma 4.14, it is sufficient to show
that

= J\;l_]fgo PNw(SN/2 > O) =: p{i’;. (469)
Nen

Formula (4.69) follows from the fact that

Zoa(x paﬁ y—x) Mag(y — ) Zgn(N —y)
P> 0= Y 3 i ,
B x<N/2 0’[N}( )
a,B x y>N/2

where for all z € Nand o, 3 € S:

1
l+exp(—zhy+Xag)

p;rﬁ(z) = (4.70)

cf. (4.49). By Dominated Convergence and by (4.58) and (4.63):

3 lim N2 YN Zoa(w) oy — 2) My — 2) Z54(N —y)

N—oo
Nen T<N/2y>N/2

= [1-B),., CK% exp(wy) [(1 - B)~ 5,
By (4.34) we obtain (4.69) with

s (=B, ex § exp(w) [(1 - B)™],
[(1-B)"'L(1—-B)!]

poy = A (4.71)

0,m
Observe that by (4.58):

e if h, > 0 then in (4.71) the denominator is equal to the numerator, so that
psy =1 for all 7.

e if h, = 0 and ¥ = 0 then in (4.71) the denominator is equal to twice the
numerator, so that p5; = 1/2 for all n.

e in the remaining case, i.e. if w € P<, in general p3; , depends on 7.



132 4. A RENEWAL THEORY APPROACH TO PERIODIC POLYMERS

Now let us consider the free case. This time it is sufficient to show that

3 lim Pl ,(Sy > 0) =: pJ). (4.72)
Néen

Formula (4.72) follows from the fact that
Zoalr) - LP(N — k)
Pl (5> 0) = 3 3 Zoalt PV,
a <N Nw
and using (4.55), (4.63) and (4.59) we obtain that (4.72) holds with

o Zal0=B) e
i [(1—B)-1L] '

(4.73)

0,n

Again, observe that by (4.59):

o if h, > 0 then in (4.73) the denominator is equal to the numerator and
p§£ =1 for all n.

o if h, =0 and ¥ = 0 then in (4.73) the denominator is equal to twice the
numerator, so that p§£ = 1/2 for all n.

e in the remaining case, i.e. if w € P<, in general pié depends on 7 and is

different from p3.

4.3. The critical regime (6* = 1). In this section we prove point (3) of The-
orem 4.8. As in the previous section, we first determine the the asymptotic behavior
of the zero level set of the copolymer and then we pass to the study of the signs of

the excursions.

We introduce the random closed subset A%, of [0, 1], describing the zero set of

the polymer of size N rescaled by a factor 1/N:
P(AY = A/N) = py.(A), ACH{0,...,N},

where we recall that p%; ,(-) has been defined in § 3.1. Let us denote by F the class
of all closed subsets of Rt := [0, +00). We are going to put on F a topological and
measurable structure, so that we can view the law of A% as a probability measure

on (a suitable o—field of) F and we can study the weak convergence of A%.

We endow F with the topology of Matheron, cf. [47] and [32, § 3], which is a

metrizable topology. To define it, to a closed subset F' C RT we associate the closed
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nonempty subset F of the compact interval [0,7/2] defined by F o= arctan(F U
{+00}). Then the metric p(-,-) we take on F is

p(F, F") := max { sup d(t, F', sup d(t', F) } F, F'eF, (4.74)
teF ver

where d(s, A) := inf{|t — s|,t € A} is the standard distance between a point and a

set. We point out that the r.h.s. of (4.74) is the so—called Hausdorff metric between

the compact sets ﬁ, F’. Thus given a sequence {F,}, C F and F € F, we say

that F,, — F in F if and only if p(F,, F') — 0. We observe that this is equivalent to

requiring that for each open set GG and each compact K

FNG#0) = F,NG#0) eventually
. (4.75)
FNK=0 = F,NnK=1{ eventually

Another necessary and sufficient condition for F,, — F'is that d(¢, F},) — d(t, F') for
every t € RT,

This topology makes F a separable and compact metric space [47, Th. 1-2-1],
in particular a Polish space. We endow F with the Borel o-field, and by standard
theorems on weak convergence we have that also the space M;(F) of probability

measures on J is compact.

The main result of this section is to show that the law of the random set A% €
M (F) converges as N — oo to the law of the zero set of a Brownian motion
{B(t) }+cjo1 for a = f or of a Brownian bridge {3(¢) }+cjo,1) for a = c.
PROPOSITION 4.15. If 6 =1 then as N — oo
A, = {tel0,1]: B(t) =0}, (4.76)
Ay = {te€]0,1]:8(t) =0}. (4.77)
The proof of Proposition 4.15 is achieved comparing the law of A%, and AS, with

the law of a random set Ry defined as follows: recalling that {7 }ren denotes the

sequence of return times of S to zero, we set
Rn = range {r;/N, i > 0}

and we look at the law R 5 under the critical infinite volume measure P, of Proposi-

tion 4.10. Observe that under P, the process ([7x], 7k — Tk—1)ren is & Markov renewal
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process, whose semi-Markov kernel is given by I'=. The key point of the proof is

given by the following result:

LEMMA 4.16. The law of {Rn}n under P, converges weakly to the law of the
random set {t > 0 : B(t) = 0}.

The core of the proof (see Step 1 below) uses the theory of regenerative sets and
their connection with the concept of subordinator, see [32]. However we point out
that it is also possible to give a more standard proof, using tightness and checking
“convergence of the finite dimensional distributions”: this approach is outlined in
§ 5.3.

Proof of Lemma 4.16 We introduce the random set
Rg\?) :=range{7,/N : k > 0, [nx] = 5} BeS.
Notice that Ry = UﬁRg\?). Let us also recall the definitions (4.41) and (4.42):

/{éﬁ) = inf{k > 0: [rx] = 0}, /{ﬁ)l = inf{k > ligﬂ) s ] = 6},

B ._ B ._ _ ;
TO = TK(()B), T. = T’%('B) Tngé)l, 1 Z 1.

7

Then (Ti(ﬂ ))i21 is under P, an IID sequence, independent of Téﬁ ): see the discussion
before (4.43). We divide the rest of the proof in two steps.

Step 1. This is the main step: we prove that the law of RS@) under P, converges to
the law of {¢ > 0: B(t) = 0}. For this we follow the proof of Lemma 5 in [22].

Let {P(t)}+>0 be a Poisson process with rate v > 0, independent of (Ti(ﬁ))z‘zo.
Then oy = [T+ 4 T](fzz)] /N forms a non decreasing CAD process with indepen-
dent stationary increments and oy = 0: in other words o = (0¢):>¢ is a subordinator.
Notice that

Rgg) = To(ﬁ)/N + 7355), 7%55) := range {0y : t > 0}.

Thus 7%55) is the (closed) range of the subordinator o, i.e. by [32] a regenerative set.
As for any Levy process, the law of ¢ is characterized by the Laplace transform of

the one-time distributions:

E [exp (—Aoy)] = exp (—ton(N)), A>0,t>0,
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for a suitable function ¢y : [0,00) — [0,00), called Lévy exponent, which has a

canonical representation, the Lévy—Khintchin formula (see e.g. (1.15) in [32]):

o) = [ () paN e )

= 72 (1 —exp(—=An/N)) q(ﬂ)(”) :

n=1

Notice now that the law of the regenerative set ﬁg@) is invariant under the change

of time scale 0, — o, for ¢ > 0, and in particular independent of v > 0. Since
¢n — c oy under this change of scale, we can fix v = vy such that ¢5(1) =1 and
this will be implicitly assumed from now on. By Proposition (1.14) of [32], the law
of ﬁg@) is uniquely determined by ¢y.

By the asymptotics of ¢/® given in (4.44), one directly obtains that ¢y (\) —
A2 = ®pp(N) as N — oo. It is now a matter of applying the result in [32, §3]
to obtain that 7€§€) converges in law to the regenerative set corresponding to ®gjy;.
However by direct computation one obtains that the latter is nothing but the zero
level set of a Brownian motion, hence 7%55) = {t €[0,1]: B(t) = 0}. From the fact

that Téﬁ ) /N tends to 0 a.s., the same weak convergence for RE@” follows immediately.

Step 2. We notice now that Ry = UgRg\?) is the union of non independent sets.
Therefore, although we know that each RE@ converges in law to {t > 0 : B(t) = 0},
it is not trivial that R converges to the same limit. We start showing that for every
positive ¢ > 0, the distance between the first point in Rg\?) after ¢ and the first point
in RE@ after ¢t converges to zero in probability. More precisely, for any closed set

F C [0,00) we set:
di(F) = inf(F N (t,00)). (4.78)

and we claim that for all a, f € Sand t > 0, \dt(Rg\?)) —dt(R%g)ﬂ — 0 in probability.
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Recalling (4.43) and setting ¢(*#)(¢) = Pgaw(Téﬁ) =), for all € > 0:

P, (dt(R ) > dy(RY) +e)

[Nt

=22 ) Pln=wlnl=0) > Puu(B=2) Pou(R” 2 [Ne)

v y=0 z=|Nt]—y+1
| Nt| 00 0o
=S Uty Y ) Y (P (w)
v y=0 2=|Nt|—-y+1 w=|Ne|

Arguing as in the proof of (4.44), it is easy to obtain the bound: ¢%®) (w) < Cy w™3/2,
and by (4.45): Uy, (y) < Coy~1/2, where C, Cy are positive constants. Then asymp-
totically

(07 > 1
P, <dt(R§v)) > dt(Rgg)) + 6) < N1/2 (/ dy/(t dz //T dw Y172 2372 w3/2)
y

for some positive constant C'3, having used the convergence of the Riemann sums to
the corresponding integral. The very same computations can be performed exchang-
ing a with (3, hence the claim is proven.

Now notice that d;(Ry) = minges dt(RS\O,‘)), and since S is a finite set we have
that also |dy(Rn) — dt(Rg\g))\ — 0 in probability for any fixed § € S. Since we
already know that RS@) converges weakly to the law of {¢t > 0 : B(t) = 0}, the
analogous statement for Ry follows by standard arguments. More precisely, let us
look at (RN,R%)) as a random element of the space F x F: by the compactness
of F it suffices to take any convergent subsequence (Rkn,R,(fi )) = (%,¢) and to
show that P(B # €) = 0. By the Portmanteau Theorem it is sufficient to prove
that imy_o Pu,(Ry # R%g)) = 0, and this is an immediate consequence of the

decomposition
Ry #RYY = U U {ld(Rw) = di(RY)] > 1/n}
teQ+ neN
which holds by the right—continuity of t — d;. U

Proof of (4.77). First, we compute the Radon-Nykodim density of the law of A% N
[0, 1/2] with respect to the law of R}f = RnxN[0,1/2]: for F = {t;/N,... tx/N} C
[0,1/2] with 0 =: tq < t; < - -+ < t, integer numbers, the Radon-Nykodim derivative
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of the law of A% N[0, 1/2] with respect to the law of R%z for R%z = Fis:

Z"NZN/Q Mg, ) ) (n —tx) Z[n],[N}(N —n) &

where Qo (t) = 5> 02,1 5 5(s) and for any closed set F' C [0, 00) we set:

f](if(gl/2(F)) = fx(te/N) =

g:(F) = sup(F nNI0,t]). (4.79)
By (4.46), for all € > 0 and uniformly in g € [0,1/2 — ¢]:

T2 &y (I -1 r1/2 -
. Yolvgy myr oo T LTy P -y =97y ¢
N ~ T2 € ¢ _ _
Pz gw[Lj\j,ws / T Zw Ling)y 57/5[1\79} 2(1/2—g)712 §iNg)

y

1/2
= q =: r(g).
If ¥ is a bounded continuous functional on F such that W(F') = W(F N[0, 1/2]) for all
F € F, then, setting Zp := {t € [0,1] : B(t) =0} and Zg := {t € [0,1] : 5(t) = 0},

we get:
E[V(Zs)] = E [¥(Z5)r(91/2(Z5))] ,

see formula (49) in [22]. By the asymptotics of f§ we obtain that
E[(A5)] = E[U(RY) f5(012(RV))| — E[€(Zp)r(g12(25))] = E[W(Z5)]

i.e. A% N[0,1/2] converges to Zz N [0,1/2]. Notice now that the distribution of the
random set {1 —t: ¢t € A3 N[1/2,1]} under P, is the same as the distribution of

& N[0, 1/2] under Py, where W) := wiy—_q. Therefore we obtain that A% N[1/2, 1]
converges to Zz N [0,1/2] and the proof is complete.

Proof of (4.76). By conditioning on the last zero, we see that if U is a bounded

continuous functional on F then:

al Z¢ -
E[V(AN] = B¥A)] 2= P (N —0) e (g (N =),

We denote by ' a Brownian bridge over the interval [0, ], i.e. a Brownian motion
over [0,¢] conditioned to be 0 at time ¢, and we set Zg = {s € [0,1] : '(s) = 0}.
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By (4.77), (4.46) and (4.60) we obtain as N — oo:

C

=3 Ly E[W(A)) ZZ]; PN~ 1) exp (B, (N 1))

t=0 ~
1 1 1 T2 o ¢ L [V]
~ | EW(Zp)] et > ! T
/0 D B
1 1
— | EBU(Zy)] ———dt = E[WU(Z5)]. O
/0 V2] W(Zs)

4.3.1. The signs. To complete the proof of point (3) of Theorem 4.8 in the critical
case (0“ = 1) we follow closely the proof given in Section 8 of [22]. We have already
proven the convergence of the set of zeros and we have to “paste” the excursions.

From Section 3 we know that, conditionally on the zeros:

e the signs {0y}, and the absolute values {eg(-)}x of the excursions are inde-
pendent;
e the (conditional) law of e(-) is the same as under the original random walk

measure P.

