

CHAPTER 10

ROUGH INTEGRATION

10.1. CONTROLLED PATHS

We fix $\alpha \in]\frac{1}{3}, \frac{1}{2}]\$, $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$. We recall that fixing a α -rough path \mathbb{X} over X as in Definition 8.9 is equivalent to choosing a solution (I, \mathbb{X}^2) to (8.17), with I and \mathbb{X}^2 representing our choices of the integrals, respectively,

$$I_t =: \int_0^t X_r \otimes dX_r, \quad \mathbb{X}_{st}^2 =: \int_s^t (X_r - X_s) \otimes dX_r = I_t - I_s - X_s \otimes (X_t - X_s).$$

The key point is that, having fixed a choice of \mathbb{X}^2 , it is now possible to give a *canonical definition of the integral* $\int_0^t Y dX$ for a wide class of $Y \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^k \otimes (\mathbb{R}^d)^*)$, namely those *paths* Y which are *controlled by* \mathbb{X} . In order to motivate this notion, let us recall that, given $X \in \mathcal{C}^\alpha([0, T]; \mathbb{R}^d)$ and $Y \in \mathcal{C}^\beta([0, T]; \mathbb{R}^k \otimes (\mathbb{R}^d)^*)$, we look now for $J: [0, T] \rightarrow \mathbb{R}^k$ and $R^J: [0, T]_<^2 \rightarrow \mathbb{R}^k$ such that, in analogy with (8.4),

$$J_0 = 0, \quad \delta J_{st} = Y_s \delta X_{st} + R^J_{st}, \quad |R^J_{st}| \lesssim |t - s|^{\alpha + \beta}.$$

In order to make this operation *iterable*, it is natural to require that *each component of* Y has an analogous property. This is exactly the motivation for the next

DEFINITION 10.1. Let $\alpha \in]\frac{1}{3}, \frac{1}{2}]\$, $\eta \in]0, 1]$ and $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ an α -rough path on \mathbb{R}^d . A pair $Z = (Z, Z^1): [0, T] \rightarrow \mathbb{R}^k \times (\mathbb{R}^k \otimes (\mathbb{R}^d)^*)$ with Z of class \mathcal{C}^α and Z^1 of class \mathcal{C}^η is a path $(\alpha + \eta)$ -controlled by \mathbb{X} if

$$\delta Z_{st} = Z_s^1 \mathbb{X}_{st}^1 + Z_{st}^{[2]}, \quad |Z_{st}^{[2]}| \lesssim |t - s|^{\alpha + \eta}, \quad (s, t) \in [0, T]_<^2. \quad (10.1)$$

The function Z^1 is called a derivative of Z with respect to \mathbb{X} and $Z^{[2]}$ is the remainder of the couple (Z, Z^1) .

For a fixed α -rough path \mathbb{X} on \mathbb{R}^d , we denote by $\mathcal{D}_{\mathbb{X}}^{\alpha + \eta}(\mathbb{R}^k)$ the space of paths $(\alpha + \eta)$ -controlled by \mathbb{X} with values in \mathbb{R}^k .

Remark 10.2. Note that, if $\alpha + \eta \leq 1$, in general Z^1 is *not* determined by (Z, \mathbb{X}^1) , so that we say that Z^1 is *a* derivative rather than *the* derivative of Z . Viceversa, Z is *not* determined by (Z^1, \mathbb{X}^1) : if (Z, Z^1) is $(\alpha + \eta)$ -controlled by \mathbb{X} and $f \in \mathcal{C}^{\alpha + \eta}([0, T]; \mathbb{R}^k)$ then $(Z + f, Z^1)$ is also $(\alpha + \eta)$ -controlled by \mathbb{X} .

It is now clear from the definitions that, unlike rough paths, $(\alpha + \eta)$ -controlled paths have a natural linear structure, in particular as a linear subspace of $\mathcal{C}^\alpha \times \mathcal{C}^\eta$.

Exercise 10.1. Show that for each $i, j = 1, \dots, d$, setting $[0, T] \ni t \mapsto (\mathbb{X}_{0t}^1, \text{Id}) \in \mathbb{R}^d \times (\mathbb{R}^d \otimes (\mathbb{R}^d)^*)$ and $[0, T] \ni t \mapsto (\mathbb{X}_{0t}^2, \mathbb{X}_{0t}^1 \otimes \text{Id}) \in \mathbb{R}^d \otimes \mathbb{R}^d \times (\mathbb{R}^d \otimes \mathbb{R}^d \otimes (\mathbb{R}^d)^*)$ are paths 2α -controlled by \mathbb{X} .

