
Chapter 11
Rough integral equations

In this chapter we go back to the finite difference equation (3.19) in the rough setting
α∈
( 1
2
, 1
3

]
, and we discute its integral formulation that we already mentioned at the

end of Section 7.2. Now that we have studied the rough integral in Chapter 10, we
can indeed show that the equation

|Zst
[3]|! |t− s|3α, Zst

[3]= δZst−σ(Zs)Xst
1 −σ2(Zs)Xst

2 , (11.1)

recall (3.18), can be interpreted in the context of controlled paths. Indeed, (11.1)
suggests that, for any candidate solution Z, the pair Z =(Z, σ(Z)) should be con-
trolled by X. At the same time, in order to apply Proposition 10.3 and interpret
(11.1) as an integral equation, we are going to shows that (σ(Z),σ2(Z)) is controlled
by X. This is guaranteed by the following

Lemma 11.1. Let φ:Rk→Rℓ be of class C2 and f =(f , f 1)∈DX
2α(Rk). Set

φ(f) := (φ(f),∇φ(f) f 1),

where φ(f): [0, T ]→Rℓ is defined by φ(f)t := φ(ft) and

∇φ(f) f 1: [0, T ]→Rℓ⊗Rd, (∇φ(f) f 1)tab=
∑

j=1

k

∂jφa(ft) · (ft1)jb.

Then φ(f)∈DX
2α(Rℓ).

Proof. Analogously to (3.22) we have for f = (f , f 1) ∈DX
2α(Rk), setting fst

[2] :=
δfst− fs

1Xst
1 as in (10.1),

φ(f)st
[2] := φ(ft)− φ(fs)−∇φ(fs) fs1Xst

1 (11.2)

= ∇φ(fs) fst
[2]+

∫

0

1

[∇φ(fs+ rδfst)−∇φ(fs)] dr δfst

= ∇φ(fs) fst
[2]+

∫

0

1

(1−u)∇2φ(fs+uδfst) du δfst⊗ δfst.

Then we can write using the estimate |ab− ā b̄ |" |a− ā| |b|+|ā| |b− b̄ |

|∇φ(ft) ft1−∇φ(fs) fs1| " cφ,f
(1) |ft1− fs

1|+cφ,f
(2) |ft− fs| ∥f1∥∞,

|φ(f)st
[2]| " cφ,f

(1) |fst
[2]|+cφ,f

(2) |δfst|2, (11.3)

where

cφ,f
(1) := sup

s∈[0,T ]
|∇φ(fs)|, cφ,f

(2) := sup
s,t∈[0,T ],u∈[0,1]

|∇2φ(fs+uδfst)|. (11.4)
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Therefore (φ(f),∇φ(f) f 1) is controlled by X. #

This suggests that we can reinterpret the finite difference equation (11.1) as
follows: we look for Z: [0,T ]→Rk such thatZ=(Z,σ(Z)) is controlled byX (namely
it belongs to DX

2α(Rk)) and

Zt=(Z0, 0)+

∫

0

t

σ(Z) dX, ∀ t∈ [0, T ]. (11.5)

By Lemma 11.1, σ(Z)=(σ(Z),∇σ(Z)Z1), but here Z1=σ(Z), so that

σ(Z)= (σ(Z),∇σ(Z) σ(Z))= (σ(Z),σ2(Z)),

is controlled by X, where we use the notation σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗

σ2(y) :=∇σ(y)σ(y), [σ2(y)]jℓ
i :=

∑

a=1

k

∂aσj
i(y) σℓ

a(y).

By Proposition 10.3, the integral equation in (11.5) is equivalent to

|Zst
[3]|! |t− s|3α, Zst

[3]= δZst−σ(Zs)Xst
1 − σ2(Zs)Xst

2 . (11.6)

Viceversa, if Z ∈ Cα([0, T ];Rk) is such that Z [3]∈C2
3α, then setting Z1 := σ(Z)

the path Z=(Z,Z1) is controlled by X and satisfies (11.5). Therefore, the integral
equation (11.5) is equivalent to the finite difference equation (11.6).

11.1. Localization argument
Proposition 11.2. If we can prove local existence for the rough differential equation
( 11.6) under the assumption that σ is of class C3 and σ ,∇σ ,∇2σ ,∇3σ are bounded,
then we can prove local existence for ( 11.6) assuming only that σ is of class C3.

