

CHAPTER 5

WONG-ZAKAI

5.1. ITÔ VERSUS STRATONOVICH

We recall that $B = (B_t)_{t \in [0, T]}$ is a Brownian motion in \mathbb{R}^d . Given the Itô rough path $\mathbb{B} = (\mathbb{B}^1, \mathbb{B}^2)$ over B constructed in Theorem 4.2, see (4.2), we can define a new rough path $\bar{\mathbb{B}} = (\bar{\mathbb{B}}^1, \bar{\mathbb{B}}^2)$ over B , called the *Stratonovich rough path*, given by

$$\bar{\mathbb{B}}_{st}^1 := \mathbb{B}_{st}^1, \quad \bar{\mathbb{B}}_{st}^2 := \mathbb{B}_{st}^2 + \frac{t-s}{2} \text{Id}_{\mathbb{R}^d}, \quad \forall 0 \leq s \leq t \leq T, \quad (5.1)$$

that is

$$(\bar{\mathbb{B}}_{st}^2)^{ij} := (\mathbb{B}_{st}^2)^{ij} + \frac{t-s}{2} \mathbb{1}_{\{i=j\}} = \begin{cases} \frac{B_t^i - B_s^i}{2} & \text{if } i = j, \\ \int_s^t (B_r^i - B_s^i) dB_r^j & \text{if } i \neq j. \end{cases} \quad (5.2)$$

The fact that $\bar{\mathbb{B}}$ is an α -rough path over B , for any $\alpha \in \left] \frac{1}{3}, \frac{1}{2} \right[$, is a consequence of Theorem 4.1 (note that $\bar{\mathbb{B}}_{st}^2 = \mathbb{B}_{st}^2 + \delta f_{st}$ with $f_t = \frac{t}{2} \text{Id}_{\mathbb{R}^d}$, hence $\delta \bar{\mathbb{B}}^2 = \delta \mathbb{B}^2$).

Remark 5.1. (STRATONOVICH INTEGRAL) If $X, Y: [0, T] \rightarrow \mathbb{R}$ are continuous semimartingales, the Stratonovich integral of X with respect to Y is defined by

$$\int_0^t X_s \circ dY_s := \int_0^t X_s dY_s + \frac{1}{2} \langle X, Y \rangle_t, \quad t \in [0, T], \quad (5.3)$$

where $\int_0^t X_s dY_s$ is the Itô integral and $\langle \cdot, \cdot \rangle$ is the quadratic covariation. For Brownian motion B on \mathbb{R}^d we have $\langle B^i, B^j \rangle_t = t \mathbb{1}_{\{i=j\}}$, hence recalling (4.2) we see that

$$\bar{\mathbb{B}}_{st}^2 := \int_s^t \bar{\mathbb{B}}_{sr}^1 \otimes \circ dB_r, \quad 0 \leq s \leq t \leq T. \quad (5.4)$$

This explains why we call $\bar{\mathbb{B}} = (\bar{\mathbb{B}}^1, \bar{\mathbb{B}}^2)$ the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.12):

$$dY_t = b(Y_t) dt + \sigma(Y_t) \circ dB_t, \quad \text{i.e.}$$

$$Y_t = Y_0 + \int_0^t b(Y_s) ds + \int_0^t \sigma(Y_s) \circ dB_s, \quad t \geq 0, \quad (5.5)$$

where $b: \mathbb{R}^k \rightarrow \mathbb{R}^k$ and $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ are given. This equation can be recast in the Itô form by the conversion rule (5.3): since the martingale part of $(\sigma(Y_t))_{t \geq 0}$ is $(\int_0^t \sigma_2(Y_s) dB_s)_{t \geq 0}$ by the Itô formula, see (4.11), we obtain

$$Y_t = Y_0 + \int_0^t \left(b(Y_s) + \frac{1}{2} \text{Tr}_{\mathbb{R}^d}[\sigma_2(Y_s)] \right) ds + \int_0^t \sigma(Y_s) dB_s, \quad t \geq 0.$$

This is precisely the SDE (4.12) with a different drift $\hat{b}(\cdot) := b(\cdot) + \frac{1}{2} \text{Tr}_{\mathbb{R}^d}[\sigma_2(\cdot)]$.

As an immediate corollary of Theorem 4.4, we obtain the following result.