10.2. THE ROUGH INTEGRAL

Now we can finally show how to modify the germ $Y_s(X_t - X_s)$ in order to obtain a well-defined integration theory.

PROPOSITION 10.3. *Let $\alpha \in]\frac{1}{3}, \frac{1}{2}]$, $\eta \in]0, 1]$ and $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ a α -rough path on \mathbb{R}^d . If $\mathbf{Z} = (Z, Z^1): [0, T] \rightarrow \mathbb{R}^k \times (\mathbb{R}^k \otimes (\mathbb{R}^d)^*)$ is $(\alpha + \eta)$ -controlled by \mathbb{X} as in Definition 10.1, then the germ*

$$A_{st} = Z_s \mathbb{X}_{st}^1 + Z_s^1 \mathbb{X}_{st}^2$$

satisfies $\delta A \in C_3^{2\alpha+\eta}$.

Therefore if $2\alpha + \eta > 1$ we can canonically define $J_t = \int_0^t Z \, d\mathbb{X}$ as the unique function $J: [0, T] \rightarrow \mathbb{R}^k$ such that $J_0 = 0$ and $\delta J - A \in C_2^{2\alpha+\eta}$, namely

$$|J_t - J_s - Z_s \mathbb{X}_{st}^1 - Z_s^1 \mathbb{X}_{st}^2| \lesssim |t - s|^{2\alpha+\eta},$$

and we have

$$J_t = \lim_{|\mathcal{P}| \rightarrow 0} \sum_{i=0}^{\#\mathcal{P}-1} (Z_{t_i} \mathbb{X}_{t_i t_{i+1}}^1 + Z_{t_i}^1 \mathbb{X}_{t_i t_{i+1}}^2)$$

along arbitrary partitions \mathcal{P} of $[0, t]$ with vanishing mesh $|\mathcal{P}| \rightarrow 0$.

Proof. We compute by (8.20)

$$\begin{aligned} \delta A_{sut} &= -\delta Z_{su} \mathbb{X}_{ut}^1 + Z_s^1 \delta \mathbb{X}_{sut}^2 - \delta Z_{su}^1 \mathbb{X}_{ut}^2 \\ &= -(\delta Z_{su} - Z_s^1 \mathbb{X}_{su}^1) \mathbb{X}_{ut}^1 - \delta Z_{su}^1 \mathbb{X}_{ut}^2 \\ &= -Z_{su}^{[2]} \mathbb{X}_{ut}^1 - \delta Z_{su}^1 \mathbb{X}_{ut}^2. \end{aligned} \tag{10.2}$$

Then by (2.8)

$$\begin{aligned} |\delta A_{sut}| &\leq \|Z^{[2]}\|_{\alpha+\eta} |u - s|^{\alpha+\eta} \|\mathbb{X}^1\|_\alpha |t - u|^\alpha + \|\delta Z^1\|_\eta |u - s|^\eta \|\mathbb{X}^2\|_{2\alpha} |t - u|^{2\alpha} \\ &\leq (\|Z^{[2]}\|_{\alpha+\eta} \|\mathbb{X}^1\|_\alpha + \|\delta Z^1\|_\eta \|\mathbb{X}^2\|_{2\alpha}) |t - s|^{2\alpha+\eta}. \end{aligned} \tag{10.3}$$

Since $\delta A \in C_3^{2\alpha+\eta}$, if $2\alpha + \eta > 1$ we can apply the Sewing Lemma and define $J^{[3]} := -\Lambda(\delta A)$ and $J: [0, T] \rightarrow \mathbb{R}^k$ such that $J_0 = 0$ and $\delta J = A + J^{[3]}$ where Λ is the Sewing Map of Theorem 6.11, namely

$$J_0 = 0, \quad \delta J_{st} = Z_s \mathbb{X}_{st}^1 + Z_s^1 \mathbb{X}_{st}^2 + J_{st}^{[3]}, \quad |J_{st}^{[3]}| \lesssim |t - s|^{2\alpha+\eta}. \tag{10.4}$$

The last assertion on the convergence of the generalised Riemann sums follows from (6.13). \square

We have in particular proved by (6.14) and (10.3) that

$$\|J^{[3]}\|_{2\alpha+\eta} \leq K_{2\alpha+\eta} (\|Z^{[2]}\|_{\alpha+\eta} \|\mathbb{X}^1\|_\alpha + \|\delta Z^1\|_\eta \|\mathbb{X}^2\|_{2\alpha}). \tag{10.5}$$

We stress that the function J depends on (\mathbf{Z}, \mathbb{X}) , in particular on Z^1 as well. We use the following notations

$$\mathbf{J} := (J, Z), \quad \int_0^t \mathbf{Z} d\mathbb{X} := (J_t, Z_t) = \mathbf{J}_t. \quad (10.6)$$

We shall see in Proposition 10.5 below that $\mathbf{J}: [0, T] \rightarrow \mathbb{R}^k \times (\mathbb{R}^k \otimes (\mathbb{R}^d)^*)$ is 2α -controlled by \mathbb{X} , i.e. Z is a derivative of J with respect to \mathbb{X} as in Definition 10.1.

