CHAPTER 4

STOCHASTIC DIFFERENTIAL EQUATIONS

In this chapter we connect the rough difference equations (RDE) discussed in the pre-
vious chapter, see (3.18), with the classical stochastic differential equations (SDE)
dY;=o(Y;) dB; driven by a Brownian motion B. Indeed, both RDE and SDE are

ways to make sense of the ill-posed differential equation Y; = (V) B;.

We fix a time horizon T > 0 and two dimensions k,d € N. Let B = (Bt)te[o,T} be
a d-dimensional Brownian motion (with continuous paths) relative to a filtration
(Ft)teo,r); defined on a probability space (€2, 4, P). We fix a sufficiently regular
function o: RF — RF ® (R?)* and we consider a solution Y = (Y;);c[o,r] of the SDE

t
dYi=0(Y;) dB; ie. Yt:YO+/ o(Y;)dBs, t>0, (4.1)
0
where the stochastic integral is in the Ito sense. We always fix a version of Y with

continuous paths (we recall that the Ito integral is a continuous local martingale).

We want to show that Y solves a rough difference equation driven by the rough
path B= (B!, B?) (see Definition 3.2) defined by

t
Bl := B, — B,, Bﬁt::/ (B, — B,)®dB,, 0<s<t<T, (4.2)
where the stochastic integral is in the Ito sense. More explicitly, for i, j € {1,...,d}
t
(B)i=Bi-Bl, (B2 [ (B B)aB], (43)

where we write B;= (B{,..., B{), so that B [0, T]2 —R? and B% [0, T]2 — R?® R
Our first main result is that (B!, B?) is indeed a rough path over B.

THEOREM 4.1. (ITO ROUGH PATH) Almost surely, B:= (B!, B?) is an a-rough path
over B (see Definition 3.2) for any o € }%,%[, namely it satisfies a.s.

5E§ut = Bgt - Bgu - B%t = ]le,u X IB’ll,Lt )

Bl SlE—sl*,  IBIISIt—s]*. (4.4)

Our second main result is that, under suitable assumptions, the solution Y of
the SDE (4.1) solves the RDE (3.18) driven by the Ito rough path X =1.
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64 STOCHASTIC DIFFERENTIAL EQUATIONS

THEOREM 4.2. (SDE & RDE) If 0: R* — R*® (R%)* is of class C?, then almost
surely any solution Y = (Y;)icjo,1) of the SDE (}.1) is also a solution of the RDE

6Yy=0(Y;) Bii+0oa(Ys) Bi+o(t—s), 0<s<t<T. (4.5)

(We recall that o5(-):=Vo(-)o(:) is defined in (3.5).)
If o(+) is of class C? and, furthermore, o(-) and oy(+) are globally Lipschitz, i.e.
IV ||oo + [|[Voaloe < 00, then almost surely both the SDE (/.1) and the RDE (4.5)

admit a unique solution Y = (Yi)te[o,T] and these solutions coincide.

The key tool we exploit in this chapter is a local expansion of stochastic integrals,
see Theorem 4.3 in the next Section 4.1. The proofs of Theorems 4.1 and 4.2 are
direct consequences of this result, see Section 4.2.

In Sections 4.3 and 5.1 we discuss useful generalizations of the SDE (4.1), where
we add a drift and we allow for stochastic integration in the Stratonovich sense,
which leads to generalized versions of Theorems 4.1 and 4.2.

In Section 5.2 we present the celebrated result by Wong-Zakai on the limit of
solutions of the SDE (4.1) with a regularized Brownian motion (via convolution).

Finally, Section 4.4 is devoted to a far-reaching generalization of Kolmogorov’s
continuity criterion, which leads to the proof of Theorem 4.3 in Section 4.5.

4.1. LOCAL EXPANSION OF STOCHASTIC INTEGRALS

We recall that B = (By)¢c[o,7) is a d-dimensional Brownian motion. Let h= (h)¢efo,7)
be a stochastic process with values in R* @ (R?)*. We assume that h is adapted and
has continuous paths, in particular [ OT |hs|? ds < 0o, hence the It6 integral

t
I:= ]0+/ h,dB, (4.6)
0

is well-defined as a local martingale. It is a classical result that the stochastic process
I = (I})¢cjo,r admits a version with continuous paths, which we always fix.