THEOREM 5.2. (STRATONOVICH SDE & RDE) *f* $\sigma(\cdot)$ *is of class* C^2 *and* $b(\cdot)$ *is continuous, then almost surely any solution* $Y = (Y_t)_{t \in [0, T]}$ *of the Stratonovich SDE (5.5) is also a solution of the following RDE, for* $0 \leq s \leq t \leq T$:

$$\begin{aligned} \delta Y_{st} &= b(Y_s)(t-s) + \sigma(Y_s) \bar{\mathbb{B}}_{st}^1 + \sigma_2(Y_s) \bar{\mathbb{B}}_{st}^2 + o(t-s) \\ &= \left(b(Y_s) + \frac{1}{2} \text{Tr}_{\mathbb{R}^d}[\sigma_2(Y_s)] \right) (t-s) + \sigma(Y_s) \mathbb{B}_{st}^1 + \sigma_2(Y_s) \mathbb{B}_{st}^2 + o(t-s). \end{aligned} \quad (5.6)$$

If $\sigma(\cdot)$, $\sigma_2(\cdot)$, $b(\cdot)$ are of class C^3 and, furthermore, $\sigma(\cdot)$, $\sigma_2(\cdot)$, $b(\cdot)$ are globally Lipschitz, i.e. $\|\nabla \sigma\|_\infty + \|\nabla \sigma_2\|_\infty + \|\nabla b\|_\infty < \infty$, then almost surely the SDE (5.5) and the RDE (5.6) have the same unique solution $Y = (Y_t)_{t \in [0, T]}$.

In conclusion, if the coefficients $b(\cdot)$ and $\sigma(\cdot)$ are sufficiently regular, the Itô equation (4.12) can be reinterpreted as the RDE

$$\delta Y_{st} = b(Y_s)(t-s) + \sigma(Y_s) \mathbb{B}_{st}^1 + \sigma_2(Y_s) \mathbb{B}_{st}^2 + o(t-s), \quad 0 \leq s \leq t \leq T,$$

while the Stratonovich equation (5.5) can be reinterpreted as the RDE

$$\delta Y_{st} = b(Y_s)(t-s) + \sigma(Y_s) \bar{\mathbb{B}}_{st}^1 + \sigma_2(Y_s) \bar{\mathbb{B}}_{st}^2 + o(t-s), \quad 0 \leq s \leq t \leq T.$$

In other words, rough paths allow to describe the Itô and the Stratonovich SDEs as *the same equation* where only the second level of the rough path has been changed. This shows that, in a sense, the *relevant noise* for a SDE is not only the Brownian path $(B_t)_{t \geq 0}$, but rather the rough path \mathbb{B} or $\bar{\mathbb{B}}$.

5.2. WONG-ZAKAI

In this section we show the following application of the previous results. We consider a family $(\rho_\varepsilon)_{\varepsilon > 0}$ of compactly supported mollifiers on \mathbb{R} , namely $\rho: \mathbb{R} \rightarrow [0, \infty)$ is smooth, compactly supported in $[-1, 1]$, satisfies $\int_{\mathbb{R}} \rho(x) dx = 1$ and we set

$$\rho_\varepsilon(x) := \frac{1}{\varepsilon} \rho\left(\frac{x}{\varepsilon}\right), \quad \varepsilon > 0, x \in \mathbb{R}. \quad (5.7)$$

(We do not assume that ρ is even.) We consider a d -dimensional two-sided Brownian motion $(B_t)_{t \in \mathbb{R}}$, namely a Gaussian centered process with values in \mathbb{R}^d such that

$$B_0 = 0, \quad \mathbb{E}[B_s^i B_t^j] = \mathbb{1}_{(i=j)} \mathbb{1}_{(st \geq 0)} (|s| \wedge |t|),$$

which is equivalent to say that $(B_t)_{t \geq 0}$ and $(B_{-t})_{t \geq 0}$ are two independent d -dimensional Brownian motions.

We consider the following problem: we define a regularization of $(B_t)_{t \geq 0}$ by

$$B_t^\varepsilon := (\rho_\varepsilon * B)_t = \int_{\mathbb{R}} \rho_\varepsilon(u) B_{t-u} du, \quad t \geq 0, \quad (5.8)$$

and we consider the integral equation (3.3) controlled by B^ε , namely

$$Z_t^\varepsilon = Z_0 + \int_0^t \sigma(Z_s^\varepsilon) \dot{B}_s^\varepsilon \, ds, \quad 0 \leq t \leq T. \quad (5.9)$$

It is easy to check that $(B_t^\varepsilon)_{t \geq 0}$ converges to $(B_t)_{t \geq 0}$ as $\varepsilon \downarrow 0$ uniformly for $t \in [0, T]$ (and even in C^α for any $\alpha < \frac{1}{2}$; see below). Then we want to understand whether $(Z_t^\varepsilon)_{t \geq 0}$ also converges, and especially to which limit.