We define a norm $\|\cdot\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$ and a seminorm $[\cdot]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$ on the space $\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$ of paths $(\alpha + \eta)$ -controlled by \mathbb{X} , defined as follows:

$$\begin{aligned} \|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}} &:= |Z_0| + |Z_0^1| + [\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}, & \mathbf{Z} &= (Z, Z^1) \\ [\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}} &:= \|\delta Z^1\|_\eta + \|Z^{[2]}\|_{\alpha+\eta}, & Z_{st}^{[2]} &= \delta Z_{st} - Z_s^1 \mathbb{X}_{st}^1, \end{aligned} \quad (10.7)$$

as in (10.1). Recall that we defined the standard norm $\|f\|_{C^\alpha} = \|f\|_\infty + \|\delta f\|_\alpha$ in (1.13).

LEMMA 10.4. *We have the equivalence of norms for all $\mathbf{Z} = (Z, Z^1) \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$*

$$\|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}} \leq \|Z\|_{C^\alpha} + \|Z^1\|_{C^\eta} + \|Z^{[2]}\|_{\alpha+\eta} \leq C \|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}, \quad (10.8)$$

where $C > 0$ is an explicit constant which depends only on $(\mathbb{X}, T, \alpha, \eta)$. In particular, $(\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}, \|\cdot\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}})$ is a Banach space.

Proof. The first inequality in (10.8) is obvious by the definition of the norm $\|\cdot\|_{C^\alpha}$. In order to prove the second one, first we note that by (1.15)

$$\|f\|_{C^\eta} = \|f\|_\infty + \|\delta f\|_\eta \leq (1 + T^\eta)(|f_0| + \|\delta f\|_\eta).$$

This shows that $\|Z^1\|_{C^\eta} \lesssim \|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$ for $(Z, Z^1) \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$. Now, since $\delta Z_{st} = Z_s^1 \mathbb{X}_{st}^1 + Z_{st}^{[2]}$ by (10.1),

$$\begin{aligned} \|\delta Z\|_\alpha &\leq \|Z^1\|_\infty \|\mathbb{X}^1\|_\alpha + \|Z^{[2]}\|_\alpha \\ &\leq C_{T, \eta} (|Z_0^1| + \|\delta Z^1\|_\eta) \|\mathbb{X}^1\|_\alpha + T^\eta \|Z^{[2]}\|_{\alpha+\eta}, \end{aligned}$$

namely $\|Z\|_{C^\alpha} \lesssim \|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$. Finally $\|Z^{[2]}\|_{\alpha+\eta} \leq \|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$. The proof is complete. \square

10.3. CONTINUITY PROPERTIES OF THE ROUGH INTEGRAL

We wrote before Definition 10.1 that the notion of controlled path aimed at making the rough integral map $(Z, Z^1) \mapsto (J, Z)$ iterable, where we use the notation of Proposition 10.3. In order to make this precise, we need the following important

PROPOSITION 10.5. *Let \mathbb{X} be a α -rough path on \mathbb{R}^d with $\alpha \in]\frac{1}{3}, \frac{1}{2}]$, $\eta \in]1 - 2\alpha, 1]$ and $\mathbf{Z} \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$ a path $(\alpha + \eta)$ -controlled by \mathbb{X} . Then, in the notation of (10.6),*

- $\mathbf{J} = \int_0^\cdot \mathbf{Z} d\mathbb{X}$ is 2α -controlled by \mathbb{X}

- the map $\mathcal{D}_{\mathbb{X}}^{\alpha+\eta} \ni \mathbf{Z} \mapsto \mathbf{J} \in \mathcal{D}_{\mathbb{X}}^{2\alpha}$ is linear and for all $\mathbf{Z} \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$

$$[\mathbf{J}]_{\mathcal{D}_{\mathbb{X}}^{2\alpha}} \leq 2(1 + \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}})(|Z_0^1| + T^\eta(1 + K_{2\alpha+\eta})[\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}). \quad (10.9)$$

