CHAPTER 2
DIFFERENCE EQUATIONS: THE YOUNG CASE

Fix a time horizon T'> 0 and two dimensions k,d € N. We study the following
controlled difference equation for an unknown path Z: [0, T| — R¥:

Zy—Zs=0(Zs) (Xy — Xs) +o(t —s), 0<s<t<T, (2.1)

where the “driving path” X:[0,7] — R? and the function o: R* — R* @ (RY)* are
given, and o(t — s) is uniform for 0 < s <t<T (see Remark 1.1).

The difference equation (2.1) is a natural generalized formulation of the con-
trolled differential equation

ZtZU(Zt) Xt7 OStST (22)

Indeed, as we showed in Chapter 1 (see Section 1.2), equations (2.1) and (2.2) are
equivalent when X is continuously differentiable and o is continuous, but (2.1) is
meaningful also when X is non differentiable.

In this chapter we prove well-posedness for the difference equation (2.1) when
the driving path X € C* is Holder continuous in the regime a € B, 1}, called the
Young case. The more challenging regime o < %, called the rough case, is the object
of the next Chapter 3, where new ideas will be introduced.

2.1. SUMMARY

Using the increment notation §fs:= f; — fs from (1.11), we rewrite (2.1) as
0 s =0(Zs) 0 X+ ot — s), 0<s<t<T, (2.3)
so that a solution of (2.3) is any path Z:[0,T] — R* such that the “remainder”
72 =67, —0(Z,) 06Xy satisfies Z2 = o(t—s). (2.4)

We summarize the main results of this chapter stating local and global existence,
uniqueness of solutions and continuity of the solution map for the difference equation
(2.3) under natural assumptions on o. We will actually prove more precise results,
which yield quantitative estimates.

THEOREM 2.1. (WELL-POSEDNESS) Let X:[0,7]—R? be of class C* with a € }%, 1]
and let o: RF—RF ® (RY)*. Then we have:

e local existence: if o is locally ~v-Hélder with v € (& —1,1] (e.g. of class C*),
then for every zo € R* there is a possibly shorter time horizon T' =T}, x ,(z) €
10, 7] and a path Z:[0,T'] — R starting from Zy= zy which solves (2.3) for
0<s<t<T";
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30 DIFFERENCE EQUATIONS: THE YOUNG CASE

e global existence: if o is globally v-Holder with v € (é -1, 1} (e.g. of class
C' with |Vo || <00), then we can take T, x 5(z0) =T for any zo € RY;

e uniqueness: if o is of class C7 with v € (é, 2] (e.g. if o is of class C?), then
there is exactly one solution Z of (2.3) with Zy= zo;

e continuity of the solution map: if o is differentiable with bounded and
globally (v —1)-Hélder gradient with v € (&, 2] (i.e. Voo <00, [Vo]er-1<
00 ), then the solution Z of (2.3) is a continuous function of the starting point
20 and driving path X : the map (20, X )+ Z is continuous from R¥ x C*— C®.

In the first part of this chapter, we give for granted the existence of solutions and
we focus on their properties: we prove a priori estimates in Section 2.3, uniqueness
of solutions in Section 2.4 and continuity of the solution map in Section 2.5. A key
role is played by the Sewing Bound from Chapter 1, see Theorems 1.9 and 1.17, and
its discrete version, see Theorem 1.18.

The proof of local and global existence of solutions of (2.3) is given at the end
of this chapter, see Section 2.6, exploiting a suitable Euler scheme.

2.2. SET-UP

We collect here some notions and tools that will be used extensively.

We recall that C; denotes the space of continuous functions f:[0,7] — R¥. Sim-
ilarly, C5 and Cj are the spaces of continuous functions of two and three ordered
variables, i.e. defined on [0,7]% and [0, T]2, see (1.7)-(1.8).

We are going to exploit the weighted semi-norms ||-||,, -, see (1.33)-(1.34) (see also
(1.9) for the original norm |-||,,). These are useful to bound the weighted supremum
norm || f||eo.» of a function f € Cy, see (1.37) and (1.40):

[ loor < fol +3(AT) |6 f lgr, V0, 7>0. (2.5)
It follows directly from the definitions (1.33)-(1.34) that
Il S @AD" [llgnyr ¥, >0, (2.6)

because (t —8)7> (t — )" (1 AT)™" for 0< s <t < T with t —s < 7.

Remark 2.2. The factor (7 AT)" in the RHS of (2.6) can be made small by
choosing T small while keeping T fixed. This is why we included the indicator function
L{o<t—s<r} in the definition (1.33)-(1.34) of the norms ||-||,,~: without this indicator
function, instead of (7 AT)" we would have T, which is small only when 7" is small.

