
Chapter 2
Difference equations: the Young case

Fix a time horizon T > 0 and two dimensions k, d ∈N. We study the following
controlled difference equation for an unknown path Z: [0, T ]→Rk:

Zt−Zs=σ(Zs) (Xt−Xs)+ o(t− s) , 0! s! t!T , (2.1)

where the “driving path” X : [0, T ]→Rd and the function σ:Rk→Rk ⊗ (Rd)∗ are
given, and o(t− s) is uniform for 0! s! t!T (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the con-
trolled differential equation

Żt=σ(Zt)Xt
˙ , 0! t!T . (2.2)

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are
equivalent when X is continuously differentiable and σ is continuous, but (2.1) is
meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation ( 2.1) when
the driving path X ∈ Cα is Hölder continuous in the regime α ∈

]1
2
, 1
]
, called the

Young case. The more challenging regime α! 1

2
, called the rough case, is the object

of the next Chapter 3, where new ideas will be introduced.

2.1. Summary
Using the increment notation δfst := ft− fs from (1.11), we rewrite (2.1) as

δZst=σ(Zs) δXst+ o(t− s), 0! s! t!T , (2.3)

so that a solution of (2.3) is any path Z: [0, T ]→Rk such that the “remainder”

Zst
[2] := δZst−σ(Zs) δXst satisfies Zst

[2]= o(t− s) . (2.4)

We summarize the main results of this chapter stating local and global existence,
uniqueness of solutions and continuity of the solution map for the difference equation
(2.3) under natural assumptions on σ. We will actually prove more precise results,
which yield quantitative estimates.

Theorem 2.1. (Well-posedness) Let X: [0,T ]→Rd be of class Cα with α∈
]1
2
,1
]

and let σ:Rk→Rk⊗ (Rd)∗. Then we have:

• local existence: if σ is locally γ-Hölder with γ∈
( 1
α
−1,1

]
(e.g. of class C1),

then for every z0∈Rk there is a possibly shorter time horizon T ′=Tα,X,σ
′ (z0)∈

]0, T ] and a path Z: [0, T ′]→Rk starting from Z0= z0 which solves ( 2.3) for
0! s! t!T ′;
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• global existence: if σ is globally γ-Hölder with γ ∈
( 1
α
− 1, 1

]
(e.g. of class

C1 with ∥∇σ∥∞<∞), then we can take Tα,X,σ
′ (z0)=T for any z0∈Rd;

• uniqueness: if σ is of class Cγ with γ ∈
( 1
α
, 2
]
(e.g. if σ is of class C2), then

there is exactly one solution Z of ( 2.3) with Z0= z0;

• continuity of the solution map: if σ is differentiable with bounded and
globally (γ−1)-Hölder gradient with γ∈

( 1
α
,2
]
(i.e. ∥∇σ∥∞<∞, [∇σ]Cγ−1<

∞), then the solution Z of ( 2.3) is a continuous function of the starting point
z0 and driving path X: the map (z0,X) (→Z is continuous from Rk×Cα→Cα.

In the first part of this chapter, we give for granted the existence of solutions and
we focus on their properties: we prove a priori estimates in Section 2.3, uniqueness
of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key
role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and
its discrete version, see Theorem 1.18.

The proof of local and global existence of solutions of ( 2.3) is given at the end
of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. Set-up

We collect here some notions and tools that will be used extensively.
We recall that C1 denotes the space of continuous functions f : [0, T ]→Rk. Sim-

ilarly, C2 and C3 are the spaces of continuous functions of two and three ordered
variables, i.e. defined on [0, T ]!2 and [0, T ]!3 , see (1.7)-(1.8).

We are going to exploit the weighted semi-norms ∥·∥η,τ, see (1.33)-(1.34) (see also
(1.9) for the original norm ∥·∥η). These are useful to bound the weighted supremum
norm ∥f ∥∞,τ of a function f ∈C1, see (1.37) and (1.40):

∥f ∥∞,τ ! |f0|+3 (τ ∧T )η ∥δf ∥η ,τ , ∀η , τ > 0. (2.5)

It follows directly from the definitions (1.33)-(1.34) that

∥·∥η,τ ! (τ ∧T )η ′ ∥·∥η+η ′,τ , ∀η , η ′> 0, (2.6)

because (t− s)η" (t− s)η+η ′ (τ ∧T )−η ′ for 0! s! t!T with t− s! τ .

Remark 2.2. The factor (τ ∧ T )η ′ in the RHS of (2.6) can be made small by
choosing τ small while keeping T fixed . This is why we included the indicator function
1{0<t−s!τ } in the definition (1.33)-(1.34) of the norms ∥·∥η ,τ: without this indicator
function, instead of (τ ∧T )η ′ we would have T η ′, which is small only when T is small.

We will often work with functions F ∈ C2 or F ∈ C3 that are product of two
factors , like Fst= gsHst or Fsut=GsuHut. We show in the next result that the semi-
norm ∥F ∥η,τ can be controlled by a product of suitable norms for each factor.
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Lemma 2.3. (Weighted bounds) For any η , η ′∈ (0,∞) and τ > 0, we have

if Fst= gsHst or Fst= gtHst then ∥F ∥η ,τ ! ∥g∥∞,τ ∥H∥η, (2.7)

if Fsut=GsuHut then ∥F ∥η+η ′,τ ! ∥G∥η ,τ ∥H∥η ′ . (2.8)

Proof. If Fst= gtHst, by (1.37) we can estimate e−t/τ |gt|! ∥g∥∞,τ to get (2.7). If
Fst= gsHst, for s! t we can bound e−t/τ ! e−s/τ in the definition (1.33)-(1.34) of
∥·∥η ,τ, hence again by (1.37) we can estimate e−s/τ |gs|! ∥g∥∞,τ to get (2.7).

