

CHAPTER 2

DIFFERENCE EQUATIONS: THE YOUNG CASE

Fix a time horizon $T > 0$ and two dimensions $k, d \in \mathbb{N}$. We study the following *controlled difference equation* for an unknown path $Z: [0, T] \rightarrow \mathbb{R}^k$:

$$Z_t - Z_s = \sigma(Z_s)(X_t - X_s) + o(t - s), \quad 0 \leq s \leq t \leq T, \quad (2.1)$$

where the “driving path” $X: [0, T] \rightarrow \mathbb{R}^d$ and the function $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ are given, and $o(t - s)$ is *uniform* for $0 \leq s \leq t \leq T$ (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the *controlled differential equation*

$$\dot{Z}_t = \sigma(Z_t) \dot{X}_t, \quad 0 \leq t \leq T. \quad (2.2)$$

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are *equivalent* when X is continuously differentiable and σ is continuous, but (2.1) is meaningful also when X is non differentiable.

In this chapter we prove *well-posedness for the difference equation* (2.1) when the driving path $X \in \mathcal{C}^\alpha$ is Hölder continuous in the regime $\alpha \in]\frac{1}{2}, 1]$, called the *Young case*. The more challenging regime $\alpha \leq \frac{1}{2}$, called the *rough case*, is the object of the next Chapter 3, where new ideas will be introduced.

2.1. SUMMARY

Using the increment notation $\delta f_{st} := f_t - f_s$ from (1.11), we rewrite (2.1) as

$$\delta Z_{st} = \sigma(Z_s) \delta X_{st} + o(t - s), \quad 0 \leq s \leq t \leq T, \quad (2.3)$$

so that a solution of (2.3) is any path $Z: [0, T] \rightarrow \mathbb{R}^k$ such that the “*remainder*”

$$Z_{st}^{[2]} := \delta Z_{st} - \sigma(Z_s) \delta X_{st} \quad \text{satisfies} \quad Z_{st}^{[2]} = o(t - s). \quad (2.4)$$

We summarize the main results of this chapter stating *local and global existence, uniqueness of solutions and continuity of the solution map* for the difference equation (2.3) under natural assumptions on σ . We will actually prove more precise results, which yield quantitative estimates.

THEOREM 2.1. (WELL-POSEDNESS) *Let $X: [0, T] \rightarrow \mathbb{R}^d$ be of class \mathcal{C}^α with $\alpha \in]\frac{1}{2}, 1]$ and let $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$. Then we have:*

- **local existence:** if σ is locally γ -Hölder with $\gamma \in (\frac{1}{\alpha} - 1, 1]$ (e.g. of class C^1), then for every $z_0 \in \mathbb{R}^k$ there is a possibly shorter time horizon $T' = T'_{\alpha, X, \sigma}(z_0) \in]0, T]$ and a path $Z: [0, T'] \rightarrow \mathbb{R}^k$ starting from $Z_0 = z_0$ which solves (2.3) for $0 \leq s \leq t \leq T'$;

- **global existence:** if σ is globally γ -Hölder with $\gamma \in (\frac{1}{\alpha} - 1, 1]$ (e.g. of class C^1 with $\|\nabla \sigma\|_\infty < \infty$), then we can take $T'_{\alpha, X, \sigma}(z_0) = T$ for any $z_0 \in \mathbb{R}^d$;
- **uniqueness:** if σ is of class \mathcal{C}^γ with $\gamma \in (\frac{1}{\alpha}, 2]$ (e.g. if σ is of class C^2), then there is exactly one solution Z of (2.3) with $Z_0 = z_0$;
- **continuity of the solution map:** if σ is differentiable with bounded and globally $(\gamma - 1)$ -Hölder gradient with $\gamma \in (\frac{1}{\alpha}, 2]$ (i.e. $\|\nabla \sigma\|_\infty < \infty$, $[\nabla \sigma]_{\mathcal{C}^{\gamma-1}} < \infty$), then the solution Z of (2.3) is a continuous function of the starting point z_0 and driving path X : the map $(z_0, X) \mapsto Z$ is continuous from $\mathbb{R}^k \times \mathcal{C}^\alpha \rightarrow \mathcal{C}^\alpha$.

In the first part of this chapter, we give for granted the existence of solutions and we focus on their properties: we prove *a priori estimates* in Section 2.3, *uniqueness of solutions* in Section 2.4 and *continuity of the solution map* in Section 2.5. A key role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and its discrete version, see Theorem 1.18.

The proof of local and global *existence of solutions* of (2.3) is given at the end of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. SET-UP

We collect here some notions and tools that will be used extensively.

We recall that C_1 denotes the space of continuous functions $f: [0, T] \rightarrow \mathbb{R}^k$. Similarly, C_2 and C_3 are the spaces of continuous functions of two and three ordered variables, i.e. defined on $[0, T]_<^2$ and $[0, T]_<^3$, see (1.7)-(1.8).

We are going to exploit the *weighted semi-norms* $\|\cdot\|_{\eta, \tau}$, see (1.33)-(1.34) (see also (1.9) for the original norm $\|\cdot\|_\eta$). These are useful to bound the *weighted supremum norm* $\|f\|_{\infty, \tau}$ of a function $f \in C_1$, see (1.37) and (1.40):

$$\|f\|_{\infty, \tau} \leq |f_0| + 3(\tau \wedge T)^\eta \|\delta f\|_{\eta, \tau}, \quad \forall \eta, \tau > 0. \quad (2.5)$$

It follows directly from the definitions (1.33)-(1.34) that

$$\|\cdot\|_{\eta, \tau} \leq (\tau \wedge T)^{\eta'} \|\cdot\|_{\eta + \eta', \tau}, \quad \forall \eta, \eta' > 0, \quad (2.6)$$

because $(t - s)^\eta \geq (t - s)^{\eta + \eta'} (\tau \wedge T)^{-\eta'}$ for $0 \leq s \leq t \leq T$ with $t - s \leq \tau$.

Remark 2.2. The factor $(\tau \wedge T)^{\eta'}$ in the RHS of (2.6) can be made small by choosing τ small while keeping T fixed. This is why we included the indicator function $\mathbb{1}_{\{0 < t - s \leq \tau\}}$ in the definition (1.33)-(1.34) of the norms $\|\cdot\|_{\eta, \tau}$: without this indicator function, instead of $(\tau \wedge T)^{\eta'}$ we would have $T^{\eta'}$, which is small only when T is small.

We will often work with functions $F \in C_2$ or $F \in C_3$ that are *product of two factors*, like $F_{st} = g_s H_{st}$ or $F_{sut} = G_{su} H_{ut}$. We show in the next result that the semi-norm $\|F\|_{\eta, \tau}$ can be controlled by a product of suitable norms for each factor.

LEMMA 2.3. (WEIGHTED BOUNDS) *For any $\eta, \eta' \in (0, \infty)$ and $\tau > 0$, we have*

$$\text{if } F_{st} = g_s H_{st} \text{ or } F_{st} = g_t H_{st} \quad \text{then} \quad \|F\|_{\eta, \tau} \leq \|g\|_{\infty, \tau} \|H\|_{\eta}, \quad (2.7)$$

$$\text{if } F_{sut} = G_{su} H_{ut} \quad \text{then} \quad \|F\|_{\eta + \eta', \tau} \leq \|G\|_{\eta, \tau} \|H\|_{\eta'}. \quad (2.8)$$

Proof. If $F_{st} = g_t H_{st}$, by (1.37) we can estimate $e^{-t/\tau} |g_t| \leq \|g\|_{\infty, \tau}$ to get (2.7). If $F_{st} = g_s H_{st}$, for $s \leq t$ we can bound $e^{-t/\tau} \leq e^{-s/\tau}$ in the definition (1.33)-(1.34) of $\|\cdot\|_{\eta, \tau}$, hence again by (1.37) we can estimate $e^{-s/\tau} |g_s| \leq \|g\|_{\infty, \tau}$ to get (2.7).

If $F_{sut} = G_{su} H_{ut}$, we can further bound $(t-s)^{\eta+\eta'} \geq (t-u)^\eta (u-s)^{\eta'}$ in (1.34) and then estimate $e^{-s/\tau} G_{su} / (u-s)^\eta \leq \|G\|_{\eta, \tau}$, which yields (2.8). \square

We stress that in the RHS of (2.7) and (2.8) *only one factor gets the weighted norm or semi-norm*, while the other factor gets the non-weighted norm $\|\cdot\|_{\eta}$. We will sometimes need an extra weight, which can be introduced as follows.

