
Chapter 5
Wong-Zakai

5.1. Itô versus Stratonovich
We recall that B=(Bt)t∈[0,T ] is a Brownian motion in Rd. Given the Itô rough path
B= (B1,B2) over B constructed in Theorem 4.2, see (4.2), we can define a new
rough path B̄=(B̄1, B̄2) over B, called the Stratonovich rough path, given by

B̄st
1 :=Bst

1 , B̄st
2 :=Bst

2 +
t− s
2

IdRd , ∀0! s! t!T , (5.1)
that is

(B̄st
2 )ij := (Bst

2 )ij+
t− s
2

1{i=j}=

⎧
⎨

⎩

Bt
i−Bsi

2
if i= j,

∫
s

t
(Br

i−Bs
i) dBr

j if i=/ j.
(5.2)

The fact that B̄ is an α-rough path over B, for any α∈
]1
3
, 1
2

[
, is a consequence of

Theorem 4.1 (note that B̄st
2 =Bst

2 + δfst with ft=
t

2
IdRd, hence δB̄2= δB2).

Remark 5.1. (Stratonovich integral) If X, Y : [0, T ]→R are continuous
semimartingales, the Stratonovich integral of X with respecto to Y is defined by

∫

0

t

Xs ◦dYs :=
∫

0

t

XsdYs+
1
2
⟨X,Y ⟩t, t∈ [0, T ], (5.3)

where
∫
0

t
XsdYs is the Itô integral and ⟨·, ·⟩ is the quadratic covariation. For Brownian

motion B on Rd we have ⟨Bi, Bj⟩t= t1{i=j}, hence recalling (4.2) we see that

B̄st
2 :=

∫

s

t

B̄sr
1 ⊗◦dBr, 0! s! t!T . (5.4)

This explains why we call B̄=(B̄1, B̄2) the Stratonovich rough path.

Let us consider now the Stratonovich version of the SDE (4.12):

dYt= b(Yt) dt+σ(Yt) ◦ dBt, i.e.

Yt=Y0+

∫

0

t

b(Ys) ds+
∫

0

t

σ(Ys) ◦ dBs, t" 0, (5.5)

where b:Rk→Rk and σ:Rk→Rk⊗ (Rd)∗ are given. This equation can be recast in
the Itô form by the conversion rule (5.3): since the martingale part of (σ(Yt))t!0 is
(
∫
0

t
σ2(Ys)dBs)t!0 by the Itô formula, see (4.11), we obtain

Yt=Y0+

∫

0

t
(
b(Ys)+

1
2
TrRd[σ2(Ys)]

)
ds+

∫

0

t

σ(Ys) dBs, t" 0.
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This is precisely the SDE ( 4.12) with a different drift b̂(·) := b(·)+ 1

2
TrRd[σ2(·)].

As an immediate corollary of Theorem 4.4, we obtain the following result.

Theorem 5.2. (Stratonovich SDE & RDE) f σ(·) is of class C2 and b(·) is
continuous, then almost surely any solution Y =(Yt)t∈[0,T ] of the Stratonovich SDE
( 5.5) is also a solution of the following RDE, for 0! s! t!T :

δYst = b(Ys) (t− s)+σ(Ys) B̄st
1 +σ2(Ys) B̄st

2 + o(t− s) (5.6)

=

(
b(Ys)+

1
2
TrRd[σ2(Ys)]

)
(t− s)+σ(Ys)Bst

1 +σ2(Ys)Bst
2 + o(t− s).

If σ(·), σ2(·), b(·) are of class C3 and, furthermore, σ(·), σ2(·), b(·) are globally
Lipschitz, i.e. ∥∇σ∥∞+ ∥∇σ2∥∞+ ∥∇b∥∞<∞, then almost surely the SDE ( 5.5)
and the RDE ( 5.6) have the same unique solution Y =(Yt)t∈[0,T ].

In conclusion, if the coefficients b(·) and σ(·) are sufficiently regular, the Itô
equation (4.12) can be reintepreted as the RDE

δYst= b(Ys) (t− s)+σ(Ys)Bst
1 +σ2(Ys)Bst

2 + o(t− s), 0! s! t!T ,

while the Stratonovich equation (5.5) can be reintepreted as the RDE

δYst= b(Ys) (t− s)+σ(Ys) B̄st
1 +σ2(Ys) B̄st

2 + o(t− s), 0! s! t!T .

In other words, rough paths allow to describe the Itô and the Stratonovich SDEs as
the same equation where only the second level of the rough path has been changed.
This shows that, in a sense, the relevant noise for a SDE is not only the Brownian
path (Bt)t!0, but rather the rough path B or B̄.

