CHAPTER 10

ROUGH INTEGRATION

10.1. CONTROLLED PATHS

We fix a € }%, %], X eC([0,T]; RY). We recall that fixing a a-rough path X over X
as in Definition 8.9 is equivalent to choosing a solution (I,X?) to (8.17), with I and
X2 representing our choices of the integrals, respectively,

t t
It::/Xr@)er, th::/ (X, — X)) ®dX, =L, —I,— X,® (X, — X,).
0 s

The key point is that, having fixed a choice of X2, it is now possible to give a
canonical definition of the integral [[Y dX for a wide class of Y € C*([0, T7; R ®
(R9)*), namely those paths Y which are controlled by X. In order to motivate this
notion, let us recall that, given X € C*([0,7];R?) and Y € C?([0, T]; R* ® (R%)*), we
look now for J:[0,7] —RF and R’: [0, T2 — R* such that, in analogy with (8.4),

Jo=0,  6Ju=Y.0Xu+R}, |RLS|t—s|oto.

In order to make this operation iterable, it is natural to require that each component
of Y has an analogous property. This is exactly the motivation for the next

DEFINITION 10.1. Let a € ]%,%}, n€l0,1] and X= (X% X?) an a-rough path on R%.

A pair Z=(Z,21):10,T] - RF x (R* @ (RY)*) with Z of class C* and Z* of class C"
is a path (a4 n)-controlled by X if

07y = 21X + 72, 1 ZB| < |t —s|otm, (s,t) [0, T)%. (10.1)

The function Z* is called a derivative of Z with respect to X and Z1? is the remainder
of the couple (Z,Z%).

For a fived a-rough path X on RY, we denote by D% "(IR*) the space of paths
(a4 n)-controlled by X with values in R”.

Remark 10.2. Note that, if a+7n<1, in general Z! is not determined by (Z,X1),
so that we say that Z'is a derivative rather than the derivative of Z. Viceversa, Z is
not determined by (Z', X): if (7, Z1) is (a+ n)-controlled by X and f e C**([0,T7;
R¥) then (Z + f, Z1) is also (a+ n)-controlled by X.

It is now clear from the definitions that, unlike rough paths, (« + n)-controlled
paths have a natural linear structure, in particular as a linear subspace of C* x C".
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136 ROUGH INTEGRATION

Exercise 10.1. Show that for each i, j=1,...,d, setting [0, 7] >t (X{;,Id) € R¢ x (R¢® (R%)*)
and [0,7] >t (X3, X§; ®1d) e R®@ R4 x (RY®@ R?® (R?)*) are paths 2a-controlled by X.

10.2. THE ROUGH INTEGRAL

Now we can finally show how to modify the germ Y, (X; — Xj) in order to obtain a
well-defined integration theory.

PROPOSITION 10.3. Let a € ] } n E]O, 1] and X = (X', X?) a a-rough path on
Re If Z=(Z,2Y:(0,T] —>IR’g x (R* @ (RY)*) is (« + n)-controlled by X as in
Definition 10.1, then the germ
Ag=Z, X3+ 2 X5,
satisfies A € C3°1".
Therefore if 2+ n>1 we can canonically define J; = “ tZ dX7” as the unique
function J:[0,T] — RF such that Jo=0 and 6J — Ac C3*"", namely

| o= Jo— Z, X3 — 2} X5 S|t — s,
and we have
#P—1
Jt: hm (Zth%Zt
i=0

i1 + Zt Xt t1+1)

along arbitrary partitions P of [0,t] with vanishing mesh |P|— 0.

Proof. We compute by (8.20)

5Asut = _5Zqu111t+Z1 6Xsut 5Zsluxit
= —(0Zsu— Z1X§U)X — 07, X2,
= —z78xt, —6zL X2, (10.2)
Then by (2.8)
10Asut] < 2P0l = | FX o]t — w021 |y |u — s X3]|oa |t — u]>
< (122 gl XM oA 1627 1 X220 £ = 5|27 (10.3)

Since 0 A € C5**" if 2ar+ 1> 1 we can apply the Sewing Lemma and define J&:=
—A(0A) and J:[0,T] — R* such that Jy=0 and 6J = A+ JB where A is the Sewing
Map of Theorem 6.11, namely

Jo=0,  0Ju=ZXL+2Z' X%+ T8 I St s[Petn, (10.4)

The last assertion on the convergence of the generalised Riemann sums follows from
(6.13). O

We have in particular proved by (6.14) and (10.3) that

179|205 < K2aq (1Z% a1 X lat 162112 20) - (10.5)
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We stress that the function J depends on (Z,X), in particular on Z! as well. We
use the following notations

Ji=(J,2), /tZdX::(Jt, Z) = (10.6)

We shall see in Proposition 10.5 below that J: [0, T] — R* x (R* ® (R%)*) is 2a-
controlled by X, i.e. Z is a derivative of J with respect to X as in Definition 10.1.

