
Chapter 10
Rough integration

10.1. Controlled paths

We fix α∈ ]1
3
, 1
2
], X ∈Cα([0, T ];Rd). We recall that fixing a α-rough path X over X

as in Definition 8.9 is equivalent to choosing a solution (I ,X2) to (8.17), with I and
X2 representing our choices of the integrals, respectively,

It=:

∫

0

t

Xr⊗ dXr, Xst
2 =:

∫

s

t

(Xr−Xs)⊗ dXr= It− Is−Xs⊗ (Xt−Xs).

The key point is that, having fixed a choice of X2, it is now possible to give a
canonical definition of the integral

∫
0

·
Y dX for a wide class of Y ∈ Cα([0, T ];Rk⊗

(Rd)∗), namely those paths Y which are controlled by X. In order to motivate this
notion, let us recall that, given X ∈Cα([0, T ];Rd) and Y ∈Cβ([0, T ];Rk⊗ (Rd)∗), we
look now for J : [0, T ]→Rk and RJ: [0, T ]!

2 →Rk such that, in analogy with (8.4),

J0=0 , δJst=Ys δXst+Rst
J , |Rst

J |! |t− s|α+β .
In order to make this operation iterable, it is natural to require that each component
of Y has an analogous property. This is exactly the motivation for the next

Definition 10.1. Let α∈ ]1
3
, 1
2
], η∈ ]0,1] and X=(X1,X2) an α-rough path on Rd.

A pair Z=(Z,Z1): [0, T ]→Rk× (Rk⊗ (Rd)∗) with Z of class Cα and Z1 of class Cη

is a path (α+ η)-controlled by X if

δZst=Zs
1Xst

1 +Zst
[2], |Zst

[2]|! |t− s|α+η, (s, t)∈ [0, T ]!2 . (10.1)

The function Z1 is called a derivative of Z with respect to X and Z [2] is the remainder
of the couple (Z,Z1).

For a fixed α-rough path X on Rd, we denote by DX
α+η(Rk) the space of paths

(α+ η)-controlled by X with values in Rk.

Remark 10.2. Note that, if α+ η" 1, in general Z1 is not determined by (Z,X1),
so that we say that Z1 is a derivative rather than the derivative of Z. Viceversa, Z is
not determined by (Z1,X1): if (Z,Z1) is (α+ η)-controlled by X and f ∈Cα+η([0, T ];
Rk) then (Z + f , Z1) is also (α+ η)-controlled by X.

It is now clear from the definitions that, unlike rough paths, (α+ η)-controlled
paths have a natural linear structure, in particular as a linear subspace of Cα× Cη.
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Exercise 10.1. Show that for each i, j=1,...,d, setting [0,T ]∋ t '→(X0t
1 , Id)∈Rd×(Rd⊗ (Rd)∗)

and [0, T ]∋ t '→ (X0t
2 ,X0t

1 ⊗ Id)∈Rd⊗Rd× (Rd⊗Rd⊗ (Rd)∗) are paths 2α-controlled by X.

10.2. The rough integral

Now we can finally show how to modify the germ Ys (Xt−Xs) in order to obtain a
well-defined integration theory.

Proposition 10.3. Let α ∈ ]1
3
, 1
2
], η ∈ ]0, 1] and X= (X1,X2) a α-rough path on

Rd. If Z = (Z, Z1): [0, T ]→Rk × (Rk ⊗ (Rd)∗) is (α + η)-controlled by X as in
Definition 10.1, then the germ

Ast=ZsXst
1 +Zs

1Xst
2

satisfies δA∈C32α+η. .
Therefore if 2α+ η> 1 we can canonically define Jt= “

∫
0

t
Z dX” as the unique

function J : [0, T ]→Rk such that J0=0 and δJ −A∈C22α+η, namely

|Jt− Js−ZsXst
1 −Zs1Xst

2 |! |t− s|2α+η,
and we have

Jt= lim
|P |→0

∑

i=0

#P−1

(ZtiXtiti+1
1 +Zti

1Xtiti+1
2 )

along arbitrary partitions P of [0, t] with vanishing mesh |P |→ 0.

