CHAPTER 1

THE SEWING BOUND

This first chapter is dedicated to an elementary but fundamental tool, the Sewing
Bound, that will be applied extensively throughout the book. It is a general Holder-
type bound for functions of two real variables that can be understood by itself,
see Theorem 1.9 below. To provide motivation, we present it as a natural a priori
estimate for solutions of differential equations.

1.1. CONTROLLED DIFFERENTIAL EQUATION

Consider the following controlled ordinary differential equation (ODE): given a con-
tinuously differentiable path X:[0,7] — R? and a continuous function o: R¥ - R* @
(RY)* , we look for a differentiable path Z: [0, T] — R* such that

Zi=0(Z) Xy, tel0,T]. (1.1)

By the fundamental theorem of calculus, this is equivalent to

t .
Zt:Z0+/J(ZS)X5d5, tefo,T]. (1.2)
0

In the special case k=d=1 and when o(z)= Az is linear (with A € R), we have
the explicit solution Z; = zpexp(A (X¢ — Xp)), which has the interesting property of
being well-defined also when X is non differentiable.

For any dimensions k,d € N, if we assume that o(+) is Lipschitz, classical results
in the theory of ODEs guarantee that equation (1.1)-(1.2) is well-posed for any
continuously differentiable path X, namely for any Z, € R* there is one and only one
solution Z (with no explicit formula, in general).

Our aim is to extend such a well-posedness result to a setting where X is contin-
uous but not differentiable (also in cases where o(-) may be non-linear). Of course,
to this purpose it is first necessary to provide a generalized formulation of (1.1)-(1.2)
where the derivative of X does not appear.

1.2. CONTROLLED DIFFERENCE EQUATION

Let us still suppose that X is continuously differentiable. We deduce by (1.1)-(1.2)
that for 0 <s <t T

Zo— 7= o2 (Xo— X.) + / (0(2)) — 0(2,)) Xodu, (1.3)
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16 THE SEWING BOUND

which implies that Z satisfies the following controlled difference equation:
Zy—Zs=0(Zs) (Xi— Xs) +o(t —s), 0<s<t<T, (1.4)
because u+ o(Z,) is continuous and u+— X, is (continuous, hence) bounded on [0, 77.

Remark 1.1. (UNIFORMITY) Whenever we write o(t — s), as in (1.4), we always
mean uniformly for 0 <s<t<T), ie.

Ve>036>0: 0<s<t<T, t—s<0 implies |o(t—s)|<e(t—s). (1.5)

This will be implicitly assumed in the sequel.

Let us make two simple observations.

e If X is continuously differentiable we deduced (1.4) from (1.1), but we can
easily deduce (1.1) from (1.4): in other terms, the two equations (1.1) and
(1.4) are equivalent.

e If X is not continuously differentiable, equation (1.4) is still meaningful,
unlike equation (1.1) which contains explicitly X.

For these reasons, henceforth we focus on the difference equation (1.4), which pro-
vides a generalized formulation of the differential equation (1.1) when X is continuous
but not necessarily differentiable.

The problem is now to prove well-posedness for the difference equation (1.4).
We are going to show that this is possible assuming a suitable Holder reqularity on
X, but non trivial ideas are required. In this chapter we illustrate some key ideas,
showing how to prove uniqueness of solutions via a priori estimates (existence of
solutions will be studied in the next chapters). We start from a basic result, which
ensures the continuity of solutions; more precise result will be obtained later.

LEMMA 1.2. (CONTINUITY OF SOLUTIONS) Let X and o be continuous. Then any
solution Z of (1.4) is a continuous path, more precisely it satisfies

|Zy— Zs| < C | Xy — Xs| +o(t —s), 0<s<t<T, (1.6)

for a suitable constant C' < co which depends on Z.

Proof. Relation (1.6) follows by (1.4) with C :=||0(Z)||«~ = supo<i<r |0(Z1)],
renaming |o(t — s)| as o(t —s). We only have to prove that C' < co. Since o is
continuous by assumption, it is enough to show that Z is bounded.