LEMMA 2.4. (EXTRA WEIGHT) *For any $\eta, \bar{\tau} \in (0, \infty)$ and $0 < \tau \leq \bar{\tau}$, we have*

$$\text{if } F_{st} = g_s H_{st} \text{ or } F_{st} = g_t H_{st} \quad \text{then} \quad \|F\|_{\eta, \tau} \leq \|g\|_{\infty, \tau} e^{\frac{\tau}{\bar{\tau}}} \|H\|_{\eta, \bar{\tau}}. \quad (2.9)$$

Proof. Recall the definition (1.33)-(1.34) of $\|\cdot\|_{\eta, \tau}$ and note that for $0 \leq s \leq t \leq T$ we have $e^{-t/\tau} |g_t| \leq \|g\|_{\infty, \tau}$ and $e^{-s/\tau} |g_s| \leq \|g\|_{\infty, \tau}$ (see the proof of Lemma 2.3). Finally, for $t-s \leq \tau \leq \bar{\tau}$ we can estimate $|H_{st}| \leq e^{T/\bar{\tau}} e^{-t/\bar{\tau}} |H_{st}| \leq e^{T/\bar{\tau}} \|H\|_{\eta, \bar{\tau}} (t-s)^\eta$. \square

We recall that $\mathbb{R}^k \otimes (\mathbb{R}^d)^* \simeq \mathbb{R}^{k \times d}$ is the space of linear applications from \mathbb{R}^d to \mathbb{R}^k equipped with the Hilbert-Schmidt (Euclidean) norm $|\cdot|$. We say that a function is of class C^m if it is continuously differentiable m times. Given $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ of class C^2 , that we represent by $\sigma_j^i(z)$ with $i \in \{1, \dots, k\}$ and $j \in \{1, \dots, d\}$, we denote by $\nabla \sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^* \otimes (\mathbb{R}^k)^*$ its gradient and by $\nabla^2 \sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^* \otimes (\mathbb{R}^k)^* \otimes (\mathbb{R}^k)^*$ its Hessian, represented for $i, a, b \in \{1, \dots, k\}$ and $j \in \{1, \dots, d\}$ by

$$(\nabla \sigma(z))_{ja}^i = \frac{\partial \sigma_j^i}{\partial z_a}(z), \quad (\nabla^2 \sigma(z))_{jab}^i = \frac{\partial^2 \sigma_j^i}{\partial z_a \partial z_b}(z).$$

Remark 2.5. (NORM OF THE GRADIENT OF LIPSCHITZ FUNCTIONS) For a *locally Lipschitz function* $\psi: \mathbb{R}^k \rightarrow \mathbb{R}^\ell$ we can define the “norm of the gradient” at any point (even where ψ may not be differentiable):

$$|\nabla \psi(z)| := \limsup_{y \rightarrow z} \frac{|\psi(y) - \psi(z)|}{|y - z|} \in [0, \infty).$$

Similarly, $|\nabla^2 \psi(z)|$ is well defined as soon as ψ is *differentiable with locally Lipschitz gradient* $\nabla \psi$ (which is slightly less than requiring $\psi \in C^2$).

2.3. A PRIORI ESTIMATES

In this section we prove *a priori estimates* for solutions of (2.3) assuming that σ is *globally Lipschitz*, that is $\|\nabla \sigma\|_\infty < \infty$ (recall Remark 2.5).

We first observe that if the driving path X is of class \mathcal{C}^α , then any solution Z of (2.3) is also of class \mathcal{C}^α , as soon as σ is continuous.

LEMMA 2.6. (HÖLDER REGULARITY) *Let X be of class \mathcal{C}^α with $\alpha \in]0, 1]$ and let σ be continuous. Then any solution Z of (2.3) is of class \mathcal{C}^α .*

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6) we have $|\delta Z_{st}| \leq C |\delta X_{st}| + o(t-s)$ with $C < \infty$. Since $|\delta X_{st}| \leq \|\delta X\|_\alpha (t-s)^\alpha$ and $o(t-s) = o((t-s)^\alpha)$ for any $\alpha \leq 1$, it follows that $Z \in \mathcal{C}^\alpha$. \square

We next formulate the announced a priori estimates. It is convenient to use the weighted semi-norms $\|\cdot\|_{\eta, \tau}$ in (1.33)-(1.34) (note that the usual norms $\|\cdot\|_\eta$ in (1.9) can be recovered by letting $\tau \rightarrow \infty$).

THEOREM 2.7. (A PRIORI ESTIMATES) *Let X be of class \mathcal{C}^α with $\alpha \in]\frac{1}{2}, 1]$ and let σ be globally γ -Hölder with $\gamma \in (\frac{1}{\alpha} - 1, 1]$. Then, for any solution $Z: [0, T] \rightarrow \mathbb{R}^k$ of (2.3), the remainder $Z_{st}^{[2]} := \delta Z_{st} - \sigma(Z_s) \delta X_{st}$ satisfies $Z^{[2]} \in C_2^{(\gamma+1)\alpha}$, more precisely for any $\tau > 0$*

$$\|Z^{[2]}\|_{(\gamma+1)\alpha, \tau} \leq C_{\alpha, \gamma, X, \sigma} \|\delta Z\|_{\alpha, \tau}^\gamma \quad \text{with } C_{\alpha, \gamma, X, \sigma} := K_{(\gamma+1)\alpha} \|\delta X\|_\alpha [\sigma]_{\mathcal{C}^\gamma}, \quad (2.10)$$

where $K_\eta = (1 - 2^{1-\eta})^{-1}$. Moreover, if either T or τ is small enough, we have

$$\|\delta Z\|_{\alpha, \tau} \leq 1 \vee (2 \|\delta X\|_\alpha |\sigma(Z_0)|) \quad \text{for } (\tau \wedge T)^{\alpha\gamma} \leq \varepsilon_{\alpha, \gamma, X, \sigma}, \quad (2.11)$$

where we define

$$\varepsilon_{\alpha, \gamma, X, \sigma} := \frac{1}{2(K_{(\gamma+1)\alpha} + 3) \|\delta X\|_\alpha [\sigma]_{\mathcal{C}^\gamma}}. \quad (2.12)$$

If σ is globally Lipschitz, namely if we can take $\gamma = 1$, we can improve (2.11) to

$$\|\delta Z\|_{\alpha, \tau} \leq 2 \|\delta X\|_\alpha |\sigma(Z_0)| \quad \text{for } (\tau \wedge T)^\alpha \leq \varepsilon_{\alpha, 1, X, \sigma}. \quad (2.13)$$

Proof. We first prove (2.10). Since $Z_{st}^{[2]} = o(t-s)$ by definition of solution, see (2.4), we can estimate $Z^{[2]}$ in terms of $\delta Z^{[2]}$, by the weighted Sewing Bound (1.41). Let us compute $\delta Z_{sut}^{[2]} = Z_{st}^{[2]} - Z_{su}^{[2]} - Z_{ut}^{[2]}$: recalling (2.4) and (1.32), since $\delta \circ \delta = 0$, we have

$$\delta Z_{sut}^{[2]} = \delta \sigma(Z)_{su} \delta X_{ut} = (\sigma(Z_u) - \sigma(Z_s)) (X_t - X_u). \quad (2.14)$$

Since $|\sigma(z) - \sigma(\bar{z})| \leq [\sigma]_{\mathcal{C}^\gamma} |z - \bar{z}|^\gamma$ for all $z, \bar{z} \in \mathbb{R}^d$, we can bound

$$\|\delta \sigma(Z)\|_{\gamma\alpha, \tau} \leq [\sigma]_{\mathcal{C}^\gamma} \|\delta Z\|_{\alpha, \tau}^\gamma, \quad (2.15)$$

hence by (2.8) we obtain

$$\|\delta Z^{[2]}\|_{(\gamma+1)\alpha, \tau} \leq \|\delta X\|_\alpha [\sigma]_{\mathcal{C}^\gamma} \|\delta Z\|_{\alpha, \tau}^\gamma.$$

Applying the weighted Sewing Bound (1.41), for $(\gamma+1)\alpha > 1$ we then obtain

$$\|Z^{[2]}\|_{(\gamma+1)\alpha, \tau} \leq K_{(\gamma+1)\alpha} \|\delta X\|_\alpha [\sigma]_{\mathcal{C}^\gamma} \|\delta Z\|_{\alpha, \tau}^\gamma, \quad (2.16)$$

which proves (2.10).