This question has a very natural answer in the context of rough paths. We define the *canonical rough path* over B^ε (see section 8.7 below for more on this notion):

$$\mathbb{B}_{st}^{\varepsilon,1} := B_t^\varepsilon - B_s^\varepsilon, \quad \mathbb{B}_{st}^{\varepsilon,2} := \int_s^t \mathbb{B}_{su}^{\varepsilon,1} \otimes \dot{B}_u^\varepsilon \, du, \quad 0 \leq s \leq t. \quad (5.10)$$

Then we can prove the following result.

THEOREM 5.3. (WONG-ZAKAI) *As $\varepsilon \downarrow 0$, \mathbb{B}^ε converges in probability to the Stratonovich rough path $\bar{\mathbb{B}}$, see (5.1), namely for any $\alpha < \frac{1}{2}$*

$$\|\mathbb{B}^{\varepsilon,1} - \bar{\mathbb{B}}^1\|_\alpha + \|\mathbb{B}^{\varepsilon,2} - \bar{\mathbb{B}}^2\|_{2\alpha} \xrightarrow[\varepsilon \downarrow 0]{} 0 \quad \text{in probability.} \quad (5.11)$$

The convergence holds almost surely along sequences $\varepsilon = \varepsilon_n \downarrow 0$ exponentially fast.

Moreover let $(Z_t^\varepsilon)_{t \in [0, T]}$ be the solution to the controlled equation

$$Z_t^\varepsilon = Z_0 + \int_0^t \sigma(Z_s^\varepsilon) \dot{B}_s^\varepsilon \, ds, \quad t \geq 0.$$

Assume that $\sigma: \mathbb{R}^k \rightarrow \mathbb{R}^k \otimes (\mathbb{R}^d)^*$ is of class C^3 , with $\|\nabla \sigma\|_\infty + \|\nabla^2 \sigma\|_\infty + \|\nabla^3 \sigma\|_\infty + \|\nabla \sigma_2\|_\infty + \|\nabla^2 \sigma_2\|_\infty < +\infty$. Then, for any $\alpha \in \left]0, \frac{1}{2}\right[$, we have $Z^\varepsilon \rightarrow Z$ in probability in $C^\alpha([0, T]; \mathbb{R}^k)$ as $\varepsilon \downarrow 0$, where Z is the unique solution to the Stratonovich SDE

$$Z_t = Z_0 + \int_0^t \sigma(Z_s) \circ dB_s = Z_0 + \int_0^t \sigma(Z_s) \, dB_s + \frac{1}{2} \int_0^t \text{Tr}_{\mathbb{R}^d}[\sigma_2(Z_s)] \, ds.$$

Proof. Fix $\alpha \in \left(\frac{1}{3}, \frac{1}{2}\right)$. Let \mathbb{B}^ε be the canonical smooth rough path associated with B^ε as in (3.9). Suppose we have proved that \mathbb{B}^ε converges to $\bar{\mathbb{B}}$ as in (5.11). By Proposition 3.5, the solution Z^ε to the controlled equation (5.9) is equal to the (unique by Theorem 3.10) solution to the rough finite difference equation (3.19) associated with the α -rough path \mathbb{B}^ε . In the notation (3.51), we have $Z^\varepsilon = \Phi(Z_0, \mathbb{B}^\varepsilon)$, and by Theorem 5.2 we have $Z = \Phi(Z_0, \bar{\mathbb{B}})$. By the continuity result Theorem 3.11 we obtain that $Z^\varepsilon = \Phi(Z_0, \mathbb{B}^\varepsilon) \rightarrow \Phi(Z_0, \bar{\mathbb{B}}) = Z$ a.s. as $\varepsilon \downarrow 0$.

It remains now to prove (5.11). We first observe that by (5.8)

$$\mathbb{B}_{st}^{\varepsilon,1} = \int_{\mathbb{R}} \rho_\varepsilon(u) \delta B_{s-u, t-u} \, du. \quad (5.12)$$

Let us fix $\alpha < \frac{1}{2}$ and set $\|\delta B\|_\alpha := \|\delta B\|_{\alpha, [-1, T+1]}$, so that $|\delta B_{ab}| \leq \|\delta B\|_\alpha (b-a)^\alpha$ for all $-1 \leq a < b \leq T+1$. Then, uniformly for $\varepsilon \in (0, 1)$ and $0 \leq s < t \leq T$, we can bound

$$|\mathbb{B}_{st}^{\varepsilon,1}| \leq \|\delta B\|_\alpha (t-s)^\alpha. \quad (5.13)$$