If Fsut=GsuHut, we can further bound (t− s)η+η
′" (t− u)η (u− s)η

′ in (1.34)
and then estimate e−s/τGsu/(u− s)η! ∥G∥η,τ, which yields (2.8). #

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted
norm or semi-norm, while the other factor gets the non-weigthed norm ∥·∥η. We
will sometimes need an extra weight, which can be introduced as follows.

Lemma 2.4. (Extra weight) For any η , τ̄ ∈ (0,∞) and 0< τ ! τ̄, we have

if Fst= gsHst or Fst= gtHst then ∥F ∥η ,τ ! ∥g∥∞,τ e
T

τ̄ ∥H∥η,τ̄ . (2.9)

Proof. Recall the definition (1.33)-(1.34) of ∥·∥η,τ and note that for 0!s! t!T we
have e−t/τ |gt|!∥g∥∞,τ and e−s/τ |gs|!∥g∥∞,τ (see the proof of Lemma 2.3). Finally,
for t− s! τ ! τ̄ we can estimate |Hst|! eT /τ̄ e−t/τ̄ |Hst|! eT /τ̄ ∥H∥η,τ̄ (t− s)η. #

We recall thatRk⊗(Rd)∗≃Rk×d is the space of linear applications fromRd toRk

equipped with the Hilbert-Schmidt (Euclidean) norm |·|. We say that a function is of
class Cm if it is continuously differentiablem times. Given σ:Rk→Rk⊗(Rd)∗ of class
C2, that we represent by σji(z) with i∈{1,..., k} and j∈{1,..., d}, we denote by ∇σ:
Rk→Rk⊗ (Rd)∗⊗ (Rk)∗ its gradient and by ∇2σ:Rk→Rk⊗ (Rd)∗⊗ (Rk)∗⊗ (Rk)∗

its Hessian, represented for i, a, b∈ {1, . . . , k} and j ∈ {1, . . . , d} by

(∇σ(z))jai =
∂σj

i

∂za
(z), (∇2σ(z))jab

i =
∂2σj

i

∂za∂zb
(z).

Remark 2.5. (norm of the gradient of Lipschitz functions) For a locally
Lipschitz function ψ:Rk→Rℓ we can define the “norm of the gradient” at any point
(even where ψ may not be differentiable):

|∇ψ(z)| := lim sup
y→z

|ψ(y)− ψ(z)|
|y− z | ∈ [0,∞) .

Similarly, |∇2ψ(z)| is well defined as soon as ψ is differentiable with locally Lipschitz
gradient ∇ψ (which is slightly less than requiring ψ ∈C2).

2.3. A priori estimates

In this section we prove a priori estimates for solutions of (2.3) assuming that σ is
globally Lipschitz , that is ∥∇σ∥∞<∞ (recall Remark 2.5).
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We first observe that if the driving path X is of class Cα, then any solution Z of
(2.3) is also of class Cα, as soon as σ is continuous.

Lemma 2.6. (Hölder regularity) Let X be of class Cα with α∈ ]0, 1] and let σ
be continuous. Then any solution Z of ( 2.3) is of class Cα.

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6)
we have |δZst|!C |δXst|+ o(t− s) with C <∞. Since |δXst|! ∥δX∥α (t− s)α and
o(t− s)= o((t− s)α) for any α! 1, it follows that Z ∈ Cα. #

We next formulate the announced a priori estimates. It is convenient to use the
weighted semi-norms ∥·∥η,τ in (1.33)-(1.34) (note that the usual norms ∥·∥η in (1.9)
can be recovered by letting τ→∞).

Theorem 2.7. (A priori estimates) Let X be of class Cα with α∈
]1
2
, 1
]
and let

σ be globally γ-Hölder with γ ∈
( 1
α
− 1, 1

]
. Then, for any solution Z: [0, T ]→Rk of

( 2.3), the remainder Zst
[2] := δZst−σ(Zs) δXst satisfies Z [2]∈C2

(γ+1)α, more precisely
for any τ > 0

∥Z [2]∥(γ+1)α,τ!Cα,γ ,X,σ ∥δZ∥α,τγ with Cα,γ ,X ,σ :=K(γ+1)α ∥δX∥α [σ]Cγ , (2.10)

where Kη=(1− 21−η)−1. Moreover, if either T or τ is small enough, we have

∥δZ∥α,τ ! 1∨ (2 ∥δX∥α |σ(Z0)|) for (τ ∧T )αγ ! εα,γ ,X,σ, (2.11)

where we define

εα,γ ,X,σ :=
1

2 (K(γ+1)α+3) ∥δX∥α [σ]Cγ
. (2.12)

If σ is globally Lipschitz, namely if we can take γ=1, we can improve ( 2.11) to

∥δZ∥α,τ ! 2 ∥δX∥α |σ(Z0)| for (τ ∧T )α! εα,1,X ,σ . (2.13)

Proof. We first prove (2.10). Since Zst
[2]=o(t−s) by definition of solution, see (2.4),

we can estimate Z [2] in terms of δZ [2], by the weighted Sewing Bound (1.41). Let
us compute δZsut

[2] =Zst
[2]−Zsu

[2]−Zut
[2]: recalling (2.4) and (1.32), since δ◦δ=0, we have

δZsut
[2] = δσ(Z)su δXut=(σ(Zu)−σ(Zs)) (Xt−Xu) . (2.14)

Since |σ(z)−σ(z̄)|! [σ]Cγ |z− z̄ |γ for all z, z̄ ∈Rd, we can bound

∥δσ(Z)∥γα,τ ! [σ]Cγ ∥δZ∥α,τγ , (2.15)

hence by (2.8) we obtain

∥δZ [2]∥(γ+1)α,τ ! ∥δX∥α [σ]Cγ ∥δZ∥α,τγ .