We now state the main technical result of this chapter, proved in Section 4.5
below, which connects the regularity of A to the regularity of I.

THEOREM 4.3. (LOCAL EXPANSION OF STOCHASTIC INTEGRALS) Let h: [0,T] —

R* @ (RY)* be an adapted process with a.s. continuous paths. Fix any o € }0,%[ and
recall (B, 1B%) from (4.2).

1. Almost surely I is of class C*, 1i.e.
L= L| S (t—s)%,  VO<s<t<T. (4.7)
(We recall that the implicit constant in the relation < is random.)

2. Assume that, almost surely, |0hs.| < (r —s)P for some 3€]0,1] (i.e. h is of
class CP). Then, almost surely,

t
/ Ohg. dB,

|01 — hs BY| = S(t—s)thf VO<s<t<T. (4.8)
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3. Assume that, almost surely, |0hy, — hlBL.| < (r—s)"%, for some adapted
process h' = (hi)iepo.1) of class C" with n €10,1]. Then, almost surely,

|6]st - hs IBét - hél; IBgt| -

t
/ (6har — Y BL) B,
S (t—s)mt2 VO s<t<T. (4.9)

The proof of Theorem 4.3 is postponed to Section 4.5.

4.2. BROWNIAN ROUGH PATH AND SDE
In this section we exploit Theorem 4.3 to prove Theorems 4.1 and 4.2.

Proof. (OF THEOREM 4.1) We need to verify that B= (B!, B?) satisfies the Chen
relation (3.13) and the analytic bounds (3.14).
The Chen relation §B%,, = B}, ® BL; for 0 <s<u<t<T holds by (4.3):
0By = (B3 — (B, — (B,
— [wi-pyan - [ myas- [ @i B as;
= [ (Bi-Bani= (B~ B [ 148}~ (5= BB - B)

by the properties of the It6 integral and the fact that the times s <wu <t are ordered.

The first analytic bound |Bgy| <[t — 5| for a € |0, %[ is a well-known almost sure
property of Brownian motion, which also follows from Theorem 4.3, applying (4.7)
with h=1. Finally, the second analytic bound |BZ| < [t — 5]?* is also a consequence
of Theorem 4.3: it suffices to apply (4.8) with hs:= Bs and §=«a. O

Proof. (THEOREM 4.2) We first prove the second part of the statement.

e  When o is globally Lipschitz (||Vo || < +00), it is a classical result that for
the SDE (4.1) there is existence of strong solutions and pathwise uniqueness.

e When ¢ is of class C?, by Theorem 3.10 there is uniqueness of solutions for
the RDE (3.19), and if both o and o9 are globally Lipschitz (||Vo||eo < +00
and ||Vos||e < 400) there is also existence of solutions, by Theorem 3.12.

Therefore we only need to prove the first part of the statement: we assume that o is
of class C? and we show that given a solution Y = (Y;)¢c(o,7] of the SDE (4.1), almost
surely Y is also a solution to the RDE (4.5).

Since Y is solution to (4.1), recalling (4.2) we can write

V- o(¥) Bl - V) B — | (0(%) — o(¥)) dB, — 0a(Y)) / (B~ B)dB,
_ / (50(Y )or — 0o, BL) dB,

Let us fix a € ]O, %[ We prove below that, almost surely,

|00 (Y )t — 02(Y2) Bl S (¢ —s)%, VO<s<t<T. (4.10)
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This means that the assumptions of part 3 of Theorem 4.3 are satisfied by h,=0o(Y,)
and h} = 05(Y;) with n=a: applying (4.9) we then obtain, almost surely,

0V — oY) BY — 0a(Y2) B4 < (1 — )%,

If we fix a> %, this shows that Y is indeed a solution of the RDE (4.5).
It remains to prove (4.10). By It6’s formula and (4.1) we have, for 0<s <t < T,