Since o(t — s) is uniform, see (1.5), we can fix § >0 such that |o(t — s)| <1 for
all 0 < s <t < T with |t —s| <J. It follows that Z is bounded in any interval [3, #]
with [t — 5| <, because by (1.4) we can bound

sup |Z| <|Zs|+|0(Zs)| sup | X;— X5+ 1< o00.
te(s,t] te(s,t]

We conclude that Z is bounded in the whole interval [0, 7], because we can write
[0, 7] as a finite union of intervals [5,#] with |f — 5| <J. O
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Remark 1.3. (COUNTEREXAMPLES) The weaker requirement that (1.4) holds for
any fixred s €[0,T] as t|s is not enough for our purposes, since in this case Z needs
not be continuous. An easy conterexample is the following: given any continuous

path X:[0,2] — R, we define Z:[0,2] — R by

5 X if 0<t<1,
T X100 1<t<2

Note that Z; — Z,= X; — X, when either 0 <s<t<1or 1<s<t<2, hence Z satisfies
the difference equation (1.4) with o(-)=1 for any fized s €1]0,2) as t]s, but not
uniformly for 0 <s<t<2, since Z is discontinuous at ¢t =1.

For another counterexample, which is even unbounded, consider

1 .
<
7= T3 if 0<t<1,

0 if 1<t<2,

which satisfies (1.4) as ¢ |s for any fixed s € [0,2], for X; =t and o(z) =22

1.3. SOME USEFUL FUNCTION SPACES

For n > 1 we define the simplex
0,712 :={(t1,....tn): 0<t1<--- <, <T'} (1.7)

(note that [0, T]L=[0,T]). We then write C,,=C([0,T]%, R¥) as a shorthand for the
space of continuous functions from [0,T]% to R*:

Cp:=C([0, T2, RF) :={F:[0,T]2 —RF: F is continuous}. (1.8)

We are going to work with functions of one (f;), two (Fy) or three (G,;) ordered
variables in [0, 7], hence we focus on the spaces Cy, Co, Cs.

e On the spaces C5 and C3 we introduce a Holder-like structure: given any
n € (0,00), we define for F'€ Cs and G € C3

Fst| ‘Gsut‘
IFli= swp 2 @l i= s , (19)
! 0<s<t<T (t—s)" ! 0<s<u<t<T (t—s)"
s<t
and we denote by C3 and CY the corresponding function spaces:
Cy:={FeCy ||F|,<o0}, Cd:={GeCs |G|,<o0}, (1.10)

which are Banach spaces endowed with the norm ||-||, (exercise).

e On the space C of continuous functions f: [0, 7] — R* we consider the usual
Holder structure. We first introduce the increment o f by

Of)st:=fe—fo,  0<s<t<T, (1.11)
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and note that §f € Cy for any f € C). Then, for a € (0, 1], we define the
classical space C®=C%([0,T], R¥) of a-Hélder functions

Ca;:{f:[O,T]—>IRk; 10f|la= sup %<oo} (1.12)
0<s<t<T

(for a=1 it is the space of Lipschitz functions). Note that ||§f |, in (1.12)
is consistent with (1.11) and (1.9).

Remark 1.4. (HOLDER SEMI-NORM) We stress that f+— ||0f]|, is a semi-norm on
C® (it vanishes on constant functions). The standard norm on C® is

[ llee:= [ flloo + 110l (1.13)
where we define the standard sup norm
[ flloo:= sup |fil. (1.14)
t€[0,T]

For f:[0,7] — R* we can bound || f||eo < |f(0)| +T% |6 flo (see (1.39) below),

hence
[ fllea <TFO)+@+T)[[6fla- (1.15)

This explains why it is often enough to focus on the semi-norm |0 f ||, -

Remark 1.5. (HOLDER EXPONENTS) We only consider the Hélder space C* for
a € (0,1] because for a> 1 the only functions in C* are constant functions (note that
10f]]a < oo for > 1 implies f, =0 for every t € [0,T]).

On the other hand, the spaces CJ and C3 in (1.10) are interesting for any
exponent 1 € (0, 00). For instance, the condition || F'||, < oo for a function F' € Cy
means that |Fy| <C (t — )", which does not imply F'=0 when 1> 1 (unless F'=0f
is the increment of some function f € Ch).

In our results below we will have to assume that the non-linearity o: R¥ —
R* ® (R?%)* belongs to classes of Holder functions, in the following sense.

