CHAPTER 5

WONG-ZAKAI

5.1. ITO VERSUS STRATONOVICH

We recall that B = (By):c[o,7] is @ Brownian motion in R?. Given the It rough path
B = (B!, B?) over B constructed in Theorem 4.2, see (4.2), we can define a new
rough path B = (B!, B?) over B, called the Stratonovich rough path, given by

Bl :=Bl, B2 :=B? VO<s<t<T, (5.1)
that is
i} . Bi— B if i = j
(B)7:= BT+~ 1a-p=4 | (5.2)
[.(Bi—BY)dB! ifi+j.

The fact that B is an a-rough path over B, for any a € } Ll [, is a consequence of
Theorem 4.1 (note that B2 =1B2 + 0f,; with f;= —Ide hence B2 =6B?).

Remark 5.1. (STRATONOVICH INTEGRAL) If X,Y:[0,7] — R are continuous
semimartingales, the Stratonovich integral of X with respecto to Y is defined by

t t
/Xsod}g::/XdemL%(X,Yﬁ, te (0, 7], (5.3)
0 0

where [ g X, dY; is the It6 integral and (-, ) is the quadratic covariation. For Brownian
motion B on R? we have (B, BY); =t 1{;_;}, hence recalling (4.2) we see that

t
IBst'_/ Bl ® odB,, 0<s<t<T. (5.4)

This explains why we call B = (B!, B?) the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.12):

AV =b(Y) dt +o(Y)odBs i
t t
Ytho-F/b(Ys) ds—f—/a(Y;)ost, £>0, (5.5)
0 0

where b: R¥ — R* and o: RF — RF @ (R?)* are given. This equation can be recast in
the Ito form by the conversion rule (5.3): since the martingale part of (o(Y;)):>0 is
fo 09(Y;)dBs)¢>0 by the It6 formula, see (4.11), we obtain

t t
ytzyo+/ (b(}g)%Ter[@(}g)])dH/a@g) dB,,  t>0.
0 0
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This is precisely the SDE (4.12) with a different drift b(-) :=b(-) +%Ter[02(-)}.
As an immediate corollary of Theorem 4.4, we obtain the following result.

THEOREM 5.2. (STRATONOVICH SDE & RDE) f o(-) is of class C* and b(-) is
continuous, then almost surely any solution Y = (Y;)icp,1) of the Stratonovich SDE
(5.5) is also a solution of the following RDE, for 0<s<t<T:

5 = b(Y) (t—s)+ (V) Bl +0a(¥s) B2+ oft — 5) (5.6)
= (b(YS) + % Ter[ag(Y;)O (t —s) +o(Ys) Bl +o2(Ye) B2 + ot — s).

If o(-), oa(+), b(+) are of class C* and, furthermore, o(-), oa(-), b(+) are globally
Lipschitz, i.e. ||Vo| oo+ ||Vo2|le+ | V]| < 00, then almost surely the SDE (5.5)
and the RDE (5.6) have the same unique solution Y = (Y;)icqo,11-

In conclusion, if the coefficients b(-) and o(-) are sufficiently regular, the Itd
equation (4.12) can be reintepreted as the RDE

0Yyu=0(Y) (t —5)+0(Ys) B4+ 0o(Yo) B+ ot —s), 0<s<t<T,
while the Stratonovich equation (5.5) can be reintepreted as the RDE
0Yu=0(Y:) (t —5) +0(Ys) Bl + 0o(Ys) By 4 o(t —s), 0<s<t<T.

In other words, rough paths allow to describe the Ité6 and the Stratonovich SDEs as
the same equation where only the second level of the rough path has been changed.
This shows that, in a sense, the relevant noise for a SDE is not only the Brownian
path (B;):>0, but rather the rough path B or B.

5.2. WONG-ZAKAI

In this section we show the following application of the previous results. We consider
a family (p:)e>o of compactly supported mollifiers on R, namely p: R — [0, 00) is
smooth, compactly supported in [—1, 1], satisfies f]Rp(x) dx =1 and we set

1 rx
pg(x).—gp<g), e>0,xeR. (5.7)

(We do not assume that p is even.) We consider a d-dimensional two-sided Brownian
motion (B;)ser, namely a Gaussian centered process with values in R? such that

By=0, E[B: B]] = L= Lstso) (]s| AJt]),

which is equivalent to say that (By):>0 and (B_¢):>0 are two independent d-dimen-
sional Brownian motions.
We consider the following problem: we define a regularization of (B;):>0 by

Bf::(pE*B)t:/ps(u) By, du, t>0, (5.8)
R
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and we consider the integral equation (3.3) controlled by B¢, namely
t
Z§:ZO+/ o(Z5) Bids,  0<t<T. (5.9)
0

It is easy to check that (Bj);>o converges to (By);>o as €]0 uniformly for ¢ € [0, T

%; see below). Then we want to understand whether
(ZF)t=0 also converges, and especially to which limit.
This question has a very natural answer in the context of rough paths. We define

the canonical rough path over B¢ (see section 8.7 below for more on this notion):

(and even in C* for any a <

t
B:;':= B — B, 113;;2::/113;}@35@, 0<s<t. (5.10)

Then we can prove the following result.

