
Chapter 4

Stochastic Differential Equations

In this chapter we connect the rough difference equations (RDE) discussed in the pre-
vious chapter, see (3.18), with the classical stochastic differential equations (SDE)
dYt= σ(Yt) dBt driven by a Brownian motion B. Indeed, both RDE and SDE are
ways to make sense of the ill-posed differential equation Ẏt=σ(Yt)Bt

˙ .
We fix a time horizon T > 0 and two dimensions k, d∈N. Let B=(Bt)t∈[0,T ] be

a d-dimensional Brownian motion (with continuous paths) relative to a filtration
(Ft)t∈[0,T ], defined on a probability space (Ω,A,P). We fix a sufficiently regular
function σ:Rk→Rk⊗ (Rd)∗ and we consider a solution Y =(Yt)t∈[0,T ] of the SDE

dYt=σ(Yt) dBt i.e. Yt=Y0+

∫

0

t

σ(Ys)dBs , t! 0, (4.1)

where the stochastic integral is in the Ito sense. We always fix a version of Y with
continuous paths (we recall that the Ito integral is a continuous local martingale).

We want to show that Y solves a rough difference equation driven by the rough
path B=(B1,B2) (see Definition 3.2) defined by

Bst
1 :=Bt−Bs, Bst

2 :=

∫

s

t

(Br−Bs)⊗dBr, 0" s" t"T , (4.2)

where the stochastic integral is in the Ito sense. More explicitly, for i, j ∈ {1, . . . , d}

(Bst
1 )i :=Bt

i−Bs
i , (Bst

2 )ij :=

∫

s

t

(Br
i−Bs

i) dBr
j , (4.3)

where we write Bt=(Bt
1, .. . ,Bt

d), so that B1: [0, T ]!2 →Rd and B2: [0, T ]!2 →Rd⊗Rd.
Our first main result is that (B1,B2) is indeed a rough path over B.

Theorem 4.1. (Ito rough path) Almost surely, B :=(B1,B2) is an α-rough path
over B (see Definition 3.2) for any α∈

]1
3
, 1
2

[
, namely it satisfies a.s.

δBsut
2 :=Bst

2 −Bsu
2 −But

2 =Bsu
1 ⊗But

1 ,

|Bst
1 |# |t− s|α , |Bst

2 |# |t− s|2α . (4.4)

Our second main result is that, under suitable assumptions, the solution Y of
the SDE (4.1) solves the RDE (3.18) driven by the Ito rough path X=B.
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Theorem 4.2. (SDE & RDE) If σ:Rk→Rk⊗ (Rd)∗ is of class C2, then almost
surely any solution Y =(Yt)t∈[0,T ] of the SDE ( 4.1) is also a solution of the RDE

δYst=σ(Ys)Bst
1 +σ2(Ys)Bst

2 + o(t− s), 0" s" t"T . (4.5)

(We recall that σ2(·) :=∇σ(·)σ(·) is defined in ( 3.5).)
If σ(·) is of class C3 and, furthermore, σ(·) and σ2(·) are globally Lipschitz, i.e.

∥∇σ∥∞+ ∥∇σ2∥∞<∞, then almost surely both the SDE ( 4.1) and the RDE ( 4.5)
admit a unique solution Y =(Yt)t∈[0,T ] and these solutions coincide.

The key tool we exploit in this chapter is a local expansion of stochastic integrals,
see Theorem 4.3 in the next Section 4.1. The proofs of Theorems 4.1 and 4.2 are
direct consequences of this result, see Section 4.2.

In Sections 4.3 and 5.1 we discuss useful generalizations of the SDE (4.1), where
we add a drift and we allow for stochastic integration in the Stratonovich sense,
which leads to generalized versions of Theorems 4.1 and 4.2.

In Section 5.2 we present the celebrated result by Wong-Zakai on the limit of
solutions of the SDE (4.1) with a regularized Brownian motion (via convolution).

Finally, Section 4.4 is devoted to a far-reaching generalization of Kolmogorov’s
continuity criterion, which leads to the proof of Theorem 4.3 in Section 4.5.

4.1. Local expansion of stochastic integrals

We recall that B=(Bt)t∈[0,T ] is a d-dimensional Brownian motion. Let h=(ht)t∈[0,T ]
be a stochastic process with values in Rk⊗ (Rd)∗. We assume that h is adapted and
has continuous paths, in particular

∫
0

T |hs|2ds<∞, hence the Itô integral

It := I0+

∫

0

t

hr dBr (4.6)

is well-defined as a local martingale. It is a classical result that the stochastic process
I =(It)t∈[0,T ] admits a version with continuous paths, which we always fix.

We now state the main technical result of this chapter, proved in Section 4.5
below, which connects the regularity of h to the regularity of I .

Theorem 4.3. (Local expansion of stochastic integrals) Let h: [0, T ]→
Rk⊗ (Rd)∗ be an adapted process with a.s. continuous paths. Fix any α∈

]
0, 1

2

[
and

recall (B1,B2) from ( 4.2).