Proof. Let σ be of class C3. Note that σ and its derivatives are bounded on the
closed unit ball B := {z ∈Rk: |z −Z0|≤ 1}, which is a compact subset of Rk. Then
we can find a function σ̂ of class C3 which is bounded with all its derivatives up
to the third on the whole Rk and coincides with σ on B. By local existence for σ̂,
there is a solution Ẑ: [0, T ]→Rk of the RDE (11.6) with σ replaced by σ̂. Since
Z is continuous with Z0∈B, we can find T ′> 0 such that Zt∈B for all t∈ [0, T ′].
Then σ(Zt) = σ̂(Zt) and σ2(Zt) = σ̂2(Zt) for all t∈ [0, T ′], so that Z is a solution of
the original RDE (11.6) on the shorter time interval [0, T ′]. We have proved local
existence assuming only that σ is of class C3. #

11.2. Invariance
In this section we prepare the ground for a contraction argument to be proved in
the next section. We start with an estimate of [σ(f)]DX

2α(Rℓ) in terms of [f ]DX
2α(Rk),

under the assumption that σ is of class C2 with bounded first and second derivative.
We fix D> 0 such that

D≥max { ∥∇σ∥∞, ∥∇2σ∥∞}.
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Lemma 11.3. Let σ:Rk→Rk⊗ (Rd)∗ be of class C2 with ∥∇σ∥∞+ ∥∇2σ∥∞"D,
for some D<+∞. Then for some C > 0 and any f =(f , f 1)∈DX

2α(Rk)

[σ(f)]DX
2α(Rk⊗Rd) " D([f ]DX

2α(Rk)+ ∥f 1∥∞∥δf ∥α+ ∥δf ∥α2). (11.7)

Proof. By (11.3) we have

∥δ(∇σ(f) f 1)∥α"D(∥δf 1∥α+ ∥f 1∥∞∥δf ∥α),

∥σ(f)[2]∥2α"D(∥f [2]∥2α+ ∥δf ∥α2).

Therefore, recalling (10.7),

[σ(f)]DX
2α(Rk⊗Rd) = ∥δ(∇σ(f) f 1)∥α+ ∥σ(f)[2]∥2α

" D([f ]DX
2α(Rk)+ ∥f 1∥∞∥δf ∥α+ ∥δf ∥α2).

where, in the last inequality, we apply (10.8). #

We define Γ:DX
2α(Rk)→DX

2α(Rk)

Γ(f) := (Z0, 0)+

∫

0

·
σ(f) dX,

(we know that indeed Γ maps DX
2α(Rk) into DX

2α(Rk) by Lemma 11.1). In other
words, Γ(f , f 1) is equal to the only (J , J1)∈DX

2α such that

J0=Z0, Js
1=σ(fs), δJst− σ(fs)Xst

1 −∇σ(fs) fs1Xst
2 ∈C2

3α. (11.8)

We want to construct solutions to (11.6) by a fixed point argument for T small
enough. Let M > 0 and X such that ∥X1∥α+ ∥X2∥2α"M and

B := {f =(f , f 1)∈DX
2α: (f0, f0

1)= (Z0,σ(Z0)), [f ]DX
2α(Rk)" 4C}, (11.9)

where
C := (1+M)D∥σ∥∞. (11.10)

Lemma 11.4. If T α" ε0 given by

ε0 :=
1

8(1+K3α)(1+D)(1+ ∥σ∥∞)(1+M)2
, (11.11)

then Γ(B)⊆B. Moreover, setting

L := 2(1+M)∥σ∥∞=
2C
D
, (11.12)

for any f =(f , f1)∈B we have

max {∥δf ∥α, ∥f 1∥∞}"L. (11.13)

Proof. Let f ∈B. Setting ε :=T α, if ε" ε0 then in particular

εC " ∥σ∥∞
8(1+K3α)(1+ ∥σ∥∞)(1+M)

" ∥σ∥∞
8

.
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We obtain

∥f 1∥∞" |σ(Z0)|+ ε∥δf1∥α" ∥σ∥∞+ ε0[f ]DX
2α(Rk)" 2∥σ∥∞"L,

since ε04C " ∥σ∥∞. Similarly

∥δf ∥α " ε∥f [2]∥2α+ ∥f 1∥∞∥X1∥α" ε04C +(∥σ∥∞+ ε04C)M
= ε04C(1+M)+ ∥σ∥∞M " 2(1+M)∥σ∥∞=L.

Therefore (11.13) is proved.
We prove now that Γ(f)∈B. We recall that Γ(f)=(J ,σ(f)), where J is uniquely

determined by (11.8). By (10.9)

[Γ(f)]DX
2α(Rk) " 2(1+M)(|∇σ(Z0)σ(Z0)|+ ε(1+K3α)[σ(f)]DX

2α(Rk)).