Proof. Recall first (10.5), so that in particular $\|J^{[3]}\|_{2\alpha+\eta} < +\infty$. Now $J_{st}^{[2]} = Z_s^1 \mathbb{X}_{st}^2 + J_{st}^{[3]}$ satisfies

$$\|J^{[2]}\|_{2\alpha} \leq \|Z^1\|_\infty \|\mathbb{X}^2\|_{2\alpha} + \|J^{[3]}\|_{2\alpha} \leq \|Z^1\|_\infty \|\mathbb{X}^2\|_{2\alpha} + T^\eta \|J^{[3]}\|_{2\alpha+\eta}. \quad (10.10)$$

Finally $\delta J_{st} = Z_s \mathbb{X}_{st}^1 + J_{st}^{[2]}$ and therefore

$$\|\delta J\|_\alpha \leq \|Z\|_\infty \|\mathbb{X}^1\|_\alpha + \|Z^1\|_\infty \|\mathbb{X}^2\|_{2\alpha} + T^{\alpha+\eta} \|J^{[3]}\|_{2\alpha+\eta}.$$

Therefore $(J, Z, J^{[2]}) \in \mathcal{C}^\alpha \times \mathcal{C}^\alpha \times C_2^{2\alpha}$ and we obtain that (J, Z) is 2α -controlled by \mathbb{X} .

We prove now the second assertion. Since $\delta Z_{st} = Z_s^1 \mathbb{X}_{st}^1 + Z_{st}^{[2]}$, by (1.39)

$$\begin{aligned} \|\delta Z\|_\alpha &\leq \|Z^1\|_\infty \|\mathbb{X}^1\|_\alpha + T^\eta \|Z^{[2]}\|_{\alpha+\eta} \\ &\leq (\|\mathbb{X}^1\|_\alpha + 1)(|Z_0^1| + T^\eta [\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}). \end{aligned}$$

Now, analogously to (10.10), again by (1.39)

$$\begin{aligned} \|J^{[2]}\|_{2\alpha} &\leq \|Z^1\|_\infty \|\mathbb{X}^2\|_{2\alpha} + \|J^{[3]}\|_{2\alpha} \\ &\leq T^\eta \|J^{[3]}\|_{2\alpha+\eta} + \|\mathbb{X}^2\|_{2\alpha} (|Z_0^1| + T^\eta \|\delta Z^1\|_\eta). \end{aligned}$$

Therefore, since $\|\mathbb{X}^1\|_\alpha + \|\mathbb{X}^2\|_{2\alpha} = \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}}$, recall (8.23),

$$\|\delta Z\|_\alpha + \|J^{[2]}\|_{2\alpha} \leq T^\eta \|J^{[3]}\|_{2\alpha+\eta} + (1 + \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}})(|Z_0^1| + T^\eta [\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}).$$

By (10.5) we obtain

$$\begin{aligned} [\mathbf{J}]_{\mathcal{D}_{\mathbb{X}}^{2\alpha}} &= \|\delta Z\|_\alpha + \|J^{[2]}\|_{2\alpha} \leq \\ &\leq 2(1 + \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}})(|Z_0^1| + (1 + K_{2\alpha+\eta})T^\eta [\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}) \end{aligned}$$

The proof is complete. \square

We note that the estimate of the seminorm $[\mathbf{J}]_{\mathcal{D}_{\mathbb{X}}^{2\alpha}}$ in terms of $[\mathbf{Z}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$ rather than of the norm $\|\mathbf{J}\|_{\mathcal{D}_{\mathbb{X}}^{2\alpha}}$ in terms of $\|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$ plays an important role in Chapter 11 (with $\eta = \alpha$), see in particular (11.9). In any case, from (10.9) it is easy to obtain an estimate of $\|\mathbf{J}\|_{\mathcal{D}_{\mathbb{X}}^{2\alpha}}$: since $J_0 = 0$ and $J_0^1 = Z_0$, we obtain

$$\begin{aligned} \|\mathbf{J}\|_{\mathcal{D}_{\mathbb{X}}^{2\alpha}} &= |Z_0| + [\mathbf{J}]_{\mathcal{D}_{\mathbb{X}}^{2\alpha}} \leq \\ &\leq 2(1 + K_{2\alpha+\eta})(1 + \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}})(1 + T^\eta) \|\mathbf{Z}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}. \end{aligned}$$