1. Almost surely I is of class Cα, i.e.

|It− Is|# (t− s)α, ∀0" s" t"T . (4.7)

(We recall that the implicit constant in the relation # is random.)

2. Assume that, almost surely, |δhsr|# (r− s)β for some β ∈ ]0, 1] (i.e. h is of
class Cβ). Then, almost surely,

|δIst−hsBst
1 |=

∣∣∣∣∣∣∣∣
∫

s

t

δhsr dBr

∣∣∣∣∣∣∣∣# (t− s)α+β , ∀0" s" t"T . (4.8)
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3. Assume that, almost surely, |δhsr − hs
1Bsr

1 |# (r − s)η+α, for some adapted
process h1=(ht

1)t∈[0,T ] of class Cη with η ∈ ]0, 1]. Then, almost surely,

|δIst−hsBst
1 −hs1Bst

2 | =
∣∣∣∣∣∣∣∣
∫

s

t

(δhsr−hs1Bsr
1 ) dBr

∣∣∣∣∣∣∣∣

# (t− s)η+2α, ∀0" s" t"T . (4.9)

The proof of Theorem 4.3 is postponed to Section 4.5.

4.2. Brownian rough path and SDE
In this section we exploit Theorem 4.3 to prove Theorems 4.1 and 4.2.

Proof. (of Theorem 4.1) We need to verify that B=(B1,B2) satisfies the Chen
relation (3.13) and the analytic bounds (3.14).

The Chen relation δBsut
2 =Bsu

1 ⊗But
1 for 0" s"u" t"T holds by (4.3):

δ(B2)sut
ij = (B2)st

ij − (B2)su
ij − (B2)ut

ij

=

∫

s

t

(Br
i−Bs

i) dBr
j−
∫

s

u

(Br
i−Bs

i) dBr
j−
∫

u

t

(Br
i−Bu

i) dBr
j

=

∫

u

t

(Bu
i −Bs

i) dBr
j=(Bu

i −Bs
i)

∫

u

t

1dBr
j=(Bu

i −Bs
i)(Bt

j−Bu
j),

by the properties of the Itô integral and the fact that the times s"u" t are ordered.
The first analytic bound |Bst

1 |# |t−s|α for α∈
]
0, 1

2

[
is a well-known almost sure

property of Brownian motion, which also follows from Theorem 4.3, applying (4.7)
with h≡1. Finally, the second analytic bound |Bst

2 |# |t− s|2α is also a consequence
of Theorem 4.3: it suffices to apply (4.8) with hs :=Bs and β=α. $

Proof. (Theorem 4.2) We first prove the second part of the statement.

• When σ is globally Lipschitz (∥∇σ∥∞<+∞), it is a classical result that for
the SDE (4.1) there is existence of strong solutions and pathwise uniqueness.

• When σ is of class C3, by Theorem 3.10 there is uniqueness of solutions for
the RDE (3.19), and if both σ and σ2 are globally Lipschitz (∥∇σ∥∞<+∞
and ∥∇σ2∥∞<+∞) there is also existence of solutions, by Theorem 3.12.

Therefore we only need to prove the first part of the statement: we assume that σ is
of class C2 and we show that given a solution Y =(Yt)t∈[0,T ] of the SDE (4.1), almost
surely Y is also a solution to the RDE (4.5).

Since Y is solution to (4.1), recalling (4.2) we can write

δYst− σ(Ys)Bst
1 −σ2(Ys)Bst

2 =

∫

s

t

(σ(Yr)− σ(Ys)) dBr−σ2(Ys)
∫

s

t

(Br−Bs) dBr

=

∫

s

t

(δσ(Y )sr−σ2(Ys)Bsr
1 ) dBr .

Let us fix α∈
]
0, 1

2

[
. We prove below that, almost surely,

|δσ(Y )st−σ2(Ys)Bst
1 |# (t− s)2α, ∀0" s" t"T . (4.10)
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This means that the assumptions of part 3 of Theorem 4.3 are satisfied by hr=σ(Yr)
and hr1=σ2(Yr) with η=α: applying (4.9) we then obtain, almost surely,

|δYst−σ(Ys)Bst
1 −σ2(Ys)Bst

2 |# (t− s)3α.

If we fix α> 1

3
, this shows that Y is indeed a solution of the RDE (4.5).

It remains to prove (4.10). By Itô’s formula and (4.1) we have, for 0" s< t"T ,

σ(Yt) = σ(Ys)+

∫

s

t∑

a=1

k

∂aσ(Yr) dYr
a+

1
2

∫

s

t∑

a,b=1

k

∂abσ(Yr) d⟨Y a, Y b⟩r

= σ(Ys)+

∫

s

t∑

a=1

k

∂aσ(Yr)
∑

c=1

d

σc
a(Yr) dBr

c+

+

∫

s

t 1
2

∑

a,b=1

k ∑

c=1

d

∂abσ (Yr)σc
a(Yr)σc

b(Yr)

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
p(Yr)

dr

= σ(Ys)+

∫

s

t

σ2(Yr) dBr+

∫

s

t

p(Yr) dr, (4.11)

therefore

δσ(Y )st−σ2(Ys)Bst
1 =

∫

s

t

(σ2(Yr)− σ2(Ys)) dBr+

∫

s

t

p(Yr) dr.