THEOREM 5.3. (WONG-ZAKAIL) As £]0, B° converges in probability to the
Stratonovich rough path B, see (5.1), namely for any o <%

| Bt — BY|, + || B2 - 1_B2||2a€—w> 0 in probability . (5.11)

The convergence holds almost surely along sequences € =¢,]0 exponentially fast.
Moreover let (Zf)icjo,r) be the solution to the controlled equation

t
Z§:ZO+/0(Z§)B§ds, £>0.
0

Assume that o: RF— RF @ (RY)* is of class C3, with ||Vo ||eo+ || V?0 oo+ | V30 || oo +
Voslloo + | V02| |00 < +00. Then, for any a € }0,%[, we have Z°— Z in probability
in C*([0,T);R¥) as €10, where Z is the unique solution to the Stratonovich SDE

t ¢ ¢
Zt:Zo—l—/ o(Zs) ost:Z0+/ o(Zs) dBS—i-%/ Trra|oe(Zs)] ds.
0 0 0

l). Let B® be the canonical smooth rough path associated

Proof. Fix a € (%, 5
with B° as in (3.9). Suppose we have proved that B° converges to B as in (5.11).
By Proposition 3.5, the solution Z¢ to the controlled equation (5.9) is equal to the
(unique by Theorem 3.10) solution to the rough finite difference equation (3.19)
associated with the a-rough path B¢. In the notation (3.51), we have Z¢=®(Z,, B°),

and by Theorem 5.2 we have Z = ®(Z,, B). By the continuity result Theorem 3.11

we obtain that Z¢=®(Zy, B*) — ®(Z,, B) =Z a.s. as €]0.
It remains now to prove (5.11). We first observe that by (5.8)

B5' = / pe() 6Byt —udu. (5.12)
R

Let us fix « <% and set ||0B]|q:=||0B||a,[-1,7+1], s0 that [6B| < ||0B]|a (b —a)® for
all =1<a<b<T+1. Then, uniformly for e € (0,1) and 0 < s <t < T, we can bound

B35 <168 la (t =) (5.13)
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We can write similarly
B - B, = / po(1) 5By usu—0By) du, (5.14)
R
hence for any o’ € }04, %[ we can estimate, by the triangle inequality,
B — Bt <2 [[0B]lar (t — )"
At the same time, since 0Bs — 0Bs_y t—o=0B_y+ — 0Bs_, s, we can also bound

!Bizl—IBét\<2\|6B|ya//pa<u) u du < 2|68 [lare”
R

because p. is supported in [—¢,¢]. Overall, we have shown that

— t—s)ver
B~ Blaor < 20Blaparey sup U2 YED
0<s<t<T (t—s)
= 2||5B||a/7[,17T+1]€a/7a5—l0> 0, Va < o' (515)

(for the equality, consider separately t —s >¢ and t — s <e). We stress that the
previous arguments are pathwise. Since ||0B ||as,[—1,74+1) <00 almost surely for any
a' < %7 it follows that ||B! — B!||,— 0 almost surely for any o < %

To complete the proof of (5.11), it remains to show that ||B%? — B?||sq — 0
in probability as £/0. We distinguish (BB*? — IBQ)ij for i = j (diagonal terms) and
for i # j (off-diagonal terms, in case d >1). To lighten notation, we fix i # j and
abbreviate X = B* and Y = B/, which are independent Brownian motions.

Diagonal terms are easy: by (5.10) and integration by parts (since X¢ is smooth)

t . € _ YE)2
(B=2)s = / (2 — X2) X2 du= KX 2Xs) .

Similarly (B?)% = (Xt_Q—XS)Q by definition (5.2) of Stratonovich Brownian motion.