We next prove (2.11). To simplify notation, let us set $\varepsilon := (\tau \wedge T)^\alpha$. Recalling (2.7) and (2.6), we obtain by (2.4)

$$\begin{aligned} \|\delta Z\|_{\alpha,\tau} &\leq \|\sigma(Z) \delta X\|_{\alpha,\tau} + \|Z^{[2]}\|_{\alpha,\tau} \\ &\leq \|\sigma(Z)\|_{\infty,\tau} \|\delta X\|_\alpha + \varepsilon^\gamma \|Z^{[2]}\|_{(\gamma+1)\alpha,\tau}. \end{aligned} \quad (2.17)$$

We can estimate $\|\sigma(Z)\|_{\infty,\tau}$ by (2.5) and (2.15):

$$\|\sigma(Z)\|_{\infty,\tau} \leq |\sigma(Z_0)| + 3\varepsilon^\gamma [\sigma]_{C^\gamma} \|\delta Z\|_{\alpha,\tau}^\gamma.$$

Plugging this and (2.16) into (2.17), we get

$$\begin{aligned} \|\delta Z\|_{\alpha,\tau} &\leq (|\sigma(Z_0)| + 3\varepsilon^\gamma [\sigma]_{C^\gamma} \|\delta Z\|_{\alpha,\tau}^\gamma) \|\delta X\|_\alpha + \\ &\quad + \varepsilon^\gamma K_{(\gamma+1)\alpha} \|\delta X\|_\alpha [\sigma]_{C^\gamma} \|\delta Z\|_{\alpha,\tau}^\gamma \\ &= \|\delta X\|_\alpha |\sigma(Z_0)| + \frac{1}{2} \frac{\varepsilon^\gamma}{\varepsilon_{\alpha,\gamma,X,\sigma}} \|\delta Z\|_{\alpha,\tau}^\gamma, \end{aligned}$$

where $\varepsilon_{\alpha,\gamma,X,\sigma}$ is defined in (2.12). For $\varepsilon^\gamma \leq \varepsilon_{\alpha,\gamma,X,\sigma}$ the last term is bounded by $\frac{1}{2} \|\delta Z\|_{\alpha,\tau}^\gamma$ which is finite by Lemma 2.6. If $\|\delta Z\|_{\alpha,\tau} \leq 1$ then (2.11) holds trivially; if not, $\frac{1}{2} \|\delta Z\|_{\alpha,\tau}^\gamma \leq \frac{1}{2} \|\delta Z\|_{\alpha,\tau}$. Bringing this term in the LHS we obtain (2.11).

To prove (2.13), we argue as for (2.11) and since $\gamma = 1$ we obtain

$$\|\delta Z\|_{\alpha,\tau} \leq \|\delta X\|_\alpha |\sigma(Z_0)| + \frac{1}{2} \frac{\varepsilon}{\varepsilon_{\alpha,1,X,\sigma}} \|\delta Z\|_{\alpha,\tau}.$$

For $\varepsilon \leq \varepsilon_{\alpha,1,X,\sigma}$ the last term is bounded by $\frac{1}{2} \|\delta Z\|_{\alpha,\tau}$ which is finite by Lemma 2.6. Bringing this term in the LHS we obtain (2.13), and this completes the proof. \square

2.4. UNIQUENESS

In this section we prove uniqueness of solutions to (2.3) assuming that σ is of class C^1 with locally Hölder gradient (we stress that we make no boundedness assumption on σ). This improves on Theorem 1.7, both because we allow for non-linear σ and because we do not require that the time horizon $T > 0$ is small.

We first need an elementary but fundamental estimate on the difference of increments of a function. Given $\Psi: \mathbb{R}^k \rightarrow \mathbb{R}^\ell$, we use the notation

$$C_{\Psi,R} := \sup \{ |\Psi(x)|: x \in \mathbb{R}^k, |x| \leq R \}. \quad (2.18)$$

LEMMA 2.8. (DIFFERENCE OF INCREMENTS) *Let $\psi: \mathbb{R}^k \rightarrow \mathbb{R}^\ell$ be of class $\mathcal{C}_{\text{loc}}^{1+\rho}$ for some $0 < \rho \leq 1$ (i.e. ψ is differentiable with $\nabla \psi$ of class $\mathcal{C}_{\text{loc}}^\rho$). Then for any $R > 0$ and for all $x, \bar{x}, y, \bar{y} \in \mathbb{R}^k$ with $\max \{ |x|, |y|, |\bar{x}|, |\bar{y}| \} \leq R$ we can estimate*

$$\begin{aligned} &|[\psi(x) - \psi(y)] - [\psi(\bar{x}) - \psi(\bar{y})]| \\ &\leq C'_R |(x - y) - (\bar{x} - \bar{y})| + C''_R \{ |x - y|^\rho + |\bar{x} - \bar{y}|^\rho \} |y - \bar{y}|, \end{aligned} \quad (2.19)$$

where $C'_R := \sup \{ |\nabla \psi(x)|: |x| \leq R \}$ and $C''_R := \sup \left\{ \frac{|\nabla \psi(x) - \nabla \psi(y)|}{|x - y|^\rho}: |x|, |y| \leq R \right\}$.

Proof. For $z, w \in \mathbb{R}^k$ we can write

$$\psi(z) - \psi(w) = \hat{\psi}(z, w)(z - w),$$

where $\hat{\psi}(z, w) := \int_0^1 \nabla \psi(u z + (1 - u) w) du \in \mathbb{R}^\ell \otimes (\mathbb{R}^k)^*$, therefore

$$\begin{aligned} [\psi(x) - \psi(y)] - [\psi(\bar{x}) - \psi(\bar{y})] &= [\psi(x) - \psi(\bar{x})] - [\psi(y) - \psi(\bar{y})] \\ &= \hat{\psi}(x, \bar{x})(x - \bar{x}) - \hat{\psi}(y, \bar{y})(y - \bar{y}) \\ &= \hat{\psi}(x, \bar{x})[(x - \bar{x}) - (y - \bar{y})] \\ &\quad + [\hat{\psi}(x, \bar{x}) - \hat{\psi}(y, \bar{y})](y - \bar{y}). \end{aligned}$$

By definition of C'_R and C''_R we have $|\hat{\psi}(x, \bar{x})| \leq C'_R$ and

$$\begin{aligned} |\hat{\psi}(x, \bar{x}) - \hat{\psi}(y, \bar{y})| &\leq |\hat{\psi}(x, \bar{x}) - \hat{\psi}(y, \bar{x})| + |\hat{\psi}(y, \bar{x}) - \hat{\psi}(y, \bar{y})| \\ &\leq C''_R \{ |x - y|^\rho + |\bar{x} - \bar{y}|^\rho \}, \end{aligned}$$

hence (2.19) follows. \square

We are now ready to state and prove the announced uniqueness result.

THEOREM 2.9. (UNIQUENESS) *Let X be of class \mathcal{C}^α with $\alpha \in \left] \frac{1}{2}, 1 \right]$ and let σ be of class \mathcal{C}^γ for some $\gamma > \frac{1}{\alpha}$ (for instance, we can take $\sigma \in \mathcal{C}^2$). Then for every $z_0 \in \mathbb{R}^k$ there exists at most one solution Z to (2.3) with $Z_0 = z_0$.*

Proof. Let Z and \bar{Z} be two solutions of (2.3), i.e. they satisfy (2.4), and set

$$Y := Z - \bar{Z}.$$

We want to show that, for $\tau > 0$ small enough, we have

$$\|Y\|_{\infty, \tau} \leq 2|Y_0|,$$

where the weighted norm $\|\cdot\|_{\infty, \tau}$ was defined in (1.37). In particular, if we assume that $Z_0 = \bar{Z}_0$, we obtain $\|Y\|_{\infty, \tau} = 0$ and hence $Z = \bar{Z}$.