By (11.7) and (11.13) we obtain

[Γ(f)]DX
2α(Rk)" 2(1+M)(D∥σ∥∞+ ε(1+K3α)D([f ]DX

2α(Rk)+2L2)).

Now (1+M)D∥σ∥∞=C, and

D([f ]DX
2α(Rk)+2L2)"D

(
4C +2

4C2

D2

)
" 8C

(
D+

C
D

)
.

Note that

D+
C
D
=D+(1+M)∥σ∥∞" (1+M)(1+D)(1+ ∥σ∥∞), (11.14)

so that by (11.11)

[Γ(f)]DX
2α(Rk) " 2C +2C =4C.

Therefore, Γ(f)∈B. #

11.3. Local Lipschitz continuity

We suppose that σ is of class C3, with ∥σ∥∞+ ∥∇σ∥∞+ ∥∇2σ∥∞+ ∥∇3σ∥∞<+∞
and we fix D> 0 such that

D$ ∥∇σ∥∞+ ∥∇2σ∥∞+ ∥∇3σ∥∞.

Lemma 11.5. (Local Lipschitz estimate) If T α ∈ ]0, ε0] where ε0 is as in
( 11.11), then for f , f̄ ∈ B, with B defined in ( 11.9), we have the local Lipschitz
estimate

[σ(f)−σ(f̄)]DX
2α(Rk⊗(Rd)∗) " (2+D+ ∥σ∥∞) [f − f̄ ]DX

2α(Rk) (11.15)

Proof. By Lemma 11.4 we have for f =(f , f 1), f̄ =(f̄ , f̄ 1)

max {∥δf ∥α, ∥δf̄ ∥α, ∥f̄ 1∥∞}"L,
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with L as in (11.12). Now, we want to estimate

[σ(f)−σ(f̄)]DX
2α(Rk⊗(Rd)∗) = ∥δ(∇σ(f) f 1−∇σ(f̄) f̄ 1)∥α︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

A

+∥σ(f)[2]−σ(f̄)[2]∥2α︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
B

.

We set ∆ := f − f̄ , ∆1 := f 1− f̄ 1, ∆[2] := f [2]− f̄ [2].We first estimate A:

|δ(∇σ(f) f 1−∇σ(f̄) f̄ 1)st|=
=|δ(∇σ(f))st ft1+∇σ(fs)δfst1 − δ(∇σ(f̄))st f̄t1−∇σ(f̄s)δf̄st1 |
"|δ(∇σ(f)−∇σ(f̄))st ft1|+ |δ(∇σ(f̄))st (ft1− f̄t

1)|+
+ |(∇σ(fs)−∇σ(fs̄))δfst1 |+ |∇σ(f̄s)(δf − δf̄)st|.

By Lemma 2.8 and (1.39) we have for ε=Tα

A " D[∥f 1∥∞(∥δ∆∥α+(∥δf ∥α+ ∥δf̄ ∥α)∥∆∥∞)+ ∥δf̄ ∥α∥∆1∥∞+
+∥∆∥∞∥δf 1∥α+ ∥δ∆1∥α]

" D[ ( (∥δf ∥α+ ∥δf̄ ∥α)∥f 1∥∞+ ∥δf 1∥α)∥∆∥∞+ ∥f 1∥∞∥δ∆∥α+
+(1+ ε∥δf̄ ∥α)∥δ∆1∥α]

" D[(2L2+ ∥δf 1∥α)∥∆∥∞+L∥δ∆∥α+(1+ εL)∥δ∆1∥α]

We show now that

B " D ((∥f [2]∥2α+3∥δf ∥α2)∥∆∥∞+(∥δf ∥α+ ∥δf̄ ∥α)∥δ∆∥α+∥∆[2]∥2α)
" D[(∥f [2]∥2α+3L2)∥∆∥∞+2L∥δ∆∥α+∥∆[2]∥2α]. (11.16)

We have by (11.2)

B" ∥∇σ(f) f [2]−∇σ(f̄) f̄ [2]∥2α+

+

∫

0

1

∥∇2σ (f +uδf) δf ⊗ δf −∇2σ (f̄ +uδf̄) δf̄ ⊗ δf̄ ∥2α du.

With the usual estimate |ab− ā b̄ |" |a− ā| |b|+|ā| |b− b̄ | we can write

∥∇σ(f) f [2]−∇σ(f̄)f̄ [2]∥2α"
"∥∇σ(f)−∇σ(f̄)∥∞∥f [2]∥2α+ ∥∇σ(f̄)∥∞∥∆[2]∥2α
"∥∇2σ∥∞ ∥∆∥∞∥f [2]∥2α+∥∇σ∥∞ ∥∆[2]∥2α
"D(∥∆∥∞∥f [2]∥2α+ ∥∆[2]∥2α).