5.2. Wong-Zakai

In this section we show the following application of the previous results. We consider
a family (ρε)ε>0 of compactly supported mollifiers on R, namely ρ:R→ [0,∞) is
smooth, compactly supported in [−1, 1], satisfies

∫
R
ρ(x) dx=1 and we set

ρε(x) :=
1
ε
ρ
( x
ε

)
, ε> 0, x∈R. (5.7)

(We do not assume that ρ is even.) We consider a d-dimensional two-sided Brownian
motion (Bt)t∈R, namely a Gaussian centered process with values in Rd such that

B0=0, E[Bs
iBt

j] =1(i=j)1(st!0) (|s|∧ |t|),

which is equivalent to say that (Bt)t!0 and (B−t)t!0 are two independent d-dimen-
sional Brownian motions.

We consider the following problem: we define a regularization of (Bt)t!0 by

Bt
ε := (ρε ∗B)t=

∫

R
ρε(u)Bt−udu, t" 0, (5.8)
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and we consider the integral equation (3.3) controlled by Bε, namely

Zt
ε=Z0+

∫

0

t

σ(Zs
ε)Bs

ε˙ ds, 0! t!T . (5.9)

It is easy to check that (Bt
ε)t!0 converges to (Bt)t!0 as ε↓0 uniformly for t∈ [0, T ]

(and even in Cα for any α< 1

2
; see below). Then we want to understand whether

(Zt
ε)t!0 also converges, and especially to which limit.
This question has a very natural answer in the context of rough paths. We define

the canonical rough path over Bε (see section 8.7 below for more on this notion):

Bst
ε,1 :=Bt

ε−Bs
ε, Bst

ε,2 :=

∫

s

t

Bsu
ε,1⊗Bu

ε˙ du, 0! s! t. (5.10)

Then we can prove the following result.

Theorem 5.3. (Wong-Zakai) As ε↓0, Bε converges in probability to the
Stratonovich rough path B̄, see ( 5.1), namely for any α< 1

2

∥Bε,1− B̄1∥α+ ∥Bε,2− B̄2∥2α→→→→→→→→→→→→→→→→→→→→→→
ε↓0

0 in probability . (5.11)

The convergence holds almost surely along sequences ε= εn↓0 exponentially fast.
Moreover let (Zt

ε)t∈[0,T ] be the solution to the controlled equation

Zt
ε=Z0+

∫

0

t

σ(Zs
ε) Ḃs

ε ds, t" 0.

Assume that σ:Rk→Rk⊗ (Rd)∗ is of class C3, with ∥∇σ∥∞+∥∇2σ∥∞+∥∇3σ∥∞+
∥∇σ2∥∞+ ∥∇2σ2∥∞<+∞. Then, for any α∈

]
0, 1

2

[
, we have Zε→Z in probability

in Cα([0, T ];Rk) as ε↓0, where Z is the unique solution to the Stratonovich SDE

Zt=Z0+

∫

0

t

σ(Zs) ◦ dBs=Z0+

∫

0

t

σ(Zs)dBs+
1
2

∫

0

t

TrRd[σ2(Zs)] ds.

Proof. Fix α ∈
( 1
3
, 1
2

)
. Let Bε be the canonical smooth rough path associated

with Bε as in (3.9). Suppose we have proved that Bε converges to B̄ as in (5.11).
By Proposition 3.5, the solution Zε to the controlled equation (5.9) is equal to the
(unique by Theorem 3.10) solution to the rough finite difference equation (3.19)
associated with the α-rough path Bε. In the notation (3.51), we have Zε=Φ(Z0,Bε),
and by Theorem 5.2 we have Z =Φ(Z0, B̄). By the continuity result Theorem 3.11
we obtain that Zε=Φ(Z0,Bε)→Φ(Z0, B̄)=Z a.s. as ε↓0.

It remains now to prove (5.11). We first observe that by (5.8)

Bst
ε,1=

∫

R
ρε(u) δBs−u,t−udu. (5.12)

Let us fix α< 1

2
and set ∥δB∥α := ∥δB∥α,[−1,T+1], so that |δBab|! ∥δB∥α (b− a)α for

all −1!a<b!T +1. Then, uniformly for ε∈ (0,1) and 0! s<t!T , we can bound

|Bst
ε,1|! ∥δB∥α (t− s)α . (5.13)
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We can write similarly

Bst
ε,1− B̄st

1 =

∫

R
ρε(u) (δBs−u,t−u− δBst)du , (5.14)

hence for any α ′∈
]
α, 1

2

[
we can estimate, by the triangle inequality,

|Bst
ε,1− B̄st

1 |! 2 ∥δB∥α′ (t− s)α′.