Proof. We compute by (8.20)

δAsut = −δZsuXut
1 +Zs

1 δXsut
2 − δZsu1 Xut

2

= −(δZsu−Zs1Xsu
1 )Xut

1 − δZsu1 Xut
2

= −Zsu
[2]Xut

1 − δZsu1 Xut
2 . (10.2)

Then by (2.8)

|δAsut| " ∥Z [2]∥α+η |u− s|α+η∥X1∥α|t−u|α+∥δZ1∥η |u− s|η∥X2∥2α|t−u|2α

" (∥Z [2]∥α+η∥X1∥α+∥δZ1∥η∥X2∥2α)|t− s|2α+η. (10.3)

Since δA∈C32α+η, if 2α+ η> 1 we can apply the Sewing Lemma and define J [3] :=
−Λ(δA) and J : [0, T ]→Rk such that J0=0 and δJ =A+J [3] where Λ is the Sewing
Map of Theorem 6.11, namely

J0=0 , δJst=ZsXst
1 +Zs

1Xst
2 + Jst

[3], |Jst
[3]|! |t− s|2α+η . (10.4)

The last assertion on the convergence of the generalised Riemann sums follows from
(6.13). #

We have in particular proved by (6.14) and (10.3) that

∥J [3]∥2α+η"K2α+η (∥Z [2]∥α+η∥X1∥α+∥δZ1∥η∥X2∥2α). (10.5)
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We stress that the function J depends on (Z ,X), in particular on Z1 as well. We
use the following notations

J := (J , Z),

∫

0

t

Z dX := (Jt, Zt)=Jt. (10.6)

We shall see in Proposition 10.5 below that J : [0, T ]→Rk × (Rk ⊗ (Rd)∗) is 2α-
controlled by X, i.e. Z is a derivative of J with respect to X as in Definition 10.1.

We define a norm ∥·∥DX
α+η and a seminorm [·]DX

α+η on the space DX
α+η of paths

(α+ η)-controlled by X, defined as follows:

∥Z∥DX
α+η := |Z0|+ |Z01|+ [Z]DX

α+η, Z =(Z,Z1) (10.7)

[Z]DX
α+η := ∥δZ1∥η+ ∥Z [2]∥α+η, Zst

[2]= δZst−Zs1Xst
1 ,

as in (10.1). Recall that we defined the standard norm ∥f ∥Cα= ∥f ∥∞+ ∥δf ∥α in
(1.13).

Lemma 10.4. We have the equivalence of norms for all Z =(Z,Z1)∈DX
α+η

∥Z∥DX
α+η" ∥Z∥Cα+ ∥Z1∥Cη+ ∥Z [2]∥α+η"C∥Z∥DX

α+η, (10.8)

where C>0 is an explicit constant which depends only on (X, T ,α, η). In particular,
(DX

α+η, ∥ · ∥DX
α+η) is a Banach space.

Proof. The first inequality in (10.8) is obvious by the definition of the norm ∥·∥Cα.
In order to prove the second one, first we note that by (1.15)

∥f ∥Cη=∥f ∥∞+ ∥δf ∥η" (1+T η)(|f0|+ ∥δf ∥η).

This shows that ∥Z1∥Cη!∥Z∥DX
α+η for (Z,Z1)∈DX

α+η. Now, since δZst=Zs1Xst
1 +Zst

[2]

by (10.1),

∥δZ∥α " ∥Z1∥∞∥X1∥α+ ∥Z [2]∥α
" CT ,η(|Z01|+ ∥δZ1∥η)∥X1∥α+T η∥Z [2]∥α+η,

namely ∥Z∥Cα! ∥Z∥DX
α+η. Finally ∥Z [2]∥α+η" ∥Z∥DX

α+η. The proof is complete. #

10.3. Continuity properties of the rough inte-
gral

We wrote before Definition 10.1 that the notion of controlled path aimed at making
the rough integral map (Z, Z1) '→ (J , Z) iterable, where we use the notation of
Proposition 10.3. In order to make this precise, we need the following important

Proposition 10.5. Let X be a α-rough path on Rd with α∈ ]1
3
, 1
2
], η ∈ ]1− 2α, 1]

and Z ∈DX
α+η a path (α+ η)-controlled by X. Then, in the notation of ( 10.6),

• J =
∫
0

·
Z dX is 2α-controlled by X
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• the map DX
α+η∋Z '→J ∈DX

2α is linear and for all Z ∈DX
α+η

[J ]DX
2α " 2(1+ ∥X∥Rα,d)[|Z01|+T η(1+K2α+η)[Z]DX

α+η]. (10.9)

Proof. Recall first (10.5), so that in particular ∥J [3]∥2α+η<+∞. Now Jst
[2]=Zs

1Xst
2 +

Jst
[3] satisfies

∥J [2]∥2α" ∥Z1∥∞∥X2∥2α+∥J [3]∥2α" ∥Z1∥∞∥X2∥2α+T η∥J [3]∥2α+η. (10.10)

Finally δJst=ZsXst
1 + Jst

[2] and therefore

∥δJ ∥α" ∥Z∥∞∥X1∥α+∥Z1∥∞∥X2∥2α+T α+η∥J [3]∥2α+η.