We know by (2.5) that for any $\tau > 0$

$$\|Y\|_{\infty, \tau} \leq |Y_0| + 3\tau^\alpha \|\delta Y\|_{\alpha, \tau}, \quad (2.20)$$

where we recall that the weighted semi-norm $\|\cdot\|_{\alpha, \tau}$ was defined in (1.33). We now define $Y^{[2]}$ as the difference between the remainders $Z^{[2]}$ and $\bar{Z}^{[2]}$ of the solutions Z and \bar{Z} as defined in (2.4), that is

$$Y_{st}^{[2]} := Z_{st}^{[2]} - \bar{Z}_{st}^{[2]} = \delta Y_{st} - (\sigma(Z_s) - \sigma(\bar{Z}_s)) \delta X_{st}. \quad (2.21)$$

(We are slightly abusing notation, since $Y^{[2]}$ is not the remainder of Y when σ is not linear.) By assumption $\sigma \in \mathcal{C}^\gamma$ for some $\gamma > \frac{1}{\alpha}$: renaming γ as $\gamma \wedge 2$, we may assume that $\gamma \in \left] \frac{1}{\alpha}, 2 \right]$. We are going to prove the following inequalities: for any $\tau > 0$

$$\|\delta Y\|_{\alpha, \tau} \leq c_1 \|Y\|_{\infty, \tau} + \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha, \tau}, \quad (2.22)$$

$$\|Y^{[2]}\|_{\gamma\alpha, \tau} \leq c_2 \|Y\|_{\infty, \tau} + c'_2 \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha, \tau}, \quad (2.23)$$

for finite constants c_i, c'_i that may depend on X, σ, Z, \bar{Z} but not on τ .

Let us complete the proof assuming (2.22) and (2.23). Note that $(\gamma - 1)\alpha > 0$ by assumption. If we fix $\tau > 0$ small, so that $c'_2 \tau^{(\gamma-1)\alpha} < \frac{1}{2}$, from (2.23) we get $\|Y^{[2]}\|_{\gamma\alpha,\tau} \leq 2c_2 \|Y\|_{\infty,\tau}$ which plugged into (2.22) yields $\|\delta Y\|_{\alpha,\tau} \leq 2c_1 \|Y\|_{\infty,\tau}$ for $\tau > 0$ small (it suffices that $2c_2 \tau^{(\gamma-1)\alpha} < c_1$). Finally, plugging this into (2.20) and possibly choosing $\tau > 0$ even smaller, we obtain our goal $\|Y\|_{\infty,\tau} \leq 2|Y_0|$ which completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set

$$\begin{aligned} C'_1 &:= \sup \{ |\nabla \sigma(x)| : |x| \leq \|Z\|_\infty \vee \|\bar{Z}\|_\infty \}, \\ C''_1 &:= \sup \left\{ \frac{|\nabla \sigma(x) - \nabla \sigma(y)|}{|x - y|^\rho} : |x|, |y| \leq \|Z\|_\infty \vee \|\bar{Z}\|_\infty \right\}. \end{aligned}$$

so that $|\sigma(Z_t) - \sigma(\bar{Z}_t)| \leq C'_1 |Z_t - \bar{Z}_t|$ and, therefore,

$$\|\sigma(Z) - \sigma(\bar{Z})\|_{\infty,\tau} \leq C'_1 \|Y\|_{\infty,\tau}. \quad (2.24)$$

We now exploit (2.21) to estimate $\|\delta Y\|_{\alpha,\tau}$: applying (2.7) we obtain

$$\begin{aligned} \|\delta Y\|_{\alpha,\tau} &\leq \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty,\tau} \|\delta X\|_\alpha + \|Y^{[2]}\|_{\alpha,\tau} \\ &\leq C'_1 \|Y\|_{\infty,\tau} \|\delta X\|_\alpha + \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha,\tau}, \end{aligned} \quad (2.25)$$

where we note that $\|Y^{[2]}\|_{\alpha,\tau} \leq \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha,\tau}$ by (2.6). We have shown that (2.22) holds with $c_1 = C'_1 \|\delta X\|_\alpha$.

We finally prove (2.23). Since $Y_{st}^{[2]} = o(t-s)$, see (2.21) and (2.4), we bound $Z^{[2]}$ by its increment $\delta Z^{[2]}$ through the weighted Sewing Bound (1.41):

$$\|Y^{[2]}\|_{\gamma\alpha,\tau} \leq K_{\gamma\alpha} \|\delta Y^{[2]}\|_{\gamma\alpha,\tau}, \quad (2.26)$$

hence we focus on $\|\delta Y^{[2]}\|_{\gamma\alpha,\tau}$. By (2.21) and (1.32), since $\delta \circ \delta = 0$, we have

$$\delta Y_{sut}^{[2]} = (\delta \sigma(Z)_{su} - \delta \sigma(\bar{Z})_{su}) \delta X_{ut}. \quad (2.27)$$

Applying the estimate (2.19) for $x = Z_u, y = Z_s, \bar{x} = \bar{Z}_u, \bar{y} = \bar{Z}_s$, we can write

$$\begin{aligned} |\delta \sigma(Z)_{su} - \delta \sigma(\bar{Z})_{su}| &\leq C'_1 |\delta Z_{su} - \delta \bar{Z}_{su}| + C''_1 \{ |\delta Z_{su}|^{\gamma-1} + |\delta \bar{Z}_{su}|^{\gamma-1} \} |Z_s - \bar{Z}_s| \\ &= C'_1 |\delta Y_{su}| + C''_1 \{ |\delta Z_{su}|^{\gamma-1} + |\delta \bar{Z}_{su}|^{\gamma-1} \} |Y_s|. \end{aligned} \quad (2.28)$$

hence by (2.7) we get

$$\begin{aligned} \|\delta \sigma(Z) - \delta \sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} &\leq C'_1 \|\delta Y\|_{(\gamma-1)\alpha,\tau} + \\ &\quad + C''_1 \{ \|\delta Z\|_\alpha^{\gamma-1} + \|\delta \bar{Z}\|_\alpha^{\gamma-1} \} \|Y\|_{\infty,\tau}. \end{aligned} \quad (2.29)$$

If we take $\tau \leq 1$ we can bound $\|\delta Y\|_{(\gamma-1)\alpha,\tau} \leq \|\delta Y\|_{\alpha,\tau}$ by (2.6) (recall that we are assuming $\gamma \leq 2$). Then by (2.27) we obtain, recalling (2.8),

$$\|\delta Y^{[2]}\|_{\gamma\alpha,\tau} \leq \|\delta X\|_\alpha \|\delta \sigma(Z) - \delta \sigma(\bar{Z})\|_{(\gamma-1)\alpha,\tau} \leq \tilde{c}_1 (\|\delta Y\|_{\alpha,\tau} + \|Y\|_{\infty,\tau}),$$

for a suitable (explicit) constant $\tilde{c}_1 = \tilde{c}_1(\sigma, Z, \bar{Z}, X)$. Applying (2.22), we obtain

$$\|\delta Y^{[2]}\|_{\gamma\alpha,\tau} \leq (c_1 + 1) \tilde{c}_1 \|Y\|_{\infty,\tau} + \tilde{c}_1 \tau^{(\gamma-1)\alpha} \|Y^{[2]}\|_{\gamma\alpha,\tau},$$

which plugged into (2.26) shows that (2.23) holds. The proof is complete. \square

We conclude with an example of (2.19).

Example 2.10. If $\sigma: \mathbb{R} \rightarrow \mathbb{R}$ is $\sigma(x) = x^2$, then we have

$$\begin{aligned} & (\sigma(x) - \sigma(y)) - (\sigma(\bar{x}) - \sigma(\bar{y})) \\ &= (x^2 - y^2) - (\bar{x}^2 - \bar{y}^2) = (x^2 - \bar{x}^2) - (y^2 - \bar{y}^2) \\ &= (x - \bar{x})(x + \bar{x}) - (y - \bar{y})(y + \bar{y}) \\ &= [(x - \bar{x}) - (y - \bar{y})](y + \bar{y}) + (x - \bar{x})[(x + \bar{x}) - (y + \bar{y})] \\ &= [(x - \bar{x}) - (y - \bar{y})](y + \bar{y}) + (x - \bar{x})[(x - y) + (\bar{x} - \bar{y})], \end{aligned}$$

where in the second last equality we have summed and subtracted $(y - \bar{y})(x + \bar{x})$. If we use this formula for $x = Z_t$, $y = Z_s$ and $\bar{x} = \bar{Z}_t$, $\bar{y} = \bar{Z}_s$, then we obtain

$$\delta(Z^2 - \bar{Z}^2)_{st} = \delta(Z - \bar{Z})_{st} (Z_s + \bar{Z}_s) + (Z_t - \bar{Z}_t) [\delta Z_{st} + \delta \bar{Z}_{st}],$$

which is in the spirit of (2.19) with $\rho = 1$. It follows that

$$\|\delta(Z^2 - \bar{Z}^2)\|_\alpha \leq 2 \|\bar{Z}\|_\infty \|\delta(Z - \bar{Z})\|_\alpha + \|Z - \bar{Z}\|_\infty [\|\delta Z\|_\alpha + \|\delta \bar{Z}\|_\alpha],$$

which is the form that (2.29) takes in this particular case.