We will often work with functions F € Cy or F' € C5 that are product of two
factors, like Fy; = gs Hg or Fyyy = Gy Hyy. We show in the next result that the semi-
norm || F||, - can be controlled by a product of suitable norms for each factor.
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LEMMA 2.3. (WEIGHTED BOUNDS) For any n,n’ € (0,00) and 7 >0, we have
Zf Fst:gsHst or Fst:gtHst then ”F”U,T< “g”oo,T HHHna (27)
i Fau=GuHu  then  [Fllyre <IGlr [1Hly. 23)

Proof. If F,;= g; Hy, by (1.37) we can estimate e /" |g;| < g|lco.r to get (2.7). If
Fy= gs Hy, for s <t we can bound e™"/" <e™*/7 in the definition (1.33)-(1.34) of
|||, hence again by (1.37) we can estimate e=*/ |gy| < ||g|loo.r to get (2.7).

If Foy= Gsy Hy, we can further bound (¢ — )" > (t —u)" (u — 5)" in (1.34)
and then estimate e ™*/" Gy, / (u — 5)" < ||G||,;., which yields (2.8). O

We stress that in the RHS of (2.7) and (2.8) only one factor gets the weighted
norm or semi-norm, while the other factor gets the non-weigthed norm ||-[/,. We
will sometimes need an extra weight, which can be introduced as follows.

LEMMA 2.4. (EXTRA WEIGHT) For any n,7 € (0,00) and 0 <7 <7, we have
T
if Fa=gsHa or Fu=giHa then 1E [, <l gllsoreT [[H g7 (2.9)

Proof. Recall the definition (1.33)-(1.34) of ||-||,,,- and note that for 0 < s <t < T we
have e /7 | g:| < || g |lo.r and e™*/7 | gs| < || oo, (see the proof of Lemma 2.3). Finally,

for t —s <7 <7 we can estimate |Hy| <eT/Te /7 |Hy| <e?/" |H|,-(t—s)". O

We recall that RF @ (R?)* ~R**4 is the space of linear applications from R% to R*
equipped with the Hilbert-Schmidt (Euclidean) norm |-|. We say that a function is of
class C™ if it is continuously differentiable m times. Given o: R¥—R*® (R?)* of class
C?, that we represent by o}(z) withi€{1,...,k} and j €{1,...,d}, we denote by Vo:
RF— RF @ (RY)* ® (R*)* its gradient and by V20: RF — RF @ (RY)* @ (RF)* @ (R¥)*
its Hessian, represented for i,a,b€{1,...,k} and j€{1,...,d} by

do’ %o’

(Vo(eia=g2(2), (Vo)) =5g(2).

Remark 2.5. (NORM OF THE GRADIENT OF LIPSCHITZ FUNCTIONS) For a locally
Lipschitz function 1: R¥ — R? we can define the “norm of the gradient” at any point
(even where ¥ may not be differentiable):

|V(2)] ::hmsupME [0,00) .

y—z |y—2|

Similarly, |V2(z)| is well defined as soon as 1 is differentiable with locally Lipschitz
gradient V1) (which is slightly less than requiring ¢ € C?).

2.3. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of (2.3) assuming that o is
globally Lipschitz, that is |[Vo||s < 0o (recall Remark 2.5).
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We first observe that if the driving path X is of class C®, then any solution Z of
(2.3) is also of class C?, as soon as ¢ is continuous.

LEMMA 2.6. (HOLDER REGULARITY) Let X be of class C* with a €]0,1] and let o
be continuous. Then any solution Z of (2.3) is of class C*.

Proof. We know by Lemma 1.2 that Z is continuous, more precisely by (1.6)
we have [0Z4| < C |0Xg| + o(t — s) with C' < oo. Since [0 Xs| < ||0X ||o (t — s)* and
o(t —s)=o((t — s)*) for any <1, it follows that Z € C*. O

We next formulate the announced a priori estimates. It is convenient to use the
weighted semi-norms ||-||,, - in (1.33)-(1.34) (note that the usual norms |||, in (1.9)
can be recovered by letting 7 — 00).