We can write similarly

$$\mathbb{B}_{st}^{\varepsilon,1} - \bar{\mathbb{B}}_{st}^1 = \int_{\mathbb{R}} \rho_{\varepsilon}(u) (\delta B_{s-u,t-u} - \delta B_{st}) du, \quad (5.14)$$

hence for any $\alpha' \in]\alpha, \frac{1}{2}[$ we can estimate, by the triangle inequality,

$$|\mathbb{B}_{st}^{\varepsilon,1} - \bar{\mathbb{B}}_{st}^1| \leq 2 \|\delta B\|_{\alpha'} (t-s)^{\alpha'}.$$

At the same time, since $\delta B_{st} - \delta B_{s-u,t-u} = \delta B_{t-u,t} - \delta B_{s-u,s}$, we can also bound

$$|\mathbb{B}_{st}^{\varepsilon,1} - \bar{\mathbb{B}}_{st}^1| \leq 2 \|\delta B\|_{\alpha'} \int_{\mathbb{R}} \rho_{\varepsilon}(u) u^{\alpha'} du \leq 2 \|\delta B\|_{\alpha'} \varepsilon^{\alpha'}$$

because ρ_{ε} is supported in $[-\varepsilon, \varepsilon]$. Overall, we have shown that

$$\begin{aligned} \|\mathbb{B}_{st}^{\varepsilon,1} - \bar{\mathbb{B}}_{st}^1\|_{\alpha, [0, T]} &\leq 2 \|\delta B\|_{\alpha', [-1, T+1]} \sup_{0 \leq s < t \leq T} \frac{(t-s)^{\alpha'} \vee \varepsilon^{\alpha'}}{(t-s)^{\alpha}} \\ &= 2 \|\delta B\|_{\alpha', [-1, T+1]} \varepsilon^{\alpha' - \alpha} \xrightarrow[\varepsilon \downarrow 0]{} 0, \quad \forall \alpha < \alpha' \end{aligned} \quad (5.15)$$

(for the equality, consider separately $t-s > \varepsilon$ and $t-s \leq \varepsilon$). We stress that the previous arguments are *pathwise*. Since $\|\delta B\|_{\alpha', [-1, T+1]} < \infty$ *almost surely* for any $\alpha' < \frac{1}{2}$, it follows that $\|\mathbb{B}_{st}^{\varepsilon,1} - \bar{\mathbb{B}}_{st}^1\|_{\alpha} \rightarrow 0$ *almost surely* for any $\alpha < \frac{1}{2}$.

To complete the proof of (5.11), it remains to show that $\|\mathbb{B}_{st}^{\varepsilon,2} - \bar{\mathbb{B}}_{st}^2\|_{2\alpha} \rightarrow 0$ in probability as $\varepsilon \downarrow 0$. We distinguish $(\mathbb{B}_{st}^{\varepsilon,2} - \bar{\mathbb{B}}_{st}^2)^{ij}$ for $i = j$ (diagonal terms) and for $i \neq j$ (off-diagonal terms, in case $d > 1$). To lighten notation, we fix $i \neq j$ and abbreviate $X = B^i$ and $Y = B^j$, which are *independent Brownian motions*.

Diagonal terms are easy: by (5.10) and integration by parts (since X^{ε} is smooth)

$$(\mathbb{B}_{st}^{\varepsilon,2})^{ii} = \int_s^t (X_u^{\varepsilon} - X_s^{\varepsilon}) \dot{X}_u^{\varepsilon} du = \frac{(X_t^{\varepsilon} - X_s^{\varepsilon})^2}{2}.$$

Similarly $(\bar{\mathbb{B}}_{st}^2)^{ii} = \frac{(X_t - X_s)^2}{2}$ by definition (5.2) of Stratonovich Brownian motion. Since $(\delta X_{st}^{\varepsilon})^2 - (\delta X_{st})^2 = 2 \delta X_{st} \delta(X^{\varepsilon} - X)_{st} + (\delta(X^{\varepsilon} - X)_{st})^2$, by what we already proved on $\|(\mathbb{B}_{st}^{\varepsilon,1} - \bar{\mathbb{B}}_{st}^1)^i\|_{\alpha} = \|\delta(X^{\varepsilon} - X)\|_{\alpha}$, see (5.15), we have *almost surely*

$$\|(\mathbb{B}_{st}^{\varepsilon,2} - \bar{\mathbb{B}}_{st}^2)^{ii}\|_{2\alpha} \leq \|\delta X\|_{\alpha} \|\delta(X^{\varepsilon} - X)\|_{\alpha} + \frac{\|\delta(X^{\varepsilon} - X)\|_{\alpha}^2}{2} \xrightarrow[\varepsilon \downarrow 0]{} 0.$$