To prove (4.10), we show that both integrals in the RHS are O((t− s)2α).

• Since σ is of class C2 and Y has continuous paths, the random function
r ,→ p(Yr) is continuous, hence bounded for r ∈ [0, T ], therefore

∣∣∣∣∣∣∣∣
∫

s

t

p(Yr) dr

∣∣∣∣∣∣∣∣# (t− s)# (t− s)2α, ∀0" s" t"T .

• Almost surely Y is of class Cα, thanks to (4.7) from Theorem 4.3 and (4.1).
Since σ2 is of class C1, hence locally Lipschitz, r ,→σ2(Yr) is of class Cα too.
Applying (4.8) from Theorem 4.3 with β=α we then obtain, almost surely,

∣∣∣∣∣∣∣∣
∫

s

t

(σ2(Yr)−σ2(Ys)) dBr

∣∣∣∣∣∣∣∣# (t− s)2α, ∀0" s" t"T .

This completes the proof. $

4.3. SDE with a drift

It is natural to consider the SDE (4.1) with a non-zero drift term:

dYt= b(Yt) dt+σ(Yt) dBt i.e.

Yt=Y0+

∫

0

t

b(Ys) ds+
∫

0

t

σ(Ys) dBs, t! 0, (4.12)
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where b:Rk→Rk and σ:Rk→Rk⊗ (Rd)∗ are given and we recall that B=(Bt)t"0
is a d-dimensional Brownian motion. We can generalize Theorem 4.2 as follows.

Theorem 4.4. (SDE & RDE with drift) If σ(·) is of class C2 and b(·) is
continuous, then almost surely any solution Y =(Yt)t∈[0,T ] of the SDE ( 4.12) is also
a solution of the RDE

δYst= b(Ys) (t− s)+σ(Ys)Bst
1 +σ2(Ys)Bst

2 + o(t− s), 0" s" t"T . (4.13)

If σ(·) and b(·) are of class C3 and, furthermore, σ(·), σ2(·) and b(·) are globally
Lipschitz, i.e. ∥∇σ∥∞+∥∇σ2∥∞+∥∇b∥∞<∞, then almost surely the SDE ( 4.12)
and the RDE ( 4.13) have the same unique solution Y =(Yt)t∈[0,T ].

Proof. We cast the generalized SDE (4.12) in the “usual framework” by adding a
component to the driving noise B, i.e. we define B̃: [0, T ]→Rd×R by

B̃t := (Bt, t)= (Bt
1, . . . , Bt

d, t), t∈ [0, T ],

and accordingly we define σ̃:Rk→Rk⊗ (Rd+1)∗ by

σ̃(·) b̃ :=σ(·) b+ b(·) t for b̃=(b, t)∈Rd×R,

that is σ̃(·)ji=σ(·)ji 1{j!d}+ b(·)i1{j=d+1}. We can then rewrite the SDE (4.12) as

dYt= σ̃(Yt) dB̃t i.e. Yt=Y0+

∫

0

t

σ̃(Ys) dB̃s, t! 0 . (4.14)

We next extend the Ito rough path B=(B1,B2) from (4.2), defining

B̃st
1 := B̃t− B̃s=

(
Bst
1

t− s

)
, (4.15)

B̃st
2 :=

∫

s

t

(B̃r−B̃s)⊗dB̃r=

⎛

⎜⎜⎜⎜⎜⎜⎝

Bst
2

∫

s

t

(Br−Bs) dr
∫

s

t

(r− s) dBr

∫

s

t

(r− s) dr= (t− s)2
2

⎞

⎟⎟⎟⎟⎟⎟⎠. (4.16)

One can show that B̃=(B̃1, B̃2) is a rough path over B̃, following closely the proof
of Theorem 4.1. Indeed, if we fix α∈

]
0, 1

2

[
, we have almost surely B ∈ Cα, hence

∣∣∣∣∣∣∣∣
∫

s

t

(Br−Bs) dr

∣∣∣∣∣∣∣∣# (t− s)α+1,
∣∣∣∣∣∣∣∣
∫

s

t

(r− s) dBr

∣∣∣∣∣∣∣∣# (t− s)α+1. (4.17)

We can now write the RDE which generalizes (4.5):

δYst= σ̃(Ys) B̃st
1 + σ̃2(Ys) B̃st

2 + o(t− s) . (4.18)

Interestingly, plugging the definitions of B̃ and σ̃ into (4.18) we do not obtain ( 4.13),
because the components of B̃st

2 other than Bst
2 are missing in (4.13), see (4.16). The

point is that these components can be absorbed in the reminder o(t− s), see (4.17),
hence the RDE ( 4.18) and ( 4.13) are fully equivalent .