Furthermore, the weak convergence under diffusive rescaling on eg(-) towards the
Brownian excursion e(-) follows by the arguments described in [22]. Then it only

remains to concentrate on the signs.

We start with the constrained case: we are going to show that for all ¢ € (0, 1)

3 A}lm PL . (Siny > 0) = p, (4.80)
and the limit is independent of ¢. We point out that actually we should fix the
extremities of the excursion embracing ¢, that is we should rather prove that

A}lm PNw(SLtNJ > O G tNJ/N € (a a—|—5) LtNJ/N € (b,b+€)) = pj, (4.81)
for a <t < band € > 0 (recall the definition of G; and D; in § 4.2). However
to lighten the exposition we will stick to (4.80), since proving (4.81) requires only
minor changes.

We have, recalling (4.70):

c Zo.a( Pa B (y — ) Mo g(y — ) Zﬁ,[N](N )
PNUJ [tN| > 0) Z Z Z Z [N}(N) .
a,B z<|[tN| y>|tN] ’
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By Dominated Convergence and by (4.46):

3 lim N2 YN Zoa(@) plly — @) Mag(y — ) Z5,(N — )

N—oo
Nen T<[tN] y>[tN|

ot (T &G 1
_ - N3 = 06aS86n L (0)
0 dx/t dy [z(y — 2)*(1 — )] (27T) 5 o Loy € CK 5 exp(wg )

see (4.58). We obtain (4.80) with

b . Zaplacr} e V)&
¢ Y a5 6o Lap&s

(4.82)

Observe the following: by (4.58),

e if h, > 0 then in (4.82) the denominator is equal to the numerator, so that

p, = 1.
o if h, =0 and ¥ = 0 then in (4.82) the denominator is equal to twice the

numerator, so that p; = 1/2.

Now let us consider the free case. We are going to show that for all ¢ € (0, 1]:

2 arcsin vVt\ _ 2 arcsin vt _ _
3 lim P WwSn) >0) = (1 — 7) P + ———du, = p;’n(t),
IV g m | |

(4.83)
where pj is the same as above, see (4.82), while g, is defined in (4.84) below.
We stress again that we should actually fix the values of G;n) and Dy like
n (4.81), proving that the limiting probability is either pJ or g, according to
whether D;y; < N or Dy > N, but this will be clear from the steps below.
Formula (4.83) follows from the fact that

() § § E <, ) ’ [U]w

B z<|[tN| y>|tN|

Zoolx +NN—3:PN—95 ex 5x7NN—x
Yy (&) Phi (N = 2) POV = ) exp (BN — )

Zf
o z<[tN] Nw
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By (4.60), letting N — oo, the first term in the r.h.s. converges to:

/tdx/l dy
- — 3 °
o x2 Jt (y—ux)2

Z 1 T? &0 Ca c 1 eXp(w(O)) fg % Zw gw L%n 27,7/ gw L%’Y' gw’
. — o — . N
T2y G Ly &y T 2 O Gl &y &L Y G Ly
_ (4 2 arcsin v/t _

= - -

while letting N — oo with [N] = 7, the second term converges to

/t dix l Z T2 50 Ca oo 2%7/ C7 L%’Y' 57/
o a3(l—2)s T = 2T 2y G Ly &y " S03 220G ZW
B 2 arcsin v/t ' CK Z’y Gy

& > G Z%n .

Therefore we obtain (4.83) with:

QC, = == 2nlr (4.84)
K 2y Gy Ly
We observe that, by (4.59):

e if h, >0 orif h, =0 and ¥ = 0, then p;;} () = o, = p; for all t and 7

e in the remaining case, i.e. if w € P~, in general pjj(t) depends on t and 7.

Now that we have proven the convergence of the probabilities of the signs of the

excursion, in order to conclude the proof of point (3) of Theorem 4.8 it is enough to
argue as in the proof of Theorem 11 in [22].

5. Appendix

5.1. An asymptotic result. We are going to prove that equation (4.44) holds
true. Before starting, let us recall an elementary fact about Markov chains. Let Q4 3
denote the transition matrix of an irreducible, positive recurrent Markov chain, and

let us introduce the matrix Q) and the (column) vector |y) defined by

(@], 5 = Qupsliz ()], = Lia=y) -
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Since for any v the matrix @) has spectral radius strictly smaller than 1, we can

define the geometric series
(1-Q")" = S (QM)".

The interesting point is that, for every 7, the row vector (|- (1 — Q)™!is (a
multiple of ) the left Perron—Frobenius eigenvector of the matrix @ (by (y| we denote
the transposed of |7)). Similarly the column vector (1—Q™)~1.Q-|y) is (a multiple
of) the right Perron—Frobenius eigenvector of (). More precisely we have
_ Va _
[((v]-(1=Q) ] == [(1=Q")™-Q-n], =1, (4.85)

Uy

where {v,}, is the invariant measure of the chain, that is ) v,Q.s = vg and
> o Va = 1. Equation (4.85) can be proved by exploiting its probabilistic interpreta-
tion in terms of expected number of visits to state a before the first return to site ~,
see [5, § 1.3].

Next we turn to the asymptotic behavior of ¢'¥(z), giving the law of Téﬁ ) un-
der Pg (recall the notations introduced in § 2.5). With a standard renewal argument,

we can express it as

¢P(x) = 22 VW) T —y) = (VP%17), (2), (4.86)

y=0 v€S

where the kernel V® is defined by

VO(z) = Y [T, (@),

0
and we have set T' %(x) i=T7.,(2)1(yp) Let us look more closely at both terms in
the r.h.s. of (4.86).

e For the semi-Markov kernel I'=, recall its definition (4.38), the asymptotic

behavior as  — oo, [z] = [ — v is given by

_ Ly = €5
F'y,ﬁ(x) ~ x;/2 Lyp = L%ﬁa : (4.87)
Moreover, we have that
- £s =
§ :ng(x) = Bw,ﬂa = Byp. (4.88)

zeN
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e On the other hand, for the kernel V#) we can apply the theory developed
in § 2.4 for the case 0“ < 1, because the matrix
> T = [B7],,
€N
has Perron—Frobenius eigenvalue strictly smaller than 1 (we recall the con-

vention [QW], = Qa,1(xp) for any matrix Q). Since
(20
a,y

7®) (x) ~ s

a,y r— 00, [gj]:fy—a,

we can apply (4.34) to get that as x — oo, [x] =a — v

V() ~ ([(1 ~ BN - B(ﬁ))*l}m> —- (4.89)
Moreover applying an analog of (4.35) we get that
D VAW = [(BY)],, =[-8, . (4.90)
yeN k=0

We are finally ready to get the asymptotic behavior of ¢/®. As both V® and
I'= have a z~%/2-like tail, it is easy to check from (4.86) that as x — oo, z € TN

() Z{(Zvﬁ )Wﬂx>+vf§i’<x>(§rw<y>)},

and applying (4.90), (4.87), (4.89) and (4.88) we get that ¢ (z) ~ c5/2%? as
r — o0, x € TN, with

g = [(1 _ By L] 4 [(1 _ B0 IO . (1 - BBy

Liﬁ Liﬁ

= [a-B9)"-L.a-B")" 5|

8,8
= (B (1=BP) L (1= BD)" - B-|5).
To obtain the second equality we have used the fact that
1—§<ﬁ>*1-§} - [ (1-B®)1.B] =1,
(=B B = (8- -B)" B

which follows from (4.85) applied to the matrix @ = B. Again from (4.85) we get

where {v, }, is the invariant measure (that is the normalized left Perron-Frobenius

cigenvector) of the matrix B. However from the definition (4.88) of B it is immediate



5. APPENDIX 143

to sce that {va} = {Ca&a}, and recalling the definition (4.87) of L we obtain the

expression for cg we were looking for:

1
= — Y (oLlas & 4.91
cg gﬂgﬁ;jg & (4.91)

5.2. Some computations on the thermodynamic limit measure. We
want now to give a description of the typical paths under PZ" in the delocaliza-
tion regime, i.e. when 0* < 1. We are going to compute the distribution of two
interesting random variables under P;" in this case: the last return to zero and the
total number of returns to zero. Other analogous computations are possible using

the same procedure.

5.2.1. The last return to zero. We want to study the law under P{;" of the last
zero 0 := sup{i € N : S; = 0} in the strictly delocalized regime. For simplicity we
consider the case a = ¢, the case a = f being completely analogous. We compute
first the law of ¢ :=sup{i < k:S; =0} with k € N: forz <k < N and N € n:

c My 121(2 = y) Zp9(N = 2)
Py (0 > ) ZZO (Y Z A Zon (V) L (4.92)
z=k+1 )

By (4.57) and (4.61) we obtain:

c o L1 Ay
]\}Lmoo Py oty > x) ZZO ) (Y ch Zy (2] Z My (2 —y) 7o~ AC
Nen =0 z=k+1
Notice now that, by (4.63):
D Lot Zntn(2) = X Lign ) Zya(2) = [L-(I =B, = iy,
z=0 0 z=0
(4.93)
Therefore, we have proven that:
c,m c AEZLW
Pu.; (kax):A}Hn PNw £k>33' ZZO y] y][z]z— )AT
— 00 07,'7

Nen 0.1 z=k+1

and letting £ — oo we obtain:

Pe(¢ > x) Zzoy] “[y



144 4. A RENEWAL THEORY APPROACH TO PERIODIC POLYMERS

For the proof of Lemma 4.14 above, notice for instance that by (4.92):

Pyu(Grpp = L) = Py, (Inp = L) (4.94)
Lv/2] N+1

el N3/2 Z 173/2 Z (k — t)—3/2 (N +2— k:)_3/2 e L_1/2,
t=L k=|N/2]+1

where (', (5 are positive constants.

5.2.2. The number of returns to zero. Analogously, we want to study the law of
the total number of returns to zero N := #{i € N: S; = 0} under P5". We study
first Let Ng :=#{i:1<i<K:S5;,=0} for ke N. For k< K and N € n:

K N
; S 3 Mia)ii(y — ) Zy (N — y)
Py Nk =k) = Mo,lfz} (z) [=],[] _ (Z\[[y)} n
z=1 y=K+1 0,7

Then by (4.57) and (4.61):

lim P?\/,w(NK = k)

N—oo
Nen

K 0o 00
* Lﬂ? - AC
= Mgk () Eiw L @)+ > M[zmy](y—x)—/\[z}’n
_ _ 0 _ 0
=0 y=0 7 2=K+1 N

By (4.93), letting K — 0o we obtain:

1
Pgn(/\/’: k;) = _AB [Bk"uc]o
5T

-

5.3. On the weak convergence of the critical zero set. We are going
to outline an alternative proof of Lemma 4.16, that is we are going to show that

when 0¥ =1as N — oo
Ry under P, = {t > 0: B(t) = 0}. (4.95)

To keep the notation transparent, it is convenient to denote by Gy € My (F) the
image law of Ry under P,. That is Gy is a probability law on F (the class of all
closed subsets of RT) defined for a measurable subset A C F by

Gy(A) == P,(Ry € A).
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In the same way the law of {t > 0 : B(t) = 0} will be denoted by G®M). Then we

can reexpress our goal (4.95) as

Gy = GBM) (4.96)

Remember the definition (4.78) of the mapping d; : F +— R U {400}. We claim
that to prove (4.96) it suffices to show that, for every n € N and for all ¢4, ...,t, € R,

the law of the vector (dy,, ..., d;, ) under Gy converges to the law of the same vector

under GBM).

(diy, - -rdi,) o (On) " = (dyy, . dy,) 0 (D) (4.97)

The intuitive explanation of why (4.97) should imply (4.96) is that an element
¢ € F can be identified with the process {d;(§)}icr+, since £ = {t e Rt : d;,_(&) =
t}. Hence the convergence in M;(F) can be read in terms of the random pro-
cess {di(-)}ier+, and using the compactness of M;(F) it turns out that (4.97) is

indeed sufficient to ensure (4.96). Let us sketch more in detail these arguments.

(1) The Borel o-field of F coincides with o({d;}icr+), i.e. with the o-field
generated by {d; };cr+, and also with o({d;}ics) where I is any dense subset
of RT.

(2) Suppose that we are given {vg}, v € My (F) such that v, = v: this fact does
not entail the convergence of all the finite dimensional marginals of {d,},
that is it is not true that the law of the vector (d;,,...,d;,) under v con-
verges to the law of the same vector under v, because the mappings d,(-) are
not continuous on F. Nevertheless one can show that this convergence does
hold for almost all choices of the indexes ¢4, ..., t,. More precisely, given any
measure v € M (F) there exists a subset I, C R with Leb([,¢) = 0 with
the following property: for any sequence {v4} with v, = v, for any n € N
and for all t1,...,t, € I,, the law of the vector (dy,,...,d;, ) under v
converges as k — 0o to the law of the same vector under v. This is a well-
known feature of processes whose discontinuity points form a negligible set,
in particular CADLAG processes: in fact the set I, can be chosen as the
set of t € RT such that v{¢: di_(€) = dy(€)} = 1, because d;_ (&) = dy(€)

implies that d;() is continuous at &.
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(3) Since M;(F) is compact, to prove (4.96) it suffices to show that any con-
vergent subsequence of {Gy}y converges to GBM). Thus we take a con-
vergent subsequence Gy, = v for some v € M;(F) and we want to prove
that v = GBM) By point (2) there exists a dense subset I, C R* such that
for tq,...,t, € I, the law of the vector (d;,,...,d;,) under G, converges to
the law of the same vector under v, and since we are assuming that (4.97)
holds this means that the vector (dy,,...,d;,) has the same law under v
and under G(PM) This is equivalent to say that v and G®M) coincide on
the o-field o({d, }sez,), and by point (1) it follows that indeed v = G(BEM),

Thus it only remains to show that (4.97) holds, and this can be done by di-
rect computation. For simplicity we consider only the case n = 1 of the one-time
marginals, but everything can be extended to the case n > 1.

