CHAPTER 3

DIFFERENCE EQUATIONS: THE ROUGH CASE

We have so far considered the difference equation (2.3), that is
Zy—Zs=0(Zs) (Xi— Xs) +o(t —s), 0<s<t<T, (3.1)

where X is given, Z is the unknown and o(-) is sufficiently regular. This is a gen-
eralization of the differential equation Z; = o(Zy) X, which is meaningful for non
smooth X, as we showed in Chapter 2, where we proved well-posedness in the so-
called Young case, i.e. assuming that X € C* with a € E, 1}.

However, the restriction a >% is a substantial limitation: in particular, we cannot
take X = B as a typical path of Brownian motion, which is in C* only for o < % For
this reason, we show in this chapter how to enrich the difference equation (3.1) and

prove well-posedness when X € C* with o € }%, %}, called the rough case. This will
be applied to Brownian motion in the next Chapter 4, in ordered to obtain a robust
formulation of classical stochastic differential equations.

NOTATION. Throughout this book we write fs S gst to mean that fo < C gs for all
0<s<t<T, where C' < oo is a suitable random constant.

Remark 3.1. (YOUNG VS. ROUGH CASE) The restriction « >% for the study of

the difference equation (3.1) has a substantial reason, namely there is no solution to
(3.1) for general X € C* with a < % Indeed, taking the “increment” ¢ of both sides

of (3.1) and recalling (1.23) and (1.32), we obtain
(0(Zy) —o(Zs)) (Xe— X)) =o(t — s) for 0<s<u<t<T. (3.2)

If X eC? for any « € (0, 1], then we know from Lemma 2.6 that Z € C*, but not
better in general (e.g. when o(-) =c is constant we have Z =c¢ X), hence the LHS
of (3.2) is S(u—s)*(t —u)* < (t — s)?9, but not better in general. This shows that
the restriction « >% is generally necessary for (3.1) to have solutions.

3.1. ENHANCED TAYLOR EXPANSION

We fix d, k €N, a time horizon 7 >0 and a sufficiently regular function o: R* —
R* ® (RY)*. Our goal is to give a meaning to the integral equation

t .
Zt:Zo+/a(Zs)XSds, 0<t<T, (3.3)
0

where Z: [0, 7] — R” is the unknown and X:[0,7] — R¢ is a non smooth path, more

precisely X € C* with a € }%, %}
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46 DIFFERENCE EQUATIONS: THE ROUGH CASE

The difference equation (3.1) is no longer enough, for the crucial reason that
typically it admits no solutions for o < %, see Remark 3.1. We are going to solve

this problem by enriching the RHS of (3.1) in a suitable, but non canonical way:
this leads to the key notion of rough path which is central in this book.

To provide motivation, suppose for the moment that X is continuously differen-
tiable, so that (3.3) is meaningful. As we saw in (1.3), an integration yields for s <t

Zu=2i=0(2) (X=X + [ (0120) ~0(2)) Xudu (3.4)

In Chapter 1 we observed that the integral is o(t — s), which leads to the difference
equation (3.1). More precisely, the integral is O((t — s)?) if X € C" and o is locally
Lipschitz (note that Z € C'). The idea is now to go further, expanding the integral
to get a more accurate local description, with a better remainder O((t — s)?).

To this purpose, we assume that o is differentiable and we introduce the key
function oy: R* — R* @ (RY)* @ (RY)* by

Qv
Qqs B

oo(2) =Va(2)o(z), e : Zl (= (3.5)
Since - o(Z,) =V (Z,) Z, = 02(Z,) X, by (3.3),W:_canwritef0rs<u
o(2)=02) = [ olZ) Koar
= 0o Z) (Xu= X+ [ (0(Z2) — 0a(2) Ko, (3.6)

S

where for z € R? and a € R? we define 0y9(2) a € R* ® (RY)* by

Jfa

M&

(=1

If we assume that oy is locally Lipschitz, then the last integral in (3.6) is O((u — 5)?)
(recall that X € C'). Plugging this into (3.4), we then obtain

Zt - Zs = U<Zs) (Xt - Xs) + 02(Z5> /t<Xu - Xs) ® Xu du + O<<t - 3)3>7 (37)

where now for z € R? and B € R?®@ R? we define 04(2) B € R* by

d

[02(2) B)'= Z [09(2) i B™. (3.8)

m=1

Let us rewrite the integral in the right-hand side of (3.7) more conveniently. To
this purpose we introduce the shorthands

t
XL=X,-X;, Xst'—/(Xr—Xs)®err, 0<s<t<T, (3.9)
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so that X' [0, T2 — R? and X% [0, 7T])2 — RI®@RY, see (1.7). More explicitly:
t ..
(xgt)if::/ (Xi—XHXidr,  i,je{l,....d}.

We can thus rewrite (3.7), replacing O((t — s)?) by o(t — s), in the compact form
Zy— Zs=0(Z) X+ 02(Z) X3+ o(t —s),  0<s<t<T, (3.10)

where for the product o4(Z,) X2 we use the contraction rule (3.8).

We have obtained an enhanced Taylor expansion: comparing with (3.1), we added
a “second order term” containing X%. The idea is to take this new difference equation,
that we call rough difference equation, as a generalized formulation of the differential
equation (3.3), just as we did in Chapter 1 (see Section 1.2). However, there is a
problem: the term X2 depends on the derivative X, see (3.9), so it is not clearly
defined for a non-differentiable X.