2.5. CONTINUITY OF THE SOLUTION MAP

In this section we assume that σ is *globally Lipschitz* and of class C^1 with a *globally γ -Hölder gradient*, i.e. $\|\nabla \sigma\|_\infty < \infty$ and $[\nabla \sigma]_{C^\gamma} < \infty$, with $\gamma > \frac{1}{\alpha}$. Under these assumptions, we have *global existence and uniqueness* of solutions $Z: [0, T] \rightarrow \mathbb{R}^k$ to (2.3) for any time horizon $T > 0$, for any starting point $Z_0 \in \mathbb{R}^k$ and for any driving path X of class \mathcal{C}^α with $\frac{1}{2} < \alpha \leq 1$ (as we will prove in Section 2.6).

We can thus consider the *solution map*:

$$\begin{aligned} \Phi: \mathbb{R}^k \times \mathcal{C}^\alpha &\longrightarrow \mathcal{C}^\alpha \\ (Z_0, X) &\longmapsto Z := \begin{cases} \text{unique solution of (2.3) for } t \in [0, T] \\ \text{starting from } Z_0 \end{cases} . \end{aligned} \quad (2.30)$$

We prove in this section that this map is *continuous*, in fact *locally Lipschitz*.

Remark 2.11. The continuity of the solution map is a highly non-trivial property. Indeed, when X is of class C^1 , note that Z solves the equation

$$Z_t = Z_0 + \int_0^t \sigma(Z_s) \dot{X}_s \, ds, \quad (2.31)$$

which is based on the derivative \dot{X} of X . We instead consider driving paths $X \in \mathcal{C}^\alpha$ with $\alpha \in \left] \frac{1}{2}, 1 \right]$ which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds also in more complex situations such as $X \in \mathcal{C}^\alpha$ with $\alpha \leq \frac{1}{2}$, which cover the case when X is a Brownian motion and Z is the solution to a SDE.

Before stating the continuity of the solution map, we recall that the space \mathcal{C}^α is equipped with the norm $\|f\|_{\mathcal{C}^\alpha} := \|f\|_\infty + \|\delta f\|_\alpha$, see Remark 1.4, but *an equivalent norm is $\|f\|_{\infty,\tau} + \|\delta f\|_{\alpha,\tau}$ for any choice of the weight $\tau > 0$* , see Remark 1.15.

THEOREM 2.12. (CONTINUITY OF THE SOLUTION MAP) *Let σ be globally Lipschitz with a globally $(\gamma - 1)$ -Hölder gradient: $\|\nabla\sigma\|_\infty < \infty$ and $[\nabla\sigma]_{\mathcal{C}^{\gamma-1}} < \infty$, with $\gamma \in (\frac{1}{\alpha}, 2]$. Then, for any $T > 0$ and $\alpha \in [\frac{1}{2}, 1]$, the solution map $(Z_0, X) \mapsto Z$ in (2.30) is locally Lipschitz.*

More explicitly, given $M_0, M, D < \infty$, if we assume that

$$\max \{ \|\nabla\sigma\|_\infty, [\nabla\sigma]_{\mathcal{C}^{\gamma-1}} \} \leq D,$$

and we consider starting points $Z_0, \bar{Z}_0 \in \mathbb{R}^d$ and driving paths $X, \bar{X} \in \mathcal{C}^\alpha$ with

$$\max \{ |\sigma(Z_0)|, |\sigma(\bar{Z}_0)| \} \leq M_0, \quad \max \{ \|\delta X\|_\alpha, \|\delta \bar{X}\|_\alpha \} \leq M, \quad (2.32)$$

then the corresponding solutions $Z = (Z_s)_{s \in [0, T]}$, $\bar{Z} = (\bar{Z}_s)_{s \in [0, T]}$ of (2.3) satisfy

$$\|Z - \bar{Z}\|_{\infty,\tau} + \|\delta Z - \delta \bar{Z}\|_{\alpha,\tau} \leq \mathfrak{C}_M |Z_0 - \bar{Z}_0| + 6 M_0 \|\delta X - \delta \bar{X}\|_\alpha, \quad (2.33)$$

provided $0 < \tau \wedge T \leq \hat{\tau}$ for a suitable $\hat{\tau} = \hat{\tau}_{\alpha, \gamma, T, D, M_0, M} > 0$, where we set

$$\mathfrak{C}_M := 2 (\|\nabla\sigma\|_\infty M + 1) \leq 2 (D M + 1).$$

Proof. Let us define the constant

$$\mathfrak{c}_M := \|\nabla\sigma\|_\infty M \leq D M. \quad (2.34)$$

We fix two solutions Z and \bar{Z} of (2.3) with respective driving paths X and \bar{X} . If we define $Y := Z - \bar{Z}$, we can rewrite our goal (2.33) as

$$\|Y\|_{\infty,\tau} + \|\delta Y\|_{\alpha,\tau} \leq 6 M_0 \|\delta X - \delta \bar{X}\|_\alpha + 2 (\mathfrak{c}_M + 1) |Y_0|. \quad (2.35)$$

Let us introduce the shorthand

$$\varepsilon := (\tau \wedge T)^\alpha$$

and let us agree that, whenever we write *for ε small enough* we mean *for $0 < \varepsilon \leq \varepsilon_0$ for a suitable $\varepsilon_0 > 0$ which depends on α, T, M_0, M, D* . By (2.5), *for ε small enough*,

$$\|Y\|_{\infty,\tau} \leq |Y_0| + \varepsilon \|\delta Y\|_{\alpha,\tau} \leq |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}, \quad (2.36)$$

hence to prove (2.35) we can focus on $\|\delta Y\|_{\alpha,\tau}$.

Recalling (2.4), let us define $Y^{[2]} := Z^{[2]} - \bar{Z}^{[2]}$. We are going to establish the following two relations, *for ε small enough*:

$$\frac{4}{5} \|\delta Y\|_{\alpha,\tau} \leq 2 M_0 \|\delta X - \delta \bar{X}\|_\alpha + \mathfrak{c}_M |Y_0| + \|Y^{[2]}\|_{\alpha,\tau}, \quad (2.37)$$

$$\|Y^{[2]}\|_{\alpha,\tau} \leq M_0 \|\delta X - \delta \bar{X}\|_\alpha + \frac{1}{2} |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha,\tau}. \quad (2.38)$$

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).