For any t > 0 the law of d; under G(®M) is given by

t1/2

GPM(dy € dy) = Wlmt) dy =: p(y)dy,

see [60]. Hence we have to show that for every x € R

lin P (d(Ry) > 2) = [ pily)dy.

N—oo

We recall that Ry = range{7,/N : n > 0} is the range of the process {7, }nen
rescaled by a factor 1/N, and that under P, the process {7,},en is a Markov—
renewal process with semi-Markov kernel I'] 5(z) defined by (4.38). We also use the
notation U, g(x) for the corresponding Markov—Green function, defined by (4.39).
Then using the Markov property we get

P, (di(Ry) > x) =Y Pu(r < Nt, 71 > Nx)
keN

o0

Y Y YRy il =) Pus = vy 1] = )

a,B€S y=1 w=Nz keN

=3 S Ualy) Y Top(w—y)

a,BeS y=1 w=Nz
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The asymptotic behavior of the terms appearing in the expression can be extracted
from (4.45) and (4.30): the net result is that as z — oo

[t)=a T2 Cala U
Vz Upalz — =! Cyo
0(2) 2 Zw, Gy L&y ;

= F)=p-a §
23/ [y s(2) —— §ZL = Chy-

Therefore we have as N — oo

Nt o)
1 1
Py(d(Ry) > ) ~ > chlachs ) :_\/g L(y=a) ) (w0 = )i Mwi=9)

1 sor ) L 1 1
~ ﬁ ( CO7CM Ca,ﬁ) m Z i % Z (U/ . 8)3/2 9
a,B€S s€(0,5)NZ ue(%,00)N%

and from the explicit expressions for COU7 o cgﬂ together with the convergence of the

Riemann sums to the corresponding integral we get

EIJ\}iLI;OPw(dt(RN)>x = / dsT//Tdu R—TE
:%/ow WWTS / \f\/xT /

that is what was to be proven.

dz pt )

5.4. A localization argument. Let us give a proof that for the copolymer
near a selective interface model, described in § 1.1, the charge w never belongs to P
(see (4.17) for the definition of P). More precisely, we are going to show that if h, = 0
and 3 # 0 then ¢ > 1, that is the periodic copolymer with zero—mean, nontrivial
charges is always localized. As a matter of fact this is an immediate consequence of
the estimates on the critical line obtained in [11]. However we want to give here an
explicit proof, both because it is more direct and because the model studied in [11]
is built over the simple random walk measure, corresponding to p = 1/2 with the

language of § 1, while we consider the case p < 1/2.

We give some preliminary notation: given an irreducible T' x T' matrix (), g with
nonnegative entries, its Perron-Frobenius eigenvalue (= spectral radius) will be de-
noted by Z = Z(Q) and the corresponding left and right eigenvectors (with any
normalization) will be denoted by {(,}, {£.}. Being a simple root of the character-

istic polynomial, Z(Q) is an analytic function of the entries of ), and one can check
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that

02 _ _labs (4.98)

aQa,ﬁ ( Z'y C’Yf'Y) .

Hence Z(Q) is a strictly increasing function of each of the entries of (). We also

point out a result proved by Kingman [42]: if the matrix is a function of a real
parameter () = ()(t) such that all the entries @), g(t) are log—convex functions of ¢
(that is ¢ +— log Q,,5(t) is convex for all o, 3), then also t — Z(Q(t)) is a log—convex
function of ¢.

Next we come to the copolymer near a selective interface model: with reference
to the general Hamiltonian (4.3), we are assuming that W =5 =0 and h, =0
(where h,, was defined in (4.8)). In this case the integrated Hamiltonian @, 5(¢),

see (4.13), is given by
0 0 if =1 or (¢0—a
D, 5(0) = :
log [%<1+exp (Zaﬂ)ﬂ if £>1 and fe€f—«

We recall that the law of the first return to zero of the original walk is denoted by
K(-), see (4.11), and we introduce the function ¢ : S — R™ defined by

i)=Y Kl)

z€N, [z]=v

notice that q(v) = 1). Then the matrix B, g defined by (4.15) becomes
) %

s %(1 + exp (Za,g)) q(B — a) if f—a#]1]
K + (1 exp (Sane)) - (1)~ K(D) i B—a= 1]
(4.99)

By (4.16), to prove localization we have to show that the Perron-Frobenius eigen-

value of the matrix (B, ) is strictly greater than 1, that is Z(B) > 1.

Applying the elementary convexity inequality (1 + exp(z))/2 > exp(z/2) to
(4.99) we get

By > By e |90 (Sa,5/2) 4(B3 — @) if g-a#]
- K(1) + exp (Sanrn/2) - (q([1]) = K(1) if f—a=11]
(4.100)

By hypothesis X, g, # 0 for some ayg, 3y, therefore the inequality above is strict for
a = ag, B = [y. We have already observed that the P-F eigenvalue is a strictly
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increasing function of the entries of the matrix, hence Z(B) > Z(B). Therefore it
only remains to show that Z(é) > 1, and the proof will be completed.

Again an elementary convexity inequality applied to the second line of (4.100)
yields

B.g > Eaﬁ ‘= exp (c(ﬁ —a) Eaﬁ/Q) -q(f — ) (4.101)

where

o) = |
D-KQ) o o
iy = 1

We are going to prove that Z(B) > 1. Observe that setting v, := Xy, We can write
Za,6 = 2,5 ~ Zfola = Vs ~ Va-

Then we make a similarity transformation via the matrix L, 5 := exp(vg/2) 1(s=a),

getting
Cop = [L- B- Lfl]aﬂ = exp <(c(ﬁ —a)— 1)2(175/2) q(f — )
= exp <d Dot 1] 1<ﬁ—a=1>> q(B—a),

where we have introduced the constant d := —K(1)/(2¢([1])). Of course Z(B) =
Z(C'). Also notice that by the very definition of X, 3 we have ¥, o1 = w(():[)l] —wéil[)l],
hence the hypothesis A, = 0 yields > s(Xa,a4p7) = 0.
Thus we are finally left with showing that Z(C') > 1 where C,, 5 is an S X S matrix
of the form
Cap = exp (wa lg_az1)) - q(6 — ) where Zwa =0 Z q(y)=1.

v

To this end, we introduce an interpolation matrix

C(t)ap = exp (- walg_a=)) q(B—a),

defined for ¢ € R, and notice that C(1) = C. Let us denote by n(t) := Z(C(t)) the
Perron—Frobenius eigenvalue of C(t): as the entries of C(t) are log—convex functions
of t, it follows that also 7(t) is log—convex, therefore in particular convex. Moreover
n(0) = 1 (the matrix C(0) is bistochastic) and using (4.98) one easily checks that
%n(t) lt=o = 0. Since clearly n(t) > 0 for all t € R, by convexity it follows that indeed
n(t) > 1 for all t € R, and the proof is complete.






CHAPTER 5

A general copolymer model with continuous increments

In this chapter we introduce and study a modification of the copolymer near a
selective interface model defined in Chapter la. The difference is that we change the
reference measure P on which the model is built: instead of the law of the simple
symmetric random walk on Z, we allow P to be the law of a more general real random
walk (see § 1.1 for some motivations for this choice). More precisely we will consider
the case when the typical increment of the walk is bounded, centered and has an
absolutely continuous law (plus a standard regularity hypothesis on the density in
order to apply the Central Local Limit Theorem). About the charges {w,},, we
focus on the random case.

Besides giving a proof of the existence of the free energy (which in this setting is
not trivial) we analyze the phase diagram of the model, pointing out the close analo-
gies with the simple random walk case described in Chapter la. We also consider
briefly the issue of extending to this model the coarse graining of the free energy
expressed by Theorem la.5 of Chapter la (work in progress), giving some partial

results in this direction and discussing what is still missing.

1. The model

1.1. Motivations. Up to now all the polymer models we have worked on were
built as modifications of the law of a (1 4+ 1)-dimensional directed walk, the latter
being of the form {(n, S,)}, where {S,} is a symmetric nontrivial random walk on Z
with increments in {0, £1}. One could object that from the viewpoint of modeling
a real polymer chain these restrictions are too severe, that is we are working with
oversimplified models. A possible answer to this objection is that the phenomena that
we want to understand, like localization /delocalization, should not depend too much
on the microscopic details of the model, at least at a qualitative level. Even more,
one could maintain that the essential reasons of the phenomenon we are investigating
may be even more visible in an extremely simplified model. The paradigm in this

151
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direction is given by the Ising model, which despite its extreme simplicity is able to
explain the origin of the ferromagnetic behavior.

Nevertheless, it would be certainly very interesting to be able to study more
refined models, at least for the purpose of understanding to what extent the results
one obtains are indeed independent of the microscopic details of the models. In our
situation, possibly the more direct refinement that one could think of considering
is to work with a (1 4+ 1)-dimensional directed walk {(n,S,)}, in which {S,}, is
allowed to be a generic real random walk.

It may not be a priori evident why this should be a more realistic model: after
all it is always a directed walk model in which the first component is deterministic.
However we claim that, for the purpose of modeling a copolymer in the proximity of
a flat interface, any d-dimensional random walk {Y},},, is essentially equivalent to a
(14 1)—dimensional directed walk {(n, S,,)}, for a suitable choice of the real random
walk {S,},. In fact, assuming that the interface is the hyperplane {z; = 0} and
denoting by @ the law of the d-dimensional random walk {Y,,},, the analogue of
the polymer measure introduced in Chapter la, see equation (la.l), can be written

as

QY. - -
10" o AY (R sign ((V)a)
n=1

where by (Y;,)4 we mean the d-th component of the vector Y,, € R? Now observe
that for the purpose of investigating the localization/delocalization phenomenon
it is sufficient to look at the d-th coordinate {(Y},)4}, under the polymer measure,
which simply amounts to defining the copolymer model over the (1+ 1)-dimensional
directed walk (n, (Y;,)q) (observe that {(Y},)q}n is a real random walk). A graphical
representation of this correspondence is given in Fig. 5.1 for the case of a two—
dimensional random walk in which the step law is concentrated on the surface of a
sphere (which means that the distance between monomers is fixed).

We take the above considerations as sufficient motivation and we proceed to the

definition and analysis of the model.

1.2. Definition of the model. We take a real random walk {5, },>0, that is
So=0and S, — S, 1 =: X, with {X,,},, an TID sequence. The law of the walk will
be denoted by P. Our assumptions are that:

e the typical step of the walk is bounded (to be definite we take |X;| < 1)
and centered: E[X/] = 0;
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FiGURE 5.1. The correspondence between a two-dimensional ran-
dom walk and a (1+ 1)-dimensional directed walk, for the purpose of
modeling a polymer chain in the proximity of an interface (the z—axis

in this case).

e the law of X7 is absolutely continuous w.r.t. Lebesgue measure, with den-
sity f: P(Xy € do) = f(x) du;

e for some ny € N the density f,,(z) := f*"(z) of S, is essentially bounded:
fro(x) € L*(R, dx).

We point out that the last hypothesis is made in order to apply the so—called Local
Central Limit Theorem, see § 1.3 below. We denote by o? := E[Xf] < oo the
variance of the typical step of the walk.

For the charges we place ourself in the random setting: we take the sequence
w = {wp}n>1 to be a typical realization of a sequence of IID random variables,
whose global law is denoted by P. The assumptions we make on the law of w; are
exactly the same as in Chapter la, namely that it has finite exponential moments:
M(«a) := Elexp(aw)] < oo for every o € R and that it is centered: E[w;] = 0. We
also fix E[w;?] = 1.

For technical reasons it will be convenient to assume that w is a double-sided
sequence, that is w = {wy, }nez, though for the definition of the copolymer model we

will only need the w, with n > 1. The enlarged w—space will be denoted by €2, and
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of course we look at P as a probability measure on ). We also recall for £ € Z the

notation 0% for the translation on Q, defined by (6*w),, 1= Wy p.

Now we are ready to define the copolymer measure in our setting: for A\, > 0
and N € N we define P?‘VIZJ through its Radon-Nikodym derivative:

YL 1 : )
2(8) = =——exp | A wp + h)sign(S,) | = ==2—. 5.1
3 ) 7 p A ( ) sign(Sy) In. (5.1)

n=1
For definiteness we put sign(0) := 0, but observe that in this new setting this has no
role, because the event that S, = 0 for some n has zero probability. We point out
that in this continuous model the charges are assigned to the points rather than to
the bonds of the polymeric chain (we recall the discussion in the caption of Fig. 1a.2
of Chapter la for the discrete setting).

The normalization factor (partition function) Z Nw = Z’VZJ appearing in (5.1) is

of course given by

N
Znw =E |exp <)\ Z(wn + h) sign(Sn)> = E[QN,W} , (5.2)
n=1
and the corresponding free energy f(A, h) is defined by
1 -
FAh) = Tim - log Zn. (5.3)

A proof of the existence of such a limit, both P(dw)-a.s. and in LL;(IP), and of the
fact that f(A, h) is nonrandom (a phenomenon called self-averaging) will be given

in full detail in Section 2.

Before proceeding with the analysis of the phase diagram of the model, it is

convenient to recall some basic results.

