
Chapter 3
Difference equations: the rough case

We have so far considered the difference equation (2.3), that is

Zt−Zs=σ(Zs) (Xt−Xs)+ o(t− s), 0! s! t!T , (3.1)

where X is given, Z is the unknown and σ(·) is sufficiently regular. This is a gen-
eralization of the differential equation Żt= σ(Zt)Xt

˙ which is meaningful for non
smooth X, as we showed in Chapter 2, where we proved well-posedness in the so-
called Young case, i.e. assuming that X ∈ Cα with α∈

]1
2
, 1
]
.

However, the restriction α> 1

2
is a substantial limitation: in particular, we cannot

take X=B as a typical path of Brownian motion, which is in Cα only for α< 1

2
. For

this reason, we show in this chapter how to enrich the difference equation (3.1) and
prove well-posedness when X ∈ Cα with α∈

]1
3
, 1
2

]
, called the rough case. This will

be applied to Brownian motion in the next Chapter 4, in ordered to obtain a robust
formulation of classical stochastic differential equations .

Notation. Throughout this book we write fst" gst to mean that fst!C gst for all
0! s! t!T, where C <∞ is a suitable random constant.

Remark 3.1. (Young vs. Rough case) The restriction α> 1

2
for the study of

the difference equation (3.1) has a substantial reason, namely there is no solution to
( 3.1) for general X ∈ Cα with α! 1

2
. Indeed, taking the “increment” δ of both sides

of (3.1) and recalling (1.23) and (1.32), we obtain

(σ(Zu)−σ(Zs)) (Xt−Xu)= o(t− s) for 0! s!u! t!T . (3.2)

If X ∈ Cα, for any α ∈ (0, 1], then we know from Lemma 2.6 that Z ∈ Cα, but not
better in general (e.g. when σ(·)≡ c is constant we have Z = cX), hence the LHS
of (3.2) is "(u− s)α (t− u)α" (t− s)2α, but not better in general. This shows that
the restriction α> 1

2
is generally necessary for (3.1) to have solutions.

3.1. Enhanced Taylor expansion
We fix d, k ∈N, a time horizon T > 0 and a sufficiently regular function σ:Rk→
Rk⊗ (Rd)∗. Our goal is to give a meaning to the integral equation

Zt=Z0+

∫

0

t

σ(Zs)Xs
˙ ds, 0! t!T , (3.3)

where Z: [0, T ]→Rk is the unknown and X : [0, T ]→Rd is a non smooth path, more
precisely X ∈ Cα with α∈

]1
3
, 1
2

]
.
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The difference equation (3.1) is no longer enough, for the crucial reason that
typically it admits no solutions for α! 1

2
, see Remark 3.1. We are going to solve

this problem by enriching the RHS of ( 3.1) in a suitable, but non canonical way:
this leads to the key notion of rough path which is central in this book.

To provide motivation, suppose for the moment that X is continuously differen-
tiable, so that (3.3) is meaningful. As we saw in (1.3), an integration yields for s<t

Zt−Zs=σ(Zs) (Xt−Xs)+

∫

s

t

(σ(Zu)−σ(Zs)) Ẋudu. (3.4)

In Chapter 1 we observed that the integral is o(t− s), which leads to the difference
equation (3.1). More precisely, the integral is O((t− s)2) if X ∈C1 and σ is locally
Lipschitz (note that Z ∈C1). The idea is now to go further, expanding the integral
to get a more accurate local description, with a better remainder O((t− s)3).

To this purpose, we assume that σ is differentiable and we introduce the key
function σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗ by

σ2(z) :=∇σ(z)σ(z), i.e. [σ2(z)]jℓ
i :=

∑

a=1

k
∂σj

i

∂za
(z) σℓ

a(z) . (3.5)

Since d

dr
σ(Zr)=∇σ(Zr) Żr=σ2(Zr) Ẋr by (3.3), we can write for s<u

σ(Zu)−σ(Zs) =

∫

s

u

σ2(Zr) Ẋr dr

= σ2(Zs) (Xu−Xs)+

∫

s

u

(σ2(Zr)−σ2(Zs)) Ẋr dr, (3.6)

where for z ∈Rd and a∈Rd we define σ2(z) a∈Rk⊗ (Rd)∗ by

[σ2(z) a]j
i=
∑

ℓ=1

d

[σ2(z)]jℓ
i aℓ.

If we assume that σ2 is locally Lipschitz, then the last integral in (3.6) is O((u−s)2)
(recall that X ∈C1). Plugging this into (3.4), we then obtain

Zt−Zs=σ(Zs) (Xt−Xs)+σ2(Zs)

∫

s

t

(Xu−Xs)⊗ Ẋudu+O((t− s)3), (3.7)

where now for z ∈Rd and B ∈Rd⊗Rd we define σ2(z)B ∈Rk by

[σ2(z)B]i=
∑

ℓ,m=1

d

[σ2(z)]ℓm
i Bmℓ. (3.8)

Let us rewrite the integral in the right-hand side of (3.7) more conveniently. To
this purpose we introduce the shorthands

Xst
1 :=Xt−Xs , Xst

2 :=

∫

s

t

(Xr−Xs)⊗ Ẋr dr, 0! s! t!T , (3.9)
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so that X1: [0, T ]!2 →Rd and X2: [0, T ]!2 →Rd⊗Rd, see (1.7). More explicitly:

(Xst
2 )ij :=

∫

s

t

(Xr
i−Xs

i) Ẋr
j dr, i, j ∈ {1, . . . , d} .

We can thus rewrite (3.7), replacing O((t− s)3) by o(t− s), in the compact form

Zt−Zs=σ(Zs)Xst
1 +σ2(Zs)Xst

2 + o(t− s), 0! s! t!T , (3.10)

where for the product σ2(Zs)Xst
2 we use the contraction rule (3.8).

We have obtained an enhanced Taylor expansion: comparing with (3.1), we added
a “second order term” containingXst

2 . The idea is to take this new difference equation,
that we call rough difference equation, as a generalized formulation of the differential
equation (3.3), just as we did in Chapter 1 (see Section 1.2). However, there is a
problem: the term Xst

2 depends on the derivative Ẋ, see (3.9), so it is not clearly
defined for a non-differentiable X.

To overcome this problem, we will assign a suitable function X2=(Xst
2 )0!s!t!T

playing the role of the integral (3.9) when X is not differentiable: this leads to the
notion of rough paths , defined in the next section and studied in depth in Chapter 8.
We will show in this chapter that rough paths are the key to a robust solution theory
of rough difference equations when X of class Cα with α∈

( 1
3
, 1
2

]
.

3.2. Rough paths

Let us fix a pathX: [0,T ]→Rd of class Cα with α∈
( 1
3
, 1
2

]
. Motivated by the previous

section, we are going to reformulate the ill-posed integral equation (3.3) as the
difference equation (3.10), which contains X1 and X2.