To overcome this problem, we will assign a suitable function X?= (X2 )o<s<i<r
playing the role of the integral (3.9) when X is not differentiable: this leads to the
notion of rough paths, defined in the next section and studied in depth in Chapter 8.
We will show in this chapter that rough paths are the key to a robust solution theory

1

of rough difference equations when X of class C* with o € (%, 5]

3.2. ROUGH PATHS

Let us fix a path X:[0,7] — R? of class C* with o € (%,é

section, we are going to reformulate the ill-posed integral equation (3.3) as the
difference equation (3.10), which contains X' and X2

We can certainly define X!, := X; — X, as in (3.9), but there is no canonical
definition of X2 = fst(XT — X,) ® X, dr, since X may not be differentiable. We
therefore assign a function X% which satisfies suitable properties. Note that when
X is continuously differentiable the function X? in (3.9) satisfies:

}. Motivated by the previous

e an algebraic identity known as Chen’s relation: for 0 < s<u<t<T

which follows from (3.9) noting that
t
th_Xgu_Xit:/ (XT _Xs) ®er7’: (Xu_Xs) ® (Xt_Xu) )
e the analytic bounds
Xl Slt—sl,  IXE[SIE—sP (3.12)

which follow from the fact that X is bounded.

The algebraic relation (3.11) is still meaningful for non-differentiable X', while the
analytic bounds (3.12) can naturally be adapted to the case of Holder paths X € C*
by changing the exponents 1,2 to «, 2. This leads to the following key definition.
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DEFINITION 3.2. (ROUGH PATHS) Fir o € }%,%], de€N and a path X:[0,T] — R?

of class C*. An a-rough path over X is a pair X = (X', X?) where the functions
X [0, 712 — R4 and X2 |0, T]Zg — RI®R? satisfy, for 0<s<u<t<T:

e the algebraic relations
XL=X—X,, O0XZ;=X%-X%-X}=X,®X,, (3.13)
where the second identity is called Chen’s relation;
e the analytic bounds
Xal SlE—sl®, IXGIS[E—sf. (3.14)

We call Ro.a(X) the set of d-dimensional a-rough paths X = (X!, X?) over X and
Re.i=Uxcco Ra.a(X) the set of all d-dimensional a-rough paths.

When X is of class C', the choice (3.9) yields by (3.11)-(3.12) a a-rough path
for any a € (%, %} which we call the canonical rough path, see Section 8.7 below.
When X = B is Brownian motion, the theory of stochastic integration provides
a natural candidate for X2, in fact multiple candidates (think of Ito vs. Stratonovich
integration), as we discuss in Chapter 4 below. Incidentally, this makes it clear that
the construction of X2 is in general non canonical, i.e. there are multiple choices of
X2 for a given path X. This is a strength of the theory of rough paths, since it allows

to treat different non equivalent forms of integration.

Remark 3.3. The existence of rough paths over any given path X (i.e. the fact
that R,.q4(X)#0) is a non trivial fact, which will be proved in Chapter 8.

Remark 3.4. (X2 As A “PATH”) The two-parameters function X2 is determined
by the one-parameter function

Htiz X(Q)t—I—XO ®(Xt—Xo) y (315)
which intuitively describes the integral f Ot X, ® XT dr. Indeed, we can write
Xs%t:]It_Hs_Xs(g) (Xt_XS) ) (316)

since X% = X3, — X3, — (Xs — Xo) ® (X; — X;) by Chen’s relation (3.13).

Vice versa, given a function I: [0, 7] — RY, if we define X? by (3.16), then Chen’s
relation (3.13) is automatically satisfied (recall (1.32)). In order to satisfy the ana-
lytic bound in (3.14), we must require that

LT, — X, ® (X, — X)| < (t— s)%, (3.17)

which is a natural estimate if I; — I, should describe “= fstXT ® Xr dr”.

Summarizing: given any path X: [0, 7] — R? of class C?, it is equivalent to assign
X200, T2 - RI® RY satisfying (5.13)-(5.14) or to assign 1:]0,T] — R? satisfying
(3.17), the correspondence being given by (3.15)-(3.16).
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3.3. ROUGH DIFFERENCE EQUATIONS

Given a time horizon T >0 and two dimensions d, k € N, let us fix:
e apath X:[0,7] —R? of class C* with a € }%,%},
e an a-rough path X = (X! X?) over X, see Definition 3.2;
e a differentiable function o: RF — R* ® (R%)*, which lets us define the function

o2: RF - R* @ (RY)* @ (RY)* (see (3.5)).

Motivated by the previous discussions, see in particular (3.10), we study in this
chapter the following rough difference equation for an unknown path Z:[0,7] — R*:

6Zst:U(Z5) X;t"’UQ(ZS) X§t+0(t_8)7 O<S<t<T7 (318)

where we recall the increment notation §Z;:= Z; — Z; and the contraction rule (3.8),
and we stress that o(t — s) is uniform for 0 < s <t <7, see Remark 1.1. In analogy
with (2.3)-(2.4), a solution of (3.18) is a path Z: [0, T] — R* such that

2= 67— 0(Z) XYy~ 03(Z) XE = ot — 5). (3.19)

We stress that the rough difference equation (3.18) is a generalization of the
integral equation (3.3), as we show in the next result.

PROPOSITION 3.5. If X and o are of class C' and o4 is locally Lipschitz (e.g. if o is
of class C*), then any solution Z to the integral equation (3.3) satisfies the difference
equation (5.18) for the canonical rough path X = (X', X?) in (3.9).

Proof. If X € C?, then X= (X!, X?) defined in (3.9) is an a-rough path over X for
any o € }%,%], as we showed in (3.11)-(3.12). Given a solution Z of (3.3), if o9 is
locally Lipschitz we derived the Taylor expansion (3.10), hence (3.18) holds. O

We now state local and global existence, uniqueness of solutions and continuity of
the solution map for the rough difference equation (3.18) under natural assumptions
on ¢ and o0y, summarizing the main results of this chapter. We refer to the next
sections for more precise and quantitative results.

To be completed.

PROPOSITION 3.6. Let zo€ R?. We suppose that o and oy are of class C* and globally
Lipschitz, namely ||Vo|loo+ ||V02|leo <+00. Let D:=max{1,||V0| s, ||Vo2|} and
M >0.