THEOREM 2.7. (A PRIORI ESTIMATES) Let X be of class C* with a € E, 1] and let
o be globally v-Hdélder with v € (i -1 1]. Then, for any solution Z:[0,T] — R* of
(2.3), the remainder Z12:= 02y — 0(Z,) 6 Xy satisfies Z12 e COTV more precisely
for any >0

1220 4107 < Canyx o 10211 with Coy x.0:=Kina 10X laloler,  (2.10)
where K, = (1—2'""")"Y Moreover, if either T or T is small enough, we have

16Z]la <1V 20X la lo(Z0)])  for (TAT)™ <oy X0, (2.11)

where we define
1

€a,v,X, 0=
! 2(Ky4na+3) 10X lalo]es

(2.12)

If o is globally Lipschitz, namely if we can take y=1, we can improve (2.11) to
10Z |07 < 2|10X || |0(Z0)| for (TAT)*<eq1,x,0- (2.13)

Proof. We first prove (2.10). Since Z2=o(t — s) by definition of solution, see (2.4),
we can estimate Z12 in terms of §Z, by the weighted Sewing Bound (1.41). Let
us compute 622, =z — 7B _ 7B recalling (2.4) and (1.32), since §08 =0, we have

sut su

0725 = 60(2) s 0 X = (0(Z.) — 0(Z)) (Xi — X.) . (2.14)
Since |o(2) — 0 (2)| < [olev |2 — 2|7 for all 2,z € R, we can bound

160(Z) 507 <loler 102 |5+, (2.15)
hence by (2.8) we obtain

162|341y, < N6 X Mo [0l 162112 -
Applying the weighted Sewing Bound (1.41), for (v + 1)av>1 we then obtain

12803 tpair < Ky 10X [l 162112 (2.16)
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which proves (2.10).
We next prove (2.11). To simplify notation, let us set €:= (7 AT). Recalling
(2.7) and (2.6), we obtain by (2.4)

16Z]lar < N0(Z) 6X [lar + 1 2%]]a.r
< No(Z)lloorr 10X Nla+e7 122 (y41)a.r (2.17)

We can estimate ||0(Z)]|s.- by (2.5) and (2.15):
10(Z)lloc,r < lo(Z0)| + 37 [o]en 16212, -
Plugging this and (2.16) into (2.17), we get

10Z |lor < (lo(Zo)[ + 37 [aler [|0Z]]5,2) [|0X o+
T K(y+1)a H5XH o] 102112~

1
= [[0X oo (Zo)| +5 - 16Z1]a.x

a,v,X,0

where €4,4,x .5 is defined in (2.12). For €7 < e, 4 x, the last term is bounded by
—||5Z|| which is finite by Lemma 2.6. If ||0Z |4, <1 then (2.11) holds trivially; if

not, H(SZHQ < 2H5Z|\a . Bringing this term in the LHS we obtain (2.11).

To prove (2.13), we argue as for (2.11) and since 7=1 we obtain

1
102 a,r < 10X [la |o(Z0)[ + 5 2 102 [l -

a,l,X,0
For € <e4,1,x,» the last term is bounded by %H(SZHOM which is finite by Lemma 2.6.
Bringing this term in the LHS we obtain (2.13), and this completes the proof. [

2.4. UNIQUENESS

In this section we prove uniqueness of solutions to (2.3) assuming that o is of class
C with locally Hélder gradient (we stress that we make no boundedness assumption
on ¢). This improves on Theorem 1.7, both because we allow for non-linear ¢ and
because we do not require that the time horizon 7" > 0 is small.

We first need an elementary but fundamental estimate on the difference of incre-
ments of a function. Given ¥: R* — R, we use the notation

Cyr:=sup{|¥(z)]: zeRF |z|<R}. (2.18)

LEMMA 2.8. (DIFFERENCE OF INCREMENTS) Let ¢: R¥ — R’ be of class Ct” for
some 0< p<1 (i.e. ¢ is differentiable with V1 of class CL.). Then for any R >0

and for all x,%,y, y € R* with max {|z|,|y|, |Z],|7|} < R we can estimate

(=) = v(w)] = [¥(@) — v ()]
<Crlx—y)— (@ -9+ Crilz—yl*+]2 -y} |y — 9l (2.19)

where Cr:=sup {|V¢(x)]: || <R} and Cg:=sup {M 1z, |y| <R}

|z —y|”
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Proof. For z,w € R* we can write
V() = (w) = d(z,w) ( = w),
where (2, w) := folvw(uz + (1 —u)w) du € R*® (RF)*, therefore
[(@) =P ()] = [0(@) = 9(9)] = [¥(@) = P(@)] = [¥(y) — ()]
(z,2) (z—2) = ¥(y, 5) (y = 7)
(z,7)[(x = %) = (y = 9)]

~

v) =
+ [¢( ) )—1&( Y, )](y_g>
By definition of Cf and Cf we have |¢(z, )| < Cf and
(2, 2) = d(y, 9| < [Pz, 2) =y, D)+ [$(y, 2) =¥ (y, 7)
Crfle -yl +|z - gl*},
hence (2.19) follows. O

€> <>

<
<

We are now ready to state and prove the announced uniqueness result.