We next turn to off-diagonal terms $(\mathbb{B}_{st}^{\varepsilon,2} - \bar{\mathbb{B}}_{st}^2)^{ij} = L^{\varepsilon} - L$, where we set

$$L_{st} := \int_s^t \delta X_{sw} dY_w, \quad L_{st}^{\varepsilon} := \int_s^t \delta X_{su}^{\varepsilon} dY_u^{\varepsilon} = \int_s^t \delta X_{su}^{\varepsilon} \dot{Y}_u^{\varepsilon} du. \quad (5.16)$$

The core of the proof is the following second moment bound, that we prove below.

PROPOSITION 5.4. (SECOND MOMENT BOUND) *For all $\varepsilon > 0$, $s < t$ we have*

$$\mathbb{E}[(L_{st}^{\varepsilon} - L_{st})^2] \leq 10 (t-s)^2 \min \left\{ 1, \frac{\varepsilon}{t-s} \right\}. \quad (5.17)$$

We derive from (5.17) a bound for moments of order $p \geq 2$ exploiting a key property known as *hypercontractivity*, that we state in the special case which is relevant for us. The proof is given below.

PROPOSITION 5.5. (HYPERCONTRACTIVITY) *Consider the stochastic integral*

$$W := \int_{-\infty}^{\infty} \left(\int_{-\infty}^t g(s, t) dX_s \right) dY_t \quad (5.18)$$

for a deterministic function $g \in L^2(\mathbb{R}^2 \rightarrow \mathbb{R})$. Then the following bound holds:

$$\forall p \in [2, \infty): \quad \mathbb{E}[|W|^p] \leq c_p^2 \mathbb{E}[W^2]^{\frac{p}{2}}, \quad (5.19)$$

with $c_p := \mathbb{E}[|\mathcal{N}(0, 1)|^p] < \infty$.

We can now apply (5.19) to $L_{st}^\varepsilon - L_{st}$, which is of the form (5.18) (see (5.24) below): plugging (5.17) into (5.19) we obtain

$$\mathbb{E}[|L_{st}^\varepsilon - L_{st}|^p] \leq 10 c_p^2 (t-s)^p \min \left\{ 1, \left(\frac{\varepsilon}{t-s} \right)^{\frac{p}{2}} \right\}. \quad (5.20)$$

Since $\min \{1, x\} \leq x^\kappa$ for all $x \geq 0$ and $\kappa \in [0, 1]$, it follows that

$$\forall \kappa \in (0, 1]: \quad \mathbb{E}[|L_{st}^\varepsilon - L_{st}|^p] \leq 10 c_p^2 (t-s)^{p(1-\frac{\kappa}{2})} \varepsilon^{p\frac{\kappa}{2}}. \quad (5.21)$$

We now fix $\alpha < \frac{1}{2}$ and exploit Theorem 4.6 for $A_{st} := L_{st}^\varepsilon - L_{st}$ with $\rho = \alpha$ and $\gamma = 2\alpha$. We need to control the *random constants* $Q_{2\alpha}$ and $K_{\alpha, 2\alpha}$ from (4.20)-(4.21).

- For $Q_{2\alpha}$ we apply Proposition 4.8 with $\gamma_0 = 1 - \frac{\kappa}{2}$: if we take $\kappa > 0$ small and $p \geq 2$ large, so that (4.26) is satisfied, by (5.21) and (4.27) we get

$$\mathbb{E}[Q_{2\alpha}^p] \leq \mathfrak{C} \varepsilon^{p\frac{\kappa}{2}} \quad \text{with} \quad \mathfrak{C} = \mathfrak{C}_{p, \alpha, \kappa} := \frac{10 c_p^2}{1 - 2^{1-p(1-2\alpha-\frac{\kappa}{2})}}. \quad (5.22)$$

This implies that $Q_{2\alpha} \rightarrow 0$ in probability as $\varepsilon \downarrow 0$, and even *almost surely* along sequences $\varepsilon = \varepsilon_n \downarrow 0$ which vanish exponentially fast.