Since (0X5)% — (6X)? =2 0X4 6(X¢ — X))o + (6(X° — X)g)?, by what we already
proved on ||(B! — BY)!||,= ||6(X¢ — X)]|a, see (5.15), we have almost surely

6(X° — Xl
2 el0

(B2 = B%) a0 < 19X [l 0(X7 = X) o+ >

We next turn to off-diagonal terms (B*? — B%)" = L¢ — L, where we set

t t t
Ly ::/ 0 X5 dYy,, St ::/ 0X%, dY;f:/ 60X, Y, du. (5.16)
The core of the proof is the following second moment bound, that we prove below.

PROPOSITION 5.4. (SECOND MOMENT BOUND) For all ¢ >0, s <t we have

}. (5.17)

E[(L5, — Ly)? <10 (¢ — s)?min {1, .
— S
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We derive from (5.17) a bound for moments of order p > 2 exploiting a key
property known as hypercontractivity, that we state in the special case which is
relevant for us. The proof is given below.

PROPOSITION 5.5. (HYPERCONTRACTIVITY) Consider the stochastic integral

W= /(/ sth)dY; (5.18)

for a deterministic function g € L*(R?*— R). Then the following bound holds:

m\'ﬁ

Vpel2oo)  E{WP < AEW, (5.19)
with ¢, :=E[|N(0,1)]] < oo

We can now apply (5.19) to L5; — Lg, which is of the form (5.18) (see (5.24)
below): plugging (5.17) into (5.19) we obtain

E[| L5 — L") < 10 2 (t — 5)P min {1, (t = )2} (5.20)

Since min {1,z } <" for all x>0 and & € [0, 1], it follows that
Vee (0,1 B[Lg— Lyl!) <102 (t — s)?0 2 P2 (5.21)

We now fix o <% and exploit Theorem 4.6 for Ay:= L, — Ly with p=a and v=2a.
We need to control the random constants Qa2 and K, o, from (4.20)-(4.21).

e For ()5, we apply Proposition 4.8 with vy=1— %z if we take k>0 small and
p > 2 large, so that (4.26) is satisfied, by (5.21) and (4.27) we get

102
1— 217p(172afg) '

E[Q},]<Ce"  with €=Cpq = (5.22)

This implies that Q2 — 0 in probability as € |0, and even almost surely along
sequences € = ¢,]0 which vanish exponentially fast.

e For K, 2, we note that, by the Chen relation,
therefore by (5.13) and (5.15), if we fix any o’ € (a,%), we can bound

10X o 16(Y= = Y) lat[0Y [la [[6(X= = X)|

Ka,2oz g
< 2([16X [la 1Y lar+ 10 [la 16X [lar) e (5.23)

This shows that ()2, — 0 almost surely as € |0.
We can finally apply (4.22) to conclude that, by (5.22) and (5.23),

|| (IB<572 - I_B2)ij ||2a = ||LE — L ||2a < Ca,2a (QQO[ + Ka,2a) 5—10> 0 in probablhty

This completes the proof of (5.11). O
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Proof. (OF THEOREM 5.4) Recalling that X*=p.x X and Y= p.* Y, an integra-
tion by parts for the stochastic (Wiener) integral yields for s <t

Xi = [ (=)= pls =) Xodo= [ ( /S:”pxr)dr)dxv,
Vi) = [ (=) Yodw= [ plt—w)a,

Recalling the definition (5.16) of Ly and Lf;, we can write

s st - // (o) t 1(s<v<w<t)> dX dY (524)
where we set

t u—v
gés’t)(v’ w) = / p(u —w) (/ pe(r) dr) du
= /ﬂ(sgrgugt) pe(r —v) pe(u —w) drdu.

Since 0< ¢ (v, w) <1 (recall that p.(-) is a probability density), it follows that

£

E[(Ls — // St (v, w) = Ls<v<w<))* dodw

< / ’958’t (v, W) = Lis<p<w<t| dvdw. (5.25)

To estimate this integral, we give a probabilistic representation of g.(v, w):
denoting by @ and @3 two independent random variables with density p(-), since
p-(+—v) and p.(- —w) are the densities of € Q; + v and € Q2+ w, we can write

gés’t)(v,w) =P(s<e@Q1+v<e@Qr+w<t).