At the same time, since δBst− δBs−u,t−u= δBt−u,t− δBs−u,s, we can also bound

|Bst
ε,1− B̄st

1 |! 2 ∥δB∥α′
∫

R
ρε(u)uα

′ du! 2 ∥δB∥α′ εα′

because ρε is supported in [−ε, ε]. Overall, we have shown that

∥Bε,1− B̄1∥α,[0,T ] ! 2 ∥δB∥α′,[−1,T+1] sup
0"s<t"T

(t− s)α′∨ εα′

(t− s)α

= 2 ∥δB∥α′,[−1,T+1] εα
′−α→→→→→→→→→→→→→→→→→→→→→→

ε↓0
0, ∀α<α′ (5.15)

(for the equality, consider separately t− s > ε and t− s! ε). We stress that the
previous arguments are pathwise. Since ∥δB∥α′,[−1,T+1]<∞ almost surely for any
α ′< 1

2
, it follows that ∥Bε,1− B̄1∥α→ 0 almost surely for any α< 1

2
.

To complete the proof of (5.11), it remains to show that ∥Bε,2 − B̄2∥2α→ 0
in probability as ε↓0. We distinguish (Bε,2− B̄2)ij for i= j (diagonal terms) and
for i=/ j (off-diagonal terms, in case d > 1). To lighten notation, we fix i=/ j and
abbreviate X =Bi and Y =Bj, which are independent Brownian motions.

Diagonal terms are easy: by (5.10) and integration by parts (since Xε is smooth)

(Bε,2)st
ii=

∫

s

t

(Xu
ε−Xs

ε) Ẋu
ε du=

(Xt
ε−Xs

ε)2

2
.

Similarly (B̄2)st
ii = (Xt−Xs)2

2
by definition (5.2) of Stratonovich Brownian motion.

Since (δXst
ε )2− (δXst)2= 2 δXst δ(Xε−X)st+ (δ(Xε−X)st)2, by what we already

proved on ∥(Bε,1− B̄1)i∥α= ∥δ(Xε−X)∥α, see (5.15), we have almost surely

∥(Bε,2− B̄2)ii∥2α! ∥δX∥α ∥δ(Xε−X)∥α+
∥δ(Xε−X)∥α2

2
→→→→→→→→→→→→→→→→→→→→→→
ε↓0

0.

We next turn to off-diagonal terms (Bε,2− B̄2)ij=Lε−L, where we set

Lst :=

∫

s

t

δXsw dYw, Lst
ε :=

∫

s

t

δXsu
ε dYuε=

∫

s

t

δXsu
ε Ẏu

ε du. (5.16)

The core of the proof is the following second moment bound, that we prove below.

Proposition 5.4. (Second moment bound) For all ε> 0, s< t we have

E[(Lst
ε −Lst)2]! 10 (t− s)2min

{
1,

ε
t− s

}
. (5.17)
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We derive from (5.17) a bound for moments of order p" 2 exploiting a key
property known as hypercontractivity , that we state in the special case which is
relevant for us. The proof is given below.

Proposition 5.5. (Hypercontractivity) Consider the stochastic integral

W :=

∫

−∞

∞(∫

−∞

t

g(s, t) dXs

)
dYt (5.18)

for a deterministic function g ∈L2(R2→R). Then the following bound holds:

∀p∈ [2,∞): E[|W |p]! cp2E[W 2]
p

2 , (5.19)

with cp :=E[|N (0, 1)|p]<∞.

We can now apply (5.19) to Lst
ε − Lst, which is of the form (5.18) (see (5.24)

below): plugging (5.17) into (5.19) we obtain

E[|Lstε −Lst|p]! 10 cp2 (t− s)pmin
{
1,
( ε
t− s

)p
2

}
. (5.20)

Since min {1, x}! xκ for all x" 0 and κ∈ [0, 1], it follows that

∀κ∈ (0, 1]: E[|Lstε −Lst|p]! 10 cp2 (t− s)
p
(
1−κ

2

)
εp

κ

2 . (5.21)

We now fix α< 1

2
and exploit Theorem 4.6 for Ast :=Lst

ε −Lst with ρ=α and γ=2α.
We need to control the random constants Q2α and Kα,2α from (4.20)-(4.21).