Applying the weighted Sewing Bound (1.41), for (γ+1)α> 1 we then obtain

∥Z [2]∥(γ+1)α,τ !K(γ+1)α ∥δX∥α [σ]Cγ ∥δZ∥α,τγ , (2.16)
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which proves (2.10).
We next prove (2.11). To simplify notation, let us set ε := (τ ∧ T )α. Recalling

(2.7) and (2.6), we obtain by (2.4)

∥δZ∥α,τ ! ∥σ(Z) δX∥α,τ + ∥Z [2]∥α,τ
! ∥σ(Z)∥∞,τ ∥δX∥α+ εγ ∥Z [2]∥(γ+1)α,τ . (2.17)

We can estimate ∥σ(Z)∥∞,τ by (2.5) and (2.15):

∥σ(Z)∥∞,τ ! |σ(Z0)|+3 εγ [σ]Cγ ∥δZ∥α,τγ .

Plugging this and (2.16) into (2.17), we get

∥δZ∥α,τ ! (|σ(Z0)|+3 εγ [σ]Cγ ∥δZ∥α,τγ ) ∥δX∥α+
+ εγK(γ+1)α ∥δX∥α [σ]Cγ ∥δZ∥α,τγ

= ∥δX∥α |σ(Z0)|+
1
2

εγ

εα,γ ,X ,σ
∥δZ∥α,τγ ,

where εα,γ ,X ,σ is defined in (2.12). For εγ ! εα,γ ,X ,σ the last term is bounded by
1

2
∥δZ∥α,τγ which is finite by Lemma 2.6. If ∥δZ∥α,τ! 1 then (2.11) holds trivially; if

not, 1

2
∥δZ∥α,τγ ! 1

2
∥δZ∥α,τ. Bringing this term in the LHS we obtain (2.11).

To prove (2.13), we argue as for (2.11) and since γ=1 we obtain

∥δZ∥α,τ ! ∥δX∥α |σ(Z0)|+ 1
2

ε
εα,1,X,σ

∥δZ∥α,τ.

For ε! εα,1,X,σ the last term is bounded by 1

2
∥δZ∥α,τ which is finite by Lemma 2.6.

Bringing this term in the LHS we obtain (2.13), and this completes the proof. #

2.4. Uniqueness

In this section we prove uniqueness of solutions to (2.3) assuming that σ is of class
C1 with locally Hölder gradient (we stress that we make no boundedness assumption
on σ). This improves on Theorem 1.7, both because we allow for non-linear σ and
because we do not require that the time horizon T > 0 is small.

We first need an elementary but fundamental estimate on the difference of incre-
ments of a function. Given Ψ:Rk→Rℓ, we use the notation

CΨ,R := sup {|Ψ(x)|: x∈Rk, |x|!R} . (2.18)

Lemma 2.8. (difference of increments) Let ψ:Rk→Rℓ be of class Cloc1+ρ for
some 0< ρ! 1 (i.e. ψ is differentiable with ∇ψ of class Cloc

ρ ). Then for any R> 0
and for all x, x̄, y, ȳ ∈Rk with max {|x|, |y |, |x̄|, |ȳ |}!R we can estimate

|[ψ(x)− ψ(y)]− [ψ(x̄)− ψ(ȳ)]|
!CR′ |(x− y)− (x̄− ȳ)|+CR

′′ {|x− y |ρ+ |x̄− ȳ |ρ} |y− ȳ | , (2.19)

where CR′ := sup {|∇ψ(x)|: |x|!R} and CR′′ := sup
{
|∇ψ(x)−∇ψ(y)|

|x− y |ρ : |x|, |y |!R
}
.
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Proof. For z, w ∈Rk we can write

ψ(z)− ψ(w)= ψ̂(z, w) (z−w),

where ψ̂(z, w) :=
∫
0

1∇ψ(u z+(1− u)w) du∈Rℓ⊗ (Rk)∗, therefore

[ψ(x)− ψ(y)]− [ψ(x̄)− ψ(ȳ)] = [ψ(x)− ψ(x̄)]− [ψ(y)− ψ(ȳ)]

= ψ̂(x, x̄) (x− x̄)− ψ̂(y, ȳ) (y− ȳ)

= ψ̂(x, x̄) [(x− x̄)− (y− ȳ)]

+ [ψ̂(x, x̄)− ψ̂(y, ȳ)] (y− ȳ) .

By definition of CR′ and CR′′ we have |ψ̂(x, x̄)|!CR′ and

|ψ̂(x, x̄)− ψ̂(y, ȳ)| ! |ψ̂(x, x̄)− ψ̂(y, x̄)|+ |ψ̂(y, x̄)− ψ̂(y, ȳ)|
! CR

′′ {|x− y |ρ+ |x̄− ȳ |ρ},

hence (2.19) follows. #

We are now ready to state and prove the announced uniqueness result.

Theorem 2.9. (Uniqueness) Let X be of class Cα with α∈
]1
2
, 1
]
and let σ be of

class Cγ for some γ> 1

α
(for instance, we can take σ ∈ C2). Then for every z0∈Rk

there exists at most one solution Z to ( 2.3) with Z0= z0.