Therefore the linear operator $\mathcal{D}_{\mathbb{X}}^{\alpha+\eta} \ni \mathbf{Z} \mapsto \int_0^\cdot \mathbf{Z} d\mathbb{X} \in \mathcal{D}_{\mathbb{X}}^{2\alpha}$ is continuous. In fact a stronger property holds: we have continuity of the map $(\mathbb{X}, \mathbf{Z}) \mapsto \int_0^\cdot \mathbf{Z} d\mathbb{X}$. In order to prove this, we need to introduce the following space

$$\mathcal{S}_{\alpha,\eta} := \{(\mathbb{X}, \mathbf{Z}) : \mathbb{X} \text{ is a } \alpha\text{-rough path, } \mathbf{Z} \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}\},$$

and the following quantity for $\mathbf{Z} \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$ and $\bar{\mathbf{Z}} \in \mathcal{D}_{\bar{\mathbb{X}}}^{\alpha+\eta}$

$$[\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta} := \|\delta Z^1 - \delta \bar{Z}^1\|_{\eta} + \|Z^{[2]} - \bar{Z}^{[2]}\|_{\alpha+\eta},$$

where $Z^{[2]} = \delta Z - Z^1 \mathbb{X}^1$ and $\bar{Z}^{[2]} = \delta \bar{Z} - \bar{Z}^1 \bar{\mathbb{X}}^1$, recall (10.7). We endow $\mathcal{S}_{\alpha, \eta}$ with the distance (see (8.24) for the definition of $d_{\mathcal{R}_{\alpha, d}}$)

$$d_{\alpha, \eta}((\mathbb{X}, \mathbf{Z}), (\bar{\mathbb{X}}, \bar{\mathbf{Z}})) = d_{\mathcal{R}_{\alpha, d}}(\mathbb{X}, \bar{\mathbb{X}}) + |Z_0 - \bar{Z}_0| + |Z_0^1 - \bar{Z}_0^1| + [\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta}.$$

Let us note that in the case $\mathbb{X} = \bar{\mathbb{X}}$, we have

$$[\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta} = [\mathbf{Z} - \bar{\mathbf{Z}}]_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}, \quad d_{\alpha, \eta}((\mathbb{X}, \mathbf{Z}), (\bar{\mathbb{X}}, \bar{\mathbf{Z}})) = \|\mathbf{Z} - \bar{\mathbf{Z}}\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}},$$

see the definition (10.7) of the norm $\|\cdot\|_{\mathcal{D}_{\mathbb{X}}^{\alpha+\eta}}$. Note that $[\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta}$ is *not* a function of $\mathbf{Z} - \bar{\mathbf{Z}}$ when $\mathbb{X} \neq \bar{\mathbb{X}}$.

PROPOSITION 10.6. (LOCAL LIPSCHITZ ESTIMATE) *Let $\alpha \in [\frac{1}{3}, \frac{1}{2}]$ and $\eta \in]1 - 2\alpha, 1]$. The function $\mathcal{S}_{\alpha, \eta} \ni (\mathbb{X}, \mathbf{Z}) \mapsto (\mathbb{X}, \int_0^{\cdot} \mathbf{Z} d\mathbb{X}) \in \mathcal{S}_{\alpha, \alpha}$ is continuous with respect to the distances $d_{\alpha, \eta}$ and $d_{\alpha, \alpha}$.*

More precisely, for every $M \geq 0$ there is $K_{M, \alpha, \eta} \geq 0$ such that for all $(\mathbb{X}, \mathbf{Z}), (\bar{\mathbb{X}}, \bar{\mathbf{Z}}) \in \mathcal{S}_{\alpha, \eta}$ satisfying

$$1 + T^{\eta} + \|\mathbb{X}\|_{\mathcal{R}_{\alpha, d}} + \|\bar{\mathbf{Z}}\|_{\mathcal{D}_{\bar{\mathbb{X}}}^{\alpha+\eta}} \leq M,$$

setting $\mathbf{J} := \int_0^{\cdot} \mathbf{Z} d\mathbb{X}$ and $\bar{\mathbf{J}} := \int_0^{\cdot} \bar{\mathbf{Z}} d\bar{\mathbb{X}}$ we have

$$\begin{aligned} d_{\alpha, \alpha}((\mathbb{X}, \mathbf{J}), (\bar{\mathbb{X}}, \bar{\mathbf{J}})) &\leq \\ &\leq 2M^2(1 + K_{2\alpha+\eta})[d_{\mathcal{R}_{\alpha, d}}(\mathbb{X}, \bar{\mathbb{X}}) + |Z_0 - \bar{Z}_0| + |Z_0^1 - \bar{Z}_0^1| + T^{\eta}[\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta}] \\ &\leq 2M^3(1 + K_{2\alpha+\eta})d_{\alpha, \eta}((\mathbb{X}, \mathbf{Z}), (\bar{\mathbb{X}}, \bar{\mathbf{Z}})). \end{aligned}$$