1.3. Local Limit Theorem and Fluctuation Theory. Since the random
walk we consider has a typical step with finite nonzero variance o2, the Central
Limit Theorem (CLT) holds, that is we have the weak convergence as N — oo of
the law of Sy/(0v/N) towards the standard Gaussian Law:

Vi R P{ SN ] Ll N
t e : <t — x — 00) .
oV N o V2T ( )

However in the following we will need rather precise estimates on the density of Sy
for large N. This does not follow automatically from the CLT, and some further

assumptions are required. It turns out that the (mild) assumption that for some
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no € N the density f,,(x) = f*°(x) of S,, is essentially bounded is sufficient
to guarantee the uniform convergence of the density of Sy/(cv/N) towards the

standard Gaussian density: this is the content of the so—called Local Central Limit
Theorem (LLT), cf. [37].

THEOREM 5.1 (LLT). Under the above assumptions, the density fy(x) of Sy
is bounded and continuous for large N. Moreover, the (continuous version of the)
density of Sn/(ov/N) converges uniformly to the standard Normal density:

2/2

sgg a\/ﬁfn(a\/ﬁx) — e\_/“;_ﬂ

The usefulness of the LLT is that it allows a precise control of the probability
of events like {Sy € Iy} when the area of Iy grows slower than v/N. A typical

—0 (n — 00). (5.4)

example in this direction is provided by the following lemma, which is an immediate

consequence of (5.4).
LEMMA 5.2. Vo € R

\/NfN(:L') — (N — o) (5.5)

5~
)

v 1 (N — 0), (5.6)

2 VN

where in both relations the convergence is uniform for x in compact sets.

P[|Sy|<z] ~

5

We conclude this section by recalling some results from the Fluctuation Theory
for random walks about conditioning a random walk to stay positive (for more
details see Section 2 of Chapter 6). We start with the asymptotic behavior of the
probability of the first entrance of the walk in the negative half-line: it is a classical
result [29] that, whenever the step of the walk has zero mean and finite nonzero

variance o2, as n — 0o

- 20
P[S>0,....,9,>0] = > P[S>0,...,5%1>0S%<0] ~ ==, (57)
k=n+1 \/ﬁ
for some C' € (0,00). The local version of this relation holds too, namely
C
P[5 >0,...,58.1>0,5,<0] ~ —7 (n — 00), (5.8)

and it has been proven in [3]. Of course both (5.7) and (5.8) hold also for the first

entrance in the positive half-line (with possibly a different constant C).
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We will also need to control the probabilities of the first entrances in the case
when the random walk does not necessarily starts from 0. More precisely, for x € R
let us denote by P, the law of {S,, + 2}, under P. Then for x > 0 we have

P,[5>0,...,5,>0] ~ 2\/% (n — 00) (5.9)
Co
P,[5>0,...,5.1>0,8,<0] ~ =7 (n — 00), (5.10)

where (), is a positive nondecreasing function of x > 0. We point out that, up
to multiplicative constants, the function C, coincides with the renewal function
associated to the descending ladder heights process of the random walk, see [6, § 3]
for more on this issue. A direct proof of (5.10) can be also given using the methods
of Chapter 6. Again, an analog of (5.10) is valid also for the first entrance in the

positive half-line, when the random walk stars from z < 0.

1.4. The phase diagram. Next we turn to the analysis of the phase diagram
of the model we have introduced. As in the discrete case, the first step is the identi-
fication of the free energy coming from delocalized paths: restricting to trajectories

that stay positive up to epoch N we have that for P-a.e. w

1 ~ 1
—logZ])\\fﬁ, > —logE

N
exp <)\Z(wn—|—h)sign(3n)> 051 >0,...,S5v>0

N N
n=1
N
= 32@ TR+l P(S,>0,...,5 >0) =3 xn
— Nn:1 n N g 1 yer g PN )

(5.11)
where in the last line we have used the strong law of large numbers and the asymp-
totic behavior given by (5.7).

Arguing as in Chapter la, we partition the (A, h)-space in two regions:
e the localized region: £ = {(A,h): f(A\, h) > Ah};
e the delocalized region: D = {(\,h) : f(\ h) = Ah}.
For the critical line h.(-) separating the two regions we have the following result, in

complete analogy with the discrete case:

PROPOSITION 5.3. There exists a continuous increasing function h. : [0, 00) —
0, 00) with h.(0) =0 such that

D={(\h):h>hN} £={A\h):h<h(\}.
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Thus the picture of the phase diagram in this continuous setting looks quite similar
to the discrete case analyzed in Chapter 1a, at least at a qualitative level. Now we are
going to make this statement quantitative, showing that for the critical curve h.(+)
of our continuous model we have exactly the same upper and lower bound that hold

in the discrete case, namely

AR = B0) < Rl) < B() = A0, (5.12)
where we recall the definition of h(™(-) for m > 0:
log M(—2mA\)
B () = —= "\ T
) 2m\ ’

and M(a) := E[ exp(aw;)] is the moment generating function of the environment.
Before proceeding, let us spend some words on Proposition 5.3: using convexity
arguments as in [9, § 1.2] it is not difficult to prove the existence of the critical line,
together with some of its properties. However showing that h.(-) is indeed increasing
and not only nondecreasing, that it is continuous also at A = 0 and that h.(\) < oo
for every A > 0 does not follow immediately. A rather cheap (if not elementary) way
of proving these properties is to supply convex analysis with the knowledge of the

bounds (5.12) on h.(-) (whose proof is independent of Proposition 5.3).
1.4.1. Upper bound. The proof of the upper bound in (5.12) is completely anal-

ogous to the one given in Chapter la for the discrete setting, that is it suffices
to apply the annealing procedure. However, in order not to end up with a useless
bound, we have to suitably modify the partition function, as in § 2.3 of Chapter 1a.
More precisely, subtracting to the Hamiltonian the term A ZnNzl(wn + h) (that does
not depend on S and that once averaged on the environment is simply A\hN) and
using the fact that the limit (5.3) holds also in L, (P) we can write

N
exp <_2)\ Z (wn + h) 1{sign(Sn)—1}>] .

n=1

1
f(A h) — AR = lim NElogE

N—oo

However by Jensen’s inequality we can bring the expectation [E inside the log, and

performing the integration over the disorder we get

N
exp (Z (log M(—2X) — 2)\h) 1{Sign(5n)_1}>] )

1
— < 1 —
f()\’ h) AR - J\ll—rgo N log B =

(5.13)

)—Ah < 0
().

For h > h()) the argument of of the exponential is nonpositive: thus f(

A h
and by (5.11) we have f(\, h) = Ah, hence we have proven that h.(-) < h
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Observe that for h < h(A) the r.hus. of (5.13) equals (log M(—2\) — 2\h) > 0,
hence h(-) is indeed the best upper bound on h.(-) that one can extract from (5.13).
Also notice that the arguments of Chapter 3 can be applied to our continuous
setting with essentially no change: therefore the technique of constrained annealing
via empirical averages of local functions cannot improve the upper bound we have

found.

1.4.2. Lower bound. A proof of the lower bound in (5.12) can be obtained by
following very closely the proof in the discrete setting given in § 6.2 of Chapter 2.
For this reason we simply outline the main steps. Let us introduce a notation for

the modified Hamiltonian

N
H§V,w = =2\ Z (wn + h) 1isign(s,)=—1} »

n=1

so that the reduced free energy f(\, h) — Ah can be expressed for P-a.e. w as

1 Ah
fONR)—=Ah = ]\}lféoﬁlogll\iw’ (5.14)
where
>\7h‘ [ 1
INw = _llgfglEm[eXP (M) 1{|sN|s1}]-

The proof of relation (5.14) is the core of Section 2.

We stress that Iy, takes for the continuous setting the role that the pinned
partition function Zy(0) (see (1a.9) of Chapter la) has in the discrete setting. In
fact, using (5.14) together with the superadditivity of the process {Iy,}n (proved
in § 2.1), the arguments of the first part of § 6.2 of Chapter 2 can be easily adapted
to the continuous setting. In particular, in order to prove that a point (A, h) is
localized, it suffices to find a number C' > 1 and a random variable T": 2 — N with

the following two properties:

(1) IN' >C P(dw)as. (2) E[T] < 0. (5.15)

T(w),w

Thus it only remains to show that for every (A, h) with A < h()\) one can build
a random time 7T satisfying (5.15). However, if we define 7' = T}y ., as in (2.57) of
Chapter 2, then using the asymptotic relation (5.10) we can easily get a lower bound
on I like (2.58), for a possibly different value of the constant ¢’ (see also (2.55)).
Therefore one can tune the parameters A, €, q exactly as it is done in the end of § 6.2
of Chapter 2, see page 81, and condition (5.15) will be satisfied.
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2. Existence of the free energy

In this section we give a proof of the existence of the free energy, that is of the
limit (5.3). The standard procedure to get the existence of such a limit is to modify
the partition function of the model (without changing the Laplace asymptotic be-
havior) in order to perform superadditivity arguments. For instance in the discrete
case it is sufficient to restrict the sum defining the partition function Z Nw to the
trajectories such that Sy = 0: in our continuous setting this is no longer possible,
because the event {Sy = 0} has probability 0. This obstacle is easily bypassed and
it is not difficult to find a useful modification of the partition function. The draw-
back is that showing that the modified partition function yields the same Laplace

asymptotic behavior as the original one is no longer trivial.

Remember that by hypothesis the steps of our random walk are bounded by 1:
|Sy, — Sp—1| < 1. We also recall the notation Gy, := Q]’VL for the Boltzmann factor
appearing in the definition of the copolymer measure (5.1), and the expression (5.2)
for the partition function Z Nw- The modified partition function to which we will
apply superadditivity arguments will be

Ing = Iy = it E, (G Lyiswi<iy] » (5.16)
where P, is the law of the random walk starting at © € R, introduced in the
preceding section.

The proof is organized in three steps: in § 2.1 we show that the limit (5.3) exists
if we replace Z Nw by Inw, and then in § 2.2 and § 2.3 we prove some comparison
inequalities showing that Iy, and Z N are equivalent for the sake of computing

the free energy. To this purpose it will be convenient to consider an intermediate

partition function Jy,, defined as follows:

JN,w = JJ/:;Z = E[QNW 1{‘SN|§1}] . (517)
2.1. Step 1. We start showing that the sequence of random variables {log I .} n
satisfies the hypothesis of Kingman’s Superadditive Ergodic Theorem [43].
We begin with the upper bound on E[log Iy ,]: using Jensen’s inequality, the
definition (5.16) of Iy, and a rough bound on Gy, we get

N
E [logln.] < logEE{eXp (AZ(Iwth)) 1{ISN|31}] < (logE[* ]+ AR)N,

n=1
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hence sup y{E[log Iy ,|/N} < +00. Also the superadditivity is easily obtained: mak-
ing explicit the functional dependence of Gy, on the path (Si,...,Sy) when it is
convenient and using the Markov property, we obtain that V x € [—1, +1]

E, [Gnvinro Lsyo<t] = Bo [ Gvinne Lgsyi< Lisn. ul<iy]

1
= / dz fN(Z - 95) E, [ gN,w(Sla oy SN, 2)] ‘E, [QM,GNw 1{|SM|§1}}

1

v

1
(/ dz fN(Z - l’) Ez[gNyw(Sl, ,Z)]) . Zeinf EZ[gMﬁNw 1{‘5M‘§1}}

1 [7171]

= E,[Ono Lisyi<it] - Iarove > Inw - Inon,
Reading only the extremities of this chain of inequalities, we have
Ea: [gN—l—M,w 1{|SN+M|§1}] Z IN,w . IM,GNw = IN+M,w Z IN,w : IM,GNw

so that the superadditivity of the process {log Iy ,}n is proved. We can thus apply
Kingman’s Theorem, concluding that the sequence {log [ﬁ,}zu /N}n converges P(dw)—
a.s. and in L;(P) to a limit f,(\, h) which is #—invariant. By tail triviality, f is

P(dw)-a.s. constant and we consequently omit the w dependence: f = f(A, h).

2.2. Step 2. Now we show that also the sequence {log J])\‘,’Z/N}N has, P(dw)-
a.s. and in L (IP), the limit f(\, h) as N — oo. We start noting that by definition

TNz IV, = lminf = > f(\h) (5.18)

for P—a.e. w, so it remains to find a bound for the lim sup.

We recall that by hypothesis the density f of X; is supported in the inter-
val [-1,+1], and that for some ng € N the density f,, of S,, is bounded, hence
we can find two positive constants A, M such that f, () < A - 1fz<my. Then
for N € N by the Markov property we get a first upper bound for J:

‘]TZO-I—N,W = / dz fno (Z) E[ gno,w(sla ey Sno—h Z)] ’ Ez [gN,G"Ow 1{|5’N\§1}}
. y (5.19)

< AK(w)-/ dz E. [ Gn, 00w - L{jsy|<1}]
-M

where the constant K(w) that we have used to bound EJ.. .| is simply

K(w) = K(A b, {wi}1<i<ny) = exp <)\ > (lwal + h)) :

n=1
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Next we want to obtain an analogous lower bound for I. Observe that by (5.5)

we can find n; € N such that
@) > s —=——  Vye[-(M+1),(M+1)
ni y —_ 2 \/ﬁ \/n_l y ) .

Then for N € N and for all x € [-1, +1] we get

E, [gn1+N,w 1{|sn1+N|g1}]

= / dz fnl (Z - 33') E[ gn1,w(517 teey Snlfla Z)} : Ez [gN,O”Iw 1{|SN|§1}]
R

11 1 M
> ___le./ A2 E. [Gy g - 1 ,

hence

1 1 1 M
Lying > —— —K(w) ! dz E, niy - 1 . 5.20
HNw = \/%\/n—l (w) /M < [gN,G 1 {\Szvlél}] ( )

Combining (5.19) with (5.20) we get that for all N € N
JN,w S A, K(w)2 IN—}—(nl—no),G("O_”l)w 3

for some positive constant A’ (we recall that we consider two-sided sequence of
charges: w = {wy, }nez, hence the translations 0% are meaningful for all k € 7). It
follows that

\h Ah
log ‘]N,w log IN+(n1—n0), 6(mo—n1)

lim su < limsu
Naoop N o Nﬂoop N

= f(/\,h),

P(dw)-a.s., that is what was to be proven. Notice that the bounds we have obtain
yield easily also the L;(IP) convergence of {log J])\‘,IL /N}n towards f(A, h).