• For Q2α we apply Proposition 4.8 with γ0=1− κ

2
: if we take κ> 0 small and

p" 2 large, so that (4.26) is satisfied, by (5.21) and (4.27) we get

E[Q2α
p ]!C εp

κ

2 with C=Cp,α,κ :=
10 cp2

1− 21−p
(
1−2α−κ

2

) . (5.22)

This implies that Q2α→0 in probability as ε↓0, and even almost surely along
sequences ε= εn↓0 which vanish exponentially fast.

• For Kα,2α we note that, by the Chen relation,

δAsut= δXsu
ε δYut

ε − δXsu δYut= δXsu
ε (δYut

ε − δYut)+ δYut (δXsu
ε − δXsu),

therefore by (5.13) and (5.15), if we fix any α ′∈
(
α, 1

2

)
, we can bound

Kα,2α ! ∥δXε∥α∥δ(Y ε−Y )∥α+∥δY ∥α ∥δ(Xε−X)∥α
! 2 (∥δX∥α ∥δY ∥α′+ ∥δY ∥α ∥δX∥α′) εα

′−α . (5.23)

This shows that Q2α→ 0 almost surely as ε↓0.
We can finally apply (4.22) to conclude that, by (5.22) and (5.23),

∥(Bε,2− B̄2)ij∥2α= ∥Lε−L∥2α!Cα,2α (Q2α+Kα,2α)→→→→→→→→→→→→→→→→→→→→→→
ε↓0

0 in probability.

This completes the proof of (5.11). #
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Proof. (of Theorem 5.4) Recalling that Xε= ρε∗X and Y ε= ρε∗Y , an integra-
tion by parts for the stochastic (Wiener) integral yields for s< t

δXst
ε :=

∫

R
(ρε(t− v)− ρε(s− v))Xv dv=

∫

R

(∫

s−v

t−v
ρε(r) dr

)
dXv,

Ẏε(t) :=

∫

R

(ρε)′(t−w) Yw dw=
∫

R

ρε(t−w) dYw.

Recalling the definition (5.16) of Lst and Lstε , we can write

Lst
ε −Lst=

∫∫
(gε

(s,t)(v, w)−1(s≤v≤w≤t)) dXv dYw , (5.24)

where we set

gε
(s,t)(v, w) :=

∫

s

t

ρε(u−w)
(∫

s−v

u−v
ρε(r) dr

)
du

=

∫
1(s"r"u"t) ρε(r− v) ρε(u−w) drdu.

Since 0! gε(s,t)(v, w)! 1 (recall that ρε(·) is a probability density), it follows that

E[(Lst
ε −Lst)2] =

∫∫
(gε

(s,t)(v, w)−1(s≤v≤w≤t))2dvdw

!
∫∫
|gε
(s,t)(v, w)−1(s≤v≤w≤t)| dvdw. (5.25)

To estimate this integral, we give a probabilistic representation of gε(v, w):
denoting by Q1 and Q2 two independent random variables with density ρ(·), since
ρε(·− v) and ρε(·−w) are the densities of εQ1+ v and εQ2+w, we can write

gε
(s,t)(v, w)=P(s≤ εQ1+ v≤ εQ2+w! t) .

Writing v= s+ a (t− s) and w= s+ b (t− s), for new variables a, b, we note that

gε
(s,t)(s+ a (t− s), s+ b (t− s))= gδ

(0,1)(a, b) with δ :=
ε

t− s .

A change of variables in the integral (5.25) then yields

E[(Lst
ε −Lst)2]! (t− s)2

∫∫
|gδ
(0,1)(a, b)−1(0≤a≤b≤1)| dadb .

Looking at our goal (5.17), it only remains to show that
∫∫
|gδ
(0,1)(a, b)−1(0≤a≤b≤1)| dadb! 10min {1, δ} . (5.26)

We define the subset

D := {(a, b)∈R2: 0≤ a≤ b≤ 1}
so that we can write

gδ
(0,1)(a, b)=P(0≤ δQ1+ a≤ δQ2+ b! 1)=E[1D−δQ(a, b)] with Q := (Q1, Q2) .

84 Wong-Zakai



We can express the integral in (5.26) as
∫∫
|gδ
(0,1)(a, b)−1(0≤a≤b≤1)| dadb = E

[∫

R2

|1D−δQ(z)−1D(z)| dz
]

= E[|(D− δQ)△D |]

where |·| denotes Lebesgue measure in R2 and A△B := (A∩Bc)∪ (Ac∩B) is the
symmetric difference between sets. Note that z∈ (D− y)△D means that either z∈D
but z+ y ∈Dc, or z ∈Dc but z+ y ∈D, and in both cases dist(z, ∂D)! |y |, where
∂D is the boundary of D. In other terms, for any y ∈R2 we have the inclusion

(D− y)△D⊆ {z ∈R2: dist(z, ∂D)! |y |} .