There exists Tyr.p.o >0 such that, for all T € (0, Ty p.o) and X= (X', X?)eR, 4
such that ||X|o+ ||X3||2a < M, there exists a solution Z to (5.19) on the interval
[0,T] such that Zy= zy and

12 la <15 M (|0 (20)| + |o2(20)])- (3.20)

The proof of this Proposition, based on a discretization argument, is postponed
to section 3.9 below.
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We are going to use the Sewing Bound (1.26), its weighted version (1.41) and its
discrete formulation (1.45).

3.4. SET-UP

We recall that the weighted semi-norms ||-||,),» are defined in (1.33)-(1.34). We are
going to use the various properties that we recalled in Section 2.2, see in particular
(2.5), (2.6) and (2.7)-(2.8), as well as the natural generalization

<IGllan7 [1H 1],

3.21
<Gl 11H |2y, (3:21)

1f Fsut:Gsu Hut then ||F||3Tia7{

In all these bounds, whenever there is a product, only one factor gets the weighted
semi-norm, while the other factor gets the ordinary semi-norm. We sometimes need
to introduce an additional weight, which is possible applying (2.9).

In Chapter 2 a key tool to study the Young difference equation (2.4) was the
estimate on the “difference of increments” in Lemma 2.8. This tool is still crucial in
this chapter, but we will need an additional ingredient that we now present.

LEMMA 3.7. (TAYLOR IDENTITY) Let 21,2 € R* and x € RY. If o: RF—RF @ (R?)* is

of class C1, defining o9: RF— R¥ @ (RY)* @ (RY)* by (3.5) and setting 6z19:= 29— 21,
we have the identities

O'(ZQ) —0’(21) —0'2(21).% ) (322)
= VO'(Zl)(62’12 — O'(Zl) 33') + /0 [(VO’(Zl +7r (52’12) — VO'(Zl)) (5212] dT’,

and

o (22) — 0(21) — oa(21) & = /0 [(0as 4 1 6210) — o)) ] (3.23)
+ /Ol[Va(zl +70212) (0212 — 0 (21) )] dr
_ /0 Yoo+ r2) ( /0 V0 (21 4+ v629) 02102 dv) dr.

Proof. The first formula is based on elementary manipulations and on the fact that

1
0(z) —o(z1)= / [Vo(z1+10212) 6219) dr.
0
For the second formula, setting 0z := 215 for short, we similarly write
1
0(z) —o(z) = / [Vo(zy+1rdz)dz]dr
0

= /0 [Vo(z1+10z2) (602 —o(z) x)] dr + /0 [Vo(z1+1rdz)o(z)x]dr

A
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and then, recalling the definition (3.5) of o,

A:/O [ag(zl+r(5z):v]dr—/0 [Vo(z1+162) (0(z1+102) —0(z1)) x] dr.

/

B
Finally

1 T
B = / Vo(z1+7r6z) (/ [Vo(z1+v0z) 0z dv)dr
0 0
from which (3.23) follows easily. O

We will see below that (3.22) is useful for the comparison between two solutions,
as in the proofs of uniqueness (Theorem 3.10) and continuity of the solution map
(Theorem 3.11), while (3.23) is well suited for a priori estimates on a single solution
(Theorem 3.9) or on a discretization scheme (Lemma 3.13).

3.5. A PRIORI ESTIMATES

In this section we prove a priori estimates for solutions of the rough difference
equation (3.18) for globally Lipschitz o and o9, i.e. ||V |l <00 and ||Vogl| < 00.
A sufficient condition is that o, Vo, V2o are bounded, see (3.5), but it is interesting
that boundedness of o is not necessary (think of the case of linear o).

Given a solution Z of (3.18), we define the “remainders” ZP% and Z® by
Zs[?} =025t — 0(Z) Xt — 02(Z) X3, Zs[? =0Zst— 0(Z) X - (3.24)

Let us first show, by easy arguments, that any solution Z of (3.18) has the same
Holder regularity C* of the driving path X (in analogy with Lemmas 1.2 and 2.6),

and that the “level 2 remainder” Z2 is in C3%, that is | 2| < (t — 5)2*

LEMMA 3.8. (HOLDER REGULARITY) Let o be of class C* and let Z be a solution
of (3.18). There is a constant C'=C(Z) < oo such that

2] 2 _
|Zst |<C|Xst1|+0(t ) 8)7 0<S<t<T (325)
02| < O (IXae| +[X5]) + ot — ),

In particular, if X=(X',X?) is an a-rough path, then ZPle C3* and Z is of class C*.

Proof. If X= (X! X?) is an a-rough path, then by the first bound in (3.25) we have
|ZB) < (t = s)2+ ot — 5) < (t — )%, that is Z12 € 2. Similarly, the second bound
in (3.25) gives |0Z| S (6 —5)+ (t — 8)**+o(t — s) S (t — 5)*, that is Z is of class C°.

It remains to prove (3.25). This follows by (3.18) with C':=supo<s<r {|0(Zs)| +
\oa(Zs)|}, so we need to show that C' < oco. Since o and o9 are continuous (because
o is of class C), it is enough to prove that Z is bounded: supg<;<r |Z] < 00.