Proof. Let $\mathbb{X} = (\mathbb{X}^1, \mathbb{X}^2)$ and $\bar{\mathbb{X}} = (\bar{\mathbb{X}}^1, \bar{\mathbb{X}}^2)$ be α -rough paths and $\mathbf{Z} \in \mathcal{D}_{\mathbb{X}}^{\alpha+\eta}$, $\bar{\mathbf{Z}} \in \mathcal{D}_{\bar{\mathbb{X}}}^{\alpha+\eta}$. We argue as in the proof of (10.9), using furthermore a number of times the simple estimate

$$|ab - \bar{a}\bar{b}| \leq |a - \bar{a}| |b| + |\bar{a}| |b - \bar{b}|. \quad (10.11)$$

We set for notational convenience $\varepsilon := T^{\eta}$. Then, since $\delta Z_{st} = Z_s^1 \mathbb{X}_{st}^1 + Z_{st}^{[2]}$, by (1.39)

$$\begin{aligned} \|\delta Z - \delta \bar{Z}\|_{\alpha} &\leq \|Z^1 - \bar{Z}^1\|_{\infty} \|\mathbb{X}^1\|_{\alpha} + \|\bar{Z}^1\|_{\infty} \|\mathbb{X}^1 - \bar{\mathbb{X}}^1\|_{\alpha} + \varepsilon \|Z^{[2]} - \bar{Z}^{[2]}\|_{\alpha+\eta} \\ &\leq (\|\mathbb{X}^1\|_{\alpha} + 1)(|Z_0^1 - \bar{Z}_0^1| + \varepsilon [\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta}) + M^2 \|\mathbb{X}^1 - \bar{\mathbb{X}}^1\|_{\alpha}, \end{aligned}$$

since by assumption

$$\|\bar{Z}^1\|_{\infty} \leq |\bar{Z}_0^1| + \varepsilon \|\delta \bar{Z}^1\|_{\eta} \leq (1 + \varepsilon)(|\bar{Z}_0^1| + \|\delta \bar{Z}^1\|_{\eta}) \leq M^2.$$

Now $J_{st}^{[2]} = Z_s^1 \mathbb{X}_{st}^2 + J_{st}^{[3]}$, so that arguing similarly

$$\begin{aligned} \|J^{[2]} - \bar{J}^{[2]}\|_{2\alpha} &\leq \|J^{[3]} - \bar{J}^{[3]}\|_{2\alpha} + \|Z^1 \mathbb{X}^2 - \bar{Z}^1 \bar{\mathbb{X}}^2\|_{2\alpha} \leq \\ &\leq \varepsilon \|J^{[3]} - \bar{J}^{[3]}\|_{2\alpha+\eta} + \|\mathbb{X}^2\|_{2\alpha} (|Z_0^1 - \bar{Z}_0^1| + \varepsilon \|\delta Z^1 - \delta \bar{Z}^1\|_{\eta}) + M^2 \|\mathbb{X}^2 - \bar{\mathbb{X}}^2\|_{2\alpha}. \end{aligned}$$

Therefore, since $1 + \|\mathbb{X}^1\|_\alpha + \|\mathbb{X}^2\|_{2\alpha} = 1 + \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}} \leq M$,

$$\begin{aligned} \|\delta Z - \delta \bar{Z}\|_\alpha + \|J^{[2]} - \bar{J}^{[2]}\|_{2\alpha} &\leq \\ &\leq \varepsilon \|J^{[3]} - \bar{J}^{[3]}\|_{2\alpha+\eta} + M^2(|Z_0^1 - \bar{Z}_0^1| + \varepsilon [\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta} + d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}})). \end{aligned}$$

We can estimate in the same way

$$\begin{aligned} \|\delta A - \delta \bar{A}\|_{2\alpha+\eta} &\leq \|Z^{[2]} - \bar{Z}^{[2]}\|_{\alpha+\eta} \|\mathbb{X}^1\|_\alpha + \|\bar{Z}^{[2]}\|_{\alpha+\eta} \|\mathbb{X}^1 - \bar{\mathbb{X}}^1\|_\alpha + \\ &\quad + \|\delta Z^1 - \delta \bar{Z}^1\|_\eta \|\mathbb{X}^2\|_{2\alpha} + \|\delta \bar{Z}^1\|_\eta \|\mathbb{X}^2 - \bar{\mathbb{X}}^2\|_{2\alpha} \\ &\leq [\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta} \|\mathbb{X}\|_{\mathcal{R}_{\alpha,d}} + [\bar{\mathbf{Z}}]_{\mathcal{D}_{\bar{\mathbb{X}}}^{\alpha+\eta}} d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}}) \\ &\leq M([\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta} + d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}})). \end{aligned}$$