Proof. Let Z and Z̄ be two solutions of (2.3), i.e. they satisfy (2.4), and set

Y :=Z − Z̄ .

We want to show that, for τ > 0 small enough, we have

∥Y ∥∞,τ ! 2 |Y0|,

where the weighted norm ∥·∥∞,τ was defined in (1.37). In particular, if we assume
that Z0= Z̄0, we obtain ∥Y ∥∞,τ =0 and hence Z = Z̄.

We know by (2.5) that for any τ > 0

∥Y ∥∞,τ ! |Y0|+3τα ∥δY ∥α,τ , (2.20)

where we recall that the weighted semi-norm ∥·∥α,τ was defined in (1.33). We now
define Y [2] as the difference between the remainders Z [2] and Z̄ [2] of the solutions Z
and Z̄ as defined in (2.4), that is

Yst
[2] :=Zst

[2]− Z̄st
[2]= δYst− (σ(Zs)−σ(Z̄s)) δXst . (2.21)

(We are slightly abusing notation, since Y [2] is not the remainder of Y when σ is not
linear.) By assumption σ ∈Cγ for some γ> 1

α
: renaming γ as γ ∧ 2, we may assume

that γ ∈
]1
α
, 2
]
. We are going to prove the following inequalities: for any τ > 0

∥δY ∥α,τ ! c1 ∥Y ∥∞,τ + τ (γ−1)α ∥Y [2]∥γα,τ , (2.22)

∥Y [2]∥γα,τ ! c2 ∥Y ∥∞,τ + c2
′ τ (γ−1)α ∥Y [2]∥γα,τ , (2.23)
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for finite constants ci, ci′ that may depend on X,σ , Z , Z̄ but not on τ.
Let us complete the proof assuming (2.22) and (2.23). Note that (γ − 1)α> 0

by assumption. If we fix τ > 0 small, so that c2′ τ (γ−1)α <
1

2
, from (2.23) we get

∥Y [2]∥γα,τ ! 2 c2 ∥Y ∥∞,τ which plugged into (2.22) yields ∥δY ∥α,τ ! 2 c1 ∥Y ∥∞,τ for
τ > 0 small (it suffices that 2 c2 τ (γ−1)α<c1). Finally, plugging this into (2.20) and
possibly choosing τ > 0 even smaller, we obtain our goal ∥Y ∥∞,τ ! 2 |Y0| which
completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set

C1
′ := sup {|∇σ(x)|: |x|! ∥Z∥∞∨∥Z̄∥∞} ,

C1
′′ := sup

{
|∇σ(x)−∇σ(y)|

|x− y |ρ : |x|, |y |! ∥Z∥∞∨∥Z̄∥∞
}
.

so that |σ(Zt)−σ(Z̄t)|!C1′ |Zt− Z̄t| and, therefore,

∥σ(Z)− σ(Z̄)∥∞,τ !C1′ ∥Y ∥∞,τ . (2.24)

We now exploit (2.21) to estimate ∥δY ∥α,τ: applying (2.7) we obtain

∥δY ∥α,τ ! ∥σ(Z)− σ(Z̄)∥∞,τ ∥δX∥α+ ∥Y [2]∥α,τ
! C1

′ ∥Y ∥∞,τ ∥δX∥α+ τ (γ−1)α ∥Y [2]∥γα,τ , (2.25)

where we note that ∥Y [2]∥α,τ!τ (γ−1)α ∥Y [2]∥γα,τ by (2.6). We have shown that (2.22)
holds with c1=C1

′ ∥δX∥α.
We finally prove (2.23). Since Yst

[2]= o(t− s), see (2.21) and (2.4), we bound Z [2]

by its increment δZ [2] through the weighted Sewing Bound (1.41):

∥Y [2]∥γα,τ !Kγα ∥δY [2]∥γα,τ , (2.26)

hence we focus on ∥δY [2]∥γα,τ. By (2.21) and (1.32), since δ ◦ δ=0, we have

δYsut
[2]=(δσ(Z)su− δσ(Z̄)su) δXut . (2.27)

Applying the estimate (2.19) for x=Zu, y=Zs, x̄= Z̄u, ȳ= Z̄s, we can write

|δσ(Z)su− δσ(Z̄)su| ! C1
′ |δZsu− δZ̄su|+C1

′′ {|δZsu|γ−1+ |δZ̄su|γ−1}|Zs− Z̄s|
= C1

′ |δYsu|+C1
′′ {|δZsu|γ−1+ |δZ̄su|γ−1} |Ys|. (2.28)

hence by (2.7) we get

∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! C1
′ ∥δY ∥(γ−1)α,τ + (2.29)

+ C1
′′ {∥δZ∥αγ−1+ ∥δZ̄∥αγ−1} ∥Y ∥∞,τ.

If we take τ ! 1 we can bound ∥δY ∥(γ−1)α,τ ! ∥δY ∥α,τ by (2.6) (recall that we are
assuming γ! 2). Then by (2.27) we obtain, recalling (2.8),

∥δY [2]∥γα,τ ! ∥δX∥α ∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! c̃1 (∥δY ∥α,τ + ∥Y ∥∞,τ) ,

for a suitable (explicit) constant c̃1= c̃1(σ , Z , Z̄ ,X). Applying (2.22), we obtain

∥δY [2]∥γα,τ ! (c1+1) c̃1 ∥Y ∥∞,τ + c̃1 τ (γ−1)α ∥Y [2]∥γα,τ ,
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which plugged into (2.26) shows that (2.23) holds. The proof is complete. #

We conclude with an example of (2.19).