2.3. Step 3. Finally we are left with comparing Jy ., with the original partition
function Zy,,, which amounts to removing the restriction {|Sy| < 1}. Observe that
by definition Z Nw = Jnw, hence we can concentrate on finding a suitable upper
bound.

The procedure we follow is very similar to the simple random walk case, cf. [35].
The idea is to look at the last point up to epoch N at which the random walk

changes its sign. More precisely, we define the random variable U by

U := min{k € {1,...,N} : sign(Sy) = sign(Sg41) = ... =sign(Sy)},
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and we disintegrate the partition function according to the range of U. It is conve-

nient to consider separately the cases {Sy > 0} and {Sy < 0}, that is we split
Znw = Zy + Zy., = E[Gnw, Sy > 0] + E[Gn., Sy <0].

Then we can write

N
Z3w = > BlGnw, U=k, Sy >0
k=1

N 1

/ d2 fi(2) E[Grw(St, ..., Sk-1,2)] A Xk @ith) p_ [Si>0,....Sn_k >0].
k=10
Now by the asymptotic behavior in (5.9) and (5.10) it follows that one can find
a positive constant D such that for all z € [0,1], for all N € N and for all k €

{1,..., N} one has
P.[S1>0,...,5vx>0] < DNP,[S1>0,...,5 1 >0,Sv_, <0].
Performing this substitution we obtain
Z3. < NI DNE[Gy,, [Sv] <1] = (2 DN) Jy,.

As the very same arguments can be performed for Zvjf,’w, we have definitively shown
that

Rl < B < (@ D N) B

for some positive constant D’. From this relation the convergence of {log Z])\‘,IL /N},
towards f(A, h) both P(dw)-a.s. and in L; (P) follows immediately.

3. Towards the coarse graining of the free energy

The coarse graining of the free energy for the copolymer near a selective interface
model is expressed by Theorem 1la.5 of Chapter la: it holds when the underlying
random walk is the simple symmetric random walk on Z, and the proof of it is the
main result of the paper [12] by Bolthausen and den Hollander. The purpose of this
section is to discuss the issue of extending it to the continuous setting adopted in
this chapter.

The idea that lies at the basis of the coarse graining is that when A — 0 the re-
ward to stay close to the interface gets small and consequently the typical excursions

of the polymer away from the interface tend to become very long. Therefore it should
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be possible to approximate both the polymer and the charges by Brownian motions,
and in fact Theorem la.5 provides a quantitative version of this approximation.

According to this heuristic point of view, the microscopic details of the random
walk and of the charges should not be too relevant, until we work with processes in
the domain of attraction of the Brownian motion. This is indeed true for the charges,
as we already mentioned in Chapter la: in fact the original proof of Theorem 1la.5
in [12] was given for the Bernoulli case P(w; = 4+1) =1 —P(w; = —1) = 1/2, but it
can be easily extended to the general w case considered here.

On the other hand, the extension to the more general random walks considered
in this chapter appears to be more challenging. In order to outline the reasons of this
fact, we have to look more closely at the original proof of Theorem 1la.5. Without
going into the details, which are quite long and extremely delicate, we point out that

the proof is divided in four main steps, which we can roughly describe as follows:

(1) first it is shown that when A and h are small one can safely throw away the

short excursions of the walk in the computation of the partition function;
(2) then the {w,} are replaced by standard Gaussian variables;

(3) the law of the (long) excursions under the rescaled simple random walk
measure is then replaced by the law under the Brownian motion measure,

ending up with a Brownian copolymer model without the short excursions;

(4) finally, one reintroduces the short excursion for the Brownian copolymer

model.

We observe that in step (2) the random walk plays a minor role and it is not
difficult to adapt the proof to our continuous random walk setting, while step (4)
is a problem involving only the Brownian copolymer model, hence it requires no
change. Therefore the crucial points are step (1) and step (3), that will be analyzed

separately.

3.1. Step (1): throwing away the short excursions. For the first step the
original proof makes use of several peculiar properties enjoyed by the excursions of

the simple random walk, namely:
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e there is a complete decoupling between the epochs of the returns to zero {7}
and the signs {oFW},, of the excursions: in fact the sequence {75FW}; is
independent of the sequence {o%W};

RW1, form an independent sequence of Bernoulli variables with

e the signs {0}
P = +1) = P(of™ = —1) = 1/2;
e the zeros {798}, form a classical renewal process, that is the interarrival

times {705’ — 72"}, are independent positive random variables.

The first observation is that the returns to zero are no longer meaningful for a
continuous random walk, since P(S,, = 0 for some n) = 0. We point out two possible

definitions:

(a) the epochs at which the random walk crosses the interface:
T = 0 Thar = inf {n > 75 : sign(S,) # sign(S,-1)}, (5.21)

with the signs of the excursions {oy }x>; defined by oy := sign(S,,_,):

(b) the epochs at which the walk gets close to the interface:
0 =0 Ther = inf {n > : S, € [-1,+1]}, (5.22)
with the signs of the excursions {oy }x>1 defined by oy := sign(S;, ).

Notice that with the first definition there is a striking difference with respect to the
simple random walk case, because the sequence {0y }x>1 is almost deterministic: in
fact P(dS)-a.s. we have that {0} }x>1 = sign(S) - {(=1) }r>1.

In any case none of the above mentioned properties of {o?®W}, and {7P%WV},

holds anymore for {0y} and {7 }x, with any of the two definitions (a) or (b).

The most serious problem is that the interarrival times {7}, where Ty := 711 —
7, are no longer independent. Nevertheless they enjoy a useful property. Let us
introduce the sequence of random variables {J;}r>o defined by J, := S;, (notice
that Ji, € [—1, +1] because by hypothesis our random walk has steps bounded by 1
in absolute value). Then it is not difficult to check that the joint process {(Jx, Tk) }«
is a Markov renewal process [5], that is a Markov chain on [—1,+1] x N such that

the transition kernel

P(J/H_l € dy, Ty =n|Jy=z T, = m)
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does not depend on m. This implies that, conditionally on {J }, the variables {7} }x
are independent.

Another remarkable fact is that the asymptotic behavior of the probability tail
of the variables {T}} is similar to the simple random walk case, also conditionally
on the {Ji}x:

const.(z)

P(TkH:n’Jk::c) ~ REYD

(n — 00).

If one chooses the definition (a) this relation is just a rephrasing of (5.10), and it is
not difficult to check that it holds also with definition (b).

Thus the situation is not extremely bad. After all, we have seen that Markov
renewal processes have been the fundamental tool in the study of periodic inhomo-
geneous polymer models performed in Chapter 4. The reason is that a lot of funda-
mental asymptotic results (renewal theorems) of classical renewal processes can be
extended to the Markov case. We stress however that the processes of Chapter 4 en-
joy the peculiar property of having a modulating chain {J; }; with finite state space
and this is indeed a great simplification, as it is explained in [5, Ch. VII.4]. Dealing
with the case when the modulating chain has uncountable state space is much more
delicate and the results are more involved (see for instance [4]), especially in the

case of heavy tails.

Up to now we have not succeeded in extending the proof of step (1) to the
continuous random walk setting. Nevertheless we point out that we are able to
prove a weaker form of step (1) that, provided one can extend to the continuous
setting step (3), is sufficient to yield the first part of Theorem la.5, namely the
scaling limit of the free energy expressed by equation (la.16). This would be an
interesting result, but unfortunately we do not have yet a complete proof of step (3)

in the continuous setting.

3.2. Step (3): from random walk to Brownian motion. The central point
of step (3) is a sharp comparison between the law of the (long) excursions of the
rescaled simple random walk and the law of the excursions of the Brownian motion.
Without getting too much into the details, we mention that a fundamental estimate
of the proof is the following one (cf. equations (4.62) and (4.66) in [12]): for k,l € N
such that k + 1 € 2N, as k,| — oo jointly we have

2 Vk

P(SRW)(Si%Ofork‘<Z'<k+l, Sk+l:0) = (1+0(1));m.

(5.23)
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where PfW) ig the law of the simple symmetric random walk on Z. The proof of
this relation is obtained by conditioning on the position of the walk at epoch k and
then using the reflection principle together with a strong approximation of the mass
function of the simple random walk by the Gaussian density.

Now let us set £ := max{k =0,...,N : 7, < N}, where the {7} are defined
by (5.21) (but we could also choose definition (5.22)). Then the continuous analogue
of (5.23) should be that for k,1 € N and as k,l — oo jointly

1 vk
T (k+1DV1

(the reason for the missing factor 2 with respect to (5.23) lies in the periodicity of

P(Ek-i-l—l S k’, Ek-{-l =k + l) = (1 + 0(1)) (524)

the returns of the simple random walk).

In order to prove (5.24), we start conditioning on the position at epoch k:
+oo
P(ngrlfl < k, £k+l =k+ l) = / dz fk(.%') Px(Sl >0,..., Si_q1 > 0, S < O)
0

0
+/ dl’fk(:L‘)Pm(Sl<0,...,Sl_1<0,SlZO).

Let us consider the first integral in the r.h.s. above, the second one being analogous:
when k£ is large the asymptotic behavior of fi(z) is given by the Local Central
Limit Theorem (5.4) (actually one should use a stronger version valid in a ratio
sense, see [61]). On the other hand the asymptotic behavior of the term P,(S; >
0,...,5-1>0,5 <0) is not immediate: notice in fact that the relevant values of
are those of order vk and k — oo, hence one cannot use (5.10).

Conditioning on the position at epoch [ we can write
1
P.(S1>0,...,51>0,5<0) = / dy o (x + ) fi—y — )
0

where gb;y)(z) is the value at z € R of the density of the random variable S, con-
ditionally on the event {§1 >y,....8 > y}, where we have introduced the dual
random walk {S,},, := {—S,}n. Notice however that the value of y € (0,1) is actu-
ally irrelevant for the asymptotic behavior of (bl(y)(z), because we are interested in
the regime when both [ and z are large, and it is sufficient to consider the case y = 0.

Therefore an important role is played by the asymptotic behavior of the density
of the variable S, conditionally on the event {S; > 0,...,8, > 0}, where {S,}, =
{=S,}n is a random walk satisfying the hypothesis stated in § 1.2. It has been known
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for a long time [10] that the only hypothesis of finite nonzero variance o guarantees

the weak convergence

~

S, ~ N 2
—ll conditionally on {S; > 0,...,5, >0} = xze® /21(x20)dx.
o

However what we need is rather a local refinement of this weak convergence, exactly

as the Local Limit Theorem (5.4) is a local refinement of the Central Limit Theorem.

Such a Local Limit Theorem for random walks conditioned to stay positive does
not seem to be known in the literature. We give a proof in Chapter 6 in a very general
setting, using the Fluctuation Theory for random walks. Besides being an interesting
result in itself, this theorem is a key step to prove the asymptotic behavior (5.24).
Unfortunately there is still some technical points to be solved in order to extend the
proof of step (3) to the continuous setting, but we think that a complete solution is

not too far.






CHAPTER 6

A local limit theorem for random walks

conditioned to stay positive

In this chapter we study the asymptotic behavior of random walks conditioned to
stay positive. We consider a real random walk S,, = X +...+ X, attracted (without
centering) to the normal law: this means that for a suitable norming sequence a,,
we have the weak convergence S, /a, = ¢(x)dz, ¢(z) being the standard normal
density. A local refinement of this convergence is provided by Gnedenko’s and Stone’s
Local Limit Theorems, in the lattice and nonlattice case respectively.

Now let C, denote the event (S; > 0,...,S, > 0) and let S, denote the ran-
dom variable S, conditioned on C,: it is known that S/ /a, = ¢*(z)dz, where
ot (z) = wexp(—2?/2)1(;50). What we are going to establish is an equivalent of
Gnedenko’s and Stone’s Local Limit Theorems for this weak convergence. We also
consider the particular case when X; has an absolutely continuous law: in this case
the uniform convergence of the density of S;/a, towards ¢*(z) holds under a stan-
dard additional hypothesis, in analogy to the classical case. We finally discuss an
application of our main results to the asymptotic behavior of the joint renewal mea-
sure of the ladder variables process. Unlike the classical proofs of the LLT, we make
no use of characteristic functions: our techniques are rather taken from the so—called

Fluctuation Theory for random walks.

The article [15] has been taken from the content of this chapter.

1. Introduction and results

1.1. The nonlattice case. Let S,, = X; + ...+ X,, be a real random walk
attracted (without centering) to the normal law. This means that {X}} is an IID
sequence of real random variables, and for a suitable norming sequence a,, we have

the weak convergence

Sp/an, = (z)dz, p(z) = L e "2 (6.1)
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This is the case for example when E(X;) = 0 and E(X?) =: ¢ € (0,00) with
a, := o/n, by the Central Limit Theorem.

We recall that, by the standard theory of stability [29, §IX.8 & §XVIL5]|, for
equation (6.1) to hold it is necessary and sufficient that E(X;) = 0, that the trun-
cated variance V (t) := E(X7 1(x,|<s)) be slowly varying at oo (that is V/(ct)/V (t) —
1 as t — oo for every ¢ > 0) and that the sequence a, satisfy the condition

2

az ~nV(a,) as n — oo.

For the moment we assume that the law of X is nonlattice, that is not supported
in (b+ cZ) for any b € R,c > 0. Then a local refinement of (6.1) is provided by
Stone’s Local Limit Theorem [66, 67], that in our notations reads as (cf. [7, §8.4])

a, P(S, € [z,x+h)) =ho(z/a,) + o(1) (n — ), (6.2)

uniformly for € R and h in compact sets in R™.