We can certainly define Xst
1 :=Xt−Xs as in (3.9), but there is no canonical

definition of Xst
2 =

∫
s

t
(Xr −Xs) ⊗ Ẋr dr, since X may not be differentiable. We

therefore assign a function Xst
2 which satisfies suitable properties . Note that when

X is continuously differentiable the function X2 in (3.9) satisfies:

• an algebraic identity known as Chen’s relation: for 0! s!u! t!T

Xst
2 −Xsu

2 −Xut
2 =Xsu

1 ⊗Xut
1 =(Xu−Xs)⊗ (Xt−Xu) , (3.11)

which follows from (3.9) noting that

Xst
2 −Xsu

2 −Xut
2 =

∫

u

t

(Xr−Xs)⊗ Ẋr dr=(Xu−Xs)⊗ (Xt−Xu) ;

• the analytic bounds

|Xst
1 |" |t− s| , |Xst

2 |" |t− s|2, (3.12)

which follow from the fact that Ẋ is bounded.

The algebraic relation (3.11) is still meaningful for non-differentiable X, while the
analytic bounds (3.12) can naturally be adapted to the case of Hölder paths X ∈Cα
by changing the exponents 1, 2 to α, 2α. This leads to the following key definition.
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Definition 3.2. (Rough paths) Fix α∈
]1
3
, 1
2

]
, d∈N and a path X: [0, T ]→Rd

of class Cα. An α-rough path over X is a pair X=(X1,X2) where the functions
X1: [0, T ]!2 →Rd and X2: [0, T ]!2 →Rd⊗Rd satisfy, for 0! s!u! t!T:
• the algebraic relations

Xst
1 =Xt−Xs , δXsut

2 :=Xst
2 −Xsu

2 −Xut
2 =Xsu

1 ⊗Xut
1 , (3.13)

where the second identity is called Chen’s relation;

• the analytic bounds

|Xst
1 |" |t− s|α , |Xst

2 |" |t− s|2α . (3.14)

We call Rα,d(X) the set of d-dimensional α-rough paths X= (X1,X2) over X and
Rα,d=

⋃
X∈CαRα,d(X) the set of all d-dimensional α-rough paths.

When X is of class C1, the choice (3.9) yields by (3.11)-(3.12) a α-rough path
for any α∈

( 1
3
, 1
2

]
which we call the canonical rough path, see Section 8.7 below.

When X =B is Brownian motion, the theory of stochastic integration provides
a natural candidate for X2, in fact multiple candidates (think of Ito vs. Stratonovich
integration), as we discuss in Chapter 4 below. Incidentally, this makes it clear that
the construction of X2 is in general non canonical , i.e. there are multiple choices of
X2 for a given path X. This is a strength of the theory of rough paths, since it allows
to treat different non equivalent forms of integration.

Remark 3.3. The existence of rough paths over any given path X (i.e. the fact
that Rα,d(X)=/ ∅) is a non trivial fact, which will be proved in Chapter 8.

Remark 3.4. (X2 as a “path”) The two-parameters function Xst
2 is determined

by the one-parameter function

It :=X0t
2 +X0⊗(Xt−X0) , (3.15)

which intuitively describes the integral
∫
0

t
Xr⊗ Ẋr dr. Indeed, we can write

Xst
2 = It− Is−Xs⊗ (Xt−Xs) , (3.16)

since Xst
2 =X0t

2 −X0s
2 − (Xs−X0)⊗ (Xt−Xs) by Chen’s relation (3.13).

Vice versa, given a function I: [0, T ]→Rd, if we define X2 by (3.16), then Chen’s
relation (3.13) is automatically satisfied (recall (1.32)). In order to satisfy the ana-
lytic bound in (3.14), we must require that

|It− Is−Xs⊗ (Xt−Xs)|" (t− s)2α , (3.17)

which is a natural estimate if It− Is should describe “=
∫
s

t
Xr⊗ Ẋr dr”.

Summarizing: given any path X : [0, T ]→Rd of class Cα, it is equivalent to assign
X2: [0, T ]!2 →Rd⊗Rd satisfying ( 3.13)-( 3.14) or to assign I: [0, T ]→Rd satisfying
( 3.17), the correspondence being given by (3.15)-(3.16).
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3.3. Rough difference equations
Given a time horizon T > 0 and two dimensions d, k ∈N, let us fix:

• a path X: [0, T ]→Rd of class Cα with α∈
]1
3
, 1
2

]
;

• an α-rough path X=(X1,X2) over X , see Definition 3.2;

• a differentiable function σ:Rk→Rk⊗ (Rd)∗, which lets us define the function

σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗ (see (3.5)) .

Motivated by the previous discussions, see in particular (3.10), we study in this
chapter the following rough difference equation for an unknown path Z: [0, T ]→Rk:

δZst=σ(Zs)Xst
1 +σ2(Zs)Xst

2 + o(t− s), 0! s! t!T , (3.18)

where we recall the increment notation δZst :=Zt−Zs and the contraction rule (3.8),
and we stress that o(t− s) is uniform for 0! s! t!T , see Remark 1.1. In analogy
with (2.3)-(2.4), a solution of (3.18) is a path Z: [0, T ]→Rk such that

Zst
[3] := δZst−σ(Zs)Xst

1 − σ2(Zs)Xst
2 = o(t− s) . (3.19)

We stress that the rough difference equation (3.18) is a generalization of the
integral equation (3.3), as we show in the next result.

Proposition 3.5. If X and σ are of class C1 and σ2 is locally Lipschitz (e.g. if σ is
of class C2), then any solution Z to the integral equation ( 3.3) satisfies the difference
equation ( 3.18) for the canonical rough path X=(X1,X2) in ( 3.9).

Proof. If X ∈C1, then X=(X1,X2) defined in (3.9) is an α-rough path over X for
any α ∈

]1
3
, 1
2

]
, as we showed in (3.11)-(3.12). Given a solution Z of (3.3), if σ2 is

locally Lipschitz we derived the Taylor expansion (3.10), hence (3.18) holds. #

We now state local and global existence, uniqueness of solutions and continuity of
the solution map for the rough difference equation (3.18) under natural assumptions
on σ and σ2, summarizing the main results of this chapter. We refer to the next
sections for more precise and quantitative results.

To be completed.

Proposition 3.6. Let z0∈Rd. We suppose that σ and σ2 are of class C1 and globally
Lipschitz, namely ∥∇σ∥∞+∥∇σ2∥∞<+∞. Let D :=max{1,∥∇σ∥∞,∥∇σ2∥∞} and
M > 0.

There exists TM,D,α>0 such that, for all T ∈ (0, TM,D,α) and X=(X1,X2)∈Rα,d

such that ∥X1∥α+ ∥X2∥2α!M, there exists a solution Z to ( 3.19) on the interval
[0, T ] such that Z0= z0 and

∥Z∥α! 15M(|σ(z0)|+ |σ2(z0)|). (3.20)

The proof of this Proposition, based on a discretization argument, is postponed
to section 3.9 below.
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We are going to use the Sewing Bound (1.26), its weighted version (1.41) and its
discrete formulation (1.45).

3.4. Set-up

We recall that the weighted semi-norms ∥·∥η ,τ are defined in (1.33)-(1.34). We are
going to use the various properties that we recalled in Section 2.2, see in particular
(2.5), (2.6) and (2.7)-(2.8), as well as the natural generalization

if Fsut=GsuHut then ∥F ∥3η,τ
{
!∥G∥2η,τ ∥H∥η ,
!∥G∥η ,τ ∥H∥2η .

(3.21)

In all these bounds, whenever there is a product, only one factor gets the weighted
semi-norm, while the other factor gets the ordinary semi-norm. We sometimes need
to introduce an additional weight, which is possible applying (2.9).