4.3 SDE with a drift 67



To complete the proof, we are left with comparing the SDE (4.14) with the
RDE (4.18). This can be done following the very same arguments as in the proof of
Theorem 4.2. The details are left to the reader. $

Remark 4.5. The strategy of adding the drift term as an additional component of
the driving noise, as in the proof of Theorem 4.4, suffers from a technical limitation,
namely we are forced to use the same regularity exponent α for all components , due
to Definition 3.2 of rough paths. This prevents us from exploiting the additional
regularity of the drift term: for instance, in the second part of Theorem 4.4, the
assumption that b(·) is of class C3 could be removed, because the “driving noise” t
is smooth and the classical theory of ordinary differential equations applies.

A natural solution would be to generalize Definition 3.2, allowing rough paths
to have a different regularity exponent for each component. The key results can be
generalized to this setting, but for simplicity we refrain from pursuing this path.

4.4. A refined Kolmogorov criterion

In this section we prepare the ground for the proof of Lemmas 4.10 and 4.11 in
Section 4.5 below, which are the main technical tools in the proof of Theorem 4.3.
We suppose without loss of generality that T =1, namely our processes are defined
on the interval [0, 1]. Define the set D of dyadic points in [0, 1] by

D :=
⋃

k≥0
Dk, where Dk :=

{
di
k := i

2k

}
0!i!2k. (4.19)

Given d, d̃∈D, we write d→ d̃ if and only if d̃ is consecutive to d in some layer Dk

of D, that is d= di
k and d̃= di+1

k , for some k≥ 0 and 0" i" 2k− 1.
Remarkably, in order to prove relation (4.35), it is enough to have a suitable

control on Rd,d̃ for consecutive points d→ d̃ (together with a global control on δR), as
the next result shows. This turns out to be at the heart of the Kolmogorov continuity
criterion, but we stress that it is a deterministic statement.

Theorem 4.6. (Kolmogorov criterion: deterministic part) Given a func-
tion A:D<

2 →R, for 0< ρ< γ we define the constants

Qγ := sup
d,d̃∈D:d→d̃

|Ad,d̃|
|d̃− d|γ

, (4.20)

Kρ,γ := sup
0!s<u<t!1
s,u,t∈D

|δAs,u,t|
min (u− s, t− u)ρ|t− s|γ−ρ . (4.21)

Then there is a constant Cρ,γ<∞ such that

|Ast|"Cρ,γ(Qγ+Kρ,γ)|t− s|γ , ∀(s, t)∈D<
2 . (4.22)

A key tool for Theorem 4.6 is the next result, proved at this end of this section,
which ensures the existence of suitable short paths in D.
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Lemma 4.7. (Dyadic paths) For any s, t∈D with s<t, there are integers n,m≥1
and a path of (m+n+1) points in D which leads from s to t, labelled as follows:

s= sm< . . . < s1<s0= t0<t1< . . . < tn= t, (4.23)

with the property that for all i∈ {0, . . . ,m− 1} and j ∈ {0, . . . , n− 1}

si+1→ si, tj→ tj+1; |si− si+1|<
|t− s|
2i

, |tj+1− tj |<
|t− s|
2j

. (4.24)

Proof of Theorem 4.6. Fix s, t∈D with s< t. We use Lemma 4.7 with the same
notation. By the definition of δA, we write

Ast=Ast0+At0t+ δAs,t0,t .

In the case m≥ 2, we can develop Ast0 as follows (recall that s= sm and s0= t0):

Ast0 =
∑

i=0

m−1

Asi+1si+
∑

i=0

m−2

δAs,si+1,si .

Similarly, when n≥ 2, we develop

At0t=
∑

j=0

n−1

Atjtj+1+
∑

j=0

n−2

δAtj ,tj+1,t,

so that

Ast =
∑

i=0

m−1

Asi+1si+
∑

j=0

n−1

Atjtj+1

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Ξ1

+

+δAs,t0,t+
∑

i=0

m−2

δAs,si+1,si+
∑

j=0

n−2

δAtj ,tj+1,t

︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸︷︷︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸︸ ︸
Ξ2

. (4.25)

By the definition of Qγ, for any d→ d̃ we can bound

|Add̃|"Qγ |d̃− d|γ.

By Lemma 4.7, this bound applies to any couple (si+1, si) and (tj , tj+1). Then we
can estimate Ξ1 in (4.25) as follows, exploiting the bounds in (4.24):

Qγ

{
∑

i=0

m−1

|si− si+1|γ+
∑

j=0

n−1

|tj+1− tj |γ
}
"

"Qγ

{
∑

i=0

∞

(2−i)γ+
∑

j=0

∞

(2−j)γ

}
|t− s|γ=

=Qγ

{
2

1− 2−γ
}
|t− s|γ ,
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which agrees with (4.22). On the other hand, thanks to (4.21) and (4.24),

|δAs,si+1,si|"Kρ,γ

(
|t− s|
2i

)ρ
|t− s|γ−ρ=Kρ,γ 2−iρ |t− s|γ

and similarly for δAtj ,tj+1,t, so that the term Ξ2 can be bounded above by

Kρ,γ |t− s|γ
(
1+

∑

i=0

m−2

2−iρ+
∑

j=0

n−2

2−jρ

)
"Kρ,γ |t− s|γ

(
1+

2
1− 2−ρ

)
.

