CHAPTER 11

ROUGH INTEGRAL EQUATIONS

In this chapter we go back to the finite difference equation (3.19) in the rough setting
ac (2, 3} and we discute its integral formulation that we already mentioned at the

end of Section 7.2. Now that we have studied the rough integral in Chapter 10, we
can indeed show that the equation

1ZE) < |t—spPe,  ZB=6Z4—0(Z) XY — 0a(Z) X2, (11.1)

recall (3.18), can be interpreted in the context of controlled paths. Indeed, (11.1)
suggests that, for any candidate solution Z, the pair Z =(Z,0(Z)) should be con-
trolled by X. At the same time, in order to apply Proposition 10.3 and interpret
(11.1) as an integral equation, we are going to shows that (0(Z),04(%)) is controlled
by X. This is guaranteed by the following

LEMMA 11.1. Let ¢: R¥— R" be of class C? and f=(f, f!) € D3*(RF). Set
o(f):=(o(f), Vo(f) f1),
where ¢(f):[0,T] — R is defined by ¢(f)i:= ¢(fi) and
k
Vo) LTI RIS, (T6(f) =Y 00()- (F)”
Then ¢(f) € DE(RY).

Proof. Analogously to (3.22) we have for f = (f, f!) € D¥(R*), setting f2 :=
Ofst— fiXY asin (10.1),

S(HE = o(f) — (fs) — Vo(f) fE XL (11.2)
— VoS /2y / Y O(futr6fu) — VO(L)] dréf

1
= VO S [ (=) VA uf) du G S
0
Then we can write using the estimate |ab—ab|<|a —a||b|+|a||b—b]

|v¢(ft)ft V¢(fs)fs| X C¢f|ft fs|+C |ft S M lsos

(AE] < 172 65 (11.3)
where
C((;)f:: sup |Vo(fs)l, C<(;52,)f:: sup IV2)( fs+udfs)|. (11.4)
s€[0,T) s,t€[0,T],u€(0,1]
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Therefore (¢(f), Vo(f) f1) is controlled by X. O

This suggests that we can reinterpret the finite difference equation (11.1) as
follows: we look for Z:[0,T]— RF such that Z =(Z,0(Z)) is controlled by X (namely
it belongs to D3¢(IR¥)) and

Zt:(ZO,O)—i—/to(Z) X,  Vte[o,T). (11.5)

By Lemma 11.1, 6(Z)=(0(Z),Vo(Z) Z'), but here Z'=0(Z), so that
0(Z)=(0(2),Vo(Z)o(2))=(0(Z),0:(2)),

is controlled by X, where we use the notation o9: R¥ — R¥ @ (RY)* @ (R%)*

oa(y) =V o (y) o(y), ie: =Z

By Proposition 10.3, the integral equation in (11.5) is equivalent to
1ZB|<|t—spPe,  Z2B=6Z,—0(Z2) XL — 02(Z,) X2 (11.6)

Viceversa, if Z €C®([0,T]; R¥) is such that ZP € C5%, then setting Z':=0(2)
the path Z = (Z,Z') is controlled by X and satisfies (11.5). Therefore, the integral
equation (11.5) is equivalent to the finite difference equation (11.6).

11.1. LOCALIZATION ARGUMENT

PROPOSITION 11.2. If we can prove local existence for the rough differential equation
(11.6) under the assumption that o is of class C* and o,V o ,V?0,V30 are bounded,
then we can prove local existence for (11.6) assuming only that o is of class C3.

Proof. Let o be of class C3. Note that ¢ and its derivatives are bounded on the
closed unit ball B:={z € R*: |z — Zy| <1}, which is a compact subset of R*. Then
we can find a function ¢ of class C® which is bounded with all its derivatives up
to the third on the whole R* and coincides with o on B. By local existence for &,
there is a solution Z: [0, 7] — R¥ of the RDE (11.6) with o replaced by &. Since
Z is continuous with Zy€ B, we can find 77> 0 such that Z, € B for all t € [0,7"].
Then o(Z;) =6(Z;) and 09(Z;) = 69(Z;) for all t €[0,7"], so that Z is a solution of
the original RDE (11.6) on the shorter time interval [0,7"]. We have proved local
existence assuming only that o is of class C3. O

11.2. INVARIANCE

In this section we prepare the ground for a contraction argument to be proved in
the next section. We start with an estimate of [0(f)]pze(re) in terms of [ f]pzarr),

under the assumption that o is of class C? with bounded first and second derivative.
We fix D >0 such that