Since ∂D is a triangle with perimeter 2+ 2
√

, the area of {z∈R2: dist(z,∂T )! |y |}
is bounded above by 2 (2+ 2

√
) |y |, hence

E[|(D− δQ)△D |]! 2 (2+ 2
√

)E[|δQ|]! 2 (2+ 2
√

) 2
√

δ ,

because |Q|= Q1
2+Q2

2
√

! 2
√

(we recall that ρ(·) is supported in [−1, 1], hence
|Q1|, |Q2|! 1). Since 2 (2+ 2

√
) 2
√ ! 10, the proof of (5.26) is completed. #

Proof. (of Proposition 5.5) By (5.18) we can write W =
∫
−∞
∞

h(t) dYt where
h(t)=h(X,t) :=

∫
−∞
t
g(s, t)dXs depends only on X. Since X and Y are independent,

it follows that W is a Gaussian random variable conditionally on X, as a Wiener
integral. Recalling that cp :=E[|N (0, 1)|p], we can thus write

E[|W |p|X] = cpE[W 2|X]
p

2,

We now denote by E =C(R,R) the standard path space for X and Y , so that
can write W = f(X,Y ) for a suitable measurable function f :E×E→R. Denoting
by µ the law of X, i.e. the two-sided Wiener measure, Fubini’s theorem yields

E[W 2|X ] =E[f(x, Y )2]|x=X=(∥f(x, y)∥L2(µ(dy))2 )|x=X ,
hence

E[|W |p] = cpE
[
E[|W |2|X]

p

2

]
= cp (∥∥f(x, y)∥L2(µ(dy))∥Lp(µ(dx)))p .

We now apply the Minkowski integral inequality (see Remark 5.6 below), which
states that for p" 2 switching the two norms yields an upper bound:

E[|W |p] ! cp (∥∥f(x, y)∥Lp(µ(dx))∥L2(µ(dy)))p

= cp
(∥∥∥∥∥∥E[|f(X, y)|p]

1

p

∥∥∥∥∥∥
L2(µ(dy))

)p
. (5.27)

We finally observe that f(X, y) is a Gaussian random variable, i.e. W = f(X,Y ) is
Gaussian conditionally on Y (because W =

∫
h̃(s) dXs with h̃(t) :=

∫
s

∞
g(s, t) dYt is

a Wiener integral conditionally on Y , by independence of X and Y ). It follows that

E[|f(X, y)|p] = cpE[f(X, y)2]
p

2 = cp (∥f(x, y)∥L2(µ(dx)))p. (5.28)
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Plugging (5.28) into (5.27) we obtain (5.19), since

∥∥f(x, y)∥L2(µ(dx))∥L2(µ(dy))=E[W 2]1/2

by Fubini’s theorem. #

Remark 5.6. (Minkowski’s integral inequality) Given σ-finite measure
spaces (E, µ) and (F , ν) and a measurable function f : E × F →R, Minkowski’s
integral inequality states that for any 0< q! p!∞

∥∥f(x, y)∥Lq(E,µ(dx))∥Lp(F ,ν(dy))! ∥∥f(x, y)∥Lp(F ,ν(dy))∥Lq(E,µ(dx)) . (5.29)

For q= p this holds an equality, as a consequence of Fubini’s theorem. If q < p, the
proof goes as follows: if the left-hand side of (5.29) is equal to zero, there is nothing
to prove; if it is not, then raising it to power p gives, by Fubini’s theorem,
∫

F

(∫

E

|f |q dµ
)p

q

dν =

∫

F

[∫

E

|f |q
(∫

E

|f |q dµ
)p

q
−1

dµ
]
dν

=

∫

E

[∫

F
|f |q

(∫

E
|f |q dµ

)p

q
−1

dν
]
dµ

!
∫

E

⎡

⎣
(∫

F
|f |p dν

)q

p

{∫

F

(∫

E
|f |q dµ

)p−q
q

p

p−q
dν

}p−q
p

⎤

⎦dµ

=

{∫

F

(∫

E
|f |q dµ

)p

q

dν
}p−q

p
∫

E

(∫

F
|f |p dν

)q

p

dµ

where we have used the Hölder inequality on (F , ν) with conjugated exponents p

q

and p

p− q
. The first term in the last line is the left-hand side raised to power p− q

p
:

dividing by such term (which is not zero by assumption) we obtain (5.29).
Note that for q=1 we have additionally, since |

∫
E
f dµ|!

∫
E
|f |dµ,

[∫

F

∣∣∣∣∣∣∣∣
∫

E
f dµ

∣∣∣