Therefore (J ,Z, J [2])∈Cα× Cα×C22α and we obtain that (J ,Z) is 2α-controlled by
X.

We prove now the second assertion. Since δZst=Zs
1Xst

1 +Zst
[2], by (1.39)

∥δZ∥α"∥Z1∥∞∥X1∥α+T η∥Z [2]∥α+η
"(∥X1∥α+1)(|Z01|+T η[Z]DX

α+η).

Now, analogously to (10.10), again by (1.39)

∥J [2]∥2α"∥Z1∥∞∥X2∥2α+∥J [3]∥2α
"T η∥J [3]∥2α+η+∥X2∥2α(|Z01|+T η∥δZ1∥η).

Therefore, since ∥X1∥α+ ∥X2∥2α= ∥X∥Rα,d, recall (8.23),

∥δZ∥α+ ∥J [2]∥2α"T η∥J [3]∥2α+η+(1+ ∥X∥Rα,d)[|Z01|+T η[Z]DX
α+η].

By (10.5) we obtain

[J ]DX
2α = ∥δZ∥α+ ∥J [2]∥2α"
" 2 (1+ ∥X∥Rα,d)[|Z01|+(1+K2α+η)T η[Z]DX

α+η]

The proof is complete. #

We note that the estimate of the seminorm [J ]DX
2α in terms of [Z]DX

α+η rather
than of the norm ∥J ∥DX

2α in terms of ∥Z∥DX
α+η plays an important role in Chapter

11 (with η=α), see in particular (11.9). In any case, from (10.9) it is easy to obtain
an estimate of ∥J ∥DX

2α: since J0=0 and J01=Z0, we obtain

∥J ∥DX
2α = |Z0|+ [J ]DX

2α"
" 2(1+K2α+η)(1+ ∥X∥Rα,d)(1+T η)∥Z∥DX

α+η.

Therefore the linear operator DX
α+η ∋Z '→

∫
0

·
Z dX∈DX

2α is continuous. In fact a
stronger property holds: we have continuity of the map (X,Z) '→

∫
0

·
Z dX. In order

to prove this, we need to introduce the following space

Sα,η := {(X,Z):X is a α-rough path,Z ∈DX
α+η},
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and the following quantity for Z ∈DX
α+η and Z̄ ∈DX̄

α+η

[Z; Z̄]X,X̄,α,η := ∥δZ1− δZ̄1∥η+ ∥Z [2]− Z̄ [2]∥α+η,

where Z [2]= δZ−Z1X1 and Z̄ [2]= δZ̄ − Z̄1X̄1, recall (10.7). We endow Sα,η with the
distance (see (8.24) for the definition of dRα,d)

dα,η((X,Z), (X̄, Z̄))= dRα,d(X, X̄)+|Z0− Z̄0|+|Z01− Z̄01|+[Z; Z̄]X,X̄,α,η.

Let us note that in the case X= X̄, we have

[Z; Z̄]X,X̄,α,η= [Z − Z̄]DX
α+η, dα,η((X,Z), (X, Z̄))= ∥Z − Z̄∥DX

α+η,

see the definition (10.7) of the norm ∥·∥DX
α+η. Note that [Z;Z̄]X,X̄,α,η is not a function

of Z − Z̄ when X=/ X̄.

Proposition 10.6. (Local Lipschitz estimate) Let α∈ ]1
3
, 1
2
] and η ∈ ]1− 2α,

1]. The function Sα,η ∋ (X,Z) '→ (X,
∫
0

·
Z dX)∈ Sα,α is continuous with respect to

the distances dα,η and dα,α.
More precisely, for every M ≥ 0 there is KM,α,η≥0 such that for all (X,Z), (X̄,

Z̄)∈Sα,η satisfying
1+T η+ ∥X∥Rα,d+ ∥Z̄∥DX

α+η"M,

setting J :=
∫
0

·
Z dX and J̄ :=

∫
0

·
Z̄ dX̄ we have

dα,α((X,J), (X̄, J̄))"
"2M2(1+K2α+η)[dRα,d(X, X̄)+|Z0− Z̄0|+|Z01− Z̄01|+T η[Z; Z̄]X,X̄,α,η]

"2M3(1+K2α+η) dα,η((X,Z), (X̄, Z̄)).