D Zmax { |V ||, V0 |oo}-
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LEMMA 11.3. Let o: R* — RF @ (RY)* be of class C? with |[|[Vo |+ ||V |00 < D,
for some D < +o0. Then for some C >0 and any f=(f, f!) € D¥(RF)

lo(Alpzemrary < D([Flpzaey+ [ oll0f o+ 110£12)- (11.7)
Proof. By (11.3) we have
16(Va(f) f)lla< DS o+ 1Lf loollOf lla),
lo ()P |20 < D(| fP[l2a+ 105 [12)-
Therefore, recalling (10.7),

o (Plpzemreny = 10(Vo(f) f)la+ lo(F)P ]|z
< D([flpzemey + 1 ocllof [la+ 10£115)-

where, in the last inequality, we apply (10.8). O
We define I': D3¢ (RF) — D (IRF)

D(f) = (Z0,0) + / o(f)dX,

0

(we know that indeed T' maps D3*(IR¥) into D3¢(R¥) by Lemma 11.1). In other
words, I'(f, f1) is equal to the only (J, J') € D¥ such that

Jo=2Zy, Ji=o(fs), 0Ju—o(fs)Xy—Voalfs) fiX2eC3 (11.8)

We want to construct solutions to (11.6) by a fixed point argument for 7" small
enough. Let M >0 and X such that ||X||,+ ||X?||2o < M and

B:={f=(f,f")eD¥:(fo. fo) = (Z0,0(20)), [Flpzemr <4C}, (11.9)
where
C:= (14 M)D||o]|co- (11.10)

LEMMA 11.4. If T*<¢eq given by
1

TR+ Kao) (L + D) (11 [0 [[oo) (1 + M2 (11.11)
then T'(B) C B. Moreover, setting
Li=2(1+ Moo=, (11.12)
for any f=(f, f') € B we have
max {[|0f [la, | f1flee} < L- (11.13)

Proof. Let f e B. Setting €:=T?, if € <¢( then in particular

o []oc < ol

8(14 Ksa)(1+ o) (1+M) = 8

eC'<
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We obtain
1 oo <To(Zo)| +€ll6f o < llo lloo + €0l Flpzeme <20 lloo < L,
since €04C < || [|oo. Similarly

16flle < el fPloa+ 1| Ao XM la < £04C + ([0 [0 + £04C) M
= edC(1+ M)+ |lo||e M <21+ M)|o||=L.

Therefore (11.13) is proved.
We prove now that I'( f) € B. We recall that I'( f)=(J,0(f)), where J is uniquely
determined by (11.8). By (10.9)

D()]pzamey < 2(1+M)(|Va(Zo) o(Zo)| +e(1+ Kza)[o(f)]p2a(mn))-
By (11.7) and (11.13) we obtain
[C(f))pze@m <2(1+ M) (Dol + (1 + Ksza) D([f]pzemr +2L7)).

Now (14+ M)D||o || =C, and

D[ flpzmc + 212) < D[ 40+ 22 Y <sc( D+ &
D (RF) = D2 ) D /)

Note that

D+ =Dt (14 Mo < (14 M)A+ D)1+ o), (11.14)

so that by (11.11)
[C(f)]pzemey < 20 +2C =4C.

Therefore, I'( f) € B. O

11.3. LOCAL LIPSCHITZ CONTINUITY

We suppose that o is of class C?, with || ||+ [|[V 7 |loo + | V20 ||oo + || V30 || 0o < +00
and we fix D >0 such that

D2V lloo+ [IV?0 oo+ | V?0 [ oo-

LEMMA 11.5. (LOCAL LIPSCHITZ ESTIMATE) If T € |0, o] where gy is as in
(11.11), then for f, f € B, with B defined in (11.9), we have the local Lipschitz
estimate

o(f) = o(Hlopmemyy < 2+D+|oll) [f = Flogmy (11.15)
Proof. By Lemma 11.4 we have for f=(f, f)), f=(f, f)

max {|0f la, 10 lla 1/ [loc} < L,
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with L as in (11.12). Now, we want to estimate
o(£) = o(Plozmamyy = [10(Vo(f) f1=Vo(f) flla
A
o) = o(F) .