This completes the proof of (4.22). $

As a simple consequence of Theorem 4.6, we show that suitable moment condi-
tions ensure the finiteness of the constant Qγ in (4.20), as in the classical Kolmogorov
criterion.

Proposition 4.8. (Kolmogorov criterion: probabilistic part) Let A=
(Ast)(s,t)∈D<

2 be a stochastic process which satisfies the following bound, for some γ0,
p, c∈ (0,∞):

E[|Ast|p]" c|t− s|pγ0, ∀(s, t)∈D<
2 .

Then, for any value of γ such that

γ< γ0− 1

p
, (4.26)

the random variable Qγ=Qγ(A) defined in ( 4.20) is in Lp:

E[|Qγ |p]" c

1− 21−p(γ0−γ)
<∞. (4.27)

In particular, a.s. Qγ<∞.

Proof. By definition of Qγ in (4.20), bounding the supremum with a sum we can
write

|Qγ |p"
∑

d,d̃∈D:d→d̃

(
|Ad,d̃|
|d̃− d|γ

)p
=
∑

k≥0

∑

i=0

2k−1 |Adi
kdi+1
k |p

|di+1k − dik|pγ
.

Let us write γ= γ0− 1+ ϵ

p
, for some ϵ> 0. Since di+1k − dik= 1

2k
we have

E[|Qγ |p] "
∑

k≥0

∑

i=0

2k−1

c|di+1k − dik|p(γ0−γ)

"
∑

k≥0

∑

i=0

2k−1
c

2(1+ϵ)k
=
∑

k≥0

c
2ϵk

=
c

1− 2−ϵ <∞.

The proof is complete. $

Remark 4.9. Given a stochastic process (Xt)t∈D defined on dyadic times, if we
apply Theorem 4.6 and Proposition 4.8 to (Ast := δXst=Xt−Xs)(s,t)∈D<

2 we obtain
the classical Kolmogorov continuity criterion. Note that in this caseKρ,γ=0 because
δA=0.
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Proof of Lemma 4.7. We refer to Figure 4.1 for a graphical representation. Given
s, t∈D with s< t, since 0<t− s" 1, we can define ℓ≥ 1 as the unique integer such
that

1
2ℓ
<t− s" 1

2ℓ−1
. (4.28)

We now take the smallest k ∈ {0, . . . , 2ℓ− 1} for which dkℓ >s and define

s0 := t0 := dk
ℓ.

The definition of k guarantees that dkℓ < t, because if dkℓ ! t then k

2ℓ
− s! t− s> 1

2ℓ

and this would violate the minimality of k.
Note that 0<dk

ℓ − s" dkℓ − dk−1ℓ = 1

2ℓ
and 0<t− dkℓ <t− s, by (4.28), therefore

0<s0− s<
1

2ℓ−1
, 0<t− t0<

1
2ℓ−1

. (4.29)

Since both s0− s∈D and t− t0∈D, for suitable integers m≥ 1 and n≥ 1 we have

s0− s=
1
2q1

+
1
2q2

+ . . .+
1
2qm

, t− t0=
1
2r1

+
1
2r2

+ . . .+
1
2rn

,

where qm> qm−1> . . . > q1≥ ℓ and rn> . . . > r1≥ ℓ. We can thus write

s=s0−
1
2q1
− 1
2q2
− . . .− 1

2qm
,

t=t0+
1
2r1

+
1
2r2

+ . . .+
1
2rn

.

We can finally define

si :=s0−
1
2q1
− 1
2q2
− . . .− 1

2qi
for i=1, . . . ,m,

tj :=t0+
1
2r1

+
1
2r2

+ . . .+
1
2rj

for j=1, . . . , n.

s0 = t0

s = 5
32

11
16 = t

s1s2 t1s3 t20 1

1
2

1
4

3
16

5
8

Figure 4.1. An instance of Lemma 4.7 with s= 5

32 and t= 11
16 . Note that ℓ=1 (because

1

21
< |t− s|= 17

32 ≤
1

20
, cf. (4.28)) and s0= t0=

1

2
. The points t1, . . . , tn are built iteratively:

first take the largest 1

2r1
(i.e. the smallest r1) such that t1 := t0+

1

2r1
≤ t; if t1<t, then take

the largest 1

2r2
such that t2 := t1+

1

2r2
≤ t; and so on, until tn= t. Similarly for s1, . . . , sm.