For the other term
∫

0

1

∥∇2σ(f +uδf) · δf ⊗ δf −∇2σ(f̄ +uδf̄) · δf̄ ⊗ δf̄ ∥2α du"

"∥∇3σ∥∞ ∥δf ∥α2(∥∆∥∞+∥δ∆∥∞)+ ∥∇2σ∥∞(∥δf ∥α+ ∥δf̄ ∥α)∥δ∆∥α
"D(∥δf ∥α2(∥∆∥∞+∥δ∆∥∞)+ (∥δf ∥α+ ∥δf̄ ∥α)∥δ∆∥α).

Recalling that ∥δ∆∥∞" 2∥∆∥∞, we have finished the proof of (11.16).
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Since ∆0= f0− f̄ 0=0, we have ∥∆∥∞"ε∥δ∆∥α. Summing up, we obtain

[σ(f)−σ(f̄)]DX
2α(Rk⊗(Rd)∗)=A+B

"{(3L+ ε(5L2+ [f ]DX
2α(Rk)))∥δ∆∥α+(1+ εL) [f − f̄ ]DX

2α(Rk)}.

On the other hand

∥δ∆∥α " ε∥∆[2]∥2α+ ∥∆1∥∞∥X1∥α
" ε∥∆[2]∥2α+ εM ∥δ∆1∥α
" ε(1+M) [f − f̄ ]DX

2α(Rk).

Therefore

[σ(f)− σ(f̄)]DX
2α(Rk⊗(Rd)∗) " (ε(1+M)c1+ c2) [f − f̄ ]DX

2α(Rk),

where we set

c1 :=D (3L+ ε([f ]DX
2α(Rk)+5L2)), c2 :=D(1+ εL).

Since [f ]DX
2α(Rk)" 4C we obtain, recalling that DL=2C by (11.12),

c1 " D (3L+ ε(4C +5L2))" 6C + 20εC
(
D+

C
D

)

" 6C + 20εC(1+D)(1+ ∥σ∥∞)(1+M)

" 6C +3C =9C,

where we have used first (11.14) and then (11.10)-(11.11). Similarly

ε(1+M)c1" 9εC(1+M)= 9εD∥σ∥∞(1+M)2" 2,
and

c2=D+ εDL=D+2εC "D+ ∥σ∥∞.
Therefore

ε(1+M)c1+ c2" 2+D+ ∥σ∥∞.
The proof is finished. #

11.4. Contraction

In this section we prove local existence by means of a fixed point argument, assuming
σ to be of class C3 and bounded with its first, second and third derivatives, namely
∥σ∥∞+∥∇σ∥∞+∥∇2σ∥∞+∥∇3σ∥∞<+∞. Therefore the assumptions are stronger
than for the discrete approximation of Section 3.9. However this method has the
advantage of not requiring compactness of the image of Γ and therefore this approach
works also for rough equations with values in infinite-dimensional spaces.

Let us fix D> 0 such that

D$max {∥∇σ∥∞, ∥∇2σ∥∞, ∥∇3σ∥∞}.
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Recalling that B was defined in (11.9), we can now show the following

Lemma 11.6. If T α∈ ]0,ε0] where ε0 is as in ( 11.11), then Γ:B→B is a contraction
for ∥·∥DX

2α.

Proof. Let f =(f , f 1) and f̄ = (f̄ , f̄ 1) be in B. Since f0= f̄0 and f0
1= f̄0

1, by the
definitions, see in particular (10.7),

∥Γ(f)−Γ(f̄)∥DX
2α(Rk) = [Γ(f)−Γ(f̄)]DX

2α(Rk).

We set ε :=T α. By (10.9)

[Γ(f)−Γ(f̄)]DX
2α(Rk) " ε2(1+M)(1+K3α) [σ(f)−σ(f̄)]DX

2α(Rk).

Now by Lemma 11.5

[σ(f)−σ(f̄)]DX
2α(Rk⊗(Rd)∗) " (2+D+ ∥σ∥∞) [f − f̄ ]DX

2α(Rk).

Now 2+D+ ∥σ∥∞" 2(1+D)(1+ ∥σ∥∞). Therefore

[Γ(f)−Γ(f̄)]DX
2α(Rk) " c4 [f − f̄ ]DX

2α(Rk),

with

c4= ε2(1+M)(1+K3α)2(1+D)(1+ ∥σ∥∞)" 1
2

by (11.11). This concludes the proof. #
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