Arguing as in the proof of Lemma 1.2, we fix § >0 such that |o(t —s)| <1 for
all 0 < s <t <T with |t —s| <J. Since [0,7T] is a finite union of intervals [3,#] with
t —5<J, we may focus on one such interval: by (3.18) we can bound

sup | Zy| <|Zs| + |0(Zs)| sup |X%| + |o2(Zs)| sup |XZ|+1<oc0.

te(s,t] te(s,t] te(s,t]
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This completes the proof that supo<i<r | Z¢| < 0. O

We next get to our main a priori estimates, showing in particular that the

“level 3 remainder” Z is in C3°, that is \Zs[i’}] <|t — s|?*. Let us first record a useful
computation: recalling (1.23) and (1.32), by dod =0 and (3.13), we have

o8, = 28~ 7 7
= SU(ZU) —o(Zs) — oa2(Zs) X;uz X+ (02(2) — 09(Z,)) X2, . (3.26)
BVS’U/

THEOREM 3.9. (ROUGH A PRIORI ESTIMATES) Let X be of class C* with a € |5, 7]
and let X= (X' X?) be an a-rough path over X. Let o and o4 be globally szschztz

For any solution Z of ( 3.18), recalling the “remainders” Z® and Z? from (3.24),
we have ZB € C3°: more precisely, for any >0,

1z ]H3a <Ko oo (10Z]lair + 1 2%|26.r) (3.27)
where we recall that Kz, = (1 — 27371 and we define the constant

Cax,0 = VO oo [IX a4 [[Vo2lloo X220+ (VoI5 + [ Vorlloo) X5 (3.28)

Moreover, if either T or T is small enough, we have

102 layr + 11 2P| 20,r < 2(0(Zo) XMoo+ 02(Z0) X2 20) (3.29)
for (TAT)*<éehx.o,

where we set
1

/ -
X T Y (Kaa+3) (Chxo+ 1)

(3.30)

Proof. Let us prove (3.27). Since 3a >1 and Z = o(t — s), see (3.19), we can
apply the weighted Sewing Bound (1.41) which gives || Z5)]|30.» < K30 [|602¥|34.-. It
remains to estimate 6Z8 from (3.26): applying (3.21) we can write

1025 307 <1 Bllza, XM o+ 1002(Z) o r X2 2 (3.31)
We now focus on By, from (3.26): by (3.23) we have

1 1
Baw = / (03(Z+ 16 Z3) — 05(Z5)) X1, ] du + / Vo (Z+ 16 Z) 72 du
0 0

1 u
_ / VU(Zs+uéZsu)< / Vo (Zs+0670) 70 X1, dv)du,
0 0
so that, by (2.8),
1 Bll2a.r < ([IVosllso + IV [3) XM o 102 [lar + VO lloo | 2|20+ (3.32)

We can plug this estimate into (3.31), together with the elementary bound
1602(Z)[lar < Vo2l [|0Z ||, - (3.33)
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Recalling that || 28|34, < K34 ||6Z2%)]|34.7, we have proved (3.27)-(3.28).

We next prove (3.29), for which we need to estimate Z2 and 6Z. Writing Z2 =

s

02(Z) X%+ ZE and setting & := (7 AT) for short, we can bound by (2.6) and (2.7)
||Z[2]||2a,‘r < ||U2(Z>||oo,7' ||}§2||204""8 ||Z[3]||3a,‘r-

By (2.5) we have ||09(Z)||oo,r < 02(Z0) + 3¢ ||009(Z) || o, and we can bound ||002(Z)||a. -
by (3.33). Applying (3.27) and recalling (3.28), we then obtain

12 20,r < 02(Z0) Xl 20+ € (Ksa+3) ch x0 (102l + 12|20, 7)
1 ¢

< 02(Zo) ||X2||2a+1€,— 16Z Nlayr + 122|207 » (3.34)

a, X, o
where we recall that ¢/, x , is defined in (3.30).
Similarly, writing 6Zy = 0(Z,) X% + Z2) we can bound, by (2.6) and (2.7),

102l < lo(Z) oo X |+ 122|267,

and since ||0(Z)||oor < 0(Zo) + 3¢ [[00(Z)||ar <0(Zy) +3€ ||V ||oo [|0Z ||a.r We get,
recalling (3.28),

16Z |la.r < 0(Z0) XMoo+ 3e ch x0 102 |ar+€ | 25|20, -
1 ¢
< U(Zo)||X1||a+Zg, N 162 |lar +€ 12220, - (3.35)

Finally, for e <eg x , (hence € éi, see (3.28)), by (3.34) and (3.35) we obtain

1
102 llaz + 12 |20, < 0(Z0) | X o+ 02(Z0) X204 5 (102 ]| ar + 12220 7) -

Since ||6Z ||a.r + || 2| 20,7 < 00 by Lemma 3.8, we have proved (3.29). O

3.6. UNIQUENESS

In this section we prove uniqueness of solutions of (3.18) under the assumption that
o:RF— RF@ (RY)* is of class C7 with >§ (e.g. it suffices that o is of class C®).
This implies that oy from (3.5) is of class C! with locally (v — 2)-Hélder gradient
Voo We stress that o and oy are not required to be bounded.

THEOREM 3.10. (UNIQUENESS) Let X be of class C* with o € }%,%], let X= (X!

X2) be an a-rough path over X, and let o be of class C7 with >é (e.g. if o is of
class C3). Then for every zo€ RF there exists at most one solution Z to (5.18) such
that Z() = 20-

Proof. Let us fix two solutions Z, Z of (3.18) and define their difference

Y. =7-7.
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Our goal is to show that, for 7 >0 small, we have ||Y || <2 |Yo|. In particular, if
Zo=Zy, then Yy =0 and therefore ||Y||o0 - =0, i.e. Z=Z, which completes the proof.
We know by (2.5) that

1Y (oo, < [Y0] +3 7% [[0Y [| a7 - (3.36)

With some abuse of notation, we denote by Y;?] = Zﬁ] — Zs[f} and }{;E’] = Zs[i’] — Zﬁ]
the “differences of remainders”, recall (3.24), so that we can write

§Yy = (0(Z) —o(Z)) XL+ Y2, (3.37)
Y = (0y(2,) — 02(Z,)) X2+ Y. (3.38)

We are going to show that, for 7 >0 small enough, the following bounds hold:

||5Y||a,7<01 HYHoo,T"‘Ta ||Y[2]||2a,7'7 (3.39)
1Y P50 <o Y Jloor + 702 VB0 s s (3.40)
Y B r s Y [loo,r + 470722 Y (3.41)

for suitable constants ¢;, ¢/ that may depend on Z, Z, X' X2 o, but not on 7.