It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

$$\bar{\varepsilon} = \bar{\varepsilon}_{\alpha, D, M} := \frac{1}{2(K_{2\alpha} + 3)DM}. \quad (2.39)$$

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have

$$\text{for } \varepsilon = (\tau \wedge T)^\alpha \leq \bar{\varepsilon}: \quad \max\{\|\delta Z\|_{\alpha, \tau}, \|\delta \bar{Z}\|_{\alpha, \tau}\} \leq 2M_0 M, \quad (2.40)$$

therefore

$$\|\delta \sigma(Z)\|_{\alpha, \tau} \leq \|\nabla \sigma\|_\infty \|\delta Z\|_{\alpha, \tau} \leq 2 \|\nabla \sigma\|_\infty M_0 M = 2M_0 \mathfrak{c}_M, \quad (2.41)$$

and applying (2.5) and (2.32) we get, *for ε small enough*,

$$\|\sigma(Z)\|_{\infty, \tau} \leq |\sigma(Z_0)| + 3\varepsilon \|\delta \sigma(Z)\|_{\alpha, \tau} \leq M_0 (1 + 6\mathfrak{c}_M \varepsilon) \leq 2M_0. \quad (2.42)$$

We can now prove (2.37). Defining $Y^{[2]} := Z^{[2]} - \bar{Z}^{[2]}$, we obtain from (2.4)

$$\begin{aligned} \delta Y_{st} &= \delta Z_{st} - \delta \bar{Z}_{st} = \sigma(Z_s) \delta X_{st} - \sigma(\bar{Z}_s) \delta \bar{X}_{st} + Y_{st}^{[2]} \\ &= \sigma(Z_s) (\delta X - \delta \bar{X})_{st} + (\sigma(Z_s) - \sigma(\bar{Z}_s)) \delta \bar{X}_{st} + Y_{st}^{[2]}, \end{aligned}$$

hence by (2.7) we can bound

$$\begin{aligned} \|\delta Y\|_{\alpha, \tau} &\leq \|\sigma(Z)\|_{\infty, \tau} \|\delta X - \delta \bar{X}\|_\alpha \\ &\quad + \|\delta \bar{X}\|_\alpha \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty, \tau} + \|Y^{[2]}\|_{\alpha, \tau}. \end{aligned} \quad (2.43)$$

Let us look at the second term in the RHS of (2.43): by (2.5)

$$\begin{aligned} \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty, \tau} &\leq \|\nabla \sigma\|_\infty \|Z - \bar{Z}\|_{\infty, \tau} \\ &\leq \|\nabla \sigma\|_\infty (|Y_0| + 3\varepsilon \|\delta Y\|_{\alpha, \tau}). \end{aligned} \quad (2.44)$$

Hence by (2.32) and (2.34) we get, *for ε small enough*,

$$\|\delta \bar{X}\|_\alpha \|\sigma(Z) - \sigma(\bar{Z})\|_{\infty, \tau} \leq \mathfrak{c}_M |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha, \tau}. \quad (2.45)$$

Plugging this into (2.43) we then obtain, by (2.42),

$$\frac{4}{5} \|\delta Y\|_{\alpha, \tau} \leq 2M_0 \|\delta X - \delta \bar{X}\|_\alpha + \mathfrak{c}_M |Y_0| + \|Y^{[2]}\|_{\alpha, \tau}, \quad (2.46)$$

which proves (2.37).

We finally prove (2.38). Since $Y_{st}^{[2]} = Z_{st}^{[2]} - \bar{Z}_{st}^{[2]} = o(t-s)$, see (2.4), the weighted Sewing Bound (1.41) and (2.6) give

$$\|Y^{[2]}\|_{\alpha, \tau} \leq \varepsilon^{\gamma-1} \|Y^{[2]}\|_{\gamma\alpha, \tau} \leq K_{\gamma\alpha} \varepsilon^{\gamma-1} \|\delta Y^{[2]}\|_{\gamma\alpha, \tau}. \quad (2.47)$$

To estimate $\delta Y^{[2]} = \delta Z^{[2]} - \delta \bar{Z}^{[2]}$, note that by (2.4) and (1.32) we can write

$$\delta Y_{sut}^{[2]} = \delta \sigma(Z)_{su} (\delta X - \delta \bar{X})_{ut} + (\delta \sigma(Z) - \delta \sigma(\bar{Z}))_{su} \delta \bar{X}_{ut}, \quad (2.48)$$

hence by (2.8)

$$\|\delta Y^{[2]}\|_{\gamma\alpha, \tau} \leq \|\delta \sigma(Z)\|_{(\gamma-1)\alpha, \tau} \|\delta X - \delta \bar{X}\|_\alpha + \|\delta \bar{X}\|_\alpha \|\delta \sigma(Z) - \delta \sigma(\bar{Z})\|_{(\gamma-1)\alpha, \tau}. \quad (2.49)$$

The first term is easy to control: by (2.41), *for ε small enough*,

$$K_{\gamma\alpha} \varepsilon^{\gamma-1} \|\delta\sigma(Z)\|_{(\gamma-1)\alpha, \tau} \|\delta X - \delta\bar{X}\|_\alpha \leq M_0 \|\delta X - \delta\bar{X}\|_\alpha. \quad (2.50)$$

Let us now focus on the second term. By (2.19) we have, see also (2.28),

$$|\delta\sigma(Z)_{su} - \delta\sigma(\bar{Z})_{su}| \leq \|\nabla\sigma\|_\infty |\delta Y_{su}| + [\nabla\sigma]_{C^{\gamma-1}} \{|\delta Z_{su}|^{\gamma-1} + |\delta\bar{Z}_{su}|^{\gamma-1}\} |Y_s|.$$

We apply (2.9) for $H = \delta Z$, $g = Y$ and $\bar{\tau} = (\bar{\varepsilon})^{1/\alpha}$ from (2.39):

$$\begin{aligned} \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha, \tau} &\leq \|\nabla\sigma\|_\infty \|\delta Y\|_{(\gamma-1)\alpha, \tau} + \\ &\quad + [\nabla\sigma]_{C^{\gamma-1}} e^{\frac{T}{\bar{\tau}}} (\|\delta Z\|_{\alpha, \bar{\tau}}^{\gamma-1} + \|\delta\bar{Z}\|_{\alpha, \bar{\tau}}^{\gamma-1}) \|Y\|_{\infty, \tau} \\ &\leq D \|\delta Y\|_{\alpha, \tau} + 2(2M_0 M)^{\gamma-1} e^{\frac{T}{\bar{\tau}}} D \|Y\|_{\infty, \tau}, \end{aligned} \quad (2.51)$$

where we applied (2.40). Hence by (2.51), recalling (2.32), *for ε small enough* we obtain

$$K_{\gamma\alpha} \varepsilon^{\gamma-1} \|\delta\bar{X}\|_\alpha \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha, \tau} \leq \frac{1}{10} \|\delta Y\|_{\alpha, \tau} + \frac{1}{2} \|Y\|_{\infty, \tau}, \quad (2.52)$$

and since $\|Y\|_{\infty, \tau} \leq |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha, \tau}$, see (2.36), we obtain

$$K_{\gamma\alpha} \varepsilon^{\gamma-1} \|\delta\bar{X}\|_\alpha \|\delta\sigma(Z) - \delta\sigma(\bar{Z})\|_{(\gamma-1)\alpha, \tau} \leq \frac{1}{2} |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha, \tau}.$$

Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain

$$\|Y^{[2]}\|_{\alpha, \tau} \leq M_0 \|\delta X - \delta\bar{X}\|_\alpha + \frac{1}{2} |Y_0| + \frac{1}{5} \|\delta Y\|_{\alpha, \tau},$$

which proves (2.38) and completes the proof. \square

Remark 2.13. An explicit choice for $\hat{\tau}$ in Theorem 2.12 is

$$\hat{\tau}^\alpha := \frac{e^{-\frac{T}{\bar{\tau}}}}{10(K_{2\alpha} + 3)(1 + M_0)(1 + D(M + M^2))}, \quad (2.53)$$

with $\bar{\tau} = \bar{\tau}_{\alpha, D, M}$ defined in (2.39). This is obtained by tracking all the points in the proof of Theorem 2.12 where $\varepsilon = (\tau \wedge T)^\alpha$ was assumed to be *small enough*: see Section 2.8 for the details.

2.6. EULER SCHEME AND LOCAL/GLOBAL EXISTENCE

In this section we discuss *global existence of solutions*, under the assumption that σ is globally γ -Hölder with $\gamma \in (\frac{1}{\alpha} - 1, 1]$, i.e. $[\sigma]_{C^\gamma} < \infty$ (again with no boundedness assumption on σ). We also state a result of *local existence of solutions* for equation (2.3), where we only assume that σ is *locally* γ -Hölder with $\gamma \in (\frac{1}{\alpha} - 1, 1]$ (with no boundedness assumption on σ).

We fix $X: [0, T] \rightarrow \mathbb{R}^d$ of class C^α with $\alpha \in [\frac{1}{2}, 1]$ and a starting point $z_0 \in \mathbb{R}^k$. We split the proof in two parts: we first assume that $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ is globally γ -Hölder, then we consider the case when σ is locally γ -Hölder.

First part: globally Hölder case.