THEOREM 2.9. (UNIQUENESS) Let X be of class C* with « E} ,1] and let o be of
class C7 for some ~y > — (for instance, we can take o € C?). Then for every z,€ RF
there exists at most one solution Z to (2.3) with Zy= 2.

Proof. Let Z and Z be two solutions of (2.3), i.e. they satisfy (2.4), and set
Y =2-7.
We want to show that, for 7 >0 small enough, we have
1Y [oc,r < 2 [Y0l,

where the weighted norm ||-||oc - was defined in (1.37). In particular, if we assume
that Zy= Z,, we obtain ||Y ||, =0 and hence Z =Z.
We know by (2.5) that for any 7> 0

1Y oo, r < Y0 + 37 10Y [lac 7 , (2.20)

where we recall that the weighted semi-norm ||-||,,» was defined in (1.33). We now
define Y12 as the difference between the remainders Z? and Z1? of the solutions Z
and Z as defined in (2.4), that is

viIh=zB 7B 5y, — (0(Z) — 0(Z,)) 6 X . (2.21)

(We are slightly abusing notation, since Y i Is not the remainder of Y when o is not
linear.) By assumption o € C? for some y > —: renaming 7y as YA 2, we may assume
that v e } } We are going to prove the followmg inequalities: for any 7 >0

18Y Nl < e [[Y floo,r + 707D VB0 7, (2.22)

Y e < 2 llY lloo,r +c2 7D Y B og (2.23)
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for finite constants c;, ¢/ that may depend on X ,0, 7,7 but not on T.

Let us complete the proof assuming (2.22) and (2.23). Note that (y —1)a >0
by assumption. If we fix 7 >0 small, so that ¢} 707 ~De < %, from (2.23) we get
1Y 10.r <22 ||Y [|oo.» which plugged into (2.22) yields [|6Y ||a.r <2¢1 ||V ||oo.r for
7> 0 small (it suffices that 2, 707"V < ¢;). Finally, plugging this into (2.20) and
possibly choosing 7 > 0 even smaller, we obtain our goal ||Y |« - < 2 |Ys| which
completes the proof.

It remains to prove (2.22) and (2.23). Using the notation from Lemma 2.8 we set
Cl = sup{|Vo(@)|: [z <[ Z]eoVIIZ ]},
Vo(z)—Vo =
ot = sup{ TR0, o)y <20 1211

[z —yl?
so that |0(Z;) — o(Z;)| < C{|Z; — Z;| and, therefore,

lo(Z) = (Z) oo, < CTNY lloo,r - (2.24)
We now exploit (2.21) to estimate [|0Y ||,,,: applying (2.7) we obtain

1Y llar < N10(Z) = 0(D)llocr 16X Nl + 1Y P -
< CHY oo 16X fla+ 70D VB g (2.25)

where we note that | Y|, . <70~V ||V, . by (2.6). We have shown that (2.22)
holds with ¢; = C1[|0X || a-

We finally prove (2.23). Since Y,?'=o(t — s), see (2.21) and (2.4), we bound Z?
by its increment §Z1? through the weighted Sewing Bound (1.41):

Y #har <Ko [16Y Pl (2.26)
hence we focus on |[0Y?||,4.-. By (2.21) and (1.32), since 6 0d =0, we have
8, = (60(2)su— 60(Z) ) 0 X ut (2.27)
Applying the estimate (2.19) for v = Z,, y= Z,, & = Z,, i = Zs, We can write

2.
100(Z) s — 60(2)su| < C}|6Zsu — 6 Zsu| + C {10 Zsa| ™ + 10 2} Zs — Zi|
= O10Ysu| +CU {6 Zsu|" =1 4 |0 20|71} | Vel (2.28)

hence by (2.7) we get

160(2) = 60(Z) | -nar < CLISY o+ (2:29)
+ L1212 18202 Y enr

If we take 7 <1 we can bound [[6Y ||(y—1)a,r < [|0Y ||a,r by (2.6) (recall that we are
assuming v < 2). Then by (2.27) we obtain, recalling (2.8),

16Y Bl 15X [l 160(2) = 00(Z) - tyasr < &1 (I6Y s+ 1Y o)
for a suitable (explicit) constant ¢, = é (0, Z, Z, X). Applying (2.22), we obtain

16Y Pl ar < (1 +1) &Y oo + G 7OV VB, o,
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which plugged into (2.26) shows that (2.23) holds. The proof is complete. O
We conclude with an example of (2.19).

