

RANDOM GRAPHS AND COMPLEX NETWORKS

Federico Bassetti and Francesco Caravenna

Università degli Studi di Pavia e di Milano-Bicocca

Goals

- Introduction to the mathematical modeling of **random graphs**
- Ideas and techniques of **modern probability theory** in an accessible and relatively **non-technical framework**
- Only a **basic probabilistic background** is required
(finite and countable probability, discrete random variables)

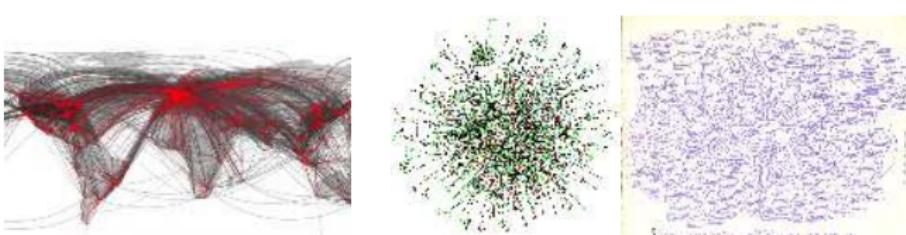
Schedule

- 30 hours, held in Pavia and Milano-Bicocca
- Either 2×2 hours or 1×3 hours per week
(to be discussed with students)
- Days: Tuesday and/or Thursday
- First lecture: Tuesday 18 March 2014 h.14.00 in Pavia

Why random graphs?

Increasing interest in recent years for **real-world networks**:

- World Wide Web
- communication networks (road network, flight network)
- collaboration and citation networks, social relations
- biological and ecological networks (food webs, transcription networks, protein networks...)



Key features

Different examples display surprisingly **similar large-scale features**:

- "Small Worlds": distances among nodes are **much smaller** than the size of the network
 - ~~ *six degrees of separation*
- "Scale Free": the number of nodes with k connections **decays slowly (polynomially)** in k
 - ~~ *some nodes ("hubs") have many connections*

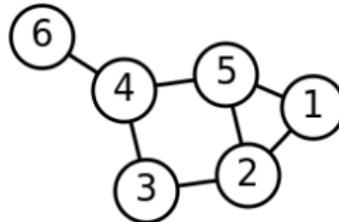
Goal: describe/explain such features through **mathematical models**

Graphs

From a mathematical point of view a graph is a couple

$$G = (\mathcal{N}, \mathcal{E})$$

- $\mathcal{N} = \{1, \dots, n\}$ is the set of **nodes**
- $\mathcal{E} \subseteq \mathcal{N} \times \mathcal{N}$ is the set of **edges** (links, connections)



Random Graphs

Fix the set of nodes $\mathcal{N} = \{1, \dots, n\}$

A **random graph** is a **random way** to choose the edges for \mathcal{N}

i.e. a **probability measure** on the possible choices of edges \mathcal{E}
(subsets of $\mathcal{N} \times \mathcal{N}$)

- Which kind of probability measure?
- Asymptotic properties as $n \rightarrow \infty$?

One of the simplest random graphs is the

Erdős-Rényi random graph $\mathcal{G}(n, p)$

- $\mathcal{N} = \{1, \dots, n\}$ is the set of nodes
- For each couple (i, j) of nodes, **toss a coin** and put an edge if a head comes up
(use independent coins with the same head **probability p**)

Phase transition in the Erdős-Rényi graph

Take

$$p = \frac{\lambda}{n}$$

Let $|C_{max}|$ be the size of the **largest connected subgraph**

Phase transition as $n \rightarrow +\infty$

- If $\lambda < 1$

$$|C_{max}| \sim k_\lambda \log(n) \quad \text{in probab.}$$

\rightsquigarrow many "small" disconnected islands

- If $\lambda > 1$

$$|C_{max}| \sim z_\lambda n \quad \text{in probab.}$$

\rightsquigarrow one macroscopic giant component

(k_λ and z_λ are explicit constants)

More recent models

The Erdös-Rényi random graph is not scale free

Popular alternative models (scale free and small worlds)

- **Preferential Attachment**: graph built **dynamically**, adding nodes in a sequential fashion; connections among nodes with large degrees are favored
- **Configuration Model**: degrees are fixed beforehand; nodes are connected in the most random way (uniformly)

These will be the object of the second part of the course.

Program

- ① Probabilistic Tools and Techniques:
random variables, coupling, inequalities
- ② Branching Processes as Random Trees:
asymptotic properties
- ③ The Erdos-Renyi random graph:
phase transition and study of the giant connected component
- ④ The configuration model:
asymptotics of distances and small world phenomenon
- ⑤ Preferential attachment model:
emergence of a scale free network

REFERENCES

- Lecture notes [Random Graphs and Complex Networks](#)
by R. van der Hofstad
available at <http://www.win.tue.nl/~rhofstad/NotesRGCN.pdf>
- Book [Random Graph Dynamics](#)
by R. Durrett
Cambridge University Press.