We can easily complete the proof, assuming (3.39)-(3.41): if we fix 7> 0 small
enough so that cj7(7~2 < %, by (3.41) we have ||YB!||., . <2¢3||Y ||oo.r; plugging
this into (3.40) and taking 7> 0 small, we obtain ||V, <2 ¢ ||Y [|co.r, which
plugged into (3.39) yields ||0Y ||o,r <2¢1 ||Y ||oo,r, for 7 >0 is small enough. Finally,
by (3.36) we obtain, for 7 >0 small, our goal ||Y || <2 (Y0

It remains to prove (3.39)-(3.41). Recalling (2.18), let us define the constants

CL=Cvo izl OV =0v0z)0vizler C2i= Ovos 2]V Z
Vio(z) —Vio(y -
cprimsup { LRO=T20, 1o 1y < 2 v 1211

Vos(x) —Vo =
g imsup {L2=TR, o) 1y < 2] v 12 .

(Note that ||Z]|eo; || Z || e < 00 because Z, Z are continuous, see Lemma 3.8.)
We can prove (3.39) and (3.40) arguing as in the proof of Theorem 2.9, see (2.24)
and (2.25). Indeed, from (3.37) we can bound, by (2.6) and (2.7),

16Y Nlar < Nl0(2) = 0(Z)lloc,r X[l 7 (1Y Pl 20,7
< CHIY [loo,r XM o+ 7 1Y P|20,- (3.42)

because |0(Z;) —o(Z;)| < C{|Z; — Zy], hence (3.39) holds with ¢; = C/ ||X!||4. Simi-
larly, by (3.38) we can bound

Y Pl20,r < [loa(2) = 02(Z) ocr X2 [l20 + 7072 Y B0, r
< O3 [loo,r X220+ 7O =2 Y B 1 (3.43)

because |0a(Z;) — 0o(Z)| < C3| Z; — Zy|, hence also (3.40) holds with ¢y = C4 || X2||24.



3.6 UNIQUENESS 55

We finally prove (3.41). Since Y2 = ZB — ZBl— ot — ), see (3.19), we can bound
7B by its increment 628 through the we1ghted Sewing Bound (1.41):

1Y 0r <Ko [6Y s (3.44)
We are going to prove the following estimate:
1Y e < s 1Y Noor + G 16Y flar + 3 1Y s (3.45)

for suitable constants ¢, ¢4, ¢ that depend on 7, Z, X!, X2, o, but not on 7. Plugging
the estimates (3.39) and (3.40) (that we already proved) for [|6Y ||a.» and ||Y#|o, -,
we obtain (3.41) for suitable (explicit) constants cg, c3.

Let us then prove (3.45). Recalling (3.26), for 0 <s<u <t <T we can write
5Ys£?t = (Bsu — Bsu) Xiyp + (002(Z) — 609(Z) )su Xt
where By, :=0(Z,) — 0(Z,) — 09(Z,) X}, and similarly for B,,, hence by (3.21)
10Y ¥ lar NIB = Bllv-1ya,r [ Xlla +1002(Z) — d02(Z) [l (y-2)ar [X[|2a - (3.46)

To obtain (3.45) we need to show that || B — B||(y-1)a,» and ||002(Z) — 609(2)|| (y-2)a,r
can be bounded by linear combinations of [|Y ||oo,r, [|0Y [|a,- and 1Y B -
We start from ||609(Z) — 002(Z)||(y~2)a,r Which can be bounded as in (2.29):

1605(Z) = 602(2) | (=200, < C310Y e+ CE{IBZIL T+ 6Z ]2 HIY oo,

We next focus on || B — B|(y-1)a,r, which we are going to estimate by the following
explicit linear combination of ||Y ||ee.s, |6Y |la.r and [|[Y |5, .

1B = Blly-var < CUNY loor 1220+ CTIY P20,
CYI0Y o 10Z [la+2CL IV [loo7 102112 (3.47)
+CT 0210 [10Y [|a 7,

which completes the proof of (3.45) when plugged into (3.46).
It only remains to prove (3.47). Recalling (3.24), it follows by (3.22) that

Bsu = O'(Zu) - U<Z ) - 02<Zs) Xgu
1
= Vo(Z) 72+ / (Vo (Zu+1024) —Vo(Zy)) 6 Ze dr,
0 N 7

Fsu

and likewise for By, (with F}, defined similarly), therefore

|Byw — B <|Vo(Z,) 22 —Vo(Z) 22 + / | Fry 6 Zgy — Fuy 024, dr. (3.48)

By the elementary estimate |ab—ab|=|ab—ab+ab—ab|<|a—a||b|+|a| |b—0b],
that we apply repeatedly, we can bound

Vo(Z) 23l =Vo(Z2) 23| < [Vo(Z) = Vo(Z)||Z3+ Vo (Z)] 1 2] - 2]
< of |y \Z[QHC"!YQ]\
and note that by (2.7) we obtain the first line in the RHS of (3.47).
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To complete the proof of (3.47), we look at the second term in the RHS of (3.48):

< \F Fsu] 10 Zgu| + CU 1 10 Z 5] |6 Yaul, (3.49)

because |Fy,| < C{'r [0Z,,]. We then see, applying (2.8), that the last term in (3.49)
produces the third line in (3.47). Finally, by (2.19) we estimate

|Fow— Fo| = \(VU(Z +76Z5) —Vo(2,) — (Vo (Zy+10625,) —Va(Z,))|
< O [0Yaul + CU{Ir 0Zou| 72+ IrdZe| 2} Vil
We obtain by (2.7) for 0<r <1
IF = Flliy-spar O ISY e+ 20 [V s 1621272