What we are interested in is the asymptotic behavior of the random walk {S,,}
conditioned to stay positive. More precisely, let C, = (S; > 0,...,S, > 0) and
let S;F denote the random variable \S,, under the conditional probability P(-|C,): if

(6.1) holds then one has an analogous weak convergence result for S /a,, namely
St/a, = ¢t (z)dz, ot (z) = xe ™/ 10 - (6.3)

This is an immediate consequence of the fact [39, 10, 24] that, whenever (6.1) holds,
the whole process {S|nt|/@n }iejo) under P(-|C,) converges weakly as n — oo to
the standard Brownian meander process { B }+cjo.1], and @™ (z) dz is the law of By,
cf. [60].

Our main result is an analogue of Stone’s LLT for the weak convergence (6.3).

THEOREM 6.1. If Xy is nonlattice and (6.1) holds, then
an P (S, € [z, 2+ h) |Co) = hot(x/ay) + o(1) (n — ), (6.4)

uniformly for x € R and h in compact sets in RT.

The main difficulty with respect to the classical case is given by the fact that
under the conditional probability P(-|C,) the increments of the walk {X}} are no
longer independent. This is a major point in that the standard proof of Stone’s LLT
relies heavily on characteristic functions methods. As a matter of fact, we make no

use of characteristic functions: our methods are rather of combinatorial nature, and
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we make an essential use of the so—called Fluctuation Theory for random walks. The
core of our proof consists in expressing the law of S,, under P(-|C,) as a suitable
mixture of the laws of {Sk}o<k<, under the unconditioned measure P, to which
Stone’s LLT can be applied. Thus our “Positive LLT” is in a sense directly derived
from Stone’s LLT.

We point out that our methods may in principle be applied to the case when
the random walk is attracted to a generic stable law (the analogue of (6.3) in this
case is also provided by [24]), so that it should be possible to obtain an equivalent

of Theorem 6.1 in this general setting.

1.2. The lattice case. Let us consider now the lattice case: we assume that
X is supported in (b+cZ), for the least such c. In this case the local version of (6.1)
is given by Gnedenko’s Local Limit Theorem [7, §8.4], which says that

a—cn P(S, =bn+cx) = o((bn+ cx)/a,) + o(1) (n — o), (6.5)
uniformly for x € Z.

We can derive the local version of (6.3) also in this setting.

THEOREM 6.2. If Xy is lattice with span 1 and (6.1) holds, then
C%”P(Sn:bn—kcx}cn) =T ((bn+ cz)/a,) + o(1) (n — 00),
uniformly for x € Z.

The proof is omitted since it can be recovered from the proof of Theorem 1 with

only slight modifications (some steps are even simpler).

1.3. The density case. When the law of X; is absolutely continuous with
respect to Lebesgue measure and (6.1) holds, one may ask whether the density
of S,/a, converges to ¢(x) in some pointwise sense. However, it is easy to build
examples [37, §46] satisfying (6.1), such that for every n the density of S, /a, is
unbounded in any neighborhood of 0: therefore without some extra—assumption one
cannot hope for convergence to hold at each point. Nevertheless, if one looks for the
uniform convergence of the density, then there is a simple condition which turns out

to be necessary and sufficient.

ASSUMPTION 6.3. The law of Xy is absolutely continuous, and for some k € N
the density fi(x) of Sk is essentially bounded: fi(x) € L*(R,dx).
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It is easy to see that if this assumption holds, then for large n the density
fn(z) admits a bounded and continuous version. A proof that Assumption 6.3 yields
the uniform convergence of the (continuous versions of the) density of S,/a, to-
wards ¢(z), namely

sSup ’anfn(anx) - cp(:p)} —0 (n — o00),
r€R
can be found in [37, §46]. On the other side, the necessity of Assumption 6.3 for the

above convergence to hold is evident.

We can derive a completely analogous result for S;F.

THEOREM 6.4. Assume that X, satisfies Assumption 6.3, and that (6.1) holds.
Then:

(1) St has an absolutely continuous law, whose density f,F(x) is bounded and
continuous (except at x = 0) for large n;
(2) the (continuous version of the) density of S," /a,, converges uniformly to p™*(z):
U [anf (0n2) — 9™ (@) = 0 (11— o).
z€R
This Theorem can be proved following very closely the proof of Theorem 1: in
fact equation (6.19) in Section 3 provides an explicit expression for f,(z), that can

be shown to converge to ¢ (z) with the very same arguments given in Section 4.

1.4. Asymptotic behavior of the ladder renewal measure. As a by-
product of the Local Limit Theorems described above, we have a result on the
asymptotic behavior of the renewal measure of the ladder variables process. For
simplicity we take the arithmetic setting, assuming that X; is supported by Z and
it is aperiodic, but everything works similarly in the general lattice and nonlattice
cases. The renewal mass function wu(n,x) of the ladder variables process is defined

forn e N, x € Z by
u(n,x) = ZP(TT =n,H, = :c) = P(n is a ladder epoch, S,, = x) , (6.6)
r=0

where {(T}, Hi)} is the (strict, ascending) ladder variables process associated to the
random walk (the definitions are given in Section 2). Generalizing some earlier result
of [41], in [3] it has been shown that, for {x,} such that x,/a, — 0,

1 1

NS Uz, — 1) ~ - P(S,=w,)U(z,—1) (n—00), (6.7)

u(n, z,) ~
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where U(x) := 32 P(H, < z) is the distribution function of the renewal measure
associated to the ladder heights process (as a matter of fact, the proof of (6.7) given
in [3] is carried out under the assumption that E(X?) < oo, but it can be easily

extended to the general case).

With our methods we are able to show that the same relation is valid for z =
O(a,), with no further restriction on X; other than the validity of (6.1).

THEOREM 6.5. Let X, be arithmetic with span 1 and such that equation (6.1)
holds. Then for x € Z

u(n,z) = 1 P(S,=2z)U(z — 1) (1+0(1)) (n — 00), (6.8)

n

uniformly for x/a, € [e,1/¢], for every fizved ¢ > 0.

The proof of this theorem is a direct consequence of Theorem 6.2: the details are

worked out in Section 2.5.

Notice that in the r.h.s. of (6.8) we could as well write U(z) instead of U(z — 1),
since x — oo as n — 00. Also observe that putting together equation (6.7) with

Theorem 6.5 one has the stronger result that equation (6.8) holds uniformly for
x/a, € [0, K], for every fixed K > 0.

We point out that Theorem 6.5 has been obtained also in [13], where the authors

study random walks conditioned to stay positive in a different sense.

1.5. Outline of the exposition. The exposition is organized as follows: in
Section 2 we recall some basic facts on Fluctuation Theory and stable laws, and
we set the relative notation; we also give the proof of Theorem 6.5. The rest of
the chapter is devoted to the proof of Theorem 6.1, which has been split in two
parts. The first one, in Section 3, contains the core of the proof: using Fluctuation
Theory we obtain an alternative expression for the law of S/, see equation (6.19),
and we prove a crucial weak convergence result connected to the renewal measure of
the ladder variables process. Then in Section 4 we apply these preliminary results,
together with Stone’s LLT, to complete the proof. Finally, some minor points have

been deferred to the appendix.
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2. Fluctuation Theory and some applications

In this section we are going to recall some basic facts about Fluctuation Theory
for random walks, especially in connection with the theory of stable laws, and to

derive some preliminary results. Standard references on the subject are [29] and [7].

2.1. Regular variation. A positive sequence d,, is said to be regularly varying
of index o € R (we denote this by d,, € R,) if d,, ~ L, n® as n — oo, where L,, is
slowly varying at oo in that Ly, /L, — 1 as n — oo, for every t > 0. If d,, € R,
with @ # 0, up to asymptotic equivalence we can (and will) always assume [7,
Th.1.5.3] that d,, = d(n), with d(-) a continuous, strictly monotone function, whose
inverse will be denoted by d~'(-). Observe that if d,, € R, then d~'(n) € Ry, and
1/d, € R_,.

Let us recall two basic facts on regularly varying sequences that will be used a
number of times in the sequel. The first one is a uniform convergence property [7,
Th.1.2.1]: if d,, € R,, then

dign) = td, (L+0(1))  (n— o), (6.9)

uniformly for ¢ € [, 1/¢], for every fixed € > 0. The second basic fact [7, Prop.1.5.8]
is that if d,, € R, with a > —1, then

= nd,,
~ — 0). 6.10
521 dy. | (n ) ( )

2.2. Ladder variables and stability. The first (strict ascending) ladder epoch
T1 of a random walk S,, = X7 + ...+ X, is the first time the random walk enters
the positive half line, and the corresponding ladder height H; is the position of the
walk at that time:

Ty :=inf{n >0:S, > 0} Hy, = Sp .

Iterating these definitions one gets the following ladder variables: more precisely, for

k > 1 one defines inductively
Ty == mf{n >Te 1:85, > kal} H, = STk ,

and for convenience we put (7y, Hy) := (0,0). The weak ascending ladder variables
are defined in a similar way, just replacing > by > in the relations (S,, > 0) and (S,, >

Hy_1) above. In the following we will rather consider the weak descending ladder
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variables (T, H}), which are by definition the weak ascending ladder variables of
the walk {—S,}. Observe that, by the strong Markov property, both {(T), Hy)}x
and {(Tx, Hy)}x are bidimensional renewal processes, that is random walks on R?

with step law supported in the first quadrant.

It is known that X is in the domain of attraction (without centering) of a stable
law if and only if (77, Hy) lies in a bivariate domain of attraction, cf. [38, 25, 26].
This fact will play a fundamental role in our derivation: let us specialize it to our
setting. By hypothesis X is attracted to the normal law, that is S,,/a, = ¢(z) dz,
so that by the standard theory of stability a,, € R;/2. We define two sequences b, c,
by

log L Z P ¢~ ¢ = a(by,), (6.11)

where p,,, := P(S,, > 0): then b, € Ry, ¢, € Ry and we have the weak convergence

671/21

V2 x3/?

where 91 (dy) denotes the Dirac measure at y = 1.

T, H,
(— —) =7, P(Z € (dz, dy)) = 1gso de- 61(dy),  (6.12)

b, ¢,

Thus the first ladder epoch T} is attracted to the positive stable law of index 1/2,

as for the simple random walk case:

T, 671/2:):
Ezﬂ/, P(Y € dz) :ml(mzmdw,

while for { H;.} one has a generalized law of large numbers, with norming sequence ¢,,:
H,/c, = 1 (that is H; is relatively stable, cf. [7, §8.8]).

We stress that we choose the sequence a,, to be increasing, and by (6.11) b,, and
¢, are increasing too. We also recall that the norming sequence b, is sharply linked
to the probability tail of the random variable T}, by the relation

21
P(Ty > b,) ~ \/; ~. (6.13)
In fact, this condition is necessary and sufficient in order that a sequence b, be such
that T,,/b, = Y, cf. [29, §XIIL.6].

REMARK 6.6. It has already been noticed that when the step X; has finite

(nonzero) variance and zero mean,

E(X))=0 E(X{)=0"€ (0,00),
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by the Central Limit Theorem one can take a, = oy/n in order that equation (6.1)
holds. In other words, X is in the normal domain of attraction of the normal law.
In this case the first ladder height H; is integrable [23] and the behavior of the tail

of Ty is given by

2E(H,) 1
V21 Vn

cf. [29, Th.1 in §XII1.7 & Th.1 in §XVIIL.5]. This means that also T} and H; belong

to the normal domain of attraction of their respective limit law, and one can take

P(T1>n)~ (n — 00),

E(H,)* ,

b, = 51 cn =E(Hy)n

o

in order that (6.12) holds (we have used the law of large numbers for H; and relation
(6.13) for T7).

2.3. An asymptotic result. As an application of the results exposed so far,
we derive the asymptotic behavior of P(C,,) as n — oo, which will be needed in the

sequel. The connection with Fluctuation Theory is given by the fact that
Cp:=(51>0,...,5,>0)= (T, >n).

In analogy to what we have seen for 77, the fact that the random walk is attracted to
the normal law implies that T lies in the domain of attraction of the positive stable
law of index 1/2. Therefore P(C,) € R_;/2, and denoting by ¢(t) := E(exp(—tT1))
the Laplace transform of T, by standard Tauberian theorems [29, Ex.(c) in §XIIL5]

we have that
P(C,) ~ ﬁ (1 — w(l/n)) (n — ).

Now, for ¢(t) we have the following explicit expression [29, Th.1 in §XIL.7]:

—log(1 -1 me —log(l —e™") — me -t

where p,, := P(5,, <0). A look to (6.11) then yields the desired asymptotic behav-

i01:

(n — 00). (6.14)
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2.4. Two combinatorial identities. The power of Fluctuation Theory for the
study of random walks is linked to some fundamental identities. The most famous

one is the so-called Duality Lemma [29, §XII] which can be expressed as
P(n is a ladder epoch, S, € d:p) = P(Cn, S, € d:p) , (6.15)

where by (n is a ladder epoch) we mean of course the disjoint union Ug>o(T} =
n), and by P(A,Z € dx) we denote the finite measure B — P(A,Z € B). A
second important identity, recently discovered by Alili and Doney [3], will play a

fundamental role for us:
k
P(Ty =n,Hy € dz) = —=P(Hy-1 < S, < Hy, S, € dz) . (6.16)
n

We point out that both the above identities are of purely combinatorial nature,
in the sense that they can be proved by relating the events on the two sides with

suitable one to one, measure preserving transformations on the sample paths space.