Example 2.10. If o:R— R is o(z) =2z? then we have

= (@ =)= (P =) =27 — (v’ — §°)
=(z—1)(x+7)—(y—79) (y+7)
=[e—2)—(y—0](w+y)+@—1)[(z+z)— (y+7)]
=[@z-2) = (=D (w+9)+ @ —2)[(z—y) +(Z—7)],

where in the second last equality we have summed and subtracted (y — ) (z + ).
If we use this formula for x =7, y = Z and & = Z;, y = Z, then we obtain

82270 0=06(Z — 2)s (Zs+ Z) + (Zy — Zy) [0 Zgt + 6 Zsf),
which is in the spirit of (2.19) with p=1. It follows that
16022 = Z)1a <211 Z )| 16(Z = Z)lla+ 12 = Z ]| [110Z [l + 102 ]|

which is the form that (2.29) takes in this particular case.

2.5. CONTINUITY OF THE SOLUTION MAP

In this section we assume that o is globally Lipschitz and of class C! with a glob-
ally v-Holder gradient, i.e. [|[Vo||s < oo and [Vo]er < 0o, with v > % Under these
assumptions, we have global existence and uniqueness of solutions Z: [0, T] — R* to
(2.3) for any time horizon T >0, for any starting point Zy € IR* and for any driving
path X of class C* with %< a <1 (as we will prove in Section 2.6).

We can thus consider the solution map:

®: RFx(C* — C°

(Z0,X) — Z __{ unique solution of (2.3) for t € [0, 7] . (2.30)
05 =

starting from Z,
We prove in this section that this map is continuous, in fact locally Lipschitz.

Remark 2.11. The continuity of the solution map is a highly non-trivial property.
Indeed, when X is of class C', note that Z solves the equation

t .
Zt:Zo+/ o(Zs) Xsds, (2.31)
0

which is based on the derivative X of X. We instead consider driving paths X € C*
with a € B, 1} which are continuous but may be non-differentiable.

We shall see in the next chapters that the continuity of the solution map holds
also in more complex situations such as X € C* with a < %, which cover the case
when X is a Brownian motion and Z is the solution to a SDE.
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Before stating the continuity of the solution map, we recall that the space C® is
equipped with the norm || f|ca:=|| f|loco + [|0f |a, sSee Remark 1.4, but an equivalent
norm is || floo,r + ||0f lla,r for any choice of the weight T >0, see Remark 1.15.

THEOREM 2.12. (CONTINUITY OF THE SOLUTION MAP) Let o be globally Lipschitz
with a globally (v —1)-Hélder gradient: |Vo||s <00 and [Vo]ev-1<oo, with y € (&,
2]. Then, for any T >0 and o € ]%, 1], the solution map (Zo, X)— Z in (2.50) is
locally Lipschatz.

More explicitly, given My, M, D < oo, if we assume that

max {||[Vo ||, [Voler-1} < D,

and we consider starting points Zy, Zy € R? and driving paths X, X € C* with

max {|o(Zo)|, |o(Zo)|} < Mo, max {[|0.X [|a, [0X[la} <M, (2.32)
then the corresponding solutions Z = (Zs)sejo, 1), 7= (Zs)se[o,T] of (2.3) satisfy

1 Z = Z||lcorr + 1167 = 67 ||ar < €rr | Zo— Zo| +6 My |0 X — 60X ||, (2.33)
provided 0 <7 AT <7 for a suitable T = To 1,0 Mp,m >0, where we set

Crv:=2(|VolleM+1)<2(DM+1).
Proof. Let us define the constant
v :=||VolleM<DM. (2.34)

We fix two solutions Z and Z of (2.3) with respective driving paths X and X. If we
define Y :=7 — Z, we can rewrite our goal (2.33) as

Y Nloo,r + 10 []ar <6 Mo [|6X — 0X [l +2 (ear +1) Yo - (2.35)

Let us introduce the shorthand
e:=(TAT)*

and let us agree that, whenever we write for ¢ small enough we mean for 0 <e <egg
for a suitable £g >0 which depends on o, T, My, M, D. By (2.5), for € small enough,

1
1Y loo,r < Yol +£ [10Y o, < [Yol + 2 1Y [la 7, (2.36)

hence to prove (2.35) we can focus on ||Y |4+

Recalling (2.4), let us define Y2 := 72 — ZI2. We are going to establish the
following two relations, for ¢ small enough:

4 _
18V llasr <2 Mo [0 — 65X [+ car Y]+ IV P (2.37)
- 1 1
Y P ar < Mo 53X = 6X [+ 5]%6] + 2 57 s (2.38)