We define a norm ||-[|pa+n and a seminorm [-]pe+n on the space DY of paths
(ac+ m)-controlled by X, defined as follows:

|Z\lpetn = |20l + |23 +[Z]pesn,  Z=(2.2") (10.7)
Zpesn = 102 n+ 1220y, 25 =0Zu— Z3 XL,

as in (10.1). Recall that we defined the standard norm || f||ce = || f|locc + |0 f|la in
(1.13).

LEMMA 10.4. We have the equivalence of norms for all Z =(Z,Z"') € D"
1Z Nl pgen <N Zlleo+ 121 e+ 1 2P| ain < C N Z I pgn, (10.8)

where C' >0 is an explicit constant which depends only on (X, T, a,n). In particular,
(DS, || - | pa+n) is @ Banach space.

Proof. The first inequality in (10.8) is obvious by the definition of the norm ||-||ca.
In order to prove the second one, first we note that by (1.15)

1 len=I1£ lloo + 110 f lla < LT[ ol + 1[0 f la)-

This shows that || Z!|en < || Z [ pa+n for (Z, ZY e DL, Now, since 6 Zy = Z1 X, + 22
by (10.1),

16Z]l < N2 ool XM o+ 122

<
< Cry(1Z3| + 182 IIXH o+ T 2% |4,

namely [|Z||ce < || Z ]| pe+n. Finally 122 0y < | Z || pe-+n. The proof is complete. [

10.3. CONTINUITY PROPERTIES OF THE ROUGH INTE-
GRAL
We wrote before Definition 10.1 that the notion of controlled path aimed at making

the rough integral map (Z, Z') +— (J, Z) iterable, where we use the notation of
Proposition 10.3. In order to make this precise, we need the following important

PROPOSITION 10.5. Let X be a a-rough path on R with o € }%,%], nell —2a,lj
and Z € DX a path (a+ n)-controlled by X. Then, in the notation of (10.6),

o J=[,ZdX is 2a-controlled by X
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o the map D> Z — J € D% is linear and for all Z € D"
[Tlpze < 201+ IX[I=, )1 Z0] + T7(1 + Kza41)[Z] pg+1]- (10.9)
Proof. Recall first (10.5), so that in particular ||J%l||24.+, < +00. Now JE=71x2+
Jg] satisfies
17% |20 < 12" ool X2 |zt 1720 < 127 oo X220+ 17| T 2045 (10.10)
Finally 0.Jy = Z, X}, + Js[f] and therefore
167 la < I Z oo XM a1 2 oo X[l 20+TF 7| TP 2044

Therefore (J, Z, J?) €C* x C* x C2* and we obtain that (J, Z) is 2a-controlled by
X.
We prove now the second assertion. Since §Zy = Z} X!, + Zs[f], by (1.39)

16Z o N ZM el XMt T 2|0t
<UIXHla+ D1 28]+ T7[Z] pg-+n).

Now, analogously to (10.10), again by (1.39)

1720 <N Z ool X [l20+ 17120
<TI0+ IXP 20| Z6] + T71027]])-

Therefore, since ||X!||o + || X?||20 = [|X]| %, ,, recall (8.23),
16Z o+ 1T P20 <TI0t t (14 Xl ) 1 23] + T 2] o).