Since qi and rj are strictly increasing integers with q1≥ ℓ and r1≥ ℓ, we have the
bounds qi≥ ℓ+(i− 1) and rj ≥ ℓ+(j − 1), for all i∈ {0, . . . ,m− 1} and j ∈ {0, . . . ,
n− 1}, hence

|si− si+1|=
1

2qi+1
" 1
2i

1
2ℓ
<
|t− s|
2i

,

|tj+1− tj |=
1

2qj+1
" 1
2j

1
2ℓ
<
|t− s|
2j

.
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having used (4.28). This proves the bounds in (4.24).
We note that, for any integer r≥ ℓ, we have the inclusion Dℓ⊆Dr. Then, given

any x∈Dℓ, we have that x∈Dr, hence x→x+2−r. Since t0=dkℓ ∈Dℓ and r1≥ ℓ, this
shows that t0→ t1= t0+2−r1. Proceeding inductively, we have tj→ tj+1= tj+2

−rj+1.
A similar argument applies to the points si and completes the proof of (4.24). $

4.5. Proof of Theorem 4.3

In this section we prove the three assertions of Theorem 4.3.

Proof of the first assertion of Theorem 4.3. We want to prove that for any
α ∈

(
0, 1

2

)
, a.s. I is α-Hölder continuous, namely there is an a.s. finite random

constant C such that

|δIst|"C |t− s|α, ∀0" s" t"T . (4.30)

First observation: if the claim holds under the stronger assumption |h|" c almost
surely, for some deterministic c <∞, then we can deduce the general result by
localization. Indeed, if we only assume that sup[0,T ] |h|<∞ a.s., we can define for
n∈N the stopping times

τn := inf {t∈ [0, T ]: |ht|>n}.
Let us define

hs
(n) :=hs∧τn, It

(n) :=

∫

0

t

hs
(n)dBs.

Note that sup[0,T ] |h(n)|"n by the definition of τn. Then

|δIst
(n)|"C(n)|t− s|α, ∀0" s< t"T , (4.31)

for a suitable a.s. finite random constant C(n). Let us define the events

An := {τn=∞}= {sup
[0,T ]

|h|"n}

and note that h= h(n) on An. By the locality property of the stochastic integral,
I = I (n) a.s. on An

4.1.
Note that A :=

⋃
n∈NAn= {sup[0,T ] |h|<∞}, hence P(A)= 1. If we define C :=

C(n) on An\An−1 (with A0 :=∅) and C :=∞ on Ac, we have C<∞ a.s. and relation
(4.7) holds.

Second observation: if relation (4.30) holds for all s, t in a (deterministic) dense
subsetD⊆ [0,T ], then it holds for all s, t∈ [0,T ], because δIst is a continuous function
of (s, t).

In conclusion, the proof is reduced to showing (4.30) only for s, t∈D, under the
assumption that sup[0,T ] |h|" c<∞ almost surely. Suppose that this is the case and
set Ast := δIst, 0" s" t"T . Here δA=0 and therefore the constant Kρ,γ in (4.21)
is equal to zero for any 0< ρ< γ. It remains to estimate Qα using Proposition 4.8.

4.1. We mean that I(n) and I are indistinguishable on An: for a.e. ω ∈An one has It
(n)(ω)= It(ω) for

all t∈ [0, 1] (we recall that we always fix continuous versions of the stochastic integrals).
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By the BDG inequality of Proposition 4.12, for any p! 2

E[|δIst|p]" cpE
[(∫

s

t

hu
2 du

)p

2

]
"Cp|t− s|

p

2.

Then Proposition 4.8 applies with γ0=
1

2
and any α= γ0− 1

p
∈
(
0, 1

2

)
for p sufficiently

large. By Theorem 4.6, we obtain (4.30) and the proof is complete. $

For 0" s" t"T we define the (random) continuous function

Rst := It− Is−hs (Bt−Bs)=

∫

s

t

δhsr dBr. (4.32)

We recall that a.s. B ∈ Cα for every α< 1

2
.

Proof of the second assertion of Theorem 4.3. Let α< 1

2
. We want to show

that, if a.s. h∈ Cβ, for some β ∈ (0, 1], then there is an a.s. finite random constant
C such that

|Rst|"C |t− s|α+β , ∀0" s" t"T . (4.33)

First observation: if the claim holds under the stronger assumption ∥δh∥β" c almost
surely, for some deterministic c <∞, then we can deduce the general result by
localization. Indeed, if we only assume that ∥δh∥β<∞ a.s., we can define for n∈N
the stopping times

τn := inf {t∈ [0, 1]: ∥δh∥β ,[0,t]>n},

where ∥δh∥α,[0,t] is the Hölder semi-norm of h restricted to [0, t] (equivalently, the
Hölder semi-norm of s ,→hs∧t on the whole interval s∈ [0, 1]). Let us define

hs
(n) :=hs∧τn, It

(n) :=

∫

0

t

hs
(n)dBs, Rst

(n) := It
(n)− Is

(n)−hs
(n)(Bt−Bs).