Plugging (2.38) into (2.37) and applying (2.36), we obtain (2.35).
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It remains to prove (2.37) and (2.38). We record some useful bounds. Let us set

1

E=Eq,D,M = 5 (K2a+3) DM (239)

We exploit the a priori estimate (2.13) from Theorem 2.7: by (2.32), we have
fore=(rAT)*<&: max{[|0Z||a.r, |07 ||ar} <2 Mo M, (2.40)

therefore

160(Z)[lar S IV lloo [10Z |a.r < 2[[V o [|o0 Mo M =2 Mo cr, (2.41)
and applying (2.5) and (2.32) we get, for € small enough,
o (Z)||oor < |o(Zo)| + 3 100(Z)||ar < Mo (1+6cpre) <2 M, . (2.42)

We can now prove (2.37). Defining Y#:= 7 — 7B we obtain from (2.4)

5}/815 = 6Zst — 6Zst = O'(Zs) 6Xst — O'(Zs> 5Xst + YS?]
= 0(Z) (6X —6X)g+ (0(Z) — 0(Z,)) 6 X+ Y.,

hence by (2.7) we can bound

H(SY”a,T < HU(Z)HOO,T H(SX —5)2“05

’ _ (2.43)
H|0X | l0(Z) = o(Z) o, + [V Pl r -
Let us look at the second term in the RHS of (2.43): by (2.5)
10(2) — 0(Z) s < V0l Z — Zlor 11
< [IVolls (Yol + 3 [16Y [|a ).
Hence by (2.32) and (2.34) we get, for € small enough,
_ _ 1
10X [l 10/(Z) = o (2)lloo,7 < ear [Yol + = [|6Y [lar- (2.45)
Plugging this into (2.43) we then obtain, by (2.42),
4 _
5 16Y [|or <2 Mo 10X = 6X [+ car [Yo| + [V 7, (2.46)

which proves (2.37). )
We finally prove (2.38). Since Y2 = 72— ZZ — 5(t — 5), see (2.4), the weighted
Sewing Bound (1.41) and (2.6) give

Yo < Y P o r < Koo e HIOY P 0 s (2.47)
To estimate 0Y2 =522 — § Z12 note that by (2.4) and (1.32) we can write
0Vt =00(Z)ou (6X = 0X )ui+ (60(2) = 60(Z))ou 6 Xt (2.48)

hence by (2.8)
1Y Pl <N60(Z) |3 -vya,r 16X =X [la+ 16X [la 100(Z) = 60(2) | (1 -1ya,r- (2:49)
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The first term is easy to control: by (2.41), for e small enough,
Koo 100(Z) [l (y-1ya.r 10X = 06X [la < Mo [|0X = 6X || (2.50)
Let us now focus on the second term. By (2.19) we have, see also (2.28),
100(2)su = 00(Z)sul <V |l 10Yiu] + [Vl er-1 {|0Zsul "™ + 10 Zeu 71} V3]
We apply (2.9) for H=6Z, g=Y and 7 = (&)"/* from (2.39):
167(2) = 57Dl < 190118 o +
H{Voler-1e7 (1621127 + I6Z2HNY lloe,
< DY s+ 2 @M MY D [V s (251)

where we applied (2.40). Hence by (2.51), recalling (2.32), for € small enough we
obtain

Koa & 6X o 19(2) = 30(2) | -vpocr < 75 1Y e + 51V loeirs (252)
and since [|Y |00, < Y0 +é 10Y ||+, s€€ (2.36), we obtain
Koo e H|0X o [100(Z) = 00(2) || (r-1)ar < !Yo\ +— 10Y [[a7-
Finally, plugging this bound and (2.50) into (2.49) and (2.47), we obtain
IV Bl e < Mo 63X = 65 la-+ 5%l + 15 s
which proves (2.38) and completes the proof. O

Remark 2.13. An explicit choice for 7 in Theorem 2.12 is

_T

7= ° (2.53)

10 (K2a+3) (14 Mp) (1+ D (M + M?))’

with 7 = 74, p,m defined in (2.39). This is obtained by tracking all the points in
the proof of Theorem 2.12 where ¢ = (7 AT)® was assumed to be small enough: see
Section 2.8 for the details.

2.6. EULER SCHEME AND LOCAL/GLOBAL EXISTENCE

In this section we discuss global existence of solutions, under the assumption that o
is globally y-Holder with v € (é —1,1], i.e. [o]ev < oo (again with no boundedness
assumption on o). We also state a result of local existence of solutions for equation
(2.3), where we only assume that o is locally v-Hélder with v € (é -1, 1] (with no
boundedness assumption on o).