Applying again (2.8), we finally see that the first term in (3.49) yields the second
line in (3.47), which completes the proof. O

3.7. CONTINUITY OF THE SOLUTION MAP

In this section we assume that ¢ has bounded first, second and third derivatives,
while o9 has bounded first and second derivatives:

IV lloo [VE0 oo Vo0 oo <00, [V O2]loo, | VP02l o0 < 0. (3.50)

(We stress that no boundedness assumption is made on ¢ and os.) Under these
assumptions, given any time horizon 7 > 0, any starting point Z, € R¥ and any a-
rough path X = (X!, X?) with %< a< %, we have global existence and uniqueness of
solutions Z: [0, 7] — R* to (3.18) (as we will prove in Theorem 3.12).

Denoting by R, 4 the space of d-dimensional a-rough paths X = (X! X?), that
we endow with the norm ||X!||,, + [|X?||2o we can thus consider the solution map:

®: RFXRyq — CO

(Z0.X) +—— Z '_{ unique solution of (3.18) for t € [0,77] - (3.51)
0> T

starting from Z,

We prove the highly non-trivial result that this map is locally Lipschitz. In the space
C® of Holder functions we work with the weighted norm || f||oo.r + ||0f ||, -, Which is
equivalent to the usual norm || f||co:=|| flleo + |0f ||a, see Remark 1.15.

THEOREM 3.11. (CONTINUITY OF THE SOLUTION MAP) Let o and o4 satisfy (5.50)
(with no boundedness assumption on the functions o and os). Then, for any T >0
and o € ] } the solution map (Zy, X)+— Z in (3.51) is locally Lipschitz.

More explzcztly, gwen any Moy, M, D < oo, if we assume that

max {||Vo e, |V [0, V20 [, [VO2lloo, [VP02llo0} < D, (3.52)

and we consider starting points Zy, Zo € R* and rough paths X, X € C* with
max {|0(Zo)| , |02(Zo)l |0(Z0)| . |o2(Zo) | } < Mo, (3.53)
max {[|X'[la, [IX[|2a . X' [la, [IX[|2a} <M, (3.54)
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then the corresponding solutions Z = (Zs)sepo.1), Z = (Zs)sepo,r) of (3.18) satisfy

HZ - ZHOOJ'_'— ”(SZ - 5Z”a,7+ ”Z[Q] - Z[Q]HQOM
<€y | Zo— Zol +30 My (|| X — XY + [|X2 — X2|24)- (3.55)

provided T satisfies 0 <T AT < 7' for a suitable 7'=7, 1 p nym >0, where we set
=16 {([|[Vo oo+ [Vorlloo) M +1} <32(D M +1).
Proof. It is convenient to define the constant
=Vl + ||Voallo) M <2D M. (3.56)

Let Z and Z be two solutions of (3.18) with respective routh paths X and X.
Defining Y :=Z — Z and Y2 .= 712 — 7B see (3.24), we rewrite our goal (3.55) as

1Y [loo,r + 110Y (o + 1Y P |2a,r < 16 (chr+ 1) Yo
+30 Mo (|IX" — XYoo +|X2 = X2|20) . (3.57)

Throughout the proof we use the shorthand
e:=(TNT)* (3.58)

and we write for e small enough to mean for all 0 <e <eq, for a suitable g depending
on o, T, My, M, D. We claim that the following estimates hold for §Y" and Y2

18Y Nla,r < €hs 1Y [loo,r +2 Mo X' = X[l + & [V |2, (3.59)
1Y P 2a,r < ehr 1Y oo, +2 Mo [IX2 = X2 [laa+ £ V|30, (3.60)
and, moreover, for e small enough the following estimate holds for Y= ZI3 — Z13I.

_ _ 1
€ ||Y[3]||3a,‘r < ||Y||oo,7' + MO (”Xl - Xl”Oz + HX2 - X2||2a) + ||6Y||a,7' + Z ||Y[2]||a,‘r-
(3.61)

It is now elementary (but tedious) to deduce our goal (3.57). Plugging (3.61)
into (3.60) we obtain [|[Y?la,r < (-++) + 1 | P20, which yields ||V ||z, <5 (...)
(since ||Y?||gq » < 00 by Lemma 3.8). Making (...) explicit, we get

1Y Pl <2 (b + 1) Y [loo,r +4 Mo (X" = XMoo+ X2 = XP[|20) +2[[0Y [l (3.62)
which plugged into (3.59) yields, for € small enough (it suffices that € < %),
16Y [| o <3 (chr+ 1) |V [[oorr +6 Mo (||XE = XY+ [|X2 = X2 20) , (3.63)
and looking back at (3.62) we obtain
1Y 20, <8 (chs + 1) [|Y oo, + 16 Mo (|| X = X |o + |X2 = X2 |24), (3.64)
so that, overall,

1Y o+ 18Y o 1Y Pl < 12 (chy 4 1) Y o )
+22 My (X =XYoo + 1X2 = X2|20) - (3.65)
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It only remains to make ||Y ||, explicit. Since ||Y ||oo,r < |Yo| +3€ [|6Y ||a,r by (2.5),

for e small enough (more precisely for e <

1
NS m) we can bound

(Shr+ 1) Y ey < (ke + 1) %]+ 75 107 7 (3660
which inserted into (3.63) yields
1Y [l <4 (chr + 1) [Y| +8 Mo ([|X" = X' + [|X? — X?||2q).
Plugging this into (3.66), and then (3.66) into (3.65), we obtain our goal (3.57).