DEFINITION 1.6. Let v>0. A function F:R*— RY is said to be globally v-Hélder
(or globally of class C7) if
o forve€(0,1] we have
F(x)—-F
[Fle:= [F(x) ()]

sup
z,yeRF x4ty |x_y|’Y

< 400

o forye(n,n+1] andn={1,2,...}, Flisn times continuously differentiable and

[D™F(x) — DMF(y)|

— < 400
|z —y|"

[D™WF)ev:=  sup
z,yeERF x+y

where D™ is the n-fold differential of F.
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Moreover F:RF— RY is said to be locally v-Hdlder (or locally of class C7) if
o forv€(0,1] we have for all R>0

wp  F@=F
z,yeRk x+y ‘l’—y‘
lz].ly|<R

o forye(n,n+1] andn={1,2,...}, Fisn times continuously differentiable and

|[D"™F(z) = D™F(y)]
lz—y "

sup < +00.

z,y€RF x4y
lz],ly|<R

We stress that in the previous definition we do not assume F of D™F to be
bounded. The case v=1 corresponds to the classical Lipschitz condition.

1.4. LOCAL UNIQUENESS OF SOLUTIONS

We prove uniqueness of solutions for the controlled difference equation (1.4) when
X €C® is an Holder path of exponent o > % For simplicity, we focus on the case
when o: RF — RF @ (R?)* is a linear application: o € (RF @ (R?)*) ® (R¥)*, and we
write o Z instead of o(Z) (we discuss non linear o(-) in Chapter 2).

THEOREM 1.7. (LOCAL UNIQUENESS OF SOLUTIONS, LINEAR CASE) Fiz a path
X:10,T) = R% in C*, with a € E, 1], and a linear map o: RF - RF@ (RY)*. If T >0
is small enough (depending on X ,«, ), then for any zy € R¥ there is at most one

path Z:10,T) — R* with Zy= zy which solves the linear controlled difference equation
(1.4), that is (recalling (1.11))

67— (0Z)6Xy=0(t—s), 0<s<t<T. (1.16)
Proof. Suppose that we have two paths Z, Z: [0, T| — R satisfying (1.16) with

Zo= 7y and define Y :=Z — Z. Our goal is to show that Y =0.
Let us introduce the function R € Cy=C([0,T]%,R¥) defined by

Ry :=06Yy— (0Ys) 0 Xy, 0<s<t<T, (1.17)
and note that by (1.16) and linearity we have
Ry =o(t—s). (1.18)
Recalling (1.9), we can estimate
10 [la < [ Y [loo [[0X fla+ [ Bla

and since Ry =o0(t —s) =o((t — s)¥), we have ||R||o < 400 and therefore ||dY ||, <
+00. Since Yy =0, we can bound

1Y [loo < [¥o + sup [¥; = Yo| ST [|0Y ||

0<t<T
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Since 1< T (t —s) > for 0< s <t<T, we can also bound

||R||oz<Ta ||R||2a )
so that
[0Y [« T (o] [|0Y [|a 10X [|o+ [ R]|20)-

Suppose we can prove that, for some constant C=C(X,a,0) < oo,

[Rll2a <C [|0Y[[o- (1.19)
Then we obtain

10Y [la ST (o] 16X [la +C) 0Y o

If we fix T" small enough, so that 7% (|o | ||0X || + C) <1, we get ||0Y || =0, hence
dY =0. This means that Y;=Y; for all s,¢ € [0,T], and since Yy =0 we obtain Y =0,
namely our goal Z = Z. This completes the proof assuming the estimate (1.19)
(where the hypothesis « >% will play a key role). O

To actually complete the proof of Theorem 1.7, it remains to show that the
inequality (1.19) holds. This is performed in the next two sections:

e in Section 1.5 we present a fundamental estimate, the Sewing Bound, which
applies to any function R =o(t —s) (recall (1.18));

e in Section 1.6 we apply the Sewing Bound to Ry in (1.17) and we prove the
desired estimate (1.19) for « >% (see the assumptions of Theorem 1.7).