We fix X:[0,7] — R? of class C* with o € B, 1] and a starting point zo€ R*. We
split the proof in two parts: we first assume that o: R* — R* @ (R%)* is globally -
Holder, then we consider the case when o is locally ~-Holder.
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First part: globally Holder case.

We consider a finite set T={0=1%; <--- <txr} C R} and we define an approximate
solution Z = ZT = (Z;)ier through the Fuler scheme

Z()Z: 20, Zt :Zti—i_O-(Zti) 5Xti,ti+1 for 1 glg#T— 1. (254)

1+ 1
Let us define the “remainder”

R =07y — 0(Zs) 0 X for s<teT. (2.55)
We assume that o is globally v-Holder, namely [o]cv < oo, with v € (% -1, 1}. We set

R 1
€a,v,X,0 = )
! 2(Cly+1)a+5) 16X |o [o] e

(2.56)

where the constant C), is defined in (1.45). We prove the following a priori estimates
on the Euler scheme (2.54), which are analogous to those in Theorem 2.7.

LEMMA 2.14. If o is globally v-Hélder, namely [o]cr < 0o, with v € (é —1,1], then

IR 410 < Cryanya loler (16Z]|2)7 16X o, (2.57)
and for T7* <€y 4.X 00 16Z]|12 <1V (2|0 (20)] 10X ||a) - (2.58)

Proof. Since R = (0(Zs) — 0(Zy)) 0 Xus, recall (1.32), and since Ry, , =0 by
(2.54), we can apply the discrete Sewing Bound (1.45) with n=(y+1)a >1 to get

IR+ ar < Crtna IORIG 4110, < Clatnya oler (102 ]]ar) 7 10X - (2.59)

We have proved (2.57).
We next prove (2.58). Recalling (2.55) we can bound, by (2.6) for ||-||ya, T,

16Z |27 < lo(2)lloe,7 10X o+ T | R[4 10,7 -
By (1.47)

lo(Z) |50, < |o(20) + 57700 (Z) |a,» < o (20)| + 577 [0]ex ([16Z [|a7) -
We thus obtain, combining the previous bounds,
162 ||ar <o (20) 10X [lo+ {77 (Cra +5) [o]er [|6X [|a} (102 1a.7)7

Now if [[0Z]|a.» <1 then (2.58) is proved, otherwise (|67 |2 ,)? <||0Z]|a.- and then
for 7 as in (2.56) the term in brackets is less than % and we obtain (2.58). O

We can now prove the following

THEOREM 2.15. (GLOBAL EXISTENCE) Let X be of class C*, with o € E, 1}, and
let o be globally v-Holder with v € (% —1,1], i.e. [o]ev<o0. For every z€ RF, with
no restriction on T >0, there exists a solution (Zy)icpo,r) of (2.5) with Zy= 2.
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Proof. Given n €N, we construct an approximate solution Z" = (Z{);cT, of (2.3)
defined in the discrete set of times T, := ({i27™ i=0,1,...}N[0,T]) U{T} through
the Fuler scheme (2.54).

Zy=z0, 2P = ZP+0(Z0) 6 X, for t;,t;11 €T, . (2.60)

i+1
Let us define the “remainder”

v =020 —o(Z1) 6 Xg for s<teT,. (2.61)
We fix 7" > 0 such that

We extend Z" by linear interpolation to a continuous function defined on [0, 77,
still denoted by Z™. Given two points t; < s <t <t;41 inside the same interval [t;, ;1]

of the partition T, since }}z%&ZﬁtiH, we can bound for « € (0, 1]

’stsqﬂ :( t—s )l_a ’(SZIZE‘-H‘ < yézgti-H’
(t—s) \t (v — )™ (tig1 — )"
Given two points s <t in different intervals, say ¢; <s <t <t; <t <tj4 for some
i < j, by the triangle inequality we can bound [0Z5| <[0ZJ, |+ [0Z], 4,| +10Z].
Recalling (1.9) and (1.43), we then obtain ||-||, <3 |||, hence by (2.58) we get

1627 |a,r <3V (6o (20)] [|0X [a) - (2.62)

it1—t

The family (Z"),en is equi-continuous by (2.62) and equi-bounded, since Z§ = zy
for all n € N, hence by the Arzela-Ascoli Theorem it is compact in the space C(]0,7],
R¥). Let us denote by Z:[0,T] — R* any limit point. Plugging (2.58) into (2.57),
by (2.61) we can write

if T*<E, x.00 020 — 0 (Z1) 6 X | < c(z0) (t — )% Vs<teT,, (2.63)

where ¢(zp) := Cy41)a [0ler (B3 V (6 |0(20)] |0X [|a))” |0X||o . Letting n — co and
observing that T, C T4, we see that (2.63) still holds with Z" replaced by Z
and T, replaced by the set T:={J, . Tor=({55: 4,n € N} N[0, T]) U{T} of
dyadic rationals:

if T*<é0.x .00 02— 0(Zs) 0 Xst| < c(z0) (t —5)**  Vs<teT.