Example 2.10. If σ:R→R is σ(x)=x2, then we have

(σ(x)−σ(y))− (σ(x̄)−σ(ȳ))
= (x2− y2)− (x̄2− ȳ2)= (x2− x̄2)− (y2− ȳ2)
= (x− x̄) (x+ x̄)− (y− ȳ) (y+ ȳ)
= [(x− x̄)− (y− ȳ)] (y+ ȳ)+ (x− x̄) [(x+ x̄)− (y+ ȳ)]
= [(x− x̄)− (y− ȳ)] (y+ ȳ)+ (x− x̄) [(x− y)+ (x̄− ȳ)],

where in the second last equality we have summed and subtracted (y− ȳ) (x+ x̄).
If we use this formula for x=Zt, y=Zs and x̄= Z̄t, ȳ= Z̄s, then we obtain

δ(Z2− Z̄2)st= δ(Z − Z̄)st (Zs+ Z̄s)+ (Zt− Z̄t) [δZst+ δZst],

which is in the spirit of (2.19) with ρ=1. It follows that

∥δ(Z2− Z̄2)∥α! 2 ∥Z̄∥∞ ∥δ(Z − Z̄)∥α+ ∥Z − Z̄∥∞ [∥δZ∥α+ ∥δZ̄∥α],

which is the form that (2.29) takes in this particular case.

2.5. Continuity of the solution map

In this section we assume that σ is globally Lipschitz and of class C1 with a glob-
ally γ-Hölder gradient , i.e. ∥∇σ∥∞<∞ and [∇σ]Cγ<∞, with γ > 1

α
. Under these

assumptions, we have global existence and uniqueness of solutions Z: [0, T ]→Rk to
(2.3) for any time horizon T > 0, for any starting point Z0∈Rk and for any driving
path X of class Cα with 1

2
<α! 1 (as we will prove in Section 2.6).

We can thus consider the solution map:

Φ: Rk× Cα −→ Cα

(Z0 , X) (−→ Z :=

{
unique solution of (2.3) for t∈ [0, T ]
starting from Z0

. (2.30)

We prove in this section that this map is continuous , in fact locally Lipschitz .

Remark 2.11. The continuity of the solution map is a highly non-trivial property.
Indeed, when X is of class C1, note that Z solves the equation

Zt=Z0+

∫

0

t

σ(Zs)Xs
˙ ds , (2.31)

which is based on the derivative Ẋ of X. We instead consider driving paths X ∈Cα
with α∈

]1
2
, 1
]
which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds
also in more complex situations such as X ∈ Cα with α! 1

2
, which cover the case

when X is a Brownian motion and Z is the solution to a SDE.
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Before stating the continuity of the solution map, we recall that the space Cα is
equipped with the norm ∥f ∥Cα :=∥f ∥∞+ ∥δf ∥α, see Remark 1.4, but an equivalent
norm is ∥f ∥∞,τ + ∥δf ∥α,τ for any choice of the weight τ > 0, see Remark 1.15.

Theorem 2.12. (Continuity of the solution map) Let σ be globally Lipschitz
with a globally (γ−1)-Hölder gradient: ∥∇σ∥∞<∞ and [∇σ]Cγ−1<∞, with γ∈

( 1
α
,

2
]
. Then, for any T > 0 and α∈

]1
2
, 1
]
, the solution map (Z0, X) (→Z in ( 2.30) is

locally Lipschitz.
More explicitly, given M0,M ,D<∞, if we assume that

max {∥∇σ∥∞, [∇σ]Cγ−1}!D,

and we consider starting points Z0, Z̄0∈Rd and driving paths X, X̄ ∈ Cα with

max {|σ(Z0)|, |σ(Z̄0)|}!M0 , max { ∥δX∥α, ∥δX̄∥α}!M, (2.32)

then the corresponding solutions Z =(Zs)s∈[0,T ], Z̄ =(Z̄s)s∈[0,T ] of ( 2.3) satisfy

∥Z − Z̄∥∞,τ + ∥δZ − δZ̄∥α,τ !CM |Z0− Z̄0|+6M0 ∥δX − δX̄∥α, (2.33)

provided 0< τ ∧T ! τ̂ for a suitable τ̂ = τ̂α,γ ,T ,D,M0,M > 0, where we set

CM := 2 (∥∇σ∥∞M +1)! 2 (DM +1) .

Proof. Let us define the constant

cM := ∥∇σ∥∞M !DM . (2.34)

We fix two solutions Z and Z̄ of (2.3) with respective driving paths X and X̄ . If we
define Y :=Z − Z̄, we can rewrite our goal (2.33) as

∥Y ∥∞,τ + ∥δY ∥α,τ ! 6M0 ∥δX − δX̄∥α+2 (cM +1) |Y0| . (2.35)

Let us introduce the shorthand

ε := (τ ∧T )α

and let us agree that, whenever we write for ε small enough we mean for 0< ε! ε0
for a suitable ε0>0 which depends on α, T ,M0,M ,D. By (2.5), for ε small enough,

∥Y ∥∞,τ ! |Y0|+ ε ∥δY ∥α,τ ! |Y0|+ 1
5
∥δY ∥α,τ , (2.36)

hence to prove (2.35) we can focus on ∥δY ∥α,τ.
Recalling (2.4), let us define Y [2] := Z [2]− Z̄ [2]. We are going to establish the

following two relations, for ε small enough:

4
5
∥δY ∥α,τ ! 2M0 ∥δX − δX̄∥α+ cM |Y0|+ ∥Y [2]∥α,τ , (2.37)