By the Sewing bound (1.41)

$$\|J^{[3]} - \bar{J}^{[3]}\|_{2\alpha+\eta} \leq K_{2\alpha+\eta} M([\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta} + d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}})).$$

We obtain

$$\begin{aligned} [\mathbf{J}; \bar{\mathbf{J}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \alpha} &= \|\delta Z - \delta \bar{Z}\|_\alpha + \|J^{[2]} - \bar{J}^{[2]}\|_{2\alpha} \leq \\ &\leq M^2(1 + K_{2\alpha+\eta})[|Z_0^1 - \bar{Z}_0^1| + d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}}) + \varepsilon [\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta}]. \end{aligned}$$

Since $J_0 - \bar{J}_0 = 0$, $J_0^1 - \bar{J}_0^1 = Z_0 - \bar{Z}_0$, we obtain

$$\begin{aligned} d_{\alpha, \alpha}((\mathbb{X}, \mathbf{J}), (\bar{\mathbb{X}}, \bar{\mathbf{J}})) &= d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}}) + |Z_0 - \bar{Z}_0| + [\mathbf{J}; \bar{\mathbf{J}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \alpha} \\ &\leq 2M^2(1 + K_{2\alpha+\eta})[|Z_0 - \bar{Z}_0| + |Z_0^1 - \bar{Z}_0^1| + d_{\mathcal{R}_{\alpha,d}}(\mathbb{X}, \bar{\mathbb{X}}) + \varepsilon [\mathbf{Z}; \bar{\mathbf{Z}}]_{\mathbb{X}, \bar{\mathbb{X}}, \alpha, \eta}]. \end{aligned}$$

The second estimate follows since we have assumed that $1 + \varepsilon \leq M$. \square

10.4. STOCHASTIC AND ROUGH INTEGRALS

In this section we explore the connections between Itô integrals and Young or rough integrals. We fix $\alpha \in]0, \frac{1}{2}[$ and a realisation of the Itô rough path \mathbb{B} defined in (4.3) satisfying a.s. (4.4). We consider an adapted process $h: [0, T] \rightarrow (\mathbb{R}^d)^*$ with continuous paths and its Itô integral

$$I_t := \int_0^t h_s dB_s, \quad t \in [0, T].$$

Let us suppose also that a.s. h is of class \mathcal{C}^β with $\beta \in]0, 1[$. By (4.7) we have

$$|\delta I_{st} - h_s \mathbb{B}_{st}^1| = \left| \int_s^t \delta h_{sr} dB_r \right| \lesssim (t-s)^{\alpha+\beta}, \quad \forall 0 \leq s \leq t \leq T.$$

By Theorem 4.3, this means a.s. the Itô integral in (4.6) is a generalised integral of h in dB in the sense of Definition 8.1.

The situation is different according to the value of $\alpha + \beta$. If $\alpha + \beta > 1$, then we can apply Theorem 7.1 and we obtain that I_t is equal to the integral $\int_0^t h_s dB_s$ also in the Young sense. In this regime, we have uniqueness of generalised integrals in the sense of Definition 8.1. Moreover, by (6.13) we have a.s.

$$I_t = \lim_{|\mathcal{P}| \rightarrow 0} \sum_{i=0}^{\#\mathcal{P}-1} h_{t_i} (B_{t_{i+1}} - B_{t_i}),$$

where $\mathcal{P} = \{0 = t_0 < t_1 < \dots < t_k = t\}$ is a partition of $[0, t]$.

If $\alpha + \beta \leq 1$, then I is indeed only one of the generalised integrals as in Definition 8.1: for any $f: [0, T] \rightarrow \mathbb{R}$ of class $\mathcal{C}^{\alpha+\beta}$, then $I + f$ is also such a generalised integral. In this setting, in order to characterise uniquely the Itô integral among all generalised integrals, one can use (4.9): if we assume that, almost surely,

$$|\delta h_{sr} - h_s^1 \mathbb{B}_{sr}^1| \lesssim (r - s)^{\eta + \alpha},$$

for some adapted process $h^1 = (h_t^1)_{t \in [0, T]}$ of class \mathcal{C}^η with $\eta \in]0, 1]$, then a.s.

$$|\delta I_{st} - h_s \mathbb{B}_{st}^1 - h_s^1 \mathbb{B}_{st}^2| = \left| \int_s^t (\delta h_{sr} - h_s^1 \mathbb{B}_{sr}^1) dB_r \right| \lesssim (t - s)^{2\alpha + \eta}.$$