Since T is dense in [0,7] and Z is continuous, this bound extends to all 0 < s <t < T,
which shows that Z is a solution of (2.3). This completes the proof. O

Second part: locally Lipschitz case.

We now assume that o is locally v-Hélder and we fix zo € R¥. We also fix 7' > 0 such
that T< &4, x.0(20), see (2.64), and we prove that there exists a solution Z:[0, 7] — R*

THEOREM 2.16. (LOCAL EXISTENCE) Let X be of class C*, with o € E, 1}, and let o
be locally Lipschitz (e.g. of class C'). For any 2o € R and for T'>0 small enough, i.e.

1 1

T< 0 x.0(20) == )
Xol0) = G T3 oK o {1 b e VO ()}

(2.64)
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there exists a solution (Zy)icjo,m of (2.3) with Zy= 2.

Let ¢ be a globally v-Hdélder function (depending on zp) such that
d(z)=0(z) Y|z — 20| <o(20) and [Glecv=sup |Vo(z)]. (2.65)

|z—z0| <o (z0)

Since T'< €4.x.0(20) < €a.x.0, see (2.64) and (2.56), by the first part of the proof
there exists a solution Z of (2.3) with & in place of o and Zy= z,. We will prove that

| Zy — 20| < 0(20) for all t€]0,T], (2.66)

therefore 6(Z;) =o(Z;) for all t €[0,T7], see (2.65). This means that Z is a solution
of the original (2.3) with o, which completes the proof of Theorem 2.16.

To prove (2.66), we apply the a priori estimate (2.13) with 7 =o0: we note that
T <E4x,0(20) <€a,x,0 (see (2.64) and (2.12), and note that Cy, > Ks,), therefore

16Z]la < 2[16X o o (20)],
because 7 (z9) =0(20). Then for every ¢ € [0,T] we can bound
|2 = 20l ST [|0Z |0 < 2T [0X || [ (20) < [0 (20)],

where the last inequality holds because T < €4 x.»(20) < (2 [|0X ||a) 7}, see (2.64).
This completes the proof of (2.66).

2.7. ERROR ESTIMATE IN THE EULER SCHEME

We suppose in this section that o is of class C? with ||V o||eo + || V20 || oo < +00.

THEOREM 2.17. The Euler scheme converges at speed n?*~1.

Proof. Let us set z;:= dy; / 0yo, where (y;);>0 is defined by (2.60). Then

zi+1:zi+Va(yi) ZiéXtit 'L}O

i4+19

This shows that the pair (y;, 2;)i>0 satisfies a recurrence which is similar to (2.60)
with a map ¥ of class C! and therefore we can apply the above results to obtain
that |z;] < const. In particular the map yo— yx is Lipschitz-continuous, uniformly
over k> 0.

Let us call, for k>0, ( ék))@k as the sequence which satisfies (2.60) but has

initial value z,(ck) =y(tx). Since (y(t)):>0 is a solution to (2.4), we have

k —2a
|2 — Yt S

Since the map yo— yx is Lipschitz-continuous uniformly over k >0, we have

|Zék) (k+1)| S |Zk+1 Y(trgr)| Sn2, (>k+1.
Therefore
0 (¢ k) k+1) 14 te
lye—y(te)| =12 — 2 )|<Z|Z( 2+ <W:W—>0
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as ty is bounded and n— oc. O

2.8. EXTRA: A VALUE FOR T

We can give an explicit expression for 7 = 7y, 27,7 in Theorem 2.12, by tracking all
the points in the proof where 7 is small enough, namely:

(0% 1 .
for (2.36) we need 7 < 1;

for (2.40) we need 7% < (par)®:= (2 (Koo +3) car) ™Y

for (2.42) we need 7 < (6¢pr) !, for (2.45) we need 7* < (15 ¢pr) ™%

for (2.50) we need 7OV (2 K0 car) 7Y

(
(
(
(

for (2.52) we need 70"V < (10 K., ¢py) ™" (first term in the RHS) and also

Since ¢y =M ||Vo ||, see (2.34), it is easy to check that all these constraints are
satisfied for 0 <7 <7 given by formula (2.53) in Remark 2.13.