By (10.5) we obtain

lpze = 16Z [+ 1720 <
< 201+ Xz, )l Z0] + (14 Koot g) T Z] pgo]

The proof is complete. O

We note that the estimate of the seminorm [J]pz. in terms of [Z]pe+n rather
than of the norm [[J | pz in terms of || Z||pa+n plays an important role in Chapter
11 (with n=a), see in particular (11.9). In any case, from (10.9) it is easy to obtain
an estimate of ||J || pze: since Jy=0 and .J§ = Zy, we obtain

[T llpze = [Zol + [T]pze <
< 21+ Koapy) (L4 [X]|Re, o) (L+ T Z ]| pg -
Therefore the linear operator D" > Z +— | ,Z dX € D¥' is continuous. In fact a

stronger property holds: we have continuity of the map (X, Z)+— [ 6Z dX. In order
to prove this, we need to introduce the following space

Sa.ni=1{(X, Z): X is a a-rough path, Z € D"},
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and the following quantity for Z € D" and Z € D"
[Z3 Z}X,X,a,n = “521 - 5ZIH77 + HZ[Q] - 2[2]”044—77?

where Z1 =07 — 7'X"' and Z® =67 — Z'X", recall (10.7). We endow S, ,, with the
distance (see (8.24) for the definition of dgr, ,)

da,n((xa Z)a (X> Z)) = dRa,d(X’ X) _HZO - ZOH_‘Z(% - Z(%H—[Z, Z]X,X,a,n-
Let us note that in the case X =X, we have

Z: Z]xs0m=1Z = Zlpgrn,  dan((X,2),(X,2))=Z — Z|pg+,
see the definition (10.7) of the norm [[-[| pa+». Note that [Z; Z]x X a.n IS not a function
of Z —Z when X#X.
PROPOSITION 10.6. (LOCAL LIPSCHITZ ESTIMATE) Let o € ]3, ;] and n €]l —2a,
1]. The function Sa ;3 (X, Z) — (X, [ Z dX) € Ss.o is continuous with respect to
the distances dg,, and dg .

_ More precisely, for every M >0 there is Kur,o,, >0 such that for all (X, Z), (X,
Z) €S, , satisfying

1+ T+ [ X|r, o+ 1 Z || pon < M,
setting J := [ Z dX and j::f(;z dX we have
da,a((X, J), (X, J)) <
2MP(1+ Kaarg)|dr, (X, X) +|Zo — Zo|+|Z5 — Z|+T7(Z; Z)x x
LMY (1 + Kza40) da,y (X, Z), (X, Z)).

X,001]

Proof. Let X = (X', X?) and X = (X', X?) be a-rough paths and Z € D&, Z €
D?—{M. We argue as in the proof of (10.9), using furthermore a number of times the
simple estimate

lab—ab| <l|a—al|b|+|al|b—b]. (10.11)

We set for notational convenience & :=7T". Then, since 07y = Z+ XL+ Z2 by (1.39)

102 — 62110 <l 2" = Z|ocl 5o+ |22 X! = Kot | 22 — 22,
UKo+ 1)(12 — Z814€(Z5 Z)xe o) + MK = Ko,

since by assumption
12410 <1 Z3] + €102 |y < (1 +)(1Z5] + 10 21]],) < M?
Now JE] =Z1XZ + Jg’], so that arguing similarly

1T = T a0 < ([T = T8l 50 + [ 2" X2 = 21 X220 <
<e | T = T aasnt X2 20(1 26 — Z§ |+ 1027 — 627 ||) + MZ|I X2 — X2
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Therefore, since 1+ || X'|o + [|X?|2a=1+||X| %, , < M,

16Z = 8Z [l + | T# = JPl20 <
<5|‘J[3] - j[3]”2a+77+M2(’26 - Z(%H_g[Z? Z]X,X,a,n + dRa,d(X7 X))

We can estimate in the same way

164 =6 All204, < HZ[Q]—Z[Q]HaMHXleLHZ_[Q}HaMHXl_—XlHaJr
102 = 62| 1P |20 +([0 2] 15X — XP[| 50
[Z; Z]X,X,a,n HXHRad+ [Z}D%*'” dRa,d(Xa X)

<
< M([Z’ Z}X,X,a,n + dRa,d(X’ X))

By the Sewing bound (1.41)
||J[3] - j[3] ||2a+77 < K2a+nM([Z; Z]X,X,a,n + dRa,d(X7 X))

We obtain

[T T)x a0 =102 = 67 [|o+ | T = JP||20 <

SM?(1+ Kaarn)|| 20 — Z§|+dr, (X, X) +£[Z; Z]x 5 0.0)-

Since Jy— Jo=0, J§ — Ji = Zy— Z,, we obtain

da,a((xu J)? (X7 j)) = d'Ra,d(Xv X) +|ZO - ZO|+[J7 j]X,X,a,a

LM (1 + Koain)[|Zo — Zol+1 26 — Zo|+dr,, X, X) +¢[Z; Z]x x,00)-

The second estimate follows since we have assumed that 1 +¢ < M. O

10.4. STOCHASTIC AND ROUGH INTEGRALS

In this section we explore the connections between It6 integrals and Young or rough
integrals. We fix a € }O, %[ and a realisation of the It6 rough path B defined in
(4.3) satisfying a.s. (4.4). We consider an adapted process h: [0, T] — (R%)* with
continuous paths and its It integral