By Proposition 10.3, if $2\alpha + \eta > 1$ then (I, h) is the rough integral of (h, h^1) with respect to \mathbb{B} , namely

$$(I_t, h_t) = \int_0^t (h, h^1) d\mathbb{B}, \quad t \geq 0,$$

as in (10.6). Moreover, by (6.13) we have a.s.

$$I_t = \lim_{|\mathcal{P}| \rightarrow 0} \sum_{i=0}^{\#\mathcal{P}-1} [h_{t_i} \mathbb{B}_{t_i t_{i+1}}^1 + h_{t_i}^1 \mathbb{B}_{t_i t_{i+1}}^2],$$

where $\mathcal{P} = \{0 = t_0 < t_1 < \dots < t_k = t\}$.

10.5. PROPERTIES IN THE GEOMETRIC CASE

We have seen in Proposition 7.7 that the Young integral satisfies the classical integration by parts formula. We consider now a weakly geometric rough path \mathbb{X} and two paths $\mathbf{f} = (f, f^1), \mathbf{g} = (g, g^1)$ which are 2α -controlled by \mathbb{X} . We set

$$F_t := F_0 + \int_0^t f_s d\mathbb{X}_s, \quad G_t := G_0 + \int_0^t g_s d\mathbb{X}_s, \quad t \geq 0.$$

We want to show that, under the assumption that \mathbb{X} is weakly geometric, an analogous integration by parts formula holds, namely:

$$F_t G_t = F_0 G_0 + \underbrace{\int_0^t F_s g_s d\mathbb{X}_s + \int_0^t G_s f_s d\mathbb{X}_s}_{I_t}.$$

We start by showing that $(F_s g_s, F_s g_s^1 + f_s g_s)_{s \in [0, T]}$ is 2α -controlled by \mathbb{X} :

$$\begin{aligned} F_t g_t - F_s g_s &= F_t \delta g_{st} + g_s \delta F_{st} \\ &= F_s \delta g_{st} + g_s \delta F_{st} + \delta F_{st} \delta g_{st} \\ &= (F_s g_s^1 + f_s g_s) \mathbb{X}_{st}^1 + O(|t - s|^{2\alpha}). \end{aligned}$$

The same holds of course for $(f_s G_s, G_s f_s^1 + f_s g_s)_{s \in [0, T]}$. Now we know that I_t is the integral uniquely associated with the germ

$$A_{st} = (F_s g_s + G_s f_s) \mathbb{X}_{st}^1 + (F_s g_s^1 + G_s f_s^1 + 2f_s g_s) \mathbb{X}_{st}^2.$$

By the weakly geometric condition, we have $2\mathbb{X}_{st}^2 = (\mathbb{X}_{st}^1)^2$ and therefore we obtain

$$A_{st} = (F_s g_s + G_s f_s) \mathbb{X}_{st}^1 + (F_s g_s^1 + G_s f_s^1) \mathbb{X}_{st}^2 + f_s g_s (\mathbb{X}_{st}^1)^2.$$

Now we write

$$\begin{aligned} \delta(FG)_{st} &= \delta F_{st} G_t + F_s \delta G_{st} \\ &= G_s \delta F_{st} + F_s \delta G_{st} + \delta F_{st} \delta G_{st} \\ &= (F_s g_s + G_s f_s) \mathbb{X}_{st}^1 + (F_s g_s^1 + G_s f_s^1) \mathbb{X}_{st}^2 + \delta F_{st} \delta G_{st} + O(|t - s|^{3\alpha}). \end{aligned}$$

Now since $\mathbb{X}^2 \in C_2^{2\alpha}$

$$\begin{aligned} \delta F_{st} \delta G_{st} &= (f_s \mathbb{X}_{st}^1 + f_s^1 \mathbb{X}_{st}^2)(g_s \mathbb{X}_{st}^1 + g_s^1 \mathbb{X}_{st}^2) + O(|t - s|^{3\alpha}) \\ &= f_s g_s (\mathbb{X}_{st}^1)^2 + O(|t - s|^{3\alpha}). \end{aligned}$$

Then we obtain that

$$\delta(FG)_{st} = A_{st} + O(|t - s|^{3\alpha}).$$

Since $3\alpha > 1$, it follows that $F_t G_t - F_0 G_0 = I_t$ for all $t \geq 0$.

Example 10.7. It is well known that the Stratonovich stochastic integral satisfies the above integration by parts formula. This section extends this result to all (weakly) geometric rough paths.