Proof. Let X= (X1,X2) and X̄= (X̄1, X̄2) be α-rough paths and Z ∈DX
α+η, Z̄ ∈

DX̄
α+η. We argue as in the proof of (10.9), using furthermore a number of times the

simple estimate

|ab− ā b̄ |" |a− ā| |b|+|ā| |b− b̄ |. (10.11)

We set for notational convenience ε :=T η. Then, since δZst=Zs1Xst
1 +Zst

[2], by (1.39)

∥δZ − δZ̄∥α"∥Z1− Z̄1∥∞∥X1∥α+ ∥Z̄1∥∞∥X1− X̄1∥α+ε∥Z [2]− Z̄ [2]∥α+η
"(∥X1∥α+1)(|Z01− Z̄01|+ε[Z; Z̄]X,X̄,α,η)+M2∥X1− X̄1∥α,

since by assumption

∥Z̄1∥∞" |Z̄01|+ ε∥δZ̄1∥η" (1+ ε)(|Z̄01|+ ∥δZ̄1∥η)"M2.

Now Jst
[2]=Zs

1Xst
2 + Jst

[3], so that arguing similarly

∥J [2]− J̄ [2]∥2α" ∥J [3]− J̄ [3]∥2α+ ∥Z1X2− Z̄1 X̄2∥2α"
"ε∥J [3]− J̄ [3]∥2α+η+∥X2∥2α(|Z01− Z̄01|+ε∥δZ1− δZ̄1∥η)+M2∥X2− X̄2∥2α.
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Therefore, since 1+ ∥X1∥α+ ∥X2∥2α=1+ ∥X∥Rα,d"M ,

∥δZ − δZ̄∥α+ ∥J [2]− J̄ [2]∥2α"
"ε∥J [3]− J̄ [3]∥2α+η+M2(|Z01− Z̄01|+ε[Z; Z̄]X,X̄,α,η+ dRα,d(X, X̄)).

We can estimate in the same way

∥δA− δ Ā∥2α+η " ∥Z [2]− Z̄ [2]∥α+η∥X1∥α+ ∥Z̄ [2]∥α+η∥X1− X̄1∥α+
+∥δZ1− δZ̄1∥η∥X2∥2α+∥δZ̄1∥η∥X2− X̄2∥2α

" [Z; Z̄]X,X̄,α,η ∥X∥Rα,d+ [Z̄]DX̄
α+η dRα,d(X, X̄)

" M([Z; Z̄]X,X̄,α,η+ dRα,d(X, X̄)).

By the Sewing bound (1.41)

∥J [3]− J̄ [3]∥2α+η"K2α+ηM([Z; Z̄]X,X̄,α,η+ dRα,d(X, X̄)).

We obtain

[J ; J̄ ]X,X̄,α,α=∥δZ − δZ̄∥α+ ∥J [2]− J̄ [2]∥2α"
"M 2(1+K2α+η)[|Z01− Z̄01|+dRα,d(X, X̄)+ ε[Z; Z̄]X,X̄,α,η].

Since J0− J̄0=0, J01− J̄01=Z0− Z̄0, we obtain

dα,α((X,J), (X̄, J̄))= dRα,d(X, X̄)+|Z0− Z̄0|+[J ; J̄ ]X,X̄,α,α
"2M2(1+K2α+η)[|Z0− Z̄0|+|Z01− Z̄01|+dRα,d(X, X̄)+ ε[Z; Z̄]X,X̄,α,η].

The second estimate follows since we have assumed that 1+ ε"M . #

10.4. Stochastic and rough integrals

In this section we explore the connections between Itô integrals and Young or rough
integrals. We fix α ∈

]
0, 1

2

[
and a realisation of the Itô rough path B defined in

(4.3) satisfying a.s. (4.4). We consider an adapted process h: [0, T ]→ (Rd)∗ with
continuous paths and its Itô integral

It :=

∫

0

t

hsdBs, t∈ [0, T ].