∥Y [2]∥α,τ !M0 ∥δX − δX̄∥α+
1
2
|Y0|+

1
5
∥δY ∥α,τ . (2.38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).
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It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

ε̄= ε̄α,D,M :=
1

2 (K2α+3)DM
. (2.39)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have

for ε=(τ ∧T )α! ε̄: max{∥δZ∥α,τ , ∥δZ̄∥α,τ}! 2M0M, (2.40)

therefore

∥δσ(Z)∥α,τ ! ∥∇σ∥∞ ∥δZ∥α,τ ! 2 ∥∇σ∥∞M0M =2M0 cM , (2.41)

and applying (2.5) and (2.32) we get, for ε small enough,

∥σ(Z)∥∞,τ ! |σ(Z0)|+3ε ∥δσ(Z)∥α,τ !M0 (1+ 6 cM ε)! 2M0 . (2.42)

We can now prove (2.37). Defining Y [2] :=Z [2]− Z̄ [2], we obtain from (2.4)

δYst = δZst− δZ̄st = σ(Zs) δXst−σ(Z̄s) δX̄st+Yst
[2]

= σ(Zs) (δX − δX̄)st+(σ(Zs)−σ(Z̄s)) δX̄st+Yst
[2],

hence by (2.7) we can bound

∥δY ∥α,τ ! ∥σ(Z)∥∞,τ ∥δX − δX̄∥α
+∥δX̄∥α ∥σ(Z)−σ(Z̄)∥∞,τ + ∥Y [2]∥α,τ .

(2.43)

Let us look at the second term in the RHS of (2.43): by (2.5)

∥σ(Z)−σ(Z̄)∥∞,τ ! ∥∇σ∥∞ ∥Z − Z̄∥∞,τ

! ∥∇σ∥∞ (|Y0|+3ε ∥δY ∥α,τ).
(2.44)

Hence by (2.32) and (2.34) we get, for ε small enough,

∥δX̄∥α ∥σ(Z)−σ(Z̄)∥∞,τ ! cM |Y0|+
1
5
∥δY ∥α,τ . (2.45)

Plugging this into (2.43) we then obtain, by (2.42),

4
5
∥δY ∥α,τ ! 2M0 ∥δX − δX̄∥α+ cM |Y0|+ ∥Y [2]∥α,τ , (2.46)

which proves (2.37).
We finally prove (2.38). Since Yst

[2]=Zst
[2]− Z̄st

[2]= o(t− s), see (2.4), the weighted
Sewing Bound (1.41) and (2.6) give

∥Y [2]∥α,τ ! εγ−1 ∥Y [2]∥γα,τ !Kγα εγ−1 ∥δY [2]∥γα,τ . (2.47)

To estimate δY [2]= δZ [2]− δ Z̄ [2], note that by (2.4) and (1.32) we can write

δYsut
[2]= δσ(Z)su (δX − δX̄)ut+(δσ(Z)− δσ(Z̄))su δX̄ut , (2.48)

hence by (2.8)

∥δY [2]∥γα,τ!∥δσ(Z)∥(γ−1)α,τ ∥δX−δX̄∥α+∥δX̄∥α ∥δσ(Z)−δσ(Z̄)∥(γ−1)α,τ . (2.49)
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The first term is easy to control: by (2.41), for ε small enough,

Kγα εγ−1 ∥δσ(Z)∥(γ−1)α,τ ∥δX − δX̄∥α!M0 ∥δX − δX̄∥α . (2.50)

Let us now focus on the second term. By (2.19) we have, see also (2.28),

|δσ(Z)su− δσ(Z̄)su|! ∥∇σ∥∞ |δYsu|+ [∇σ]Cγ−1 {|δZsu|γ−1+ |δZ̄su|γ−1} |Ys| .

We apply (2.9) for H = δZ, g=Y and τ̄ =(ε̄)1/α from (2.39):

∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! ∥∇σ∥∞ ∥δY ∥(γ−1)α,τ +

+[∇σ]Cγ−1 e
T

τ̄ (∥δZ∥α,τ̄γ−1+ ∥δZ̄∥α,τ̄γ−1)∥Y ∥∞,τ

! D ∥δY ∥α,τ +2 (2M0M)γ−1 e
T

τ̄D ∥Y ∥∞,τ , (2.51)

where we applied (2.40). Hence by (2.51), recalling (2.32), for ε small enough we
obtain

Kγα εγ−1 ∥δX̄∥α ∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! 1
10
∥δY ∥α,τ +

1
2
∥Y ∥∞,τ , (2.52)

and since ∥Y ∥∞,τ ! |Y0|+ 1

5
∥δY ∥α,τ, see (2.36), we obtain

Kγα εγ−1 ∥δX̄∥α ∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! 1
2
|Y0|+

1
5
∥δY ∥α,τ.

Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain

∥Y [2]∥α,τ !M0 ∥δX − δX̄∥α+
1
2
|Y0|+

1
5
∥δY ∥α,τ ,

which proves (2.38) and completes the proof. #

Remark 2.13. An explicit choice for τ̂ in Theorem 2.12 is

τ̂ α := e
−T
τ̄

10 (K2α+3) (1+M0) (1+D (M +M2))
, (2.53)

with τ̄ = τ̄α,D,M defined in (2.39). This is obtained by tracking all the points in
the proof of Theorem 2.12 where ε=(τ ∧T )α was assumed to be small enough: see
Section 2.8 for the details.