We consider a finite set $\mathbb{T} = \{0 = t_1 < \dots < t_{\#\mathbb{T}}\} \subset \mathbb{R}_+$ and we define an approximate solution $Z = Z^{\mathbb{T}} = (Z_t)_{t \in \mathbb{T}}$ through the *Euler scheme*

$$Z_0 := z_0, \quad Z_{t_{i+1}} := Z_{t_i} + \sigma(Z_{t_i}) \delta X_{t_i, t_{i+1}} \quad \text{for } 1 \leq i \leq \#\mathbb{T} - 1. \quad (2.54)$$

Let us define the “remainder”

$$R_{st} := \delta Z_{st} - \sigma(Z_s) \delta X_{st} \quad \text{for } s < t \in \mathbb{T}. \quad (2.55)$$

We assume that σ is *globally γ -Hölder*, namely $[\sigma]_{\mathcal{C}^\gamma} < \infty$, with $\gamma \in (\frac{1}{\alpha} - 1, 1]$. We set

$$\hat{\varepsilon}_{\alpha, \gamma, X, \sigma} := \frac{1}{2(C_{(\gamma+1)\alpha} + 5) \|\delta X\|_\alpha [\sigma]_{\mathcal{C}^\gamma}}, \quad (2.56)$$

where the constant C_η is defined in (1.45). We prove the following *a priori estimates* on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

LEMMA 2.14. *If σ is globally γ -Hölder, namely $[\sigma]_{\mathcal{C}^\gamma} < \infty$, with $\gamma \in (\frac{1}{\alpha} - 1, 1]$, then*

$$\|R\|_{(\gamma+1)\alpha}^{\mathbb{T}} \leq C_{(\gamma+1)\alpha} [\sigma]_{\mathcal{C}^\gamma} (\|\delta Z\|_\alpha^{\mathbb{T}})^\gamma \|\delta X\|_\alpha, \quad (2.57)$$

$$\text{and for } \tau^{\gamma\alpha} \leq \hat{\varepsilon}_{\alpha, \gamma, X, \sigma}: \quad \|\delta Z\|_\alpha^{\mathbb{T}} \leq 1 \vee (2|\sigma(z_0)| \|\delta X\|_\alpha). \quad (2.58)$$

Proof. Since $\delta R_{sut} = (\sigma(Z_s) - \sigma(Z_u)) \delta X_{ut}$, recall (1.32), and since $R_{t_i t_{i+1}} = 0$ by (2.54), we can apply the discrete Sewing Bound (1.45) with $\eta = (\gamma+1)\alpha > 1$ to get

$$\|R\|_{(\gamma+1)\alpha, \tau}^{\mathbb{T}} \leq C_{(\gamma+1)\alpha} \|\delta R\|_{(\gamma+1)\alpha, \tau}^{\mathbb{T}} \leq C_{(\gamma+1)\alpha} [\sigma]_{\mathcal{C}^\gamma} (\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}})^\gamma \|\delta X\|_\alpha. \quad (2.59)$$

We have proved (2.57).

We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for $\|\cdot\|_{\gamma\alpha, \mathbb{T}_n}$,

$$\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}} \leq \|\sigma(Z)\|_{\infty, \tau}^{\mathbb{T}} \|\delta X\|_\alpha + \tau^{\gamma\alpha} \|R\|_{(\gamma+1)\alpha, \tau}^{\mathbb{T}}.$$

By (1.47)

$$\|\sigma(Z)\|_{\infty, \tau}^{\mathbb{T}} \leq |\sigma(z_0)| + 5\tau^{\gamma\alpha} \|\delta \sigma(Z)\|_{\gamma\alpha, \tau}^{\mathbb{T}} \leq |\sigma(z_0)| + 5\tau^{\gamma\alpha} [\sigma]_{\mathcal{C}^\gamma} (\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}})^\gamma.$$

We thus obtain, combining the previous bounds,

$$\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}} \leq |\sigma(z_0)| \|\delta X\|_\alpha + \{\tau^{\gamma\alpha} (C_{\gamma\alpha} + 5) [\sigma]_{\mathcal{C}^\gamma} \|\delta X\|_\alpha\} (\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}})^\gamma.$$

Now if $\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}} \leq 1$ then (2.58) is proved, otherwise $(\|\delta Z\|_{\alpha, \tau}^{\mathbb{T}})^\gamma \leq \|\delta Z\|_{\alpha, \tau}^{\mathbb{T}}$ and then for τ as in (2.56) the term in brackets is less than $\frac{1}{2}$ and we obtain (2.58). \square

We can now prove the following

THEOREM 2.15. (GLOBAL EXISTENCE) *Let X be of class \mathcal{C}^α , with $\alpha \in [\frac{1}{2}, 1]$, and let σ be globally γ -Hölder with $\gamma \in (\frac{1}{\alpha} - 1, 1]$, i.e. $[\sigma]_{\mathcal{C}^\gamma} < \infty$. For every $z_0 \in \mathbb{R}^k$, with no restriction on $T > 0$, there exists a solution $(Z_t)_{t \in [0, T]}$ of (2.3) with $Z_0 = z_0$.*

Proof. Given $n \in \mathbb{N}$, we construct an approximate solution $Z^n = (Z_t^n)_{t \in \mathbb{T}_n}$ of (2.3) defined in the discrete set of times $\mathbb{T}_n := (\{i2^{-n}: i = 0, 1, \dots\} \cap [0, T]) \cup \{T\}$ through the *Euler scheme* (2.54).

$$Z_0^n := z_0, \quad Z_{t_{i+1}}^n := Z_{t_i}^n + \sigma(Z_{t_i}^n) \delta X_{t_i, t_{i+1}} \quad \text{for } t_i, t_{i+1} \in \mathbb{T}_n. \quad (2.60)$$

Let us define the “remainder”

$$R_{st}^n := \delta Z_{st}^n - \sigma(Z_s^n) \delta X_{st} \quad \text{for } s < t \in \mathbb{T}_n. \quad (2.61)$$

We fix $T > 0$ such that

We extend Z^n by linear interpolation to a continuous function defined on $[0, T]$, still denoted by Z^n . Given two points $t_i \leq s < t \leq t_{i+1}$ inside the same interval $[t_i, t_{i+1}]$ of the partition \mathbb{T}_n , since $\delta Z_{st}^n = \frac{t-s}{t_{i+1}-t_i} \delta Z_{t_i t_{i+1}}^n$, we can bound for $\alpha \in (0, 1]$

$$\frac{|\delta Z_{st}^n|}{(t-s)^\alpha} = \left(\frac{t-s}{t_{i+1}-t_i} \right)^{1-\alpha} \frac{|\delta Z_{t_i t_{i+1}}^n|}{(t_{i+1}-t_i)^\alpha} \leq \frac{|\delta Z_{t_i t_{i+1}}^n|}{(t_{i+1}-t_i)^\alpha}.$$

Given two points $s < t$ in different intervals, say $t_i \leq s \leq t_{i+1} \leq t_j \leq t \leq t_{j+1}$ for some $i < j$, by the triangle inequality we can bound $|\delta Z_{st}^n| \leq |\delta Z_{st_{i+1}}^n| + |\delta Z_{t_{i+1} t_j}^n| + |\delta Z_{t_j t}^n|$. Recalling (1.9) and (1.43), we then obtain $\|\cdot\|_\alpha \leq 3 \|\cdot\|_{\alpha, \mathbb{T}_n}$, hence by (2.58) we get

$$\|\delta Z^n\|_{\alpha, \tau} \leq 3 \vee (6 |\sigma(z_0)| \|\delta X\|_\alpha). \quad (2.62)$$