Note that ∥δh(n)∥β " n, by definition of τn. (Indeed, ∥δh∥β ,[0,t]" n for all t < τn,
which means that |h(r)− h(s)|" n|r− s|β for all r, s∈ [0, τn); then, by continuity,
|h(r)−h(s)|"n|r−s|β for all r, s∈ [0, τn], which means that ∥δh∥β ,[0,τn]=∥δh(n)∥β"
n). Then

|Rst
(n)|"C(n)|t− s|α+β , ∀0" s< t"T , (4.34)

for a suitable a.s. finite random constant C(n). Let us define the events

An := {τn=∞}= {∥δh∥α"n}

and note that h= h(n) on An. By the locality property of the stochastic integral,
I = I(n) a.s. on An,4.2 hence also R=R(n) a.s. on An. Redefining C(n)=∞ on the
exceptional set {R=R(n)}c, we get by (4.34)

on the event An: |Rst|"C(n)|t− s|α+β , ∀0" s< t"T .

4.2. We mean that I(n) and I are indistinguishable on An: for a.e. ω ∈An one has It
(n)(ω)= It(ω) for

all t∈ [0, 1] (we recall that we always fix continuous versions of the stochastic integrals).
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Note that A :=
⋃

n∈NAn= {∥δh∥β<∞}, hence P(A)= 1. If we define C :=C(n) on
An \An−1 (with A0 := ∅) and C :=∞ on Ac, we have C <∞ a.s. and relation (4.8)
holds.

Second observation: if relation (4.33) holds for all s, t in a (deterministic) dense
subset D⊆ [0,1], then it holds for all s, t∈ [0,1], because Rst is a continuous function
of (s, t).

In conclusion, the proof is reduced to showing (4.33) only for s, t∈D, under the
assumption that ∥δh∥β" c<∞. This technical result is formulated in the separate
Lemma 4.10. $

Lemma 4.10. Let 0<α< 1

2
and 0< β"1. Assume that E[∥δh∥β

p]<∞ for all p>0.
Then there is an a.s. finite random constant C such that

|Rst|"C |t− s|α+β , ∀s, t∈D with s" t. (4.35)

Equivalently, a.s. R∈C2α+β.

Proof. We apply Theorem 4.6 to the (random) function A(s, t)=Rst, with γ=α+ β
and ρ = α ∧ β. Then relation (4.22) yields (4.35). It remains to show that a.s.
Qα+β<∞ and Kρ,α+β<∞.

We recall that Rst is defined in (4.32). In particular, for s<u< t

δRsut=Rst−Rsu−Rut=(hu−hs)(Bt−Bu).

Then by (4.21), a.s.

Kρ,α+β(R)" ∥δh∥β∥δB∥α sup
0!s<u<t!1

|u− s|β |t−u|α
min (u− s, t−u)α∧β |t− s|α∨β

.

By our assumption that ∥δh∥β∈Lp and by the fact that B is a Brownian motion, it
follows that ∥δh∥β∥δB∥α<∞ a.s., hence it only remains to show that the constant
defined by the supremum is bounded above by 1. However, this constant equals

sup
a,b>0, a+b=1

aαbβ

(a∧ b)α∧β
= sup

a,b>0, a+b=1

(
ab

(a∧ b)

)
α∧β

aα−α∧β bβ−α∧β" 1 .

We want now to estimate Qα+β(R). We note that, for fixed s < t, we have a.s.
Rst=

∫
s

t
(hu−hs)dBu. By the Burkholder-Davies-Gundy inequality, see Proposition

4.12, for any p> 2 there is a universal constant cp such that

E[|Rst|p] " cpE

[(∫

s

t

(hu−hs)2du
)p

2

]

" cpE

[
∥δh∥β

p

(∫

s

t

(u− s)2β du
)p

2

]

" cpE[∥δh∥β
p] (t− s)p

(
β+

1

2

)

.

By Proposition 4.8, we have Qγ<∞ a.s. for any γ< β+ 1

2
− 1

p
. Plugging γ=α+ β

we get α< 1

2
− 1

p
, which is satisfied for p large enough, since α< 1

2
. $
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Next, we suppose that there exists another adapted process h1=(ht
1)t∈[0,T ] with

values in Rk⊗ (Rd)∗ such that a.s.

|δhst−hs1Bst
1 |# |t− s|η+α.

Then we define

R̂st := Rst−hs1Bst
2 = δIst−hsBst

1 −hs1Bst
2

=

∫

s

t

(δhsr−hs1Bsr
1 )dBr, (4.36)

where B2 is defined in (4.2). Then the third assertion of Theorem 4.3 follows with
the same localisation argument as for the second one and from the following

Lemma 4.11. Assume that E[∥δh1∥ηp+ ∥δh− h1B1∥η+αp ]<∞, for some α ∈ (0, 1
2
)

and for all p> 0. Then there is an a.s. finite random constant C such that

|R̂st|"C |t− s|η+2α, ∀s, t∈D with s" t. (4.37)

Equivalently, a.s. R̂∈C2η+2α.

Proof. We apply Theorem 4.6 to the (random) function A(s, t)=Rst, with γ=α+ β
and ρ=α∧ η. Then

δR̂sut=(δhsu−hs1Bsu
1 )But

1 + δhsu
1 But

2 .