2.5. Proof of Theorem 6.5. We recall that by hypothesis ¢ is a fixed pos-
itive number. We start from the definition (6.6) of u(n,x): applying the Duality
Lemma (6.15) we get

u(n,x):P(Cn,Sn:x) :P(Cn)P(Sn:x’Cn). (6.17)
Observe that
. + .
ze}gf/e] ? (Z) >0 ze}gf/e] QP(Z) >0,

which implies that both Theorem 6.2 and Gnedenko’s LLT (6.5) hold also in a ratio
sense, namely
1
P(Sn :x}Cn) = a—<p+(x/an) (1+0(1)) (n — 00)

n

P(Sn:x):aicp(x/an) (1+0(1)) (n — o00),

n

uniformly for x/a, € [e,1/¢]. Since p*(2) = V27 2z ¢(2) for z > 0, it follows that
P(Sn:x}cn):\/ﬁaﬁP(Sn:x)(Ho(m) (n — o0), (6.18)

uniformly for x/a, € [,1/¢].
The asymptotic behavior of P(C,) is given by (6.14), and comparing equation

(6.8) with (6.18) and (6.17) we are left with proving that

b=t (n)

a(n)

Ux) =

(1 + 0(1)) (n — 00),
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uniformly for z/a,, € [g,1/¢]. We recall that U(x) is the distribution function of the
renewal measure associated to the ladder height process { Hy}, which is relatively
stable, since H,/c, = 1 as n — oco. Then Theorem 8.8.1 in [7] gives that U(x) ~
¢~ 1(x) as ¥ — oo, hence it rests to show that

r b l(n)

cHz) a(n)

— 1 (n — o0),

uniformly for x/a, € [g,1/¢], or equivalently, setting x = z a,,, that

2b7Y(n)
¢ !(za(n))

uniformly for z € [e, 1/¢]. However, as ¢~!(-) € Ry, by (6.9) we have that

—1 (n — o0),

c(za(n)) ~zcH(a(n))  (n—o0),

uniformly for z € [g,1/¢], and the proof is completed observing that ¢~ '(a(n)) =
b=1(n), by the definition (6.11) of c,. O

3. First part of the proof

3.1. A fundamental expression. We are going to use Fluctuation Theory to

express the law of S;" in a more useful way. For z > 0 and n > 1 we have
(6.15) .
P(Cn, Sp € dx) = nP(n is a ladder epoch, S, € dx)

:ZnP( =n, S, de ZTP H, _,<xz<H,S, de)

r=1

where we have used both the combinatorial identities (6.15), (6.16). With a simple

manipulation we get

0o co r—1
TP(HT 1<x<H,.,S, de :ZZP H. _,<x<H, Snedx)
r=1 r=1 k=0
:ZZ T1<x<Hr,S Ed:c :ZPHk<x,Sn€dx),
=0 r=k+1 k=0

and using the Markov property

n—1
P(Hk<x,5n6dx Z/ PTk_m erdz)P(Sn,mde—z).
—o/10,z)
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In conclusion we obtain the following relation (which is essentially the same as
equation (10) in [3]):

P(Sn/an € do ’ Cn)

1 n—1 00
— PC) mz /[(mnx) (ZP(Tk =m, Hy € dz)) P(Sh—m € a,dz — 2)

=0 k=0
b~'(n)

Sin(1-a))
nP(C,) /[0,1)><[0,z) ( ) Qn, ( )

where p, is the finite measure on [0, 1) x [0, 00) defined by

pul4) = L§ P((Qﬂ) eA), (6.20)

Ty 2\

for n € N and for any Borel set A C [0,1) x [0,00). Notice that pu, is nothing
but a suitable rescaling of the renewal measure associated to the ladder variables
process. Also observe that the sum defining p,, can be stopped at k = n — 1, since

by definition T} > k for every k; hence u, is indeed a finite measure.

Before proceeding, we would like to stress the importance of equation (6.19),
which is in a sense the core of our proof. The reason is that in the r.h.s. the condi-
tioning on C,, has disappeared: we are left with a mixture, governed by the measure
[, Of the laws of {Sl_n(l—a)J }ae[O,l) without conditioning, and the asymptotic behav-
ior of these laws can be controlled with Stone’s Local Limit Theorem (6.2) (if we

exclude the values of « close to 1).

In the following subsection we study the asymptotic behavior of the sequence of
measures {/,}, and in the next section we put together these preliminary results to

conclude the proof of Theorem 6.1.

3.2. A weak convergence result. We are going to show that as n — oo the

sequence of measure {u, } converges weakly to the finite measure p defined by

- B
u(A) = /Adadﬁ\/ﬂoﬁ/?e 2o (6.21)

for any Borel set A C [0,1) x [0,00) (it is easy to check that p is really a finite
measure, see below). Since we are not dealing with probability measures, we must

be most precise: we mean weak convergence with respect to the class C, of bounded
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and continuous functions on R?: p, = p iff [hdp, — [hdu for every h € Cp. If

we introduce the distribution functions F,,, F' of the measures p,, u:
Fu(a,b) == pia([0.a] x [0,8])  F(a,b) == u([0,a] x [0,8])

then proving that p, = pasn — oo is equivalent to showing that F,(a,b) — F(a,b)
for every (a,b) € [0,1] x [0, 00] (notice that oo is included, because the total mass

of p, is not fixed).

PROPOSITION 6.7. The sequence of measures {j,} converges weakly to the mea-

sure fi.

Proof. We start checking the convergence of the total mass:

P%ﬂﬂm)zzrigjE:I%Tk§70::6)in>GOﬂ,

where G(n) is the distribution function of the renewal measure associated to the
ladder epochs process {1} }. There is a sharp link between the asymptotic behavior
as n — oo of G(n) and that of P(T7 > n), given by [29, Lem. in §XIV.3]:

2 1

G0~ BT s

(n — 00). (6.22)

Since from relation (6.13) we have that

2 1
it follows that F,(1,00) — 4/2/m as n — o00. On the other hand, the check that
F(1,00) = /2/m is immediate:
I R 2 (S 2
F(l,00) = — doo ——= d 65/2‘1:—/ do— =/ —.
( ) \/%/0 a3/2/0 BB Vor Jo Va s

Since the total mass converges, we claim that it suffices to show that

liminf g, ((a1, az] X (b1, b)) > p((a1, as) x (by, bo)) (6.23)

forall 0 < a; <as < 1,0 < b < by < 00, and weak convergence will be proved.

The (simple) proof of this claim can be found in § 5.1.

Directly from the definition of u, we have

(a1, 0] x (b1, ba]) = b_ll(n) ZP(% € (a1, aa), % c (bl,b2]> .
k=0

n
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We simply restrict the sum to the set of k such that k/b=(n) € (by +¢,by — €|, €

being a small fixed positive number, getting

o (a1, a) x (bi, ba]) > bll(n) S ). (6.24)

——nN(b1+e,ba—¢]

where

Ts—ln Hs_ln
6(5)i= P (122 € (0 00), 20 € o, ).

n

By the definition (6.11) of ¢,,, we have that a,, = ¢(b~!(n)): then, using the weak con-
vergence (6.12) and the uniform convergence property of regularly varying sequences

(6.9), it is not difficult to check that
a; a
b~ P(ve(%%]) =6 (-
uniformly for s € (by +¢,by — €.

Observe that the term in the r.h.s. of (6.24) is a Riemann sum of the func-
tion &,(s) over the bounded interval (b + ¢, by — €]. Since the sequence of functions
{&€.(s)} is clearly equibounded and converges uniformly to £(s), it is immediate to
check that the r.h.s. of (6.24) does converge to the integral of £(s) over (b +¢, by —¢].

Therefore
ba=e ay G
liminf,un((al, as] x (b1, bg]) > / ds P(Y c (—2, —2])
n—oo b1+5 S S
ba—e az/s? e—1/2z ba—e az g2/t
= ds ds dt ——
bi+e /al/82 27T 23/2 /bl+€ V2m t3/2
= M((al,az] X (by 4,0y — 6]) )
and letting € — 0 relation (6.23) follows. O

4. Second part of the proof

4.1. General strategy. Now we are ready to put together the results obtained
in the last section. We start by rephrasing relation (6.4), which is our final goal, in
terms of S, /a,, a form that is more convenient for our purposes: we have to prove
that

VK >0 limsup an[ sup

n—00 z€RT,h<K/an

P(Sn/an€x+lh’Cn) — hgp+(:p)” =0,

(6.25)
where I, := [0, h), and = + I, := [z,z + h).
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Altough the idea behind the proof is quite simple, our arguments depend on an
approximation parameter ¢ and there are a number of somewhat technical points. In
order to keep the exposition as transparent as possible, it is convenient to introduce
the following notation: given two real functions f(n,x,h,e) and g(n,z, h,€) of the
variables n € N, z € Rt, h € Rt and ¢ € (0, 1), we say that f < g if and only if

VK >0 limsup limsup a, sup ’f(n, z,h,e)—g(n,z,h, 6)’ =0.

e—0 n—00 zeRT, h<K/an

With this terminology we can reformulate (6.25) as

P(S./a, G:E—I—Ih’Cn) X hot(x). (6.26)

To obtain a more explicit expression of the Lh.s. of (6.26), we resort to equa-

tion (6.19): with an easy integration we get

b~*(n) Aw,h
= > 2
P(S./a € +1]C) = S5 [ L dmles8) G, 620
where we have introduced the notation D? := [0,a) x [0,b), and
-~ Sn —«
Gt B) = P(% e {(z—B)+ I} NI, oo)) . (6.28)

In order to determine the asymptotic behavior of the r.h.s. of (6.27), we recall that:

e from (6.14) we have

b1 (n) |
nP(C,) - Var:

e from Proposition 6.7 we have that u, = u;
e from Stone’s LLT (6.2) it follows that, for large n, aﬁ’h(a, 3) is close to

G""a,B) = h \/11_@ go( j1_—ﬁ@>’ (6.29)

where we have used that a,q_q) ~ V1 — a a, as n — oo, by (6.9).

In fact, the rest of this section is devoted to showing that
P(S,/a, € x+ 1, |Cy) 2 Ver [ dula, B) G5 (o, B). (6.30)
Dy

It may not be a priori obvious whether this coincides with our goal (6.26), that is
whether

o) = Vo [ dnte) o %) (61
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Indeed this relation holds true: in fact (6.30) implies the weak convergence of S,,/a,
under P(-|C,) towards a limiting law with the r.h.s. of (6.31) as density, and we
already know from (6.3) that S, /a, under P(-|C,) converges weakly to ¢™(x)dz.

Anyway, a more direct verification of (6.31) is also given in § 5.2.

Thus we are left with proving (6.30), or equivalently
[ dms) Gitas) & [ dn(a,8) 6 a,),
Dyth D2

Since ~ is an equivalence relation, this will be done through a sequence of interme-

diate equivalences:

-~ * * * *
/ d,unGﬁ’hN...N...N...N/ dp G™"
Dyth D

i
and for ease of exposition the proof has been accordingly split in four steps. The
idea is quite simple: we first restrict the domain from D{*" to D? _ (steps 1-2), then
we will be able to apply Stone’s LLT and Proposition 6.7 to pass from (@f;h, fn) tO
(G=" 1) (step 3), and finally we come back to the domain D¥ (step 4).

Before proceeding, we define a slight variant G%" of @i’;’h:

G (a, B) = P(M €(z—pB)+ [h) (6.32)

7

(notice that we have simply removed the set [0, 00), see (6.28)) and we establish a

preliminary lemma.

LEMMA 6.8. For every K > 0 there exists a positive constant C = C(K) such

that
C
Gi'(a,f) < ———  VneN, ¥z, B €R, Ya € [0,1), Vh < K/a,,
L(A~a)n]

and the same relation holds also for @ﬁ’h(a,ﬁ).

Proof. Since by definition @fl’h(a, B) < G="(a, ), it suffices to prove the relation
for G&". However, this is a simple consequence of Stone’s LLT (6.2), that we can

rewrite in terms of S, /a,, as

l—o0

VK >0 limsup al{ sup
yeR, W' <K /a;

P(S/aey+1Iy) — h'cp(y)” =0. (6.33)
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In fact from this relation, using the triangle inequality and the fact that sup, g |¢(2)| <
00, it follows easily that for every K > 0

alP(Sl/al€y+[h/)§C VZEN, VyER, VhISK/al, (634)

for some positive constant C = C(K). Now it suffices to observe that G%" can be

written as

Gh(a, B) =P<SL”(1_"‘)JE Cn <x—ﬁ>+1w), (6.35)

An(1-0)]  On(1-a)] “[n(1-a))

so that we can apply (6.34) with [ = |[n(1 — )] and analogous substitutions. [

4.2. First step. In the first intermediate equivalence we pass from the domain

D¥ to D! that is we are going to show that

1—e»
ANw.h * Az,h
dp, G~ dp, G
Df«‘fh Dz+h

This means by definition that for every K > 0
limsup limsup R;, =0, (6.36)
e—0 n—00

where R}, := SUD{,er+, h<K/an} T (T, 1) and
re(x,h) = an/ dpn(a, B) aﬁ’h(a, B) .
[1—e,1) % [0,24h)

Applying Lemma 6.8 and enlarging the domain of integration, we get

1
Rf—b < Can/ dun(Oéaﬁ) o
[1—&,1)x[0,00) a|(1-a)n]
n—1 1 o] 1
=Ca, P(T, =

where in the second line we have applied the definition (6.20) of u,,, and in the third
line we have introduced u(m) := > ;7 P(T; = m), which is the mass function of
the renewal measure associated to the ladder epochs process {T}}. In the proof of

Proposition 6.7 we have encountered the asymptotic behavior of the distribution
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function G(n) := Y _, u(m), see (6.22). The corresponding local asymptotic be-
havior for u(m) follows since the sequence u(m) is decreasing in m (this is a simple
consequence of the Duality Lemma (6.15), see also [27, Th.4]): hence
1 1 1 b ()
7mP(Ty >m) 2x m
having used (6.13). Tt follows that u(m) < C;b~'(m)/m for every m, for some

u(m) ~ (m — o0),

positive constant C;. Recalling that b=!(-) is increasing, from (6.37) we get
n—1
an b=t (m)
R; < CCy——
" "b-1(n) Z (Y —
m=|(1—e)n
len)

a 1 € a
< CcC,—— Y — < coiC =,
= 77N - e)n] ;ak = 21—5aL€nJ

for some positive constant Cs: in the last inequality we have used (6.10), since
an € Ryj5. Now from (6.9) we have that a,/a|.,) — 1/y/€ as n — oo, hence

limsup R;, < C Ve

n—oo 1_5

with C' := CC1Cy, and (6.36) follows.