- For $K_{\alpha, 2\alpha}$ we note that, by the Chen relation,

$$\delta A_{sut} = \delta X_{su}^\varepsilon \delta Y_{ut}^\varepsilon - \delta X_{su} \delta Y_{ut} = \delta X_{su}^\varepsilon (\delta Y_{ut}^\varepsilon - \delta Y_{ut}) + \delta Y_{ut} (\delta X_{su}^\varepsilon - \delta X_{su}),$$

therefore by (5.13) and (5.15), if we fix any $\alpha' \in (\alpha, \frac{1}{2})$, we can bound

$$\begin{aligned} K_{\alpha, 2\alpha} &\leq \|\delta X^\varepsilon\|_\alpha \|\delta(Y^\varepsilon - Y)\|_\alpha + \|\delta Y\|_\alpha \|\delta(X^\varepsilon - X)\|_\alpha \\ &\leq 2 (\|\delta X\|_\alpha \|\delta Y\|_{\alpha'} + \|\delta Y\|_\alpha \|\delta X\|_{\alpha'}) \varepsilon^{\alpha' - \alpha}. \end{aligned} \quad (5.23)$$

This shows that $Q_{2\alpha} \rightarrow 0$ *almost surely* as $\varepsilon \downarrow 0$.

We can finally apply (4.22) to conclude that, by (5.22) and (5.23),

$$\|(\mathbb{B}^{\varepsilon, 2} - \bar{\mathbb{B}}^2)^{ij}\|_{2\alpha} = \|L^\varepsilon - L\|_{2\alpha} \leq C_{\alpha, 2\alpha} (Q_{2\alpha} + K_{\alpha, 2\alpha}) \xrightarrow[\varepsilon \downarrow 0]{} 0 \quad \text{in probability.}$$

This completes the proof of (5.11). \square

Proof. (OF THEOREM 5.4) Recalling that $X^\varepsilon = \rho_\varepsilon * X$ and $Y^\varepsilon = \rho_\varepsilon * Y$, an integration by parts for the stochastic (Wiener) integral yields for $s < t$

$$\begin{aligned}\delta X_{st}^\varepsilon &:= \int_{\mathbb{R}} (\rho_\varepsilon(t-v) - \rho_\varepsilon(s-v)) X_v \, dv = \int_{\mathbb{R}} \left(\int_{s-v}^{t-v} \rho_\varepsilon(r) \, dr \right) dX_v, \\ \dot{Y}_\varepsilon(t) &:= \int_{\mathbb{R}} (\rho_\varepsilon)'(t-w) Y_w \, dw = \int_{\mathbb{R}} \rho_\varepsilon(t-w) \, dY_w.\end{aligned}$$

Recalling the definition (5.16) of L_{st} and L_{st}^ε , we can write

$$L_{st}^\varepsilon - L_{st} = \iint (g_\varepsilon^{(s,t)}(v, w) - \mathbb{1}_{(s \leq v \leq w \leq t)}) \, dX_v \, dY_w, \quad (5.24)$$

where we set

$$\begin{aligned}g_\varepsilon^{(s,t)}(v, w) &:= \int_s^t \rho_\varepsilon(u-w) \left(\int_{s-v}^{u-v} \rho_\varepsilon(r) \, dr \right) du \\ &= \int \mathbb{1}_{(s \leq r \leq u \leq t)} \rho_\varepsilon(r-v) \rho_\varepsilon(u-w) \, dr \, du.\end{aligned}$$

Since $0 \leq g_\varepsilon^{(s,t)}(v, w) \leq 1$ (recall that $\rho_\varepsilon(\cdot)$ is a probability density), it follows that

$$\begin{aligned}\mathbb{E}[(L_{st}^\varepsilon - L_{st})^2] &= \iint (g_\varepsilon^{(s,t)}(v, w) - \mathbb{1}_{(s \leq v \leq w \leq t)})^2 \, dv \, dw \\ &\leq \iint |g_\varepsilon^{(s,t)}(v, w) - \mathbb{1}_{(s \leq v \leq w \leq t)}| \, dv \, dw.\end{aligned} \quad (5.25)$$

To estimate this integral, we give a probabilistic representation of $g_\varepsilon(v, w)$: denoting by Q_1 and Q_2 two independent random variables with density $\rho(\cdot)$, since $\rho_\varepsilon(\cdot - v)$ and $\rho_\varepsilon(\cdot - w)$ are the densities of $\varepsilon Q_1 + v$ and $\varepsilon Q_2 + w$, we can write

$$g_\varepsilon^{(s,t)}(v, w) = \mathbb{P}(s \leq \varepsilon Q_1 + v \leq \varepsilon Q_2 + w \leq t).$$