In Chapter 2 a key tool to study the Young difference equation (2.4) was the
estimate on the “difference of increments” in Lemma 2.8. This tool is still crucial in
this chapter, but we will need an additional ingredient that we now present.

Lemma 3.7. (Taylor identity) Let z1, z2∈Rk and x∈Rd. If σ:Rk→Rk⊗(Rd)∗ is
of class C1, defining σ2:Rk→Rk⊗ (Rd)∗⊗ (Rd)∗ by ( 3.5) and setting δz12 :=z2−z1,
we have the identities

σ(z2)−σ(z1)−σ2(z1)x (3.22)

= ∇σ(z1)(δz12−σ(z1)x)+
∫

0

1

[(∇σ(z1+ r δz12)−∇σ(z1)) δz12] dr,

and

σ(z2)−σ(z1)− σ2(z1)x =

∫

0

1

[(σ2(z1+ r δz12)−σ2(z1))x] dr (3.23)

+

∫

0

1

[∇σ(z1+ r δz12) (δz12−σ(z1)x)] dr

−
∫

0

1

∇σ(z1+ rδz12)
(∫

0

r

[∇σ(z1+ v δz12) δz12x]dv
)
dr.

Proof. The first formula is based on elementary manipulations and on the fact that

σ(z2)−σ(z1)=
∫

0

1

[∇σ(z1+ r δz12) δz12] dr .

For the second formula, setting δz := δz12 for short, we similarly write

σ(z2)− σ(z1) =

∫

0

1

[∇σ(z1+ r δz) δz] dr

=

∫

0

1

[∇σ(z1+ r δz) (δz− σ(z1)x)] dr+
∫

0

1

[∇σ(z1+ r δz)σ(z1)x] dr
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

A
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and then, recalling the definition (3.5) of σ2,

A=

∫

0

1

[σ2(z1+ r δz)x] dr−
∫

0

1

[∇σ(z1+ r δz) (σ(z1+ r δz)−σ(z1))x] dr
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

B

.

Finally

B =

∫

0

1

∇σ(z1+ r δz)

(∫

0

r

[∇σ(z1+ v δz) δz x] dv
)
dr

from which (3.23) follows easily. #
We will see below that (3.22) is useful for the comparison between two solutions,

as in the proofs of uniqueness (Theorem 3.10) and continuity of the solution map
(Theorem 3.11), while (3.23) is well suited for a priori estimates on a single solution
(Theorem 3.9) or on a discretization scheme (Lemma 3.13).

3.5. A priori estimates
In this section we prove a priori estimates for solutions of the rough difference
equation (3.18) for globally Lipschitz σ and σ2, i.e. ∥∇σ∥∞<∞ and ∥∇σ2∥∞<∞.
A sufficient condition is that σ, ∇σ, ∇2σ are bounded, see (3.5), but it is interesting
that boundedness of σ is not necessary (think of the case of linear σ).

Given a solution Z of (3.18), we define the “remainders” Z [3] and Z [2] by

Zst
[3]= δZst−σ(Zs)Xst

1 −σ2(Zs)Xst
2 , Zst

[2]= δZst− σ(Zs)Xst
1 . (3.24)

Let us first show, by easy arguments, that any solution Z of (3.18) has the same
Hölder regularity Cα of the driving path X (in analogy with Lemmas 1.2 and 2.6),
and that the “level 2 remainder” Zst

[2] is in C22α, that is |Zst
[2]|" (t− s)2α.

Lemma 3.8. (Hölder regularity) Let σ be of class C1 and let Z be a solution
of ( 3.18). There is a constant C =C(Z)<∞ such that

{
|Zst

[2]|!C |Xst
2 |+ o(t− s),

|δZst|!C (|Xst
1 |+ |Xst

2 |)+ o(t− s),
0! s! t!T . (3.25)

In particular, if X=(X1,X2) is an α-rough path, then Z [2]∈C22α and Z is of class Cα.

Proof. If X=(X1,X2) is an α-rough path, then by the first bound in (3.25) we have
|Zst

[2]|" (t− s)2α+ o(t− s)" (t− s)2α, that is Z [2]∈C22α. Similarly, the second bound
in (3.25) gives |δZst|" (t−s)α+(t−s)2α+o(t−s)" (t−s)α, that is Z is of class Cα.

It remains to prove (3.25). This follows by (3.18) with C := sup0!s!T {|σ(Zs)|+
|σ2(Zs)|}, so we need to show that C <∞. Since σ and σ2 are continuous (because
σ is of class C1), it is enough to prove that Z is bounded: sup0!t!T |Zt|<∞.

Arguing as in the proof of Lemma 1.2, we fix δ̄ > 0 such that |o(t− s)|! 1 for
all 0! s! t!T with |t− s|! δ̄. Since [0, T ] is a finite union of intervals [s̄, t̄] with
t̄ − s̄! δ̄, we may focus on one such interval: by (3.18) we can bound

sup
t∈[s̄,t̄]

|Zt|! |Zs̄|+ |σ(Zs̄)| sup
t∈[s̄,t̄]

|Xst
1 |+ |σ2(Zs̄)| sup

t∈[s̄,t̄]
|Xst

2 |+1<∞.
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This completes the proof that sup0!t!T |Zt|<∞. #

We next get to our main a priori estimates, showing in particular that the
“level 3 remainder” Zst

[3] is in C23α, that is |Zst
[3]|" |t− s|3α. Let us first record a useful

computation: recalling (1.23) and (1.32), by δ ◦ δ=0 and (3.13), we have

δZsut
[3] = Zst

[3]−Zsu
[3]−Zut

[3]

= (σ(Zu)−σ(Zs)− σ2(Zs)Xsu
1 )

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Bsu

Xut
1 +(σ2(Zu)−σ2(Zs))Xut

2 . (3.26)

Theorem 3.9. (Rough a priori estimates) Let X be of class Cα with α∈
]1
3
, 1
2

]

and let X=(X1,X2) be an α-rough path over X. Let σ and σ2 be globally Lipschitz.
For any solution Z of ( 3.18), recalling the “remainders” Z [3] and Z [2] from ( 3.24),

we have Z [3]∈C23α: more precisely, for any τ > 0,

∥Z [3]∥3α,τ !K3α cα,X,σ
′ (∥δZ∥α,τ + ∥Z [2]∥2α,τ) , (3.27)

where we recall that K3α=(1− 21−3α)−1 and we define the constant

cα,X,σ
′ := ∥∇σ∥∞ ∥X1∥α+ ∥∇σ2∥∞ ∥X2∥2α+(∥∇σ∥∞2 + ∥∇σ2∥∞) ∥X1∥α2 . (3.28)

Moreover, if either T or τ is small enough, we have

∥δZ∥α,τ + ∥Z [2]∥2α,τ ! 2 (σ(Z0) ∥X1∥α+σ2(Z0) ∥X2∥2α) (3.29)
for (T ∧ τ )α! εα,X,σ′ ,

where we set

εα,X,σ
′ :=

1
4 (K3α+3) (cα,X,σ

′ +1)
. (3.30)