2.6. Euler scheme and local/global existence

In this section we discuss global existence of solutions, under the assumption that σ
is globally γ-Hölder with γ ∈

( 1
α
− 1, 1

]
, i.e. [σ]Cγ<∞ (again with no boundedness

assumption on σ). We also state a result of local existence of solutions for equation
(2.3), where we only assume that σ is locally γ-Hölder with γ ∈

( 1
α
− 1, 1

]
(with no

boundedness assumption on σ).
We fix X: [0, T ]→Rd of class Cα with α∈

]1
2
,1
]
and a starting point z0∈Rk. We

split the proof in two parts: we first assume that σ:Rk→Rk⊗ (Rd)∗ is globally γ-
Hölder, then we consider the case when σ is locally γ-Hölder.
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First part: globally Hölder case.

We consider a finite set T={0= t1< · · ·<t#T}⊂R+ and we define an approximate
solution Z =ZT=(Zt)t∈T through the Euler scheme

Z0 := z0, Zti+1 :=Zti+σ(Zti) δXti,ti+1 for 1! i!#T− 1. (2.54)

Let us define the “remainder”

Rst := δZst− σ(Zs) δXst for s< t∈T. (2.55)

We assume that σ is globally γ-Hölder, namely [σ]Cγ<∞, with γ∈
( 1
α
−1,1

]
. We set

ε̂α,γ ,X,σ :=
1

2 (C(γ+1)α+5) ∥δX∥α [σ]Cγ
, (2.56)

where the constant Cη is defined in (1.45). We prove the following a priori estimates
on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

Lemma 2.14. If σ is globally γ-Hölder, namely [σ]Cγ<∞, with γ ∈
( 1
α
− 1, 1

]
, then

∥R∥(γ+1)αT !C(γ+1)α [σ]Cγ (∥δZ∥αT)γ ∥δX∥α, (2.57)

and for τ γα! ε̂α,γ ,X,σ: ∥δZ∥αT! 1∨ (2 |σ(z0)| ∥δX∥α) . (2.58)

Proof. Since δRsut= (σ(Zs)− σ(Zu)) δXut, recall (1.32), and since Rtiti+1= 0 by
(2.54), we can apply the discrete Sewing Bound (1.45) with η=(γ+1)α> 1 to get

∥R∥(γ+1)α,τT !C(γ+1)α ∥δR∥(γ+1)α,τT !C(γ+1)α [σ]Cγ (∥δZ∥α,τT )γ ∥δX∥α. (2.59)

We have proved (2.57).
We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for ∥·∥γα,Tn,

∥δZ∥α,τT ! ∥σ(Z)∥∞,τ
T ∥δX∥α+ τ γα ∥R∥(γ+1)α,τT .

By (1.47)

∥σ(Z)∥∞,τ
T ! |σ(z0)|+5τ γα∥δσ(Z)∥γα,τT ! |σ(z0)|+5τ γα [σ]Cγ (∥δZ∥α,τT )γ .

We thus obtain, combining the previous bounds,

∥δZ∥α,τT ! |σ(z0)| ∥δX∥α+ {τ γα (Cγα+5) [σ]Cγ ∥δX∥α} (∥δZ∥α,τT )γ .

Now if ∥δZ∥α,τT ! 1 then (2.58) is proved, otherwise (∥δZ∥α,τT )γ! ∥δZ∥α,τT and then
for τ as in (2.56) the term in brackets is less than 1

2
and we obtain (2.58). #

We can now prove the following

Theorem 2.15. (Global existence) Let X be of class Cα, with α∈
]1
2
, 1
]
, and

let σ be globally γ-Hölder with γ ∈
( 1
α
−1,1

]
, i.e. [σ]Cγ<∞. For every z0∈Rk, with

no restriction on T > 0, there exists a solution (Zt)t∈[0,T ] of ( 2.3) with Z0= z0.
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Proof. Given n∈N, we construct an approximate solution Zn=(Zt
n)t∈Tn of (2.3)

defined in the discrete set of times Tn := ({i2−n: i=0,1, . . .}∩ [0, T ])∪{T } through
the Euler scheme (2.54).

Z0
n := z0, Zti+1

n :=Zti
n+σ(Zti

n) δXti,ti+1 for ti, ti+1∈Tn . (2.60)

Let us define the “remainder”

Rst
n := δZst

n−σ(Zsn) δXst for s< t∈Tn . (2.61)

We fix T > 0 such that

We extend Zn by linear interpolation to a continuous function defined on [0, T ],
still denoted by Zn. Given two points ti!s<t! ti+1 inside the same interval [ti, ti+1]
of the partition Tn, since δZstn=

t− s
ti+1− ti

δZtiti+1
n , we can bound for α∈ (0, 1]

|δZstn|
(t− s)α =

(
t− s

ti+1− ti

)
1−α |δZtiti+1

n |
(ti+1− ti)α

! |δZtiti+1
n |

(ti+1− ti)α
.

Given two points s< t in different intervals, say ti! s! ti+1! tj! t! tj+1 for some
i < j, by the triangle inequality we can bound |δZstn|! |δZsti+1n |+ |δZti+1tj

n |+ |δZtjt
n |.