Writing $v = s + a(t-s)$ and $w = s + b(t-s)$, for new variables a, b , we note that

$$g_\varepsilon^{(s,t)}(s + a(t-s), s + b(t-s)) = g_\delta^{(0,1)}(a, b) \quad \text{with } \delta := \frac{\varepsilon}{t-s}.$$

A change of variables in the integral (5.25) then yields

$$\mathbb{E}[(L_{st}^\varepsilon - L_{st})^2] \leq (t-s)^2 \iint |g_\delta^{(0,1)}(a, b) - \mathbb{1}_{(0 \leq a \leq b \leq 1)}| \, da \, db.$$

Looking at our goal (5.17), it only remains to show that

$$\iint |g_\delta^{(0,1)}(a, b) - \mathbb{1}_{(0 \leq a \leq b \leq 1)}| \, da \, db \leq 10 \min \{1, \delta\}. \quad (5.26)$$

We define the subset

$$D := \{(a, b) \in \mathbb{R}^2: 0 \leq a \leq b \leq 1\}$$

so that we can write

$$g_\delta^{(0,1)}(a, b) = \mathbb{P}(0 \leq \delta Q_1 + a \leq \delta Q_2 + b \leq 1) = \mathbb{E}[\mathbb{1}_{D-\delta Q}(a, b)] \quad \text{with } Q := (Q_1, Q_2).$$

We can express the integral in (5.26) as

$$\begin{aligned} \iint |g_\delta^{(0,1)}(a, b) - \mathbb{1}_{(0 \leq a \leq b \leq 1)}| da db &= \mathbb{E} \left[\int_{\mathbb{R}^2} |\mathbb{1}_{D-\delta Q}(z) - \mathbb{1}_D(z)| dz \right] \\ &= \mathbb{E}[|(D - \delta Q) \Delta D|] \end{aligned}$$

where $|\cdot|$ denotes Lebesgue measure in \mathbb{R}^2 and $A \Delta B := (A \cap B^c) \cup (A^c \cap B)$ is the symmetric difference between sets. Note that $z \in (D - y) \Delta D$ means that either $z \in D$ but $z + y \in D^c$, or $z \in D^c$ but $z + y \in D$, and in both cases $\text{dist}(z, \partial D) \leq |y|$, where ∂D is the boundary of D . In other terms, for any $y \in \mathbb{R}^2$ we have the inclusion

$$(D - y) \Delta D \subseteq \{z \in \mathbb{R}^2 : \text{dist}(z, \partial D) \leq |y|\}.$$

Since ∂D is a triangle with perimeter $2 + \sqrt{2}$, the area of $\{z \in \mathbb{R}^2 : \text{dist}(z, \partial D) \leq |y|\}$ is bounded above by $2(2 + \sqrt{2})|y|$, hence

$$\mathbb{E}[|(D - \delta Q) \Delta D|] \leq 2(2 + \sqrt{2}) \mathbb{E}[|\delta Q|] \leq 2(2 + \sqrt{2})\sqrt{2}\delta,$$

because $|Q| = \sqrt{Q_1^2 + Q_2^2} \leq \sqrt{2}$ (we recall that $\rho(\cdot)$ is supported in $[-1, 1]$, hence $|Q_1|, |Q_2| \leq 1$). Since $2(2 + \sqrt{2})\sqrt{2} \leq 10$, the proof of (5.26) is completed. \square

Proof. (OF PROPOSITION 5.5) By (5.18) we can write $W = \int_{-\infty}^{\infty} h(t) dY_t$ where $h(t) = h(X, t) := \int_{-\infty}^t g(s, t) dX_s$ depends only on X . Since X and Y are independent, it follows that W is a Gaussian random variable conditionally on X , as a Wiener integral. Recalling that $c_p := \mathbb{E}[|\mathcal{N}(0, 1)|^p]$, we can thus write

$$\mathbb{E}[|W|^p | X] = c_p \mathbb{E}[W^2 | X]^{\frac{p}{2}},$$

We now denote by $E = C(\mathbb{R}, \mathbb{R})$ the standard path space for X and Y , so that we can write $W = f(X, Y)$ for a suitable measurable function $f: E \times E \rightarrow \mathbb{R}$. Denoting by μ the law of X , i.e. the two-sided Wiener measure, Fubini's theorem yields

$$\mathbb{E}[W^2 | X] = \mathbb{E}[f(x, Y)^2] |_{x=X} = (\|f(x, y)\|_{L^2(\mu(dy))}^2) |_{x=X},$$

hence

$$\mathbb{E}[|W|^p] = c_p \mathbb{E} \left[\mathbb{E}[|W|^2 | X]^{\frac{p}{2}} \right] = c_p (\|f(x, y)\|_{L^2(\mu(dy))})^p.$$