Y

4.3. Second step. Now we show that we can restrict the domain from Dj*"

to DY__:
[omn d [ et = [ dwe
i1t w :

1—¢ 1—e

where the equality simply follows from the fact that by definition (see (6.28) and
(6.32))

Gl ) = G0, f)  for B <.
We have to show that for every K > 0

limsup limsup @5, =0, (6.38)

e—0 n— o0
where (5, = SUP(,er+ n<i/an} @ (T, h) and

¢ (@, h) = a, / dptnlr, B) G2 (e, ).
[0,1—¢) X [z,z+h)

From Lemma 6.8 and from the fact that a,, is increasing we easily get

Qn

¢ (x,h) <C 1 ([0,1 =€) X [z,2 4+ h)) .

Qlen]
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As a, € Ry3, we have a,/a|.,) — 1/4/e as n — oo by (6.9), hence for fixed ¢ > 0

we can find a positive constant C; = C4(g) such that for all n € N
¢ (z,h) <CCy pn([0,1 —€) X [,z + h)).

However the term in the r.h.s. can be easily estimated: using the definition (6.20)

of py, for h < K/a, we get

1 ([0,1 =€) X [z,z+ h)) = bll(n) ZP(Tk < (1 —e¢)n, Hy, € [anz, anx + a,h))
1 o0
< i 2 Pk € o+ K)) < s sup U2+ ),

where U(dz) := ;- P(Hi € dz) is the renewal measure associated to the ladder
heights process { Hy.}, that we have already encountered in the proof of Theorem 6.5.
Notice that

VK >0 sup U([z,z + K)) =: Cy < 00,

zERT
which holds whenever {Hy} is a transient random walk, cf. [29, Th.1 in §VI.10].
Thus for every fixed € > 0
1
Q, = sup gp(z,h) < COLCy—— — 0 (n — o0),
2€RY h<K/an b—1(n)

and (6.38) follows.

4.4. Third step. This is the central step: we prove that

/ dpn G A~ / du G*",

1—e¢ 1—¢

that is for every K > 0

lim sup lim sup sup  ap / dp, G2 — / dpG™"| =0. (6.39)
e—0 n—oo geR*T h<K/an Dy_, .
By the triangle inequality
an, / dysy, Gﬁ’h — / dp goh
o o (6.40)

)

< an/ dMn ’Gﬁh _th’ + an

1—¢e

/ d,LLn g:v,h . / d/'L gz,h
Dw €T

1—¢ 1—¢

and we study separately the two terms in the r.h.s. above.
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4.4.1. First term. With a rough estimate we have

an / dMn }Gi,h o gz,h‘

(6.41)

< {supﬂn(pgo)u sp a,

neN (e,B)EDS

G (e B) = 6 5))) ,

and notice the prefactor in the r.h.s. is bounded since p, (D) — (D). For the
remaining term, we use the triangle inequality and the definition (6.29) of G¥"

getting

G

G (e, ) = g7 (@ 9)

< (o)
> — | A|(1—a)n]
a|(1-a)n]

+ (hay)

Goh(a, ) — L w(a"(x_m)' (6.42)

a|(1-a)n] a|(1-a)n]

a, (an(x—ﬁ)) 1 (x—ﬁ)’
¥ - o\ 7|
a|(1-a)n] a|(1-a)n] Vi—a \Vl-a
Let us look at the first term in the r.h.s. above: by the by the uniform convergence

property of regularly varying sequences (6.9) we have

an, 1

ala-am) VI—a

hence the prefactor is uniformly bounded. For the remaining part, from the expres-

sup —0 (n — ), (6.43)

a€(0,1—¢)

sion (6.35) for GZ" it is clear that one can apply Stone’s LLT, see (6.33), yielding

Gita ) - (2 g

a|(1-a)n] a|(1-a)n]

sup a|(1-a)n]
(a,3)EDS _,z€RT, h<K/an

as n — 00.

For the second term in the r.h.s. of (6.42), notice that the prefactor (ha,) gives
no problem since h < K/a,, in our limit. On the other hand, it is easily seen that the
absolute value is vanishing as n — oo, uniformly for (o, 3) € D°, and for z € R*:
this is thanks to relation (6.43) and to the fact that the function ¢(z) is uniformly

continuous. Coming back to equation (6.41), we have shown that

lim sup sup  ap, / dgin, }Gi’h - g%h] = 0. (6.44)

n—oo zeRT h<K/an

1—¢
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4.4.2. Second term. Using the definition (6.29) of G*", the second term in the

r.h.s. of equation (6.40) can be written as

/ d,un gz,h o / dILL gz,h

1—e 1—e

/D?o_ A ¥ao-0) ~ [ duﬁ/(a,x—ﬁ)‘

1—e

7

(6.45)
= (han)

where we have introduced the shorthand
1 t
U(s,t) = — 1 :
As usual, for us (ha,) < K and we can thus concentrate on the absolute value in
the r.h.s. of (6.45). Observe that, for fixed x > 0, the function (a, 3) — ¥(a, x — ()

on the domain D{°_ is bounded, and continuous except on the line 5 = x: since

fn = 1, it follows that for fixed x the r.h.s. of (6.45) is vanishing as n — oo.
However, we would like the convergence to be uniform in z € RT: this stronger
result holds true too, as one can verify by approximating ¥ with a sequence of

uniformly continuous functions (the details are carried out in § 5.3). The net result

/ d,un g:v,h . / d,u g:v,h

1—¢ 1—¢

18

lim sup sup an = 0. (6.46)

n—oo geRt h<K/an

Putting together relations (6.40), (6.44) and (6.46) it is easily seen that (6.39)
holds (even without taking the limit in ¢), and the step is completed.

4.5. Fourth step. We finally show that

/ d,LL gz,h x / d/'L ga},h ’

1—¢

that is, for every K > 0

lim sup lim sup sup an/ dp(e, ) G""(a, B) = 0. (6.47)
[1—¢,1)x[0,x)

e—0 n—oo xR, h<K/an

This is very easy: observe that
h
g:v,h a, S _—
(. 5) V2T v1 -«
as one can check from the explicit expressions for G®" (6.29) and ¢(x) (6.1). Hence

(hay,) 1

G, d:u’ 0475 gz,h O[,ﬁ S —/ dlu’ Oé,ﬁ
/[;671)X[07x) ( ) ( ) V2T [1—&,1)%x[0,00) ( ) -«

)
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and (6.47) follows, because the function

{(a.8) = (1 —a)"2} e LY(DF, du),

as on can easily verify. This completes the proof of Theorem 6.1.

5. Appendix

5.1. An elementary fact. We prove the claim stated in the proof of Proposi-
tion 6.7, in a slightly more general context. Namely, let u,, pu be finite measures on
the domain D := [0,1) x [0, 00), with p(0D) = 0. Assume that p,(D) — p(D) as

n — oo, and that

liminf 1, ((a1, az) X (b1, b)) > p((a1,as) x (b, ba]), (6.48)

n—~oo

forall 0 < a; <as <1,0 < b <by <oo. What we are going to show is that

= nli_)ngoun((al,ag] X (bl,sz = u((al,ag] X (bl,bg]) R (649)
forall 0 < a; <as < 1,0 < by < by < oo, and this implies that pu, = pu.

Suppose that (6.49) does not hold: then for some rectangle @ := (1, x2] X (y1, y2]

contained in the interior of D and for some € > 0 one has

limsup p,(Q) > u(Q) +e¢. (6.50)

We introduce for n € (0,1/2) the rectangle W := (n,1 —n] x (n,1/n]: by choosing 7
sufficiently small we can assume that W DO @) and that

w(W) =z u(D) —¢/2 (6.51)

(we recall that by hypothesis ©(0D) = 0). The rectangle W can be easily written as

a disjoint union ,
w=qulJa,
where the rectangles @); (whose exact deﬁn;t:it)n however is immaterial) are defined
by
Q1= (n,1—n] x (n,y] Q2 = (0, 1] X (y1,92]
Qs = (w2, 1 = 1] X (y1,92] Qa = (1,1 =n) x (42, 1/ .
Now, on the one hand we have

lim sup 1, (W) < limsup i, (D) = p(D)

n—oo n—oo
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but on the other hand

4
limsup p,,(W) = limsup pu, (Q U U QZ) > lim sup p,(Q) + lim inf x4, ( U QZ)
i=1

(6.50) o (6.48) 4
> w(Q) +e+ Z liminf 1, (Q) > p(Q)+2+ Y p(Q) = &+ p(W)
=1 j—
(6.51)
> (D) +e/2,

which evidently is absurd, hence (6.49) holds true.

5.2. An integral. We are going to give a more direct proof of relation (6.31):
substituting the explicit expressions for ¢(z), ¢*(z), p given in equations (6.1),

(6.3), (6.21) and performing an elementary change of variable, we can rewrite it as

2 1 1 27 2 2
22 _ 7 d SIS JE S = 6.52
" e A e e B

Altough it is possible to perform explicitly the integration in the r.h.s. above, it

is easier to proceed in a different way. Let {B;} be a standard Brownian motion and
let T, := inf{t : B, = a} be its first passage time: then the law of T, is given by
P(T, € dt) = g(a,t)dt, a,t e~a’/2t
(Ted) =gland,  glat)=—=
By the strong Markov property, for x > 0 and w € (0, 1) we have the equality in law

Ty ~ Ty +T1—w)z , where we mean that T, and T(;_), are independent. Therefore

g(x,1) = /0 dz g(wz,z) g((1 — w)z,1 - 2),

and integrating over w € (0,1) we get

g(z,1) /dw/ dz g(wz,z) g((1 — w)z,1—2) . (6.53)

Now observe that relation (6.52) can be written as

g(x, 1) /dw/ dzl1
:/ dw/ 4z 2 glw,2) g((1 —w)r, 1~ 2),

and comparing with (6.53) we are left with showing that

/dw/ dz(l——> (wz,2) g((1 —w)z,1—2) = 0

g(wz,2) g((1 —w)z,1 - 2)
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However, the 1.h.s. above can be decomposed in

/Oldw/wldz(...) + /Oldw/owdz(---) = Lo+ b

and with a change of variable one easily verifies that I; = — 1.

5.3. A uniformity result. We are going to show that

limsup sup
n—oo geRT

/ dpn, ¥(a,x — ) — / dpV(a,z—p6)| = 0, (6.54)
D2,

oo
Dl—s

where we recall that D? := [0,a) x [0,b) and the function V¥ is defined by

W(s,t) = \/1175 @(\Atfs) Li>0) -

Let us consider the fixed domain T := [0,1 — €] x R. Here the function ¥ is
bounded, ||¥||or = 1/v2me, and continuous except on the line ¢ = 0. We can
easily build a family of approximations {W;} of ¥ that are bounded and uniformly

continuous on the whole 7', setting for § > 0

U(s,t) t>0
Ws(s,t) := q W(s,0)- (1+1/0) te[-6,0] .
0 t<—0

Notice that || Us|lecor = ||¥|lco.r, and that for (s,t) € T'
|U(s,t) — Ws(s, )| < [|¥oo L) (t) - (6.55)

Let us introduce for short the notation ¥*(«, 3) := ¥(a, x — (3), and analogously

for ¥s. From the triangle inequality we get

/ dp, ¥ — / dp v*
Dr2e Dy,

+/ dp [ " — 07| +
D2,

D2,

[amws - [ auw
D D

oo
1—¢ 1—e

(6.56)

Using relation (6.55), the first two terms in the r.h.s. above can be estimated by

19 ooz (Mn([o, 1—e] x [z, +6]) + pu([0,1 — ] x [z,2+ 5])) .
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Since p is an absolutely continuous and finite measure, its distribution function is
uniformly continuous: therefore for every nn > 0 we can take dy sufficiently small so
that

0
su 0,1 —¢| x [z,x+ do]) < )
sup (0,1 = e x o &) < g

On the other hand, we know that for every = > 0
1 ([0,1 — €] X [z, 2+ 6o]) — p([0,1 — €] x [z, 2 + &o)) (n — o00),

and this convergence is uniform for x € R, as it can be easily checked. Hence by

the triangle inequality we can choose ngy so large that

n
sup sup gon([0:1 =P ol) < g
Finally, observe that for fixed dy the family of functions {W§ },er+ is equibounded
and equicontinuous: since p, = u, from a classical result [29, Cor. in §VIII.1] we
have that the third term in the r.h.s. of (6.56) with § = d, is vanishing as n — oo

uniformly for € R*. Therefore we can assume that ng has been chosen so large

that
Dfif D?ia

Applying the preceding bounds to equation (6.56) with 6 = dy, we have shown

sup sup <

n>ng rzeR+

>3

that for every n > 0 we can find ng such that for every n > nyg

/ dpin I* —/ dp U*
Dy Dy

and equation (6.54) is proved.

sup
zERT

<,
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