Now

Kρ,η+2α(R̂) " ∥δh−h1B1∥η+α∥B1∥α sup
0!s<u<t!1

|u− s|η+α|t− u|α
min (u− s, t− u)ρ|t− s|η+2α−ρ

+∥δh1∥η∥B2∥2α sup
0!s<u<t!1

|u− s|η |t− u|2α
min (u− s, t− u)ρ|t− s|η+2α−ρ .

We note that the first supremum is equal to

sup
a,b>0,a+b=1

aη+α bα

(a∧ b)ρ " sup
a,b>0,a+b=1

(
ab
a∧ b

)α∧η
aα∨η bα−α∧η" 1,

while the second supremum is equal to

sup
a,b>0,a+b=1

aη b2α

(a∧ b)ρ " sup
a,b>0,a+b=1

(
ab
a∧ b

)α∧η
aη−α∧η b2α−α∧η" 1.

Now by (4.36)

E[|R̂st|p] " E

[(∫

s

t

(δhsu−hs1Bsu
1 )2du

)p

2

]

" cpE

[
∥δh−h1B1∥η+αp

(∫

s

t

(u− s)2(η+α)du
)p

2

]

" cpE[∥δh−h1B1∥η+αp ] (t− s)p
(
η+α+

1

2

)

.

By Proposition 4.8, we have Qγ<∞ a.s. for any γ < η+α+ 1

2
− 1

p
. Plugging γ =

η+2α we get α< 1

2
− 1

p
, which is satisfied for p large enough, since α< 1

2
. $
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Finally, we give a proof of (half of) Burkholder-Davies-Gundy inequality for
p≥ 2.

Proposition 4.12. For all p≥ 2 there is a constant cp<∞ such that for all 0"
s" t"T

E

[∣∣∣∣∣∣∣∣
∫

s

t

yudBu

∣∣∣∣∣∣∣∣
p]
" cpE

[(∫

s

t

yu
2 du

)p

2

]

for any progressively measurable process such that P-a.s.
∫
0

1
yu
2 du<∞.

Proof. To simplify the notation we set s=0 and mt :=
∫
0

t
yudBu.

First we make the additional assumptions thatE
[∫

0

1
yu
2du

]
<∞ andm is bounded

by some deterministic constant. By the Itô formula applied to mt, we get

d|mt|p= p|mt|p−1sgn(mt)yt dBt+
p(p− 1)

2
|mt|p−2yt2 dt.

In general (
∫
0

t |mu|p−1sgn(mu)yu dBu)t is a local martingale, but under our
additional assumptions it is a true martingale with zero expectation, because
E[
∫
0

1|mu|2(p−1) yu2du]<∞ (recall that m is bounded). Consequently

E[|mt|p] =
p(p− 1)

2
E

[∫

0

t

|mu|p−2 yu2 du
]
.

If we set |m̄t| := supu!t |mu|, we obtain by Hölder

E[|mt|p] " p(p− 1)
2

E

[
|m̄t|p−2

∫

0

t

yu
2 du

]

" p(p− 1)
2

E[|m̄t|p]
1− 2

pE

[(∫

0

t

yu
2 du

)p

2

]2
p

. (4.38)

Since (|mt|)t≥0 is submartingale bounded in Lp with continuous trajectories, by
Doob Lp inequality we have: E[|m̄t|p]" ( p

p− 1)
pE[|mt|p]. Plugging the above in (4.38)

we conclude:

E

[∣∣∣∣∣∣∣∣
∫

0

t

yudBu

∣∣∣∣∣∣∣∣
p]
" cpE

[(∫

0

t

yu
2 du

)p

2

]
.

As far as the general case is concerned, let us define

τn= inf {t≥ 0: |mt|>n}∧ inf
{
t≥ 0:

∫

0

t

yu
2 du>n

}

Note that P-a.s. τn is a non decreasing sequence of stopping times, with τ n=∞ for
n large enough. We denote ytn := y1[0,τn](t) and mt

n :=
∫
0

t
yu
ndBu. By construction,

yn and mn satisfy our additional assumptions. Since mt
n=mt∧τn a.s., we have

E

[∣∣∣∣∣∣∣∣
∫

0

t∧τn

yu dBu

∣∣∣∣∣∣∣∣
p]
" cpE

[(∫

0

t

yu
2 1[0,τn](u) du

)p

2

]

" cpE

[(∫

0

t

yu
2 du

)p

2

]
.
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Finally we notice that by Fatou’s Lemma

E

[∣∣∣∣∣∣∣∣
∫

0

t

yu dBu

∣∣∣∣∣∣∣∣
p]

= E

[
liminf
n→∞

∣∣∣∣∣∣∣∣
∫

0

t∧τn

yu dBu

∣∣∣∣∣∣∣∣
p]

" liminf
n→∞

E

[∣∣∣∣∣∣∣∣
∫

0

t∧τn

yu dBu

∣∣∣∣∣∣∣∣
p]

" cpE

[(∫

0

t

yu
2 du

)p

2

]
.

The proof is complete. $
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