We now apply the *Minkowski integral inequality* (see Remark 5.6 below), which states that for $p \geq 2$ switching the two norms yields an upper bound:

$$\begin{aligned} \mathbb{E}[|W|^p] &\leq c_p (\|f(x, y)\|_{L^p(\mu(dx))} \|_{L^2(\mu(dy))})^p \\ &= c_p \left(\left\| \mathbb{E}[|f(X, y)|^p] \right\|_{L^2(\mu(dy))}^{\frac{1}{p}} \right)^p. \end{aligned} \tag{5.27}$$

We finally observe that $f(X, y)$ is a Gaussian random variable, i.e. $W = f(X, Y)$ is Gaussian conditionally on Y (because $W = \int \tilde{h}(s) dX_s$ with $\tilde{h}(t) := \int_s^\infty g(s, t) dY_t$ is a Wiener integral conditionally on Y , by independence of X and Y). It follows that

$$\mathbb{E}[|f(X, y)|^p] = c_p \mathbb{E}[f(X, y)^2]^{\frac{p}{2}} = c_p (\|f(x, y)\|_{L^2(\mu(dx))})^p. \tag{5.28}$$

Plugging (5.28) into (5.27) we obtain (5.19), since

$$\|f(x, y)\|_{L^2(\mu(dx))} \|f(x, y)\|_{L^2(\mu(dy))} = \mathbb{E}[W^2]^{1/2}$$

by Fubini's theorem. \square

Remark 5.6. (MINKOWSKI'S INTEGRAL INEQUALITY) Given σ -finite measure spaces (E, μ) and (F, ν) and a measurable function $f: E \times F \rightarrow \mathbb{R}$, Minkowski's integral inequality states that for any $0 < q \leq p \leq \infty$

$$\|f(x, y)\|_{L^q(E, \mu(dx))} \|f(x, y)\|_{L^p(F, \nu(dy))} \leq \|\|f(x, y)\|_{L^p(F, \nu(dy))}\|_{L^q(E, \mu(dx))}. \quad (5.29)$$

For $q = p$ this holds an equality, as a consequence of Fubini's theorem. If $q < p$, the proof goes as follows: if the left-hand side of (5.29) is equal to zero, there is nothing to prove; if it is not, then raising it to power p gives, by Fubini's theorem,

$$\begin{aligned} \int_F \left(\int_E |f|^q d\mu \right)^{\frac{p}{q}} d\nu &= \int_F \left[\int_E |f|^q \left(\int_E |f|^q d\mu \right)^{\frac{p}{q}-1} d\mu \right] d\nu \\ &= \int_E \left[\int_F |f|^q \left(\int_E |f|^q d\mu \right)^{\frac{p}{q}-1} d\nu \right] d\mu \\ &\leq \int_E \left[\left(\int_F |f|^p d\nu \right)^{\frac{q}{p}} \left\{ \int_F \left(\int_E |f|^q d\mu \right)^{\frac{p-q}{q}} d\nu \right\}^{\frac{p-q}{p}} \right] d\mu \\ &= \left\{ \int_F \left(\int_E |f|^q d\mu \right)^{\frac{p}{q}} d\nu \right\}^{\frac{p-q}{p}} \int_E \left(\int_F |f|^p d\nu \right)^{\frac{q}{p}} d\mu \end{aligned}$$

where we have used the Hölder inequality on (F, ν) with conjugated exponents $\frac{p}{q}$ and $\frac{p}{p-q}$. The first term in the last line is the left-hand side raised to power $\frac{p-q}{p}$: dividing by such term (which is not zero by assumption) we obtain (5.29).

Note that for $q = 1$ we have additionally, since $|\int_E f d\mu| \leq \int_E |f| d\mu$,

$$\left[\int_F \left| \int_E f d\mu \right|^p d\nu \right]^{\frac{1}{p}} \leq \int_E \left| \int_F |f|^p d\nu \right|^{\frac{1}{p}} d\mu.$$

In the special case $E = \{1, 2\}$ with $\mu = \delta_1 + \delta_2$, if we set $f_i(\cdot) := f(i, \cdot)$, then for $p \geq 1$ we recover the usual Minkowski inequality $\|f_1 + f_2\|_{L^p} \leq \|f_1\|_{L^p} + \|f_2\|_{L^p}$.