The family $(Z^n)_{n \in \mathbb{N}}$ is *equi-continuous* by (2.62) and *equi-bounded*, since $Z_0^n = z_0$ for all $n \in \mathbb{N}$, hence by the Arzelà-Ascoli Theorem it is *compact* in the space $C([0, T], \mathbb{R}^k)$. Let us denote by $Z: [0, T] \rightarrow \mathbb{R}^k$ any limit point. Plugging (2.58) into (2.57), by (2.61) we can write

$$\text{if } T^\alpha \leq \hat{\varepsilon}_{\alpha, X, \sigma}: \quad |\delta Z_{st}^n - \sigma(Z_s^n) \delta X_{st}| \leq c(z_0) (t-s)^{2\alpha} \quad \forall s < t \in \mathbb{T}_n, \quad (2.63)$$

where $c(z_0) := C_{(\gamma+1)\alpha} [\sigma]_{C^\gamma} (3 \vee (6 |\sigma(z_0)| \|\delta X\|_\alpha))^\gamma \|\delta X\|_\alpha$. Letting $n \rightarrow \infty$ and observing that $\mathbb{T}_n \subseteq \mathbb{T}_{n+1}$, we see that (2.63) still holds with Z^n replaced by Z and \mathbb{T}_n replaced by the set $\mathbb{T} := \bigcup_{\ell \in \mathbb{N}} \mathbb{T}_{2^\ell} = \left(\left\{ \frac{i}{2^n} : i, n \in \mathbb{N} \right\} \cap [0, T] \right) \cup \{T\}$ of dyadic rationals:

$$\text{if } T^\alpha \leq \hat{\varepsilon}_{\alpha, X, \sigma}: \quad |\delta Z_{st} - \sigma(Z_s) \delta X_{st}| \leq c(z_0) (t-s)^{2\alpha} \quad \forall s < t \in \mathbb{T}.$$

Since \mathbb{T} is dense in $[0, T]$ and Z is continuous, this bound extends to all $0 \leq s < t \leq T$, which shows that Z is a solution of (2.3). This completes the proof. \square

Second part: locally Lipschitz case.

We now assume that σ is *locally γ -Hölder* and we fix $z_0 \in \mathbb{R}^k$. We also fix $T > 0$ such that $T \leq \tilde{\varepsilon}_{\alpha, X, \sigma}(z_0)$, see (2.64), and we prove that there exists a solution $Z: [0, T] \rightarrow \mathbb{R}^k$ of (2.3) with $Z_0 = z_0$.

THEOREM 2.16. (LOCAL EXISTENCE) *Let X be of class C^α , with $\alpha \in \left] \frac{1}{2}, 1 \right]$, and let σ be locally Lipschitz (e.g. of class C^1). For any $z_0 \in \mathbb{R}^k$ and for $T > 0$ small enough, i.e.*

$$T^\alpha \leq \tilde{\varepsilon}_{\alpha, X, \sigma}(z_0) := \frac{1}{2} \frac{1}{(C_{2\alpha} + 3) \|\delta X\|_\alpha \{1 + \sup_{|z-z_0| \leq |\sigma(z_0)|} |\nabla \sigma(z)|\}}, \quad (2.64)$$

there exists a solution $(Z_t)_{t \in [0, T]}$ of (2.3) with $Z_0 = z_0$.

Let $\tilde{\sigma}$ be a *globally γ -Hölder* function (depending on z_0) such that

$$\tilde{\sigma}(z) = \sigma(z) \quad \forall |z - z_0| \leq \sigma(z_0) \quad \text{and} \quad [\tilde{\sigma}]_{C^\gamma} = \sup_{|z - z_0| \leq \sigma(z_0)} |\nabla \sigma(z)|. \quad (2.65)$$

Since $T \leq \tilde{\varepsilon}_{\alpha, X, \sigma}(z_0) \leq \hat{\varepsilon}_{\alpha, X, \sigma}$, see (2.64) and (2.56), by the first part of the proof there exists a solution Z of (2.3) with $\tilde{\sigma}$ in place of σ and $Z_0 = z_0$. We will prove that

$$|Z_t - z_0| \leq \sigma(z_0) \quad \text{for all } t \in [0, T], \quad (2.66)$$

therefore $\tilde{\sigma}(Z_t) = \sigma(Z_t)$ for all $t \in [0, T]$, see (2.65). This means that Z is a solution of the original (2.3) with σ , which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with $\tau = \infty$: we note that $T \leq \tilde{\varepsilon}_{\alpha, X, \sigma}(z_0) \leq \varepsilon_{\alpha, X, \sigma}$ (see (2.64) and (2.12)), and note that $C_{2\alpha} \geq K_{2\alpha}$, therefore

$$\|\delta Z\|_\alpha \leq 2 \|\delta X\|_\alpha |\sigma(z_0)|,$$

because $\tilde{\sigma}(z_0) = \sigma(z_0)$. Then for every $t \in [0, T]$ we can bound

$$|Z_t - z_0| \leq T^\alpha \|\delta Z\|_\alpha \leq 2 T^\alpha \|\delta X\|_\alpha |\sigma(z_0)| \leq |\sigma(z_0)|,$$

where the last inequality holds because $T^\alpha \leq \tilde{\varepsilon}_{\alpha, X, \sigma}(z_0) \leq (2 \|\delta X\|_\alpha)^{-1}$, see (2.64). This completes the proof of (2.66).

2.7. ERROR ESTIMATE IN THE EULER SCHEME

We suppose in this section that σ is of class C^2 with $\|\nabla \sigma\|_\infty + \|\nabla^2 \sigma\|_\infty < +\infty$.

THEOREM 2.17. *The Euler scheme converges at speed $n^{2\alpha-1}$.*

Proof. Let us set $z_i := \partial y_i / \partial y_0$, where $(y_i)_{i \geq 0}$ is defined by (2.60). Then

$$z_{i+1} = z_i + \nabla \sigma(y_i) z_i \delta X_{t_i t_{i+1}}, \quad i \geq 0.$$

This shows that the pair $(y_i, z_i)_{i \geq 0}$ satisfies a recurrence which is similar to (2.60) with a map Σ of class C^1 and therefore we can apply the above results to obtain that $|z_i| \leq \text{const}$. In particular the map $y_0 \rightarrow y_k$ is Lipschitz-continuous, uniformly over $k \geq 0$.

Let us call, for $k \geq 0$, $(z_\ell^{(k)})_{\ell \geq k}$ as the sequence which satisfies (2.60) but has initial value $z_k^{(k)} = y(t_k)$. Since $(y(t))_{t \geq 0}$ is a solution to (2.4), we have

$$|z_{k+1}^{(k)} - y(t_{k+1})| \lesssim n^{-2\alpha}.$$

Since the map $y_0 \rightarrow y_k$ is Lipschitz-continuous uniformly over $k \geq 0$, we have

$$|z_\ell^{(k)} - z_\ell^{(k+1)}| \lesssim |z_{k+1}^{(k)} - y(t_{k+1})| \lesssim n^{-2\alpha}, \quad \ell \geq k+1.$$

Therefore

$$|y_\ell - y(t_\ell)| = |z_\ell^{(0)} - z_\ell^{(\ell)}| \leq \sum_{k=0}^{\ell-1} |z_\ell^{(k)} - z_\ell^{(k+1)}| \lesssim \frac{\ell}{n^{2\alpha}} = \frac{t_\ell}{n^{2\alpha-1}} \rightarrow 0$$

as t_ℓ is bounded and $n \rightarrow \infty$. \square

2.8. EXTRA: A VALUE FOR $\hat{\tau}$

We can give an explicit expression for $\hat{\tau} = \hat{\tau}_{M_0, M, T}$ in Theorem 2.12, by tracking all the points in the proof where τ is *small enough*, namely:

- for (2.36) we need $\tau^\alpha \leq \frac{1}{15}$;
- for (2.40) we need $\tau^\alpha \leq (\hat{\rho}_M)^\alpha := (2(K_{2\alpha} + 3)\mathfrak{c}_M)^{-1}$;
- for (2.42) we need $\tau^\alpha \leq (6\mathfrak{c}_M)^{-1}$, for (2.45) we need $\tau^\alpha \leq (15\mathfrak{c}_M)^{-1}$;
- for (2.50) we need $\tau^{(\gamma-1)\alpha} \leq (2K_{\gamma\alpha}\mathfrak{c}_M)^{-1}$;
- for (2.52) we need $\tau^{(\gamma-1)\alpha} \leq (10K_{\gamma\alpha}\mathfrak{c}_M)^{-1}$ (first term in the RHS) and also $\tau^{(\gamma-1)\alpha} \leq \left(K_{\gamma\alpha} e^{\frac{T}{\hat{\rho}_M}} M_0 M^2 \|\nabla^2 \sigma\|_\infty\right)^{-1}$ (second term in the RHS).

Since $\mathfrak{c}_M = M \|\nabla \sigma\|_\infty$, see (2.34), it is easy to check that all these constraints are satisfied for $0 < \tau \leq \hat{\tau}$ given by formula (2.53) in Remark 2.13.