It remains to prove (3.59), (3.60) and (3.61). We first state some useful bounds
that will be used repeatedly. Recalling (3.52) and (3.28)-(3.30), let us define

. - 1
T T DM e K 18) 2 (D 4 D) (M2 4 M) £ D)}/ (3.67)

By the a priori estimate (3.29) we can then bound
for e= (T AT)*<7 162 lar + | 2] 20,» <4 My M, (3.68)

hence

max {[|60(Z)||a,r, [002(Z)]a,r } Smax{[[Vo|loc, [Voslleo} [|0Z |0, <4 Mochs,  (3.69)
which implies that, by (2.5) and for e small enough,
max {||o(Z)|co.r s [|02(Z) ||oor } < Mo+ 34 My cpr <2 M.
We record the following simple bound, for any Lipschitz function f,
1£(Z) = (D)oo NV flloo 12 = Zloo,r =11V flloo Y lloo,r- (3.70)
We will also use a number of times the elementary estimate, for a,b,a,b € R,
lab—ab|=|ab—ab+ab—ab|<|a||b—b|+1|b||a—al. (3.71)
We can now prove (3.59). Since § Yy =07y — 6Zy =0 (Z,) Xt — 0(Z,) XL+ Y;LQ],
see (3.24) for Z and Z, by (2.7) and (3.53)-(3.54) we get, applying (3.71),

10Y lar < llo(D)lloc.r 1X! = Xla+ 0(2) = 0(Z)lloc,r 1XH o+ [V o -
< 2Mo X = X|o +[10(Z) = 0(Z)lloor M+ [V P20

because |[|[Y| 4, <e||[Y?||sa.- by (2.6) (recall the definition (3.58) of €). Applying
(3.70) with f =0 and recalling cj, from (3.56), we obtain (3.59).

The proof of (3.60) is similar. Since Z = Z2) — 5,(Z,) X2, and similarly for Z,
see (3.24), we can write Y2 = 720 — 712 = 5,(Z.) X2, — 65(Z,) X2 + Y}, therefore

1Y Pll2a.r < 102(2) oo X2 = X220+ [02(2) = 02(2) oo, X212+ [V |20
< 2 Mo ||XP = XP{|2a + |02(Z) — 02(2) oo, e M+ [V 50,7

since [|[YPlaa.r <& ||Y®|34.7 by (2.6). Applying (3.70) for f =0 we obtain (3.60).
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We finally prove (3.61). Since Y& =z ZI¥ — 51 — s), see (3.19), the weighted
Sewing Bound (1.41) yields

1Y B30, < Ko |6Y P30, (3.72)
hence we can focus on Y B =628 — 5§28l Let us recall (3.26): for 0<s<u<<t<T

sut

6280 = (0(2.) = 0(2) = 03(2,) Xb,) Xy + 602(2)ou X

=g

By
and analogously for 67 and B,,, therefore by (3.71) and (3.21) we obtain

HCSY[?)]H?’Q,T < HB”QOM HXl _Xluoc": ”B - BHQOM ”XIHOM - -
+1009(Z)]a,7 1X? = X||oa + [[009(Z) — 009(Z) || a7 [ XP[l20 - (3.73)

It remains to estimate the four terms in the RHS: in view of (3.72), relation (3.61)
is proved if we show that, for e small enough,

€ K 1B laar X =X la < Mo X! =X, (3.74)
e Koo |B = Bllans IXar < g (Y lhor 1Y )+ 1Y Pz, (375)

£ Koo 002 2) s 152 = Koo < My |3 = 0 (3.76)
Koo [002(2) = 005 ZD)er K220 < 5 (Y e+ 16 o). (3.77)

We first deal with (3.76) and (3.77), then we focus on (3. 74) and (3.75).
Proving (3.76) is very simple: since ||002(Z)||a,r <4 Mo cis by (3.69), we see that
(3.76) holds for e small enough. To prove (3.77), note that by (2.51) we have

100(2) = 60(Z)l(v-vyarr < IVO oo 1Y [lar +4 Mo M [oler—1 [[Y [loe.r
Applying (3.54) and (3.68) we obtain
_ _ r
1602(Z) = 602(Z) [la.r X220 < IV Oalloo M [[6Y [lar + €7 |V 205|008 Mo M2 [[Y [|oc,r,

which shows that (3.77) holds for e small enough.
Let us now prove (3.74). By (3.22) we have, for 0 < s<t< T,

1
By=Vo(Z) 72 + / (Vo (Z416Zy) —No(Zs)) 62 dr (3.78)
N——— 0
Eg¢ N - 2
Fst

and similarly for E,; and F,;. In particular, recalling (3.68), we get

1Bz < [V lloo |1 ZP]|20,7 + IV?0 || 102112 -
< ||VO'||OO4M0M+||V2O'||OO(4M0M) s

hence we see that (3.74) holds for € small enough.
We finally prove (3.75), which is a bit tedious. In view of (3.78), we first consider

By~ Ey=(Vo(Z) —Vo(Z)) 25 +Vo(Z,) (25 - Z).
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Applying (2.9) with H = Z!% and 7 from (3.67), we obtain

_ - T
1B = Ellza,r < |V0(Z) = Vo (Z)l|oo,r 7 1 2P 120,7 + [V lloo 1Y ]|z,

By (3.70) with f=Vo and the a priori estimate (3.68) we obtain

_ T
HE - E||2a,7' < ||V2U||oo HYHoo,‘re% 4M0M+||VU||OO ||Y[2]||2a,7- (3.79)

We then consider F,; — Fy;. By (2.19), for 0 <r <1 we can estimate
(Vo (Zs+71024) —Vo(Z,) — (Vo (Zs+16Zs) — Va(Z))| |0Z]
SUIVPo oo 0Yat] [0Z6t] +[[VP0 [l oo max {(1 =) [Yo] +u [¥il} [6Z6*
as well as