1.5. THE SEWING BOUND

Let us fix an arbitrary function R € Cy=C([0,T)%, R*) with Ry=o0(t — s). Our goal
is to bound |Ry| for any given 0 <a<b<T.

We first show that we can express Ry, via “Riemann sums” along partitions
P={a=ty<t;<...<t,=0>b} of [a,b]. These are defined by

#P
IP(R) ::Z Ry, .yt (120)
i=1

where we denote by #P :=m the number of intervals of the partition P. Let us
denote by |P| =ImMaxigi<m (tl— tz'fl) the mesh of P.

LEMMA 1.8. (RIEMANN SUMS) Given any R € Cy with Ry =o0(t —s), for any 0 <
a<b<T and for any sequence (Pp)n>o of partitions of [a,b] with vanishing mesh
lim,, o0 |Pn| =0 we have

lim Ip, (R)=0.

n—oo



1.5 THE SEWING BOUND 21

If furthermore Po={a,b} is the trivial partition, then we can write

o

Ru=> _ (Ip,(R)—1Ip,,,(R)), 0<a<b<T. (1.21)
n=0
Proof. Writing P, ={a=tf <t{ <...<tlp, =0b}, we can estimate

<{ max —|Rt?flt?| }%(in—tn )
=)=t #P, (17 — 17 4) gt

77777 j=1

4P,
Ip, (R <) Ry i
i=1

hence |Ip,(R)| — 0 as n— oo, because the final sum equals b — a and the bracket
vanishes (since Ry =o(t — s) and |P,| =maxi<jcup, (1] —t7—1) —0).
We deduce relation (1.21) by the telescopic sum

N-—-1

Ipy(R) — Ipy(R) =) _ (Ip,(R) —Ip, ,(R)),
n=0
because limy_, o Ipy(R) =0 while Ip,(R) = Ry for Py={a,b}. O

If we remove a single point ¢; from a partition P ={tg<t; < ... <t;}, we obtain
a new partition P’ for which, recalling (1.20), we can write

]PI(R> - IP(R> = Rti_lti+1 - Rti_lti - Rtit (122)

i1t

The expression in the RHS deserves a name: given any two-variables function F' € Cy,
we define its increment §F € C5 as the three-variables function

0F st :=Fy— Fyy— Fuy, 0<s<u<t«T. (1.23)
We can then rewrite (1.22) as
Ipi(R) = Ip(R) =0Ry, tit:, 1, (1.24)
and recalling (1.9) we obtain the following estimate, for any 7 > 0:
[ Ip(R) = Ip(R)| < [10R]y [tis — tia]". (1.25)
We are now ready to state and prove the Sewing Bound.

THEOREM 1.9. (SEWING BOUND) Given any R € Cy with Ry = o(t — s), the fol-
lowing estimate holds for any n € (1,00) (recall (1.9)):

R, < K, |[0R]|, where K,:=(1-2"n"1 (1.26)

Proof. Fix R € (5 such that ||0R||, < co for some 1> 1 (otherwise there is nothing
to prove). Also fix 0 <a <b<T and consider for n >0 the dyadic partitions P, :=

{th:=a+ 2% (b—a): 0<i<2"} of [a,b]. Since Py={a,b} is the trivial partition, we
can apply (1.21) to bound

|Rat| <> |Ip,(R) = Ip,.,,(R)|. (1.27)
n=0
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If we remove from P,,; 1 all the “odd points” tg]ﬂl, with 0 <j <2"—1, we obtain

P,.. Then, iterating relations (1.24)-(1.25), we have
2n—1

1P, (R) = Ip, (R)] < ) |0Ryppi s
j=0

2(b—a)\”
< 2 jor), (2=

= 27~ |I5R]|, (b—a)". (1.28)

Plugging this into (1.27), since >~

2-=Hn— (1 - 21=m)~1 we obtain
|Rap| < (1 =2"""1)"1|6R]|,, (b—a)", 0<a<b< T, (1.29)
which proves (1.26). O

Remark 1.10. Recalling (1.11) and (1.23), we have defined linear maps

SRR (1.30)
which satisfy d 09 =0. Indeed, for any f € C; we have
5(5f>8ut: (ft_ fS) - (fu_ fS) - (ft_ fu) =0.