Writing v=s+a (t — s) and w=s+b(t — s), for new variables a, b, we note that

€
t—s

gl t)(s +a(t—s),s+b(t—s))= ggo’l)(a, b) with §:=
A change of variables in the integral (5.25) then yields
Bl(Li— Lo < (0= [ 102(0.) = Locoshen| dadb.
Looking at our goal (5.17), it only remains to show that
/ 19 (a,b) = Lip<a<p<ny| dadb < 10min {1,8} . (5.26)

We define the subset
D:={(a,b)eR* 0<a<b<1}

so that we can write

95" (0, ) =P0<3Q1+a<5Q+b< 1) =E[lp soa,b)]  with Q:=(Q1,Qs).
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We can express the integral in (5.26) as

/ |9§0’1)(a7b)—1(0§a§b§1)|dadb = {/ |1p_sq(2z) — 1p(2)|dz
= E[|(D-6Q)aD]]

where |-| denotes Lebesgue measure in R?* and AAB := (AN B°)U (A°N B) is the
symmetric difference between sets. Note that z € (D — y) A D means that either z € D
but z+y € D¢ or z€ D¢ but z+ y € D, and in both cases dist(z,9D) < |y|, where
0D is the boundary of D. In other terms, for any y € R? we have the inclusion

(D—y)ADC{zeR* dist(z,0D) <|y|}.

Since D is a triangle with perimeter 2+ /2, the area of {z € R%  dist(z,0T) <|y|}
is bounded above by 2 (2++/2) |y|, hence

E[(D—0Q)aD|| <22+ v2) E6Q[ <2(2+2) V20,

because |Q| =/ Q7+ Q3 < /2 (we recall that p(-) is supported in [—1, 1], hence
|Q1], |Q2] <1). Since 2(24+/2) /2 <10, the proof of (5.26) is completed. O

Proof. (OF PROPOSITION 5.5) By (5.18) we can write W = ffoooh(t) dY; where
h(t)=h(X,t):= fioog(s,t) d X, depends only on X. Since X and Y are independent,
it follows that W is a Gaussian random wvariable conditionally on X, as a Wiener
integral. Recalling that ¢,:=E[|N(0,1)]?], we can thus write

¥4
2

E[WP|X] = c, E[W?|X]2,

We now denote by E=C(RR,R) the standard path space for X and Y, so that
can write W= f(X,Y) for a suitable measurable function f: E x F— IR. Denoting
by p the law of X, i.e. the two-sided Wiener measure, Fubini’s theorem yields

EW?|X]=E[f(z,Y)ls=x = (1 f (@, ) IE2(u(ayy) le=x

hence

E[W 7] = ¢ B[ EIW IX] | = 6, (11Lf (2, ) le2(uannlleouan)?

We now apply the Minkowski integral inequality (see Remark 5.6 below), which
states that for p > 2 switching the two norms yields an upper bound:

E[WIP] < e (H1f (@, 9)lleruazy lz2guan)”

1
g Cp(

Bl £y

We finally observe that f(X,y) is a Gaussian random variable, i e. W= f (X,Y) is
Gaussian conditionally on'Y (because W = [ h(s) dX, with h(t f g(s,t)dY; is
a Wiener integral conditionally on Y, by independence of X and Y) It follows that

8 5.27
LQ(u(dy))) ' (5:27)

P
2

E[ f(X, 9P| = E[f (X, 9)*]2 = c, (1 f (z, ) |lL2(u(aa)))- (5.28)
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Plugging (5.28) into (5.27) we obtain (5.19), since
115 @, ) llz2gutaan lz2(uagy) = B2
by Fubini’s theorem. U

Remark 5.6. (MINKOWSKI'S INTEGRAL INEQUALITY) Given o-finite measure
spaces (E, ) and (F,v) and a measurable function f: E x F— R, Minkowski’s
integral inequality states that for any 0 < ¢ < p< oo

1 f (2, Y)llLae, waxp e vay) < (@, 9)leE @) L, pae)) - (5.29)

For ¢ = p this holds an equality, as a consequence of Fubini’s theorem. If g < p, the
proof goes as follows: if the left-hand side of (5.29) is equal to zero, there is nothing
to prove; if it is not, then raising it to power p gives, by Fubini’s theorem,

J(fasvean)ar = [[ fure (forran) ™ an]a

p

- /E:[Jﬂq ([ispan) av|an
[ Lo { [ firvan) ™0™ o
= {[(frsran)ad ™ [(firrar)an

where we have used the Holder inequality on (F',v) with conjugated exponents 2

N

and —*—. The first term in the last line is the left-hand side raised to power == 1 q

dividing by such term (which is not zero by assumption) we obtain (5.29).
Note that for ¢=1 we have additionally, since | [, fdu|< [, [f[dpy,

[ [ 1an /|f|”dv

In the special case E'={1,2} with p=0; + do, if we set fi(+) := f(i,-), then for p>1
we recover the usual Minkowski inequality || fi + follr» < || fillze + || foll e

dp.

dy} <