NG (Zs 41 075) — Vo (Z)| 16 Zst — 6 71| <[V 20 |0 [0Z5] [ Vae] -

We can then estimate F,; — Fy; from (3.78) as in (3.71): applying (2.9) twice with
H=0Z and H =(6Z)? always with 7 from (3.67), and recalling (3.68), we obtain

_ T x
IF = Fllaar < 2V [loo 10Y [larr €7 [|0Z |7 + V30 |0 [IY [loo,r €7 [10Z]]2,7
T
< e?{8M0M||V20||Oo||5Y||a77+(4M0M)2||V30'||OO||Y||OO,T}. (3.80)

Since ||B — Bll2a,r < |E — El|2a,r + [|F — F|2q,7 in view of (3.78), we see by (3.79)
and (3.80) that (3.75) holds for ¢ small enough. The proof is complete. O

3.8. (GLOBAL EXISTENCE AND UNIQUENESS
Let us suppose that o: RF — R*F @ (R?)* is of class C® with |V || + || Vs eo < +00.

THEOREM 3.12. Let o> % If 0: R* - R*® (RY)* is of class C? with ||Vo|leo +
|Voa||ew < +00 then for every zo€ RF and T >0 there is a unique solution (Zy)ejo,ry
to (3.19) such that Zy= 2.

Proof. By Theorem 3.10 we have at most one solution. We now construct a solution
on an arbitrary finite interval [0, 7], arguing as in the proof of Theorem 2.15. We
define A C[0,7] as the set of all s such that there is a solution (Z;):c[o,5 to (3.19).
By Proposition 3.6, A is an open subset of [0, 7] and contains 0. By the a priori
estimates of Theorem 3.9, A is a closed subset of [0,T]. Therefore A =0, T]. O

3.9. MILSTEIN SCHEME AND LOCAL EXISTENCE

In this section we prove the local existence result of Proposition 3.6, under the
assumption that o, oy are of class C !'and uniformly Lipschitz. To construct a solu-
tion to (3.10), we set t; ::%7 i >0, and for a given yo€ R”

yti+1 =Y, + U(yti) X%iti-u + UQ(ytz‘) X%itwrl’ i > 0.
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We set D:=max{l,||Vo|s, ||Voo|oc}, T:={tit;<T} and

5ytitj = Yy~ Yy
ol = sup Lt
0<i<j<nT |tj _ti|

Ay ity L= o(yu;) X%itj + 02y, X%itj'

7

The main technical estimate is the following

LEMMA 3.13. Let M > 0. There exists T, p,o >0 such that, for all T € (0,1 D)
and X = (X!, X?) € Ry.q such that [|XY|o+ [|X?]|2a < M, we have

loylla < 5M(lo(yo)l + loa(yo)]),
10y = Allza Sap.a (lo(o)l + lo2(yo)])-

Proof. Let us set Ry, :=0ys; — Ave,- By the definitions, Ryy, , =0. Then we can

apply the discrete Sewing bound (Theorem 1.18) to R on T:= {% 1< nT} and we
obtain

1
IR|E < CsalloRIE,  Cra=2%Y" —

n3a :
n>=1
Now, analogously to (3.26), since §R = —0A,
5Rtitjtk = _(U(ytj) - U(Z/h‘) - 02<yti) X%itj)x%jtk - (02<yti) - U2<ytj)) ngtm
B i
so that
10R |50 < M (|| Bll20 +11C)-

We set

Htitj = 6ytitj - U(yti> X%itja
and by (3.23) we obtain

Btitj = U(?th) - O-(ytl> - 0-2(yti> X%itj =

1 1
:/ (UQ(yti + U/(Sytitj) - UQ(yti)) X%itjdu + / VU(?JQ + U5ytitj) du Htitj
0 0

-~

£

1
_/ Vg(yti + U(Sytitj)(a(yti + U5ytitj> - U(yti>>X%itjdu'
0

J/

i
First
1E]20 < [Vollslloylla X o< DM |0y la-
Similarly

G20 < [IValllloylla X< DM |0y la-
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By the definition of Ry

|Htitj < |Rtitj +|U2(yti) X%itj

< [T|R]I3a + (loa(yo)| + T Vol loylla) 1X3]20] [t; — t:**

< (T*||R||3a+ Mloa(yo)l + T*D M ||dy[13) It; — ti*.
Therefore

|F 3. < D|H|5

< D(T*||R||30+ Mloa(yo)| +T“D M ||5y]la)-
Finally
[Bll2a < B30+ |1 F |20+ G |34
< D[Mloa(yo)| + T*||R3a+ D M2 +T*)||dy||a] -
Analogously
1C |3 < Doy ll&-

Therefore

1|30 < Csa DM (M|o2(yo)| + T Rl|30 + [1+ D M2 +T*)]]0ylla).
If T%C3, DM <5 then
1R][350 < 2C30 DM (M o(yo)| + [L+ DM (2 +T)][|dylla). (3.81)
We set
L(y) = 2Csa DM (M|oa(yo)| +[1+ DM (2+T*)][|oy|la)
Now we obtain by (3.81)

loylla < [IR[a+IAllS
< T*L(y) + (|o(yo)| + |o2(yo)| + 2D T*||by||&) M.

If we assume also that 2D MT* < %, we obtain

16y [lo < 2T2*L(y) + 2 M (lo(y0)| + |o2(10)])-

By the definition of L(y), if furthermore 2C3,D M1+ DM (2 +T*)] T?* < %, we
obtain finally

dylla < 5M(Jo(yo)| + lo2(yo)l) ,
L(y) < 1203 DM?[1+DM2+T*)](lo(yo)| + |o2(yo)]) =: K,
and by (3.81)
loy — All3e < K.
The proof is complete. O

Proof of Proposition 3.6. Arguing as in Theorem 2.16 we obtain the result of
local existence for equation (3.19) of Proposition 3.6. O