Intuitively, 0F € C's measures how much a function F' € C; differs from being the
increment o f of some f €, because 0F =0 if and only if F'=0f for some f €}
(it suffices to define f;:= Fy, and to check that 0 fs=0Fys + Fse = Fyt).

Remark 1.11. The assumption R =o(t — s) in Theorem 1.9 cannot be avoided:
if R:=0f for a non constant f & Cy, then 0R =0 while || R|,> 0.

1.6. END OF PROOF OF UNIQUENESS

In this section, we apply the Sewing Bound (1.26) to the function Ry defined in
(1.17), in order to prove the estimate (1.19) for a > %

We first determine the increment d R through a simple and instructive computa-
tion: by (1.17), since §(6Z) =0 (see Remark 1.10), we have

ORsur 1= Rs— Ry — Ruy
= (-Y)—-(Y.—-Y) - (Y, -Y)
— (oY) (Xp = Xo) + (0 ¥5) (X = X)) + (0 Y0) (Xi — X))
= [o(Yu—Y)] (Xi — Xo). (1.31)
Recalling (1.9), this implies
10R [0 < o[ [|0Y[|a |0X [|a-

We next note that if « >% (as it is assumed in Theorem 1.7) we can apply the
Sewing Bound (1.26) for n=2a > 1 to obtain

[BRl20 < Ko |0R |20 < Koo [0 | [|0Y [l [[0X [a -
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This is precisely our goal (1.19) with C=C(X, a,0) := Ka, || [|0X |-

Summarizing: thanks to the Sewing bound (1.26), we have obtained the estimate
(1.19) and completed the proof of Theorem 1.7, showing uniqueness of solutions to

the difference equation (1.4) for any X € C* with a € B, 1}. In the next chapters we
extend this approach to non-linear o(-) and to situations where X € C* with o < %

Remark 1.12. For later purpose, let us record the computation (1.31) withouth o:
given any (say, real) paths X and Y, if

Ast:}{séxsty VO<3<t<T7
then
0Agut = —0Yq 0 X0, VO<s<ug<t«T. (1.32)

1.7. WEIGHTED NORMS

We conclude this chapter defining weighted versions ||-||, - of the norms |-||,, intro-
duced in (1.9): given F' € Cy and G € Cs, we set for n, 7 € (0, 00)

_t Fst|
Fll, = PC 2 1.33
1 {1, ogsslgt)gT {0<t—s<r} © t—s) (1.33)
—t |G
Gllyr=  sup  Lipci—s<rye 7 [Gsu , 1.34
[Gllnri= S0 Lioci-sene ™ =4 (1:34)

where Cy and Cj are the spaces of continuous functions from [0,7]% and [0, T]% to
R*, see (1.8). Note that as 7— oo we recover the usual norms:

||'||77:Th_)rilo||'||n,7- (1.35)

Remark 1.13. (NORMS VS. SEMI-NORMS) While |||, is @ norm, |||, is a norm

for 7> T but it is only a semi-norm for T <T (for instance, || F ||, =0 for F' € Cy

implies F5; =0 only for ¢ — s < 7: no constraint is imposed on Fy; for t —s > 7).
However, if F=0f, that is ;= f; — f, for some f € C}, we have the equivalence

T\ T
1671 < o7 (12 ) 1671 (1.36)
The first inequality is clear. For the second one, given 0 < s <t < T, we can write
s=to<ty < ---<ty=t with t;, —t,_1 <7 and N < 1+§ (for instance, we can

consider t; = s —i—z’t_TS where N := (t;ﬂ); we then obtain §fs = vazl O ft, 4, and

’5fti—1ti| < deHUFF eti/T (ti - ti—l)n < Haf“U,T eT/T (t - S)nu which yields (136)

Remark 1.14. (FROM LOCAL TO GLOBAL) The weighted semi-norms |||, » will
be useful to transform local results in global results. Indeed, using the standard
norms |-||,, often requires the size 7"> 0 of the time interval [0,77] to be small, as
in Theorem 1.7, which can be annoying. Using |||, will allow us to keep 7" >0
arbitrary, by choosing a sufficiently small 7> 0.
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Recalling the supremum norm || f|| of a function f € Cy, see (1.14), we define
the corresponding weighted version

_t
[ flloc,7:= sup e | fi. (1.37)
0<t<T
We stress that |||~ 5 a norm equivalent to |||« for any 7> 0, since
T
oo < -lloo < €7 [[-floo.r - (1.38)

Remark 1.15. (EQUIVALENT HOLDER NORM) It follows by (1.36) and (1.38) that
|"[loor + || |la.» 28 @ norm equivalent to ||-||ca:=||-]|loo + |||« on the space C* of Holder
functions, see Remark 1.4, for any 7> 0.