Let us suppose also that a.s. h is of class Cβ with β ∈ ]0, 1[. By (4.7) we have

|δIst−hsBst
1 |=

∣∣∣∣∣∣∣∣
∫

s

t

δhsr dBr

∣∣∣∣∣∣∣∣! (t− s)α+β , ∀0" s" t"T .

By Theorem 4.3, this means a.s. the Itô integral in (4.6) is a generalised integral of
h in dB in the sense of Definition 8.1.
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The situation is different according to the value of α+ β. If α+ β> 1, then we
can apply Theorem 7.1 and we obtain that It is equal to the integral

∫
0

t
hsdBs also

in the Young sense. In this regime, we have uniqueness of generalised integrals in
the sense of Definition 8.1. Moreover, by (6.13) we have a.s.

It= lim
|P |→0

∑

i=0

#P−1

hti (Bti+1−Bti),

where P = {0= t0<t1< . . . < tk= t} is a partition of [0, t].
If α+ β"1, then I is indeed only one of the generalised integrals as in Definition

8.1: for any f : [0, T ]→R of class Cα+β, then I+ f is also such a generalised integral.
In this setting, in order to characterise uniquely the Itô integral among all generalised
integrals, one can use (4.9): if we assume that, almost surely,

|δhsr−hs1Bsr
1 |! (r− s)η+α,

for some adapted process h1=(ht
1)t∈[0,T ] of class Cη with η ∈ ]0, 1], then a.s.

|δIst−hsBst
1 −hs1Bst

2 | =
∣∣∣∣∣∣∣∣
∫

s

t

(δhsr−hs1Bsr
1 )dBr

∣∣∣∣∣∣∣∣! (t− s)2α+η.

By Proposition 10.3, if 2α+ η> 1 then (I , h) is the rough integral of (h, h1) with
respect to B, namely

(It, ht)=

∫

0

t

(h, h1) dB, t$ 0,

as in (10.6). Moreover, by (6.13) we have a.s.

It= lim
|P |→0

∑

i=0

#P−1

[htiBtiti+1
1 +hti

1 Btiti+1
2 ],

where P = {0= t0<t1< . . . < tk= t}.

10.5. Properties in the geometric case

We have seen in Proposition 7.7 that the Young integral satisfies the classical inte-
gration by parts formula. We consider now a weakly geometric rough path X and
two paths f =(f , f 1), g=(g, g1) which are 2α-controlled by X. We set

Ft :=F0+

∫

0

t

fsdXs, Gt :=G0+

∫

0

t

gsdXs, t$ 0.

We want to show that, under the assumption that X is weakly geometric, an anal-
ogous integration by parts formula holds, namely:

FtGt = F0G0+

∫

0

t

Fs gsdXs+

∫

0

t

Gs fsdXs
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It

.
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We start by showing that (Fs gs, Fs gs1+ fsgs)s∈[0,T ] is 2α-controlled by X:

Ft gt−Fs gs = Ft δgst+ gs δFst
= Fs δgst+ gs δFst+δFst δgst
= (Fs gs

1+ fs gs)Xst
1 +O(|t− s|2α).

The same holds of course for (fsGs, Gsfs
1+ fsgs)s∈[0,T ]. Now we know that It is the

integral uniquely associated with the germ

Ast=(Fs gs+Gs fs)Xst
1 +(Fs gs

1+Gsfs
1+2fs gs)Xst

2 .

By the weakly geometric condition, we have 2Xst
2 =(Xst

1 )2 and therefore we obtain

Ast=(Fs gs+Gs fs)Xst
1 +(Fs gs

1+Gsfs
1)Xst

2 + fs gs(Xst
1 )2.

Now we write

δ(FG)st = δFstGt+FsδGst

= Gs δFst+Fs δGst+ δFst δGst

= (Fs gs+Gs fs)Xst
1 +(Fs gs

1+Gsfs
1)Xst

2 + δFst δGst+O(|t− s|3α).

Now since X2∈C22α

δFst δGst = (fsXst
1 + fs

1Xst
2 )(gsXst

1 + gs
1Xst

2 )+O(|t− s|3α)
= fs gs(Xst

1 )2+O(|t− s|3α).

Then we obtain that

δ(FG)st = Ast+O(|t− s|3α).

Since 3α> 1, it follows that FtGt−F0G0= It for all t$ 0.

Example 10.7. It is well known that the Stratonovich stochastic integral satis-
fies the above integration by parts formula. This section extends this result to all
(weakly) geometric rough paths.
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