¢
It::/ hs dBs, te0,T7.
0
Let us suppose also that a.s. h is of class C? with 3€]0,1[. By (4.7) we have

t
/ Ohg.dB,

By Theorem 4.3, this means a.s. the It6 integral in (4.6) is a generalised integral of
h in dB in the sense of Definition &8.1.

|5Ist - hs ]B;t| =

S(t—s)tP,  V0<s<t<T.
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The situation is different according to the value of a+ (. If o+ > 1, then we
can apply Theorem 7.1 and we obtain that I, is equal to the integral [ g hsdB;s also

in the Young sense. In this regime, we have uniqueness of generalised integrals in
the sense of Definition 8.1. Moreover, by (6.13) we have a.s.

#P—1
It— hm Z h/t, Btl+l i)’

where P={0=ty<t;<...<tp=t} is a partition of [0, t].

If a+ #<1, then [ is indeed only one of the generalised integrals as in Definition
8.1: for any f:[0,T] — R of class C**#, then I + f is also such a generalised integral.
In this setting, in order to characterise uniquely the [t6 integral among all generalised
integrals, one can use (4.9): if we assume that, almost surely,

|6hsr—h;1B ‘<( )n+a

for some adapted process h' = (hi)sejo.1] of class C7 with n €]0, 1], then a.s.

t
|5Ist — hs Bit - hi IB31t| = / (5hsr - h; IB;T) dB, S (t - 3)2a+n-

By Proposition 10.3, if 2a+ 7 >1 then (I, h) is the rough integral of (h,h') with
respect to B, namely

t
(L, hy) = /(hhl)dﬂs >0,
0

as in (10.6). Moreover, by (6.13) we have a.s.

#P—1
L= \%mo Y Bl +hi B,
1=0

where P={0=to<t;<...<tp=t}.

10.5. PROPERTIES IN THE GEOMETRIC CASE

We have seen in Proposition 7.7 that the Young integral satisfies the classical inte-
gration by parts formula. We consider now a weakly geometric rough path X and
two paths f=(f, f!),g= (g, ¢") which are 2a-controlled by X. We set

t t
Ft::F0+/deXSa Gt3:G0+/gst37 t=0.
0 0

We want to show that, under the assumption that X is weakly geometric, an anal-
ogous integration by parts formula holds, namely:

t t
FG, = F0G0+/ b;gsdxs+/asfsdxs.
0 0

v~

1y

S
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We start by showing that (F, g, F, gs + fs9s)sefo, 1) is 2a-controlled by X:

tht_ﬂgs = Ft(sgst"f’gs(;Fst
= Es 5gst + s 5Fst +5Fst 5gst
= (Fogs + fi9s) X+ O(Jt — 5*).

The same holds of course for ( f, Gs, G, fs + fs9s)sefo,r)- Now we know that I is the
integral uniquely associated with the germ

ASt = (FS Js + GS fs)th + (Fs gsl + Gsfsl + 2fs gs)th
By the weakly geometric condition, we have 2X% = (X!)? and therefore we obtain
ASt - (FS Gs + GS fS)Xét + (FS gé} + Gstl>X§t + fs gs(Xét)%
Now we write

5(FG)5,5 - 5E9th ‘|‘ FséGst
= Gs 5Fst + Fs 5Gst + 5F;t 5Gst
= (Fs gs + Gs fs)th + (ES gsl + Gsfsl)XEt + 5F:9t 5Gst + O(’t - S ’3(1)-

Now since X? € C3*

0F0Gy = (stgt + fleEt)(ng§t + 951th) + O(’t —S ’30‘)
= fo9s(X&)2+ O(Jt — s]>).

Then we obtain that
§(FG)y = Aq+O(|t —s|?).
Since 3o > 1, it follows that FiG; — FyGo= 1, for all t > 0.

Example 10.7. It is well known that the Stratonovich stochastic integral satis-
fies the above integration by parts formula. This section extends this result to all
(weakly) geometric rough paths.