-~

B

We set A:=f— f, Al:= f1— 1 A= f@_ {12l We first estimate A:

6(Va(f) f1=Vol(f) [Dsl=
=[0(Va(f))st ftl—i—VU(fs)(stlt—5(V0(f))5t ftl_Vg(ﬁ)éﬁlt‘
<|0(Va(f) = Vol f)a fH+H16(Va(f))se (ff = FO +

+ (Vo (fo) = Va(f))ofal + Vo (f)(6f = 6f)sl-

By Lemma 2.8 and (1.39) we have for e =T

A < DI lloo(18ANat (10f lla+ 10F 1) [ Alloe) + 10F llal Al +
HAlloollof Hlo+ 10AY|o]
< DLCUOf o+ N0F )| F oo + 118 e [Alloo + 11 oo 10 Aot
+(1+ell0f [la)[10AY|o]
< DIRL*+ [0F )| Alloo+ LIGAla+(1+L) [ 6AYo]

We show now that

B < D (/P l2a 3110 21 A oot (10S o+ 16F o) 10A o 4[| AZ20)
< D[P l2a+3L) [ Alloc+2L [0l +[| AZ[2q]. (11.16)

We have by (11.2)
BL|IVo(f) fB=Va(f) fPza+

—i—/o V20 (f +udf)of @6f — V20 (f +udf)df @6f]|2q du.

With the usual estimate |ab—ab| < |a — a||b|+|a||b—b| we can write

IVo(f) f2 = Va(f) fPza<

<V (f) = V(Do FZlza+ IV (F)lloc| AP 2
<IVZ 0 lloo Aol f 201V ol [| AP 26

<D Aol f P20+ [[A2]|20)-

For the other term
1
[ 1207+ us)-6f @3 = Vo(f +ubf) 6] 67 |2 dus
0

<IV2 o lloo 10 1AIA Nt 10A o) + 1V 0 oo (10£ o+ 10f lla) 10|
<D 1A ot 10A o) + (16f la + 118 £ 1) 6 Ala).

Recalling that ||0A||oc < 2||A||co, we have finished the proof of (11.16).
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Since Ag= fo— fo=0, we have ||Al<e||0A[ 4 Summing up, we obtain

[0(f) —o(Flpzemremay=A+ B )
H{BL+e(BL + [ flpzemm)I0A o+ (L+eL) [f — Flpzame }-

On the other hand

[P 1A oo+ | A oo | X |

< €
< el|AP||zq +eM[[0Aq
< e(1+M)[f - ﬂD%g(]Rk)-
Therefore
lo(f) — U(f)]bgg(Rk@(Rd)*) < (e(l+M)er+e) [ f — f]DggaRk);

where we set

c1:= D (3L +<([f]pae(ryy +5L2)),  c2:=D(1+¢L).
Since [ f]pza(mrr) <4C we obtain, recalling that DL =2C by (11.12),

c1 < D(3L+¢e(4C+5L?) <6C+2050(D+%)

< 6C420eC(1+ D)(1+||o||oo) (1 + M)
< 6C+3C=9C,

where we have used first (11.14) and then (11.10)-(11.11). Similarly
e(1+ M)y <9eC(1+ M) =9eD||o]|o(1+ M)*< 2,

and
co=D+eDL=D+2eC<D+ 0]
Therefore
e(14+M)ei+c2<2+ D+ |0
The proof is finished. u

11.4. CONTRACTION

In this section we prove local existence by means of a fixed point argument, assuming
o to be of class C* and bounded with its first, second and third derivatives, namely
1o |oo+ |V |loo + | V20|00 + [| V30 || oo < +00. Therefore the assumptions are stronger
than for the discrete approximation of Section 3.9. However this method has the
advantage of not requiring compactness of the image of I and therefore this approach
works also for rough equations with values in infinite-dimensional spaces.

Let us fix D >0 such that

D Zmax {[|V 0o [[V?0 [[oc, [[VP0 [[oc}-
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Recalling that B was defined in (11.9), we can now show the following

LEMMA 11.6. If T € ]0,e0] where g is as in (11.11), then I': B— B is a contraction

for |-z

Proof. Let f=(f, f!) and f=(f, f!) be in B. Since fo= fo and f¢ = f3, by the
definitions, see in particular (10.7),

||F(f> - F(f)”D%g(Rk) = [F(f) - F(fﬂbgg(ﬁk)-
We set e:=T. By (10.9)
D(f) — F(f)]Dgg(Rk) < e2(1+M)(1+ Kza) [o(f) — U(fﬂb%g(lak)-
Now by Lemma 11.5
lo(f) — U(f)]Dgg(Rk@(Rd)*) < 2+D+olle) [f - f]D%g(Rky
Now 2+ D+ ||o]| <2(1+ D)(1+||o||oc). Therefore

[CCF) =T(Plpzews < calf = Flpzamwe,
with
1
2
by (11.11). This concludes the proof. O

ca=e2(1+M)(1+ K3a)2(1+ D)(1+[|o|e) <