¢k
oY) = oY)+ / D duo(Y,) AV + / Z Do (Y,) (Y Y'Y,

a=1 S a,b=1

¢k d
= o)+ [ Y 00(0) Y ot aps+

+/ 23S o () ot (V) o) dr
s a,b=1 c=1
p(%7) ’

= U(Y;)—i-/ag(Y;)dBr+/p(K)dr, (4.11)

therefore

5o (Y )y — oo(Y;) BY, = / (oY) — 0a(Y2)) B, + / (Y dr

To prove (4.10), we show that both integrals in the RHS are O((t — 5)%?).

e Since o is of class C? and Y has continuous paths, the random function
r+— p(Y;) is continuous, hence bounded for r € [0, T'], therefore

[oryar

e Almost surely Y is of class C*, thanks to (4.7) from Theorem 4.3 and (4.1).
Since o, is of class C', hence locally Lipschitz, r +— o5(Y;) is of class C* too.
Applying (4.8) from Theorem 4.3 with 5=« we then obtain, almost surely,

S(t—s) S (t—s)*, VO<s<t<T.

S(t—s9)®,  Vo<s<t<T.

/ (0a(Y;) — 0() dB,

This completes the proof. O

4.3. SDE WITH A DRIFT

It is natural to consider the SDE (4.1) with a non-zero drift term:

AY,=b(Y;)dt +o(Y,)dB;  ie.

t t
Yt:%+/b(ys)ds+/o—<y;) dB, >0, (4.12)
0 0
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where b: R*— R* and o: RF — R* ® (R%)* are given and we recall that B = (By)>0
is a d-dimensional Brownian motion. We can generalize Theorem 4.2 as follows.

THEOREM 4.4. (SDE & RDE WITH DRIFT) If o(-) is of class C? and b(-) is
continuous, then almost surely any solution Y = (Y;)icpp,1) of the SDE (4.12) is also
a solution of the RDE

§Yu=b(Yy) (t — s) + o(Ys) B+ oo(Ya) B +o(t—s), 0<s<t<T.  (4.13)

If o(-) and b(-) are of class C® and, furthermore, o(-), oa(-) and b(-) are globally
Lipschitz, i.e. ||V |+ ||Voalleo+ || Vb|w <00, then almost surely the SDE (/.12)
and the RDE (/.18) have the same unique solution Y = (Y1)¢c(o,17-

Proof. We cast the generalized SDE (4.12) in the “usual framework” by adding a
component to the driving noise B, i.e. we define B: [0,7] — R x R by

B,:=(B,t)=(B},...,Bt),  tel0,T),
and accordingly we define 5: R — R* ® (R4*+1)* by
G()b:=c()b+b(-)t  for b=(b,t)e R xR,

that is 6(-)i=0()i Lij<ay +b(-) Lj—at1}. We can then rewrite the SDE (4.12) as

t
dY,=5(Y,)dB,  ie. Yt:YOJr/(r(YS)dBS, t>0. (4.14)
0

We next extend the Ito rough path B= (B!, B?) from (4.2), defining

~ - - 1
Bl = Bt—&:( Eﬁts ) (4.15)

t
) ¢ ) B2 / (B, — By)dr
B2 = / (B,— B,)®dB,= s . (4.16)

One can show that B=(B', B?) is a rough path over B, following closely the proof
of Theorem 4.1. Indeed, if we fix a € }O, %[, we have almost surely B € C*, hence

t t
/ (B, — By dr| < (t — s)o+1, / (r—s)dB.| < (t — 5)o+L (4.17)
We can now write the RDE which generalizes (4.5):
Y =6(Y:) B+ 62(Ys) BL +oft — 5) . (4.18)

Interestingly, plugging the definitions of B and & into (4.18) we do not obtain (4.13),
because the components of B other than B are missing in (4.13), see (4.16). The
point is that these components can be absorbed in the reminder o(t — s), see (4.17),

hence the RDE (/.18) and (4.13) are fully equivalent.
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To complete the proof, we are left with comparing the SDE (4.14) with the
RDE (4.18). This can be done following the very same arguments as in the proof of
Theorem 4.2. The details are left to the reader. U

Remark 4.5. The strategy of adding the drift term as an additional component of
the driving noise, as in the proof of Theorem 4.4, suffers from a technical limitation,
namely we are forced to use the same reqularity exponent o for all components, due
to Definition 3.2 of rough paths. This prevents us from exploiting the additional
regularity of the drift term: for instance, in the second part of Theorem 4.4, the
assumption that b(-) is of class C* could be removed, because the “driving noise” ¢
is smooth and the classical theory of ordinary differential equations applies.