Proof. Let us prove (3.27). Since 3α> 1 and Zst
[3]= o(t − s), see (3.19), we can

apply the weighted Sewing Bound (1.41) which gives ∥Z [3]∥3α,τ!K3α ∥δZ [3]∥3α,τ. It
remains to estimate δZ [3] from (3.26): applying (3.21) we can write

∥δZ [3]∥3α,τ ! ∥B∥2α,τ ∥X1∥α+ ∥δσ2(Z)∥α,τ ∥X2∥2α . (3.31)

We now focus on Bsu from (3.26): by (3.23) we have

Bsu =

∫

0

1

[(σ2(Zs+u δZsu)−σ2(Zs))Xsu
1 ] du+

∫

0

1

[∇σ(Zs+u δZsu)Zsu
[2]] du

−
∫

0

1

∇σ(Zs+u δZsu)

(∫

0

u

[∇σ(Zs+ v δZsu) δZsuXsu
1 ] dv

)
du ,

so that, by (2.8),

∥B∥2α,τ ! (∥∇σ2∥∞+ ∥∇σ∥∞2 ) ∥X1∥α ∥δZ∥α,τ + ∥∇σ∥∞ ∥Z [2]∥2α,τ . (3.32)

We can plug this estimate into (3.31), together with the elementary bound

∥δσ2(Z)∥α,τ ! ∥∇σ2∥∞ ∥δZ∥α,τ . (3.33)
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Recalling that ∥Z [3]∥3α,τ !K3α ∥δZ [3]∥3α,τ, we have proved (3.27)-(3.28).

We next prove (3.29), for which we need to estimate Z [2] and δZ. Writing Zst
[2]=

σ2(Zs)Xst
2 +Zst

[3] and setting ε := (τ ∧T )α for short, we can bound by (2.6) and (2.7)

∥Z [2]∥2α,τ ! ∥σ2(Z)∥∞,τ ∥X2∥2α+ ε ∥Z [3]∥3α,τ .

By (2.5) we have ∥σ2(Z)∥∞,τ!σ2(Z0)+3ε ∥δσ2(Z)∥α,τ and we can bound ∥δσ2(Z)∥α,τ
by (3.33). Applying (3.27) and recalling (3.28), we then obtain

∥Z [2]∥2α,τ ! σ2(Z0) ∥X2∥2α+ ε (K3α+3) cα,X,σ
′ (∥δZ∥α,τ + ∥Z [2]∥2α,τ)

! σ2(Z0) ∥X2∥2α+
1
4

ε
εα,X,σ
′ (∥δZ∥α,τ + ∥Z [2]∥2α,τ) , (3.34)

where we recall that εα,X,σ′ is defined in (3.30).
Similarly, writing δZst=σ(Zs)Xst

1 +Zst
[2] we can bound, by (2.6) and (2.7),

∥δZ∥α,τ ! ∥σ(Z)∥∞,τ ∥X1∥α+ ε ∥Z [2]∥2α,τ ,

and since ∥σ(Z)∥∞,τ ! σ(Z0) + 3 ε ∥δσ(Z)∥α,τ ! σ(Z0)+ 3 ε ∥∇σ∥∞ ∥δZ∥α,τ we get,
recalling (3.28),

∥δZ∥α,τ ! σ(Z0) ∥X1∥α+3 ε cα,X,σ
′ ∥δZ∥α,τ + ε ∥Z [2]∥2α,τ

! σ(Z0) ∥X1∥α+
1
4

ε
εα,X,σ
′ ∥δZ∥α,τ + ε ∥Z [2]∥2α,τ . (3.35)

Finally, for ε! εα,X,σ′ (hence ε! 1

4
, see (3.28)), by (3.34) and (3.35) we obtain

∥δZ∥α,τ + ∥Z [2]∥2α,τ !σ(Z0) ∥X1∥α+σ2(Z0) ∥X2∥2α+
1
2
(∥δZ∥α,τ + ∥Z [2]∥2α,τ) .

Since ∥δZ∥α,τ + ∥Z [2]∥2α,τ <∞ by Lemma 3.8, we have proved (3.29). #

3.6. Uniqueness

In this section we prove uniqueness of solutions of (3.18) under the assumption that
σ:Rk→Rk⊗ (Rd)∗ is of class Cγ with γ > 1

α
(e.g. it suffices that σ is of class C3).

This implies that σ2 from (3.5) is of class C1 with locally (γ − 2)-Hölder gradient
∇σ2. We stress that σ and σ2 are not required to be bounded.

Theorem 3.10. (Uniqueness) Let X be of class Cα with α∈
]1
3
, 1
2

]
, let X=(X1,

X2) be an α-rough path over X, and let σ be of class Cγ with γ > 1

α
(e.g. if σ is of

class C3). Then for every z0∈Rk there exists at most one solution Z to ( 3.18) such
that Z0= z0.

Proof. Let us fix two solutions Z, Z̄ of (3.18) and define their difference

Y :=Z − Z̄.
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Our goal is to show that, for τ > 0 small, we have ∥Y ∥∞,τ ! 2 |Y0|. In particular, if
Z0= Z̄0, then Y0=0 and therefore ∥Y ∥∞,τ=0, i.e. Z= Z̄, which completes the proof.

We know by (2.5) that

∥Y ∥∞,τ ! |Y0|+3 τα ∥δY ∥α,τ . (3.36)

With some abuse of notation, we denote by Yst
[2] :=Zst

[2]− Z̄st
[2] and Yst

[3] :=Zst
[3]− Z̄st

[3]

the “differences of remainders”, recall (3.24), so that we can write

δYst = (σ(Zs)−σ(Z̄s))Xst
1 +Yst

[2], (3.37)
Yst
[2] = (σ2(Zs)−σ2(Z̄s))Xst

2 +Yst
[3]. (3.38)

We are going to show that, for τ > 0 small enough, the following bounds hold:

∥δY ∥α,τ ! c1 ∥Y ∥∞,τ + τα ∥Y [2]∥2α,τ , (3.39)

∥Y [2]∥2α,τ ! c2 ∥Y ∥∞,τ + τ (γ−2)α ∥Y [3]∥γα,τ , (3.40)

∥Y [3]∥γα,τ ! c3 ∥Y ∥∞,τ + c3
′ τ (γ−2)α ∥Y [3]∥γα,τ , (3.41)

for suitable constants ci, ci′ that may depend on Z, Z̄ ,X1,X2,σ, but not on τ .
We can easily complete the proof, assuming (3.39)-(3.41): if we fix τ > 0 small

enough so that c3′ τ (γ−2)α<
1

2
, by (3.41) we have ∥Y [3]∥γα,τ ! 2 c3 ∥Y ∥∞,τ; plugging

this into (3.40) and taking τ > 0 small, we obtain ∥Y [2]∥2α,τ ! 2 c2 ∥Y ∥∞,τ, which
plugged into (3.39) yields ∥δY ∥α,τ! 2 c1 ∥Y ∥∞,τ, for τ > 0 is small enough. Finally,
by (3.36) we obtain, for τ > 0 small, our goal ∥Y ∥∞,τ ! 2 |Y0|.