We will often use the Holder semi-norms [[6f]|o and ||0f|la.r to bound the
supremum norms || f || and || f||c.r, thanks to the following result.

LEMMA 1.16. (SUPREMUM-HOLDER BOUND) For any f € Cy and n € (0, 00)

1S floo < LSl + T 10.f 1], (1.39)
[ lloor <L fol +3 (e AT) [0 f N7, VT >0. (1.40)

Proof. Let us prove (1.39): for any f € C) and for ¢t € 0, 7] we have

FI< IRl + 1o fol =10l + 0 LI oo,

The proof of (1.40) is slightly more involved. If ¢t € |0, 7 AT, then

A< ol + e LIl e ATy 6 e

tn
which, in particular, implies (1.40) when 7 >7. When 7 < T, it remains to consider
T<t<T: 1n this case, we define N :=min {n € N: n7->t}>2 so that — <7- We
set tk—k for k>0, so that ¢ty =t. Then

_t N il -
LI ol + D (e —ta)re” [ M]
k=1

(tk — t—1)"

N

_t—ty

<Ifol+ (AT I0flr D e 7
k=1

By deﬁnition of N we have (N —1)7 <t; since 7 <t we obtain N7 <2t and therefore

— > . Since ¢t — t = (N — k)=, renaming ¢:= N — k we obtain

N N’
_ _t
itk vt 1l—e 7 1
Se =Y et o~ <3
= l—e M 1—e 2

The proof is complete. u
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We finally show that the Sewing Bound (1.26) still holds if we replace ||-||, by
|||, for any 7> 0.

THEOREM 1.17. (WEIGHTED SEWING BOUND) Given any R € Cy with Rg=o0(t — s),
the following estimate holds for any n € (1,00) and 7> 0:

IR ||y, < Ky ||0R||,- where K,:=(1-=2"=m"1, (1.41)

Proof. Given 0 <a <b<T, let us define

|5Rsut|
(t—s)"

10R||5,[a,0):=  sup (1.42)

s,u,t€a,b]:

s<u<t, s<t
Following the proof of Theorem 1.9, we can replace [[0R|, by [[0R]|, 0.5 in (1.28)
and in (1.29), hence we obtain |Re| < Ky ||[6R||n,[a,p) (0 —a)”. Then for b —a <7 we
can estimate

b |Ru b
A < I Rl o < K [9R
and (1.41) follows taking the supremum over 0 <a<b<T with b—a <. O

1.8. A DISCRETE SEWING BOUND

We can prove a version of the Sewing Bound for functions R = (Rs;)s<teT defined on
a finite set of points T:={0=1t;<--- <tupr} CRy (this will be useful to construct
solutions to difference equations via Euler schemes, see Sections 2.6 and 3.9). The
condition Rs;=o0(t — s) from Theorem 1.9 is now replaced by the requirement that
R vanishes on consecutive points of T, i.e. Ry, , =0 for all 1 <o <#T.

We define versions |||, of the norms ||-||, , restricted on T for 7> 0, recall
(1.33)-(1.34):

| Ast]

A (1.43)

_t

||A||?7P,T : sup lLio<t—s<ry€ 7
0<s<t
s,teT

(1.44)

-t Bsu
IBIT, = swp  Lperene * 1ol
0<s<u<t |t —s|
s,u,teT, s<t
for A: {(s,t) eT:0<s<t}—Rand B:{(s,u,t) eT%0<s<u<t,s<t}—R.
THEOREM 1.18. (DISCRETE SEWING BOUND) If a function R=(Rst)s<teT vanishes

on consecutie points of T (i.e. Ry, ,=0), then for any n>1 and 7 >0 we have

. 1
|R|7.-<Cyll0R]5~ with 0773:2772 sz”C(n)<oo. (1.45)

n>1

Proof. We fix s,t €T with s <t and we start by proving that
| Rl < Cy [l0R 1y (2 —5)".
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We have s =t and t =tx,, and we may assume that m > 2 (otherwise there is
nothing to prove, since for m =1 we have R;;,,,=0).