Recalling (1.9) and (1.43), we then obtain ∥·∥α! 3 ∥·∥αTn, hence by (2.58) we get

∥δZn∥α,τ ! 3∨ (6 |σ(z0)| ∥δX∥α) . (2.62)

The family (Zn)n∈N is equi-continuous by (2.62) and equi-bounded , since Z0n= z0
for all n∈N, hence by the Arzelà-Ascoli Theorem it is compact in the space C([0, T ],
Rk). Let us denote by Z: [0, T ]→Rk any limit point. Plugging (2.58) into (2.57),
by (2.61) we can write

if T α! ε̂α,X,σ: |δZstn−σ(Zsn) δXst|! c(z0) (t− s)2α ∀s< t∈Tn , (2.63)

where c(z0) := C(γ+1)α [σ]Cγ (3 ∨ (6 |σ(z0)| ∥δX∥α))γ ∥δX∥α . Letting n→∞ and
observing that Tn⊆Tn+1, we see that (2.63) still holds with Zn replaced by Z
and Tn replaced by the set T :=

⋃
ℓ∈NT2ℓ =

({ i

2n
: i, n ∈N

}
∩ [0, T ]

)
∪ {T } of

dyadic rationals:

if T α! ε̂α,X ,σ: |δZst−σ(Zs) δXst|! c(z0) (t− s)2α ∀s< t∈T.

Since T is dense in [0, T ] and Z is continuous, this bound extends to all 0!s<t!T ,
which shows that Z is a solution of (2.3). This completes the proof. #

Second part: locally Lipschitz case.
We now assume that σ is locally γ-Hölder and we fix z0∈Rk. We also fix T >0 such
that T ! ε̃α,X,σ(z0), see (2.64), and we prove that there exists a solution Z: [0,T ]→Rk

of (2.3) with Z0= z0.

Theorem 2.16. (Local existence) Let X be of class Cα, with α∈
]1
2
,1
]
, and let σ

be locally Lipschitz (e.g. of class C1). For any z0∈Rk and for T >0 small enough, i.e.

T α! ε̃α,X,σ(z0) :=
1
2

1
(C2α+3) ∥δX∥α {1+ sup|z−z0|!|σ(z0)| |∇σ(z)|}

, (2.64)
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there exists a solution (Zt)t∈[0,T ] of ( 2.3) with Z0= z0.

Let σ̃ be a globally γ-Hölder function (depending on z0) such that

σ̃(z)=σ(z) ∀|z− z0|! σ(z0) and [σ̃]Cγ= sup
|z−z0|!σ(z0)

|∇σ(z)| . (2.65)

Since T ! ε̃α,X ,σ(z0)! ε̂α,X,σ, see (2.64) and (2.56), by the first part of the proof
there exists a solution Z of ( 2.3) with σ̃ in place of σ and Z0=z0. We will prove that

|Zt− z0|!σ(z0) for all t∈ [0, T ] , (2.66)

therefore σ̃(Zt)=σ(Zt) for all t∈ [0, T ], see (2.65). This means that Z is a solution
of the original (2.3) with σ, which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with τ =∞: we note that
T ! ε̃α,X ,σ(z0)! εα,X,σ (see (2.64) and (2.12), and note that C2α"K2α), therefore

∥δZ∥α! 2 ∥δX∥α |σ(z0)|,

because σ̃(z0)=σ(z0). Then for every t∈ [0, T ] we can bound

|Zt− z0|!Tα ∥δZ∥α! 2T α ∥δX∥α |σ(z0)|! |σ(z0)|,

where the last inequality holds because T α! ε̃α,X ,σ(z0)! (2 ∥δX∥α)−1, see (2.64).
This completes the proof of (2.66).

2.7. Error estimate in the Euler scheme
We suppose in this section that σ is of class C2 with ∥∇σ∥∞+ ∥∇2σ∥∞<+∞.

Theorem 2.17. The Euler scheme converges at speed n2α−1.

Proof. Let us set zi := ∂yi/∂y0,where (yi)i"0 is defined by (2.60). Then

zi+1= zi+∇σ(yi) zi δXtiti+1, i" 0.

This shows that the pair (yi, zi)i"0 satisfies a recurrence which is similar to (2.60)
with a map Σ of class C1 and therefore we can apply the above results to obtain
that |zi|! const. In particular the map y0→ yk is Lipschitz-continuous, uniformly
over k" 0.

Let us call, for k" 0, (zℓ(k))ℓ"k as the sequence which satisfies (2.60) but has
initial value zk

(k)= y(tk). Since (y(t))t"0 is a solution to (2.4), we have

|zk+1
(k) − y(tk+1)|$n−2α.

Since the map y0→ yk is Lipschitz-continuous uniformly over k" 0, we have

|zℓ
(k)− zℓ

(k+1)|$ |zk+1(k) − y(tk+1)|$n−2α, ℓ" k+1.

Therefore

|yℓ− y(tℓ)|= |zℓ
(0)− zℓ

(ℓ)|!
∑

k=0

ℓ−1

|zℓ
(k)− zℓ

(k+1)|$ ℓ
n2α

=
tℓ

n2α−1
→ 0
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as tℓ is bounded and n→∞. #

2.8. Extra: a value for τ̂

We can give an explicit expression for τ̂ = τ̂M0,M,T in Theorem 2.12, by tracking all
the points in the proof where τ is small enough, namely:

• for (2.36) we need τα! 1

15;

• for (2.40) we need τα! (ρ̂M)α := (2 (K2α+3) cM)−1;

• for (2.42) we need τα! (6 cM)−1, for (2.45) we need τα! (15 cM)−1;
• for (2.50) we need τ (γ−1)α! (2Kγα cM)−1;

• for (2.52) we need τ (γ−1)α! (10Kγα cM)−1 (first term in the RHS) and also

τ (γ−1)α!
(
Kγα e

T

ρ̂MM0M 2 ∥∇2σ∥∞
)−1

(second term in the RHS).

Since cM =M ∥∇σ∥∞, see (2.34), it is easy to check that all these constraints are
satisfied for 0< τ ! τ̂ given by formula (2.53) in Remark 2.13.
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