It remains to prove (3.39)-(3.41). Recalling (2.18), let us define the constants

C1
′ :=C∇σ,∥Z∥∞∨∥Z̄∥∞, C1

′′ :=C∇2σ,∥Z∥∞∨∥Z̄∥∞, C2
′ :=C∇σ2,∥Z∥∞∨∥Z̄∥∞,

C1
′′′ := sup

{
|∇2σ(x)−∇2σ(y)|

|x− y |γ−2 : |x|, |y |! ∥Z∥∞∨∥Z̄∥∞
}
,

C2
′′ := sup

{
|∇σ2(x)−∇σ2(y)|

|x− y |γ−2 : |x|, |y |! ∥Z∥∞∨∥Z̄∥∞
}
.

(Note that ∥Z∥∞, ∥Z̄∥∞<∞ because Z, Z̄ are continuous, see Lemma 3.8.)
We can prove (3.39) and (3.40) arguing as in the proof of Theorem 2.9, see (2.24)

and (2.25). Indeed, from (3.37) we can bound, by (2.6) and (2.7),

∥δY ∥α,τ ! ∥σ(Z)−σ(Z̄)∥∞,τ ∥X1∥α+ τα ∥Y [2]∥2α,τ
! C1

′ ∥Y ∥∞,τ ∥X1∥α+ τα ∥Y [2]∥2α,τ , (3.42)

because |σ(Zt)−σ(Z̄t)|!C1′ |Zt− Z̄t|, hence (3.39) holds with c1=C1
′ ∥X1∥α. Simi-

larly, by (3.38) we can bound

∥Y [2]∥2α,τ ! ∥σ2(Z)− σ2(Z̄)∥∞,τ ∥X2∥2α+ τ (γ−2)α ∥Y [3]∥γα,τ
! C2

′ ∥Y ∥∞,τ ∥X2∥2α+ τ (γ−2)α ∥Y [3]∥γα,τ , (3.43)

because |σ2(Zt)−σ2(Z̄t)|!C2′ |Zt− Z̄t|, hence also (3.40) holds with c2=C2
′ ∥X2∥2α.
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We finally prove (3.41). Since Yst
[3]=Zst

[3]− Z̄st
[3]=o(t−s), see (3.19), we can bound

Z [3] by its increment δZ [3] through the weighted Sewing Bound (1.41):

∥Y [3]∥γα,τ !Kγα ∥δY [3]∥γα,τ . (3.44)

We are going to prove the following estimate:

∥δY [3]∥γα,τ ! c̃3 ∥Y ∥∞,τ + c̃3
′ ∥δY ∥α,τ + c̃3

′′ ∥Y [2]∥2α,τ , (3.45)

for suitable constants c̃3, c̃3′′, c̃3′′ that depend on Z,Z̄ ,X1,X2,σ, but not on τ . Plugging
the estimates (3.39) and (3.40) (that we already proved) for ∥δY ∥α,τ and ∥Y [2]∥2α,τ,
we obtain (3.41) for suitable (explicit) constants c3, c3′ .

Let us then prove (3.45). Recalling (3.26), for 0! s!u! t!T we can write

δYsut
[3]=(Bsu− B̄su)Xut

1 +(δσ2(Z)− δσ2(Z̄))suXut
2 ,

where Bsu :=σ(Zu)−σ(Zs)−σ2(Zs)Xsu
1 and similarly for B̄su, hence by (3.21)

∥δY [3]∥γα,τ ! ∥B − B̄∥(γ−1)α,τ ∥X∥α+ ∥δσ2(Z)− δσ2(Z̄)∥(γ−2)α,τ ∥X2∥2α . (3.46)

To obtain (3.45) we need to show that ∥B− B̄∥(γ−1)α,τ and ∥δσ2(Z)−δσ2(Z̄)∥(γ−2)α,τ
can be bounded by linear combinations of ∥Y ∥∞,τ, ∥δY ∥α,τ and ∥Y [2]∥2α,τ.

We start from ∥δσ2(Z)− δσ2(Z̄)∥(γ−2)α,τ, which can be bounded as in (2.29):

∥δσ2(Z)− δσ2(Z̄)∥(γ−2)α,τ ! C2
′ ∥δY ∥α,τ +C2

′′ {∥δZ∥αγ−1+ ∥δZ̄∥αγ−1}∥Y ∥∞,τ.

We next focus on ∥B− B̄∥(γ−1)α,τ, which we are going to estimate by the following
explicit linear combination of ∥Y ∥∞,τ, ∥δY ∥α,τ and ∥Y [2]∥2α,τ:

∥B − B̄∥(γ−1)α,τ ! C1
′′ ∥Y ∥∞,τ ∥Z [2]∥2α+C1

′ ∥Y [2]∥2α,τ
+C1

′′ ∥δY ∥α,τ ∥δZ∥α+2C1
′′′ ∥Y ∥∞,τ ∥δZ∥α2 (3.47)

+C1
′′ ∥δZ̄∥α ∥δY ∥α,τ ,

which completes the proof of (3.45) when plugged into (3.46).
It only remains to prove (3.47). Recalling (3.24), it follows by (3.22) that

Bsu := σ(Zu)−σ(Zs)−σ2(Zs)Xsu
1

= ∇σ(Zs)Zsu
[2]+

∫

0

1

(∇σ(Zu+ r δZsu)−∇σ(Zu))︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Fsu

δZsu dr,

and likewise for B̄su (with F̄su defined similarly), therefore

|Bsu− B̄su|! |∇σ(Zs)Zsu[2]−∇σ(Z̄s) Z̄su[2]|+
∫

0

1

|Fsu δZsu− F̄su δZ̄su| dr . (3.48)

By the elementary estimate |a b− ā b̄ |= |a b− ā b+ ā b− ā b̄ |! |a− ā||b|+|ā| |b− b̄ |,
that we apply repeatedly, we can bound

|∇σ(Zs)Zsu
[2]−∇σ(Z̄s) Z̄su

[2]| ! |∇σ(Zs)−∇σ(Z̄s)| |Zsu
[2]|+ |∇σ(Z̄s)| |Zsu

[2]− Z̄su
[2]|

! C1
′′ |Ys| |Zsu

[2]|+C1
′ |Ysu

[2]|,

and note that by (2.7) we obtain the first line in the RHS of (3.47).
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To complete the proof of (3.47), we look at the second term in the RHS of (3.48):

|Fsu δZsu− F̄su δZ̄su| ! |Fsu− F̄su| |δZsu|+ |F̄su| |δZsu− δZ̄su|
! |Fsu− F̄su| |δZsu|+C1

′′ r |δZ̄su| |δYsu|, (3.49)

because |F̄su|!C1
′′ r |δZ̄su|. We then see, applying (2.8), that the last term in (3.49)

produces the third line in (3.47). Finally, by (2.19) we estimate

|Fsu− F̄su| = |(∇σ(Zu+ r δZsu)−∇σ(Zu))− (∇σ(Z̄u+ r δZ̄su)−∇σ(Z̄u))|
! C1

′′ r |δYsu|+C1
′′′ {|r δZsu|γ−2+ |rδZsu|γ−2} |Ys| .

We obtain by (2.7) for 0! r! 1

∥F − F̄ ∥(γ−2)α,τ !C1
′′ ∥δY ∥α,τ +2C1

′′′ ∥Y ∥∞,τ ∥δZ∥αγ−2 .

Applying again (2.8), we finally see that the first term in (3.49) yields the second
line in (3.47), which completes the proof. #

3.7. Continuity of the solution map
In this section we assume that σ has bounded first, second and third derivatives,
while σ2 has bounded first and second derivatives:

∥∇σ∥∞, ∥∇2σ∥∞, ∥∇3σ∥∞<∞ , ∥∇σ2∥∞, ∥∇2σ2∥∞<∞. (3.50)

(We stress that no boundedness assumption is made on σ and σ2.) Under these
assumptions, given any time horizon T > 0, any starting point Z0∈Rk and any α-
rough path X=(X1,X2) with 1

3
<α! 1

2
, we have global existence and uniqueness of

solutions Z: [0, T ]→Rk to (3.18) (as we will prove in Theorem 3.12).
Denoting by Rα,d the space of d-dimensional α-rough paths X=(X1,X2), that

we endow with the norm ∥X1∥α+ ∥X2∥2α we can thus consider the solution map:

Φ: Rk×Rα,d −→ Cα

(Z0 ,X) .−→ Z :=

{
unique solution of (3.18) for t∈ [0, T ]
starting from Z0

. (3.51)

We prove the highly non-trivial result that this map is locally Lipschitz . In the space
Cα of Hölder functions we work with the weighted norm ∥f ∥∞,τ + ∥δf ∥α,τ, which is
equivalent to the usual norm ∥f ∥Cα := ∥f ∥∞+ ∥δf ∥α, see Remark 1.15.

Theorem 3.11. (Continuity of the solution map) Let σ and σ2 satisfy ( 3.50)
(with no boundedness assumption on the functions σ and σ2). Then, for any T > 0
and α∈

]1
3
, 1
2

]
, the solution map (Z0,X) .→Z in ( 3.51) is locally Lipschitz.

More explicitly, given any M0,M ,D<∞, if we assume that

max {∥∇σ∥∞, ∥∇2σ∥∞, ∥∇3σ∥∞, ∥∇σ2∥∞, ∥∇2σ2∥∞}!D, (3.52)

and we consider starting points Z0, Z̄0∈Rd and rough paths X, X̄∈ Cα with

max {|σ(Z0)| , |σ2(Z0)| , |σ(Z̄0)| , |σ2(Z̄0)|}!M0 , (3.53)

max {∥X1∥α , ∥X2∥2α , ∥X̄1∥α , ∥X̄2∥2α}!M, (3.54)
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then the corresponding solutions Z =(Zs)s∈[0,T ], Z̄ =(Z̄s)s∈[0,T ] of ( 3.18) satisfy

∥Z − Z̄∥∞,τ + ∥δZ − δZ̄∥α,τ + ∥Z [2]− Z̄ [2]∥2α,τ
!CM

′ |Z0− Z̄0|+ 30M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α). (3.55)

provided τ satisfies 0< τ ∧T ! τ̂ ′ for a suitable τ̂ ′= τ̂α,T ,D,M0,M
′ > 0, where we set

CM
′ := 16 {(∥∇σ∥∞+ ∥∇σ2∥∞)M +1}! 32 (DM +1).

Proof. It is convenient to define the constant

cM
′ := (∥∇σ∥∞+ ∥∇σ2∥∞)M ! 2DM . (3.56)

Let Z and Z̄ be two solutions of (3.18) with respective routh paths X and X̄.
Defining Y :=Z − Z̄ and Y [2] :=Z [2]− Z̄ [2], see (3.24), we rewrite our goal (3.55) as

∥Y ∥∞,τ + ∥δY ∥α,τ + ∥Y [2]∥2α,τ ! 16 (cM′ +1) |Y0|
+30M0 (∥X1− X̄1∥α+∥X2− X̄2∥2α) . (3.57)

Throughout the proof we use the shorthand

ε := (τ ∧T )α (3.58)

and we write for ε small enough to mean for all 0<ε<ε0, for a suitable ε0 depending
on α, T ,M0,M ,D. We claim that the following estimates hold for δY and Y [2]:

∥δY ∥α,τ ! cM
′ ∥Y ∥∞,τ +2M0 ∥X1− X̄1∥α+ ε ∥Y [2]∥2α,τ , (3.59)

∥Y [2]∥2α,τ ! cM
′ ∥Y ∥∞,τ +2M0 ∥X2− X̄2∥2α+ ε ∥Y [3]∥3α,τ , (3.60)

and, moreover, for ε small enough the following estimate holds for Y [3] :=Z [3]− Z̄ [3]:

ε ∥Y [3]∥3α,τ ! ∥Y ∥∞,τ +M0 (∥X1 − X̄1∥α + ∥X2 − X̄2∥2α) + ∥δY ∥α,τ +
1
4
∥Y [2]∥α,τ.

(3.61)

It is now elementary (but tedious) to deduce our goal (3.57). Plugging (3.61)
into (3.60) we obtain ∥Y [2]∥2α,τ! (· · ·)+ 1

4
∥Y [2]∥2α,τ which yields ∥Y [2]∥2α,τ! 4

3
(. . .)

(since ∥Y [2]∥2α,τ <∞ by Lemma 3.8). Making (. . .) explicit, we get

∥Y [2]∥2α,τ!2(cM′ +1)∥Y ∥∞,τ+4M0(∥X1−X̄1∥α+∥X2−X̄2∥2α)+2∥δY ∥α,τ (3.62)

which plugged into (3.59) yields, for ε small enough (it suffices that ε! 1

4
),

∥δY ∥α,τ ! 3 (cM′ +1) ∥Y ∥∞,τ +6M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α) , (3.63)

and looking back at (3.62) we obtain

∥Y [2]∥2α,τ ! 8 (cM′ +1) ∥Y ∥∞,τ + 16M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α), (3.64)

so that, overall,

∥Y ∥∞,τ + ∥δY ∥α,τ + ∥Y [2]∥2α,τ ! 12 (cM′ +1) ∥Y ∥∞,τ

+22M0 (∥X1− X̄1∥α+∥X2− X̄2∥2α) . (3.65)
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It only remains to make ∥Y ∥∞,τ explicit. Since ∥Y ∥∞,τ! |Y0|+3 ε ∥δY ∥α,τ by (2.5),
for ε small enough (more precisely for ε! 1

36 (cM′ +1)
) we can bound

(cM
′ +1) ∥Y ∥∞,τ ! (cM′ +1) |Y0|+

1
12
∥δY ∥α,τ , (3.66)

which inserted into (3.63) yields

∥δY ∥α,τ ! 4 (cM′ +1) |Y0|+8M0 (∥X1− X̄1∥α+ ∥X2− X̄2∥2α).

Plugging this into (3.66), and then (3.66) into (3.65), we obtain our goal (3.57).

It remains to prove (3.59), (3.60) and (3.61). We first state some useful bounds
that will be used repeatedly. Recalling (3.52) and (3.28)-(3.30), let us define

τ̄ = τ̄α,D,M := 1

{4 (K3α+3) (2 (D2+D) (M2+M)+ 1)}1/α
, (3.67)

By the a priori estimate (3.29) we can then bound

for ε=(τ ∧T )α! τ̄ α: ∥δZ∥α,τ + ∥Z [2]∥2α,τ ! 4M0M, (3.68)
hence

max{∥δσ(Z)∥α,τ ,∥δσ2(Z)∥α,τ}!max{∥∇σ∥∞ ,∥∇σ2∥∞}∥δZ∥α,τ!4M0cM
′ , (3.69)

which implies that, by (2.5) and for ε small enough,

max {∥σ(Z)∥∞,τ , ∥σ2(Z)∥∞,τ}!M0+3 ε 4M0 cM
′ ! 2M0.

We record the following simple bound, for any Lipschitz function f ,

∥f(Z)− f(Z̄)∥∞,τ ! ∥∇f ∥∞ ∥Z − Z̄∥∞,τ = ∥∇f ∥∞ ∥Y ∥∞,τ. (3.70)

We will also use a number of times the elementary estimate, for a, b, ā, b̄ ∈R,

|a b− ā b̄ |= |a b− a b̄+ a b̄− ā b̄ |! |a| |b− b̄ |+ |b̄ | |a− ā| . (3.71)

We can now prove (3.59). Since δYst= δZst− δZ̄st= σ(Zs)Xst
1 − σ(Z̄s) X̄st

1 +Yst
[2],

see (3.24) for Z and Z̄, by (2.7) and (3.53)-(3.54) we get, applying (3.71),

∥δY ∥α,τ ! ∥σ(Z)∥∞,τ ∥X1− X̄1∥α+ ∥σ(Z)−σ(Z̄)∥∞,τ ∥X̄1∥α+ ∥Y [2]∥α,τ
! 2M0 ∥X1− X̄1∥α+ ∥σ(Z)−σ(Z̄)∥∞,τM + ε ∥Y [2]∥2α,τ ,

because ∥Y [2]∥α,τ ! ε ∥Y [2]∥2α,τ by (2.6) (recall the definition (3.58) of ε). Applying
(3.70) with f =σ and recalling cM

′ from (3.56), we obtain (3.59).

The proof of (3.60) is similar. Since Zst
[3]=Zst

[2]−σ2(Zs)Xst
2 and similarly for Z̄ [3],

see (3.24), we can write Yst
[2]=Z [2]− Z̄ [2]=σ2(Zs)Xst

2 −σ2(Z̄s) X̄st
2 +Yst

[3], therefore

∥Y [2]∥2α,τ ! ∥σ2(Z)∥∞,τ ∥X2− X̄2∥2α+ ∥σ2(Z)−σ2(Z̄)∥∞,τ ∥X̄2∥2α+ ∥Y [3]∥2α,τ
! 2M0 ∥X2− X̄2∥2α+ ∥σ2(Z)−σ2(Z̄)∥∞,τM + ε ∥Y [3]∥3α,τ ,

since ∥Y [3]∥2α,τ ! ε ∥Y [3]∥3α,τ by (2.6). Applying (3.70) for f =σ2 we obtain (3.60).
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We finally prove (3.61). Since Yst
[3]=Zst

[3]− Z̄st
[3]=o(t−s), see (3.19), the weighted

Sewing Bound (1.41) yields

∥Y [3]∥3α,τ !K3α ∥δY [3]∥3α,τ , (3.72)

hence we can focus on δY [3]= δZ [3]− δZ̄ [3]. Let us recall (3.26): for 0! s!u! t!T

δZsut
[3] =(σ(Zu)−σ(Zs)−σ2(Zs)Xsu

1 )
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Bsu

Xut
1 + δσ2(Z)suXut

2 ,

and analogously for δZ̄ [3] and B̄su, therefore by (3.71) and (3.21) we obtain

∥δY [3]∥3α,τ ! ∥B∥2α,τ ∥X1− X̄1∥α+ ∥B− B̄∥2α,τ ∥X̄1∥α,τ
+∥δσ2(Z)∥α,τ ∥X2− X̄2∥2α+ ∥δσ2(Z)− δσ2(Z̄)∥α,τ ∥X̄2∥2α . (3.73)

It remains to estimate the four terms in the RHS: in view of (3.72), relation (3.61)
is proved if we show that, for ε small enough,

εK3α ∥B∥2α,τ ∥X1− X̄1∥α ! M0 ∥X1− X̄1∥α , (3.74)

εK3α ∥B− B̄∥2α,τ ∥X̄1∥α,τ ! 1
2
(∥Y ∥∞,τ+∥δY ∥α,τ)+

1
4
∥Y [2]∥2α,τ , (3.75)

εK3α ∥δσ2(Z)∥α,τ ∥X2− X̄2∥2α ! M0 ∥X2− X̄2∥2α , (3.76)

εK3α ∥δσ2(Z)− δσ2(Z̄)∥α,τ ∥X̄2∥2α ! 1
2
(∥Y ∥∞,τ + ∥δY ∥α,τ) . (3.77)

We first deal with (3.76) and (3.77), then we focus on (3.74) and (3.75).
Proving (3.76) is very simple: since ∥δσ2(Z)∥α,τ! 4M0 cM

′ by (3.69), we see that
(3.76) holds for ε small enough. To prove (3.77), note that by (2.51) we have

∥δσ(Z)− δσ(Z̄)∥(γ−1)α,τ ! ∥∇σ∥∞ ∥δY ∥α,τ +4M0M [σ]Cγ−1 ∥Y ∥∞,τ .

Applying (3.54) and (3.68) we obtain

∥δσ2(Z)− δσ2(Z̄)∥α,τ ∥X̄2∥2α! ∥∇σ2∥∞M ∥δY ∥α,τ +e
T

τ̄ ∥∇2σ2∥∞ 8M0M2 ∥Y ∥∞,τ ,

which shows that (3.77) holds for ε small enough.
Let us now prove (3.74). By (3.22) we have, for 0! s! t!T ,

Bst=∇σ(Zs)Zst
[2]

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Est

+

∫

0

1

[(∇σ(Zs+ r δZst)−∇σ(Zs)) δZst] dr
︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Fst

(3.78)

and similarly for Ēst and F̄st. In particular, recalling (3.68), we get

∥B∥2α,τ ! ∥∇σ∥∞ ∥Z [2]∥2α,τ + ∥∇2σ∥∞ ∥δZ∥α,τ2

! ∥∇σ∥∞ 4M0M + ∥∇2σ∥∞ (4M0M)2,

hence we see that (3.74) holds for ε small enough.
We finally prove (3.75), which is a bit tedious. In view of (3.78), we first consider

Est− Ēst=(∇σ(Zs)−∇σ(Z̄s))Zst
[2]+∇σ(Z̄s) (Zst

[2]− Z̄st
[2]) .

3.7 Continuity of the solution map 59



Applying (2.9) with H =Z [2] and τ̄ from (3.67), we obtain

∥E − Ē∥2α,τ ! ∥∇σ(Z)−∇σ(Z̄)∥∞,τ e
T

τ̄ ∥Z [2]∥2α,τ̄ + ∥∇σ∥∞ ∥Y [2]∥2α,τ .

By (3.70) with f =∇σ and the a priori estimate (3.68) we obtain

∥E − Ē∥2α,τ ! ∥∇2σ∥∞ ∥Y ∥∞,τ e
T

τ̄ 4M0M+∥∇σ∥∞ ∥Y [2]∥2α,τ . (3.79)

We then consider Fst− F̄st. By (2.19), for 0! r! 1 we can estimate

|(∇σ(Zs+ r δZst)−∇σ(Zs))− (∇σ(Z̄s+ rδZ̄st)−∇σ(Z̄s))| |δZst|
! ∥∇2σ∥∞ |δYst| |δZst|+ ∥∇3σ∥∞ max

0!u!1
{(1−u) |Ys|+u |Yt|} |δZst|2,

as well as

|∇σ(Zs+ r δZst)−∇σ(Zs)| |δZst− δZ̄st|! ∥∇2σ∥∞ |δZst| |δYst| .

We can then estimate Fst− F̄st from (3.78) as in (3.71): applying (2.9) twice with
H = δZ and H =(δZ)2, always with τ̄ from (3.67), and recalling (3.68), we obtain

∥F − F̄ ∥2α,τ ! 2 ∥∇2σ∥∞ ∥δY ∥α,τ e
T

τ̄ ∥δZ∥α,τ̄ + ∥∇3σ∥∞ ∥Y ∥∞,τ e
T

τ̄ ∥δZ∥α,τ̄2

! e
T

τ̄ {8M0M ∥∇2σ∥∞∥δY ∥α,τ+(4M0M)2∥∇3σ∥∞∥Y ∥∞,τ} . (3.80)

Since ∥B − B̄∥2α,τ ! ∥E − Ē∥2α,τ + ∥F − F̄ ∥2α,τ in view of (3.78), we see by (3.79)
and (3.80) that (3.75) holds for ε small enough. The proof is complete. #

3.8. Global existence and uniqueness

Let us suppose that σ:Rk→Rk⊗ (Rd)∗ is of class C3 with ∥∇σ∥∞+∥∇σ2∥∞<+∞.

Theorem 3.12. Let α> 1

3
. If σ:Rk→Rk ⊗ (Rd)∗ is of class C3 with ∥∇σ∥∞+

∥∇σ2∥∞<+∞ then for every z0∈Rk and T >0 there is a unique solution (Zt)t∈[0,T ]
to ( 3.19) such that Z0= z0.

Proof. By Theorem 3.10 we have at most one solution. We now construct a solution
on an arbitrary finite interval [0, T ], arguing as in the proof of Theorem 2.15. We
define Λ⊆ [0, T ] as the set of all s such that there is a solution (Zt)t∈[0,s] to (3.19).
By Proposition 3.6, Λ is an open subset of [0, T ] and contains 0. By the a priori
estimates of Theorem 3.9, Λ is a closed subset of [0, T ]. Therefore Λ= [0, T ]. #

3.9. Milstein scheme and local existence

In this section we prove the local existence result of Proposition 3.6, under the
assumption that σ ,σ2 are of class C1 and uniformly Lipschitz. To construct a solu-
tion to (3.10), we set ti :=

i

n
, i$ 0, and for a given y0∈Rk

yti+1= yti+σ(yti)Xtiti+1
1 +σ2(yti)Xtiti+1

2 , i$ 0.
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We set D :=max {1, ∥∇σ∥∞, ∥∇σ2∥∞}, T := {ti: ti!T } and

δytitj := ytj− yti,

∥δy∥αT := sup
0<i<j!nT

|ytj− yti|
|tj− ti|α

,

Atitj : = σ(yti)Xtitj
1 +σ2(yti)Xtitj

2 .

The main technical estimate is the following

Lemma 3.13. Let M > 0. There exists TM,D,α> 0 such that, for all T ∈ (0, TM,D,α)
and X=(X1,X2)∈Rα,d such that ∥X1∥α+ ∥X2∥2α!M, we have

∥δy∥αT ! 5M(|σ(y0)|+ |σ2(y0)|),
∥δy−A∥3αT "M,D,α (|σ(y0)|+ |σ2(y0)|).

Proof. Let us set Rtitj := δytitj−Atitj. By the definitions, Rtiti+1=0. Then we can
apply the discrete Sewing bound (Theorem 1.18) to R on T :=

{ i

n
: i!nT

}
and we

obtain

∥R∥3αT !C3α∥δR∥3αT , C3α=23α
∑

n"1

1
n3α

.

Now, analogously to (3.26), since δR=−δA,

δRtitjtk = −(σ(ytj)−σ(yti)−σ2(yti)Xtitj
1 )

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Bij

Xtjtk
1 − (σ2(yti)−σ2(ytj))︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸

Cij

Xtjtk
2 ,

so that
∥δR∥3αT !M(∥B∥2αT + ∥C∥αT).

We set

Htitj := δytitj−σ(yti)Xtitj
1 ,

and by (3.23) we obtain

Btitj=σ(ytj)−σ(yti)−σ2(yti)Xtitj
1 =

=

∫

0

1

(σ2(yti+uδytitj)−σ2(yti))Xtitj
1 du

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Eij

+

∫

0

1

∇σ(yti+uδytitj) duHtitj

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Fij

−
∫

0

1

∇σ(yti+uδytitj)(σ(yti+uδytitj)− σ(yti))Xtitj
1 du

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Gij

.

First

∥E∥2αT ! ∥∇σ2∥∞∥δy∥αT∥X1∥α!DM ∥δy∥αT.

Similarly

∥G∥2αT ! ∥∇σ∥∞2 ∥δy∥αT∥X1∥α!D2M ∥δy∥αT.
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By the definition of Rtitj

|Htitj | ! |Rtitj |+ |σ2(yti)Xtitj
2 |

! [T α∥R∥3αT +(|σ2(y0)|+T α∥∇σ2∥∞∥δy∥αT)∥X2∥2α] |tj− ti|2α

! (T α∥R∥3αT +M |σ2(y0)|+T αDM ∥δy∥αT)|tj− ti|2α.

Therefore

∥F ∥2αT ! D∥H∥2αT

! D(T α∥R∥3αT +M |σ2(y0)|+T αDM ∥δy∥αT).

Finally

∥B∥2αT ! ∥E∥2αT + ∥F ∥2αT + ∥G∥2αT

! D [M |σ2(y0)|+T α∥R∥3αT +DM(2+T α )∥δy∥αT] .

Analogously
∥C∥2αT !D∥δy∥αT.

Therefore

∥R∥3αT !C3αDM(M |σ2(y0)|+T α∥R∥3αT + [1+DM(2+T α )]∥δy∥αT).

If T αC3αDM ! 1

2
then

∥R∥3αT ! 2C3αDM(M |σ2(y0)|+ [1+DM(2+T α )]∥δy∥αT). (3.81)
We set

L(y) := 2C3αDM(M |σ2(y0)|+ [1+DM(2+T α )]∥δy∥αT)

Now we obtain by (3.81)

∥δy∥αT ! ∥R∥αT+ ∥A∥αT

! T 2αL(y)+ (|σ(y0)|+ |σ2(y0)|+2DT α∥δy∥αT)M.

If we assume also that 2DMT α! 1

2
, we obtain

∥δy∥α! 2T 2αL(y)+ 2M(|σ(y0)|+ |σ2(y0)|).

By the definition of L(y), if furthermore 2C3αDM [1 +DM(2 + T α )] T 2α! 1

2
, we

obtain finally

∥δy∥αT ! 5M(|σ(y0)|+ |σ2(y0)|) ,
L(y) ! 12C3αDM2[1+DM(2+T α )](|σ(y0)|+ |σ2(y0)|) :=K,

and by (3.81)
∥δy−A∥3αT !K.

The proof is complete. #

Proof of Proposition 3.6. Arguing as in Theorem 2.16 we obtain the result of
local existence for equation (3.19) of Proposition 3.6. #
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