A natural solution would be to generalize Definition 3.2, allowing rough paths
to have a different regularity exponent for each component. The key results can be
generalized to this setting, but for simplicity we refrain from pursuing this path.

4.4. A REFINED KOLMOGOROV CRITERION

In this section we prepare the ground for the proof of Lemmas 4.10 and 4.11 in
Section 4.5 below, which are the main technical tools in the proof of Theorem 4.3.
We suppose without loss of generality that T'= 1, namely our processes are defined
on the interval [0, 1]. Define the set D of dyadic points in [0, 1] by

D:= U Dy, where Dy := {df:: i

ﬁ}ogi@k'
k>0

(4.19)

Given d,d € D, we write d— d if and only if d is consecutive to d in some layer Dy
of D, that is d =d¥ and J:dfﬂ, for some k>0 and 0<i< 2" —1.

Remarkably, in order to prove relation (4.35), it is enough to have a suitable
control on R, j for consecutive points d— d (together with a global control on R), as
the next result shows. This turns out to be at the heart of the Kolmogorov continuity
criterion, but we stress that it is a deterministic statement.

THEOREM 4.6. (KOLMOGOROV CRITERION: DETERMINISTIC PART) Given a func-
tion A:ID%2 — R, for 0< p <~ we define the constants

[ Agdl
Q.= sup Cdd (4.20)
! d,deD:d—d |d_d|7
5145 u t|
K, = 045 . . 4.21
B Y e 2
s,u,teD
Then there is a constant C, , < oo such that
[Ast] S Cpr(Qy + K o) [t — 5|7, ¥(s,1) €D (4.22)

A key tool for Theorem 4.6 is the next result, proved at this end of this section,
which ensures the existence of suitable short paths in D.



4.4 A REFINED KOLMOGOROV CRITERION

69
LEMMA 4.7. (DYADIC PATHS) For any s,t €D with s<t, there are integers n,m > 1

and a path of (m+n+1) points in ID which leads from s to t, labelled as follows:

S=8,<...<81<Sg=tg<t1<...<t,=t, (4.23)
with the property that for alli€{0,...,m —1} and j€{0,...,n—1}

t—s
Siy1—Si, ti—1tj |3i_51+1|<| |

t—s
5 it < | 57 | (4.24)
Proof of Theorem 4.6. Fix s,t €D with s <t. We use Lemma 4.7 with the same
notation. By the definition of dA, we write

Ag=Agtg+ Argt +0As 401 -

In the case m > 2, we can develop Ay, as follows (recall that s =s,, and so=t)

m—1 m—2
Asto = Z A3i+13i+ Z 5A373i+1,5i'
=0 1=0
Similarly, when n > 2, we develop

n—1 n—2
Atot = E Atjtj+1 + g 5Atj,tj+1,t7
Jj=0 Jj=0
so that

n—1
A8i+18i+ E : Atjtj+1+
=0 7=0

g
=
m—2 n—2
+5A57t07t+ E 5A575i+175i+ E 6Atj7tj+17t'
i=0

=0
By the definition of @),, for any d — d we can bound

!

(4.25)

[Agdl < Quld —dl.

By Lemma 4.7, this bound applies to any couple (s;11,s;) and (t;,t;j+1). Then we
can estimate =; in (4.25) as follows, exploiting the bounds in (4.24):

oo

<

m—1 n—1
Qw{z [5i = sis1 Y |tj+1—tj|”} <
i=0 =0

@, (277 +

= io (Q_j)”}!t—syv:
{12
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which agrees with (4.22). On the other hand, thanks to (4.21) and (4.24),

164

5,8i4+1,54

“ﬁ“(“g—z') [t s r= K, 2 1 |

and similarly for 6A;, ;. ,, s, so that the term =, can be bounded above by

2
M\t—sw<1+z 2—W+Z2 JP) K, |t—s| (1+1_2_p).

This completes the proof of (4.22). O

As a simple consequence of Theorem 4.6, we show that suitable moment condi-
tions ensure the finiteness of the constant @), in (4.20), as in the classical Kolmogorov
criterion.

PROPOSITION 4.8. (KOLMOGOROV CRITERION: PROBABILISTIC PART) Let A=
(Ast)(s,t)e]Di be a stochastic process which satisfies the following bound, for some o,

p,c€(0,00):
E[|Ag|?P) < c|t — s|P, V(s,t) e D2.

Then, for any value of ~v such that
Y <07 (4.26)
the random variable Q= Q(A) defined in (4.20) is in LP:

c

E[|Q: ] < T—5rosmy <% (4.27)

21=p(70—")
In particular, a.s. Q< 00.
Proof. By definition of @, in (4.20), bounding the supremum with a sum we can

write
k_1
| Ay dl E \Adkdf .
@17 < Z (w_d’w Z Z Zlk|m

d,deD:d—d k>0 i=0

. 1 . 1
Let us write 7=y — %, for some € > 0. Since d¥ ; — d¥=— we have

2k 1
E[Q,1] < ) > cldfy—dfpte
k>0 =0
2k 1
S DY gme Y T <
k>0 i=0 k>0
The proof is complete. O

Remark 4.9. Given a stochastic process (X;);ep defined on dyadic times, if we
apply Theorem 4.6 and Proposition 4.8 to (Ag:=0Xs=X; — XS)(M)GW< we obtain
the classical Kolmogorov continuity criterion. Note that in this case K, , =0 because
0A=0.
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Proof of Lemma 4.7. We refer to Figure 4.1 for a graphical representation. Given
s,t €D with s <t, since 0 <t — s< 1, we can define £ > 1 as the unique integer such

that

1 1

We now take the smallest k € {0,...,2¢— 1} for which df > s and define

Soi=tg:=d5.

The definition of £ guarantees that di < t, because if df, >t then 2—11 —s>t—s5> %

and this would violate the minimality of k.
Note that 0 <df, —s <df — df_,=; and 0<t —df, <t —s, by (4.28), therefore

1

= (4.29)

1
O<SO_S<F’ O<t—t0<

Since both sg—s€D and t —tg€ D, for suitable integers m >1 and n > 1 we have

So— 8= 1—|—L+ +1 t—t—1+1+ +L
LR TTRRND T 20m 07 g T T T
where ¢, > ¢n_1>...>q¢ > and r, > ... >r; > /. We can thus write
1 1 1
S So_ﬁ_ﬁ_‘”_ﬁ7
t=to+ 1 + ! +...+ !
—L0 21"1 27"2 oo 27_”.
We can finally define
1 1 1
81180 " 5q T 5g 51 fori=1 m,
b=ty ot for j=1
j o—|—2 +2r2+ —i-% or j
5= 5% 3 boog B
I H— I —1 I
0 83 S9 S1 S()Zto tl t2 1
Figure 4.1. An mstance of Lemma 4.7 with s = 32 and t ==. Note that /=1 (because

! =<|t— |— =< 20, cf (4.28)) and so=to==. The points tl, ,tn, are built iteratively:

ﬁrst take the largest 2” (i.e. the smallest r1) such that t1:=tg+ == <t; if t; <t, then take

21‘1 =
the largest such that t9: =t + == 2T2 <t; and so on, until ¢, =t¢. Similarly for si,..., sm.

2“"2

Since ¢; and r; are strictly increasing integers with ¢; > ¢ and r; > ¢, we have the
bounds ¢; > ¢+ (i —1) and r; > £+ (j — 1), for all ;€ {0,...,m —1} and j €{0,...,
n — 1}, hence

1 1 it —s|
|si = sial = 29i+1 <2_ 7 < 9i
1 1 |t —s]

bl =g Sgu <o
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having used (4.28). This proves the bounds in (4.24).

We note that, for any integer r > ¢, we have the inclusion D, C D,. Then, given
any x € Dy, we have that x € D,., hence x — x+27". Since ty= di € Dy and r, > 0, this
shows that tg— t; =1%o+ 27"". Proceeding inductively, we have t; = ¢;, 1 =t;+ 277"
A similar argument applies to the points s; and completes the proof of (4.24). O

4.5. PROOF OF THEOREM 4.3
In this section we prove the three assertions of Theorem 4.3.

Proof of the first assertion of Theorem 4.3. We want to prove that for any
o€ (O, %), a.s. I is a-Holder continuous, namely there is an a.s. finite random
constant C' such that

01| <Clt—s]®, VO<s<t<T. (4.30)

First observation: if the claim holds under the stronger assumption |h| < ¢ almost
surely, for some deterministic ¢ < co, then we can deduce the general result by
localization. Indeed, if we only assume that supjy 7 || < oo a.s., we can define for
n € N the stopping times

T, :=1nf {t € [0, T: |h¢| > n}.
Let us define
t
W i=hopr, I = / h{"dB,.
0

Note that supp, 1 ]h(”)\ < n by the definition of 7,,. Then
SIS <CM[t—s|o,  VO<s<t<T, (4.31)

for a suitable a.s. finite random constant C'™. Let us define the events

An:={m =00} ={sup|h|<n}
(0,77
and note that h =A™ on A,. By the locality property of the stochastic integral,
I=1I™ as. on A%

Note that A:=J, . An={supjo,7] || < oo}, hence P(A) =1. If we define C':=
C™ on A\ Ay—1 (with Ag:=0) and C':=00 on A, we have C' < 0o a.s. and relation
(4.7) holds.

Second observation: if relation (4.30) holds for all s,¢ in a (deterministic) dense
subset D C [0, 77, then it holds for all s,¢€[0,T], because §1; is a continuous function
of (s,t).

In conclusion, the proof is reduced to showing (4.30) only for s,¢ € D, under the
assumption that supjo 7 |h| < c < oo almost surely. Suppose that this is the case and
set Ag =01y, 0<s<t<T. Here 6 A=0 and therefore the constant K, - in (4.21)
is equal to zero for any 0 < p < ~. It remains to estimate @), using Proposition 4.8.

4.1. We mean that I and I are indistinguishable on A,: for a.e. w € A, one has I{™(w) = I;(w) for
all ¢ €[0,1] (we recall that we always fix continuous versions of the stochastic integrals).
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By the BDG inequality of Proposition 4.12, for any p > 2

t p »
E[|5L7] < CPEK/ hgdu> } <Ot —sfF.

Then Proposition 4.8 applies with g :% and any o=y — % € (0, %) for p sufficiently
large. By Theorem 4.6, we obtain (4.30) and the proof is complete. U

For 0 < s <t < T we define the (random) continuous function

t
Rst::]t_[s_hs (Bt—Bs):/ (5hs,,«dBr. (432)

S

We recall that a.s. B €C for every a < %

Proof of the second assertion of Theorem 4.3. Let a < % We want to show

that, if a.s. h€CP?, for some (€ (0, 1], then there is an a.s. finite random constant
C such that

|Rat| < C|t — s|*TP, VO<s<t<T. (4.33)
First observation: if the claim holds under the stronger assumption ||dh || < ¢ almost
surely, for some deterministic ¢ < oo, then we can deduce the general result by

localization. Indeed, if we only assume that ||dh |3 < oo a.s., we can define for n € N
the stopping times

T i=1nf{t € [0, 1]:||0R|5,10.9 > 1},

where ||0h||q,[0,4 is the Hélder semi-norm of h restricted to [0,¢] (equivalently, the
Holder semi-norm of s+ hgsy on the whole interval s € [0, 1]). Let us define

t
WY i=hopr, I = / nmap,,  RY.=1" 1" —p"(B, - B,).
0

Note that [|6h™|5 < n, by definition of 7,. (Indeed, ||6h||g,0,q < n for all t < 7,
which means that |h(r) — h(s)| <n|r —s|? for all r, s €0, 7,); then, by continuity,
|h(r) —h(s)| <n|r—s|? for all , s € [0, 7], which means that ||0h||5 (0,5, = ||0h™]|5 <
n). Then

IRM| <Ot —s[ot8,  Vo<s<t<T), (4.34)
for a suitable a.s. finite random constant C™. Let us define the events
Ap:={mp=o00}={||6h[la <n}

and note that =A™ on A,. By the locality property of the stochastic integral,
I=1™ as. on A,,*2 hence also R=R™ a.s. on A,. Redefining C"™ =0 on the
exceptional set { R = R™}¢ we get by (4.34)

on the event A,: |Ryt| <C™|t — 5|8, VO<s<t<T.

4.2. We mean that I and I are indistinguishable on A,,: for a.e. w € A, one has I{™(w) = I,(w) for
all ¢ €[0,1] (we recall that we always fix continuous versions of the stochastic integrals).
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Note that A:={J, . An={[|0h|s < oo}, hence P(A) =1. If we define C :=C™ on
A\ A, -1 (with A .—Q)) and C:=00 on A° we have C' < oo a.s. and relation (4.8)
holds.

Second observation: if relation (4.33) holds for all s,¢ in a (deterministic) dense
subset ID C [0, 1], then it holds for all s,¢ € [0, 1], because Ry, is a continuous function
of (s,t).

In conclusion, the proof is reduced to showing (4.33) only for s,¢ € D, under the
assumption that ||0h||g < ¢ <oo. This technical result is formulated in the separate
Lemma 4.10. U

LEMMA 4.10. Let 0<« <% and 0 < < 1. Assume that E[||0h||f] <oo for all p>0.
Then there is an a.s. finite random constant C' such that

|Rot| < C|t — 5|2, Vs, teD with s<t. (4.35)
Equivalently, a.s. Re C5P.

Proof. We apply Theorem 4.6 to the (random) function A(s,t)= Ry, with y=a+ 3
and p=a A (. Then relation (4.22) yields (4.35). It remains to show that a.s.
Qa+p <00 and K, 445 < 00.
We recall that R is defined in (4.32). In particular, for s <u <t
5Rsut = Rst - Rsu - Rut = (hu - hs) (Bt - Bu)

Then by (4.21), a.s

u—s|Blt —ul®
Kposs(R) < |[0h]5]10B ]l sup v = 5|7}t — vl

0<s<u<t<1 Min (u—s,t — u)* Bt — 5|V P

By our assumption that ||dh || € L? and by the fact that B is a Brownian motion, it
follows that ||0h||g]|[0B]|o < o0 a.s., hence it only remains to show that the constant
defined by the supremum is bounded above by 1. However, this constant equals

Iéi aNp
sup L: sup (a—b) a/a_a/\ﬁbﬂ_a/\ﬁ g 1.
a,b>0, a+b=1 (CL A b)al\ﬁ a,b>0, a+b=1 (CL A b)

We Want now to estimate Q4 s(R). We note that, for fixed s <t, we have a.s.
Ry = f (hy — hs) dB,. By the Burkholder-Davies-Gundy inequality, see Proposition
4.12, for any p > 2 there is a universal constant c, such that

P

E[|R.|"] < cpE[(/st(hu—hs)2du)2]
< aufjonip( | t(u—s>2ﬁdu)5]

< e Elon]) (¢ — 57+

By Proposmon 4.8, we have (), <00 a.s. for any v< 3 —I—— —= Plugglng y=a+pf
we get o < =~ — =, which is satisfied for p large enough, since a < i U
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Next, we suppose that there exists another adapted process h! = (h%)te[O,T} with
values in R* @ (R?)* such that a.s.

|6hgs — hi BL| < |t — s|7te.
Then we define

Ry = Ry—hlB%=0I,—hBL—hlB%
t

where B? is defined in (4.2). Then the third assertion of Theorem 4.3 follows with
the same localisation argument as for the second one and from the following

LEMMA 4.11. Assume that E[||6hY]|7 4 [|6h — h'B?, ] < oo, for some a € (0,%)
and for all p>0. Then there is an a.s. finite random constant C' such that

|Rst| <Ot — s|mT2e Vs, telD with s<t. (4.37)
Equivalently, a.s. Re CJ?,

Proof. We apply Theorem 4.6 to the (random) function A(s,t) = R, with y=a+
and p=aAn. Then

0 Ry = (0hgy — hi BL,) BL, + 6ht, B2,

Now

X mhat gl
K R) < ||6h—h'B! B! [u— s
P777+204( ) ~N || ||77+a|| ||a0<sil,l1}zt<1mln (U_S t_ )p’t_8’77+2a—p

|2a

_ t—u
5h1 1B2 ‘u 8’ | )
* ||n|| “20‘o<si1£t<1mm (u—s,t— )p’t_syqﬁzafp

We note that the first supremum is equal to

+a Lo
a” b< (ab

sup < sup
ab>0.atb=1 (@AD)P = 1 0 atp=1

alAn
) aaVn ba—a/\77< 17

while the second supremum is equal to

sup abh* < swp ( ab
B
a,b>0,a+b=1 (CL A b)p a,b>0,a+b=1 aNb

Now by (4.36)

¢ 3

E[|R7] < ]EK / (5h3u—h§IB§u)2du) ]
t :

< {H(Sh h]BlHW(/ (u—5)2(’7+0‘)du)}

+ats
< G E[h— KB, (¢ — 573

alAn
> an—a/\ana—a/\n< 1.

By Proposition 4. 8 we have Q7 < oo a.s. for any y<n+« —I— =—= Pluggmg =
N+ 2a we get « < = — =, which is satisfied for p large enough, smce o < = U
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Finally, we give a proof of (half of) Burkholder-Davies-Gundy inequality for
p=2.

PROPOSITION 4.12. For all p > 2 there is a constant c, < oo such that for all 0 <
P

s<t<T
t p t 2
o o )

for any progressively measurable process such that P-a.s. fol y2du < 0o.

Proof. To simplify the notation we set s =0 and m;:= fgyu dB,.

First we make the additional assumptions that IE[ /. 01 Y2 du] < oo and m is bounded
by some deterministic constant. By the Itd formula applied to m;, we get

—1
Al = plmgl?sen(m) e dB, + P2 M -2z
In general (fg|mu|pflsgn(mu)yu dB,); is a local martingale, but under our

additional assumptions it is a true martingale with zero expectation, because
E[[ 01 Im|>®P~Y y2du] < oo (recall that m is bounded). Consequently

=22V [ t|mu|p2y3du}

If we set |my| :=supu<: |my|, we obtain by Holder

. t
Bl < 22 g [iau]
0

< @Eumml‘i@{( /O tygdu)g]i. (4.38)

Since (|my|)t>0 is submartingale bounded in LP with continuous trajectories, by
Doob L? inequality we have: E[|/m.|?] < (=2=)?E[|m,/?]. Plugging the above in (4.38)

p—1
we conclude:
t p t 5
o o [}
0 0

As far as the general case is concerned, let us define

t
" =inf {t > 0: ]mt\>n}/\inf{t20:/ yﬁdu>n}
0

Note that IP-a.s. 7" is a non decreasing sequence of stopping times, with 7" = oo for
n large enough. We denote y :=ylp = (t) and my:= [ 5 yudB,. By construction,
y™ and m" satisfy our additional assumptions. Since m{ =mys,» a.s., we have

AT D t g
E{/ Yu dB, ] < cﬂE[(/ yﬁl[o,Tn](u) du) 1
0 0

P

ool ( ]
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(s

Finally we notice that by Fatou’s Lemma

t tATT
IE[ / yudB, / yudB,
0 0

tAT™
/ Yud B,
0

P

< CPE{(/Otyﬁdu>2}

p
] = E{liminf

n— oo

n— oo

< liminf ]E[

The proof is complete.

|
|