Consider the partition P={s=1t; <tpi1<... <tpim=t} with m intervals. Note
that for some index i € {k+1,...,k+m — 1} we must have t;;1 —t;_1 < QS:f),
otherwise we would get the contradiction

k+m—1 k+m—1

2i-5)> Y (—tin> Y 2= oy

‘ ‘ m—1
i=k+1 i=k+1

Removing the point t; from P we obtain a partition P’ with m — 1 intervals. If we
define Ip(R) =S Fmt Ry, as in (1.20), as in (1.24) we have

i=k
21 (t—5)77 |5Ruvw’
Ip(R) — Ip/(R)| = |0Ry, 4,4, | <——— —_—
|7’( ) 7’( )‘ ’ tzfltzterl‘ (m—l)” sguiligwgt |w_u|77
u,v,weT

Iterating this argument, until we arrive at the trivial partition {s,t}, we get

|5Ruvw |

[ Ip(R) — Rat| <Cy(t—s)"  sup o —u|”

sSu<v<w<t
u,v,weT

(1.46)

with C):=>" 2 < 00 because 7 > 1. We finally note that Ip(R) =0 by the

n>1 n"
assumption Ry, ,=0. Finally if ¢ — s <7 then w —u <7 in the supremum in (1.46)

t
and since e "<e 7 we obtain

e 7 |Rul <Cy(t—5)"[|0R]],-,
and the proof is complete. O

We also have an analog of Lemma 1.16. We set for f: T— R and 7 >0

t

1 f1l5e,7 :=supe [ fi].
teT

LEMMA 1.19. (DISCRETE SUPREMUM-HOLDER BOUND) For T:={0=t,<--- <
t#qr} Q ]R+ set
M= max |tl—t1_1|
i=2,...,#T

Then for all f: T—R, 7>2M and n>0
115 <|fol +5 77116 f 5. (1.47)

Proof. We define 7y:=0 and for i > 1, as long as TN (7;_1,7;_1 + 7] is not empty,
we set

Ti:=max TN (T;_1,T;—1+ 7], i=1,...,N,

so that Ty = max T. We have by construction T; + M >T; 1+ 7 for all i=1,...,
N —1, and since M <3
-

Ti—Ti—1>T—M>2
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For i = N we have only Ty >Ty_1. Therefore for i=1,... N

i LT | T _ )
< |f0|+z (Ty = Te—1)"e = {e TM
k=1

_5
e T

I

(T, — Ti—1)"

Ty~ T,

< fol+r6f 1S e
k=1

.k
< |fo|+r"||6f||%2<1+2e )
k=0

< | feol 477 0f |l

Now for t € T\{T;}; we have T; <t < T;,; for some ¢ and then

T

UL < Al ¢ =Tyre P <o B e 3£,
< Lol +577 (10 l.r-
The proof is complete. U

1.9. EXTRA (TO BE COMPLETED)

We also introduce the usual supremum norm, for F' € Cs and G € Cs:

[Fllc:=sup [Fauf,  [[Gllo=sup [Goul,

0<s<t<T 0<s<u<t<T
and a corresponding weighted version, for 7 € (0, 00):
_t _t
| F'||oo,r:= sup e 7 |Fgl, |Glloor:=sup e 7|Ggul- (1.48)
0<s<t<T 0<s<u<t<T
Note that

m |[Fllecr=[Floc,  lim [|Glly-=[Glly,  lim [H]lyr=[H],-
T—+00 T—+00 T—+00

We have
||P1||77,7'< ||G||0077' ”HHT]v (Eut:GsuHut>; (149)

Note that |||, is only a semi-norm on C}' if 7 <T'; we have at least

T 1
b7 < [l < €7 { -l + = [lloor ) - (1.50)
T

However, if 7 >T we have again equivalence of norms

T
<l <er -y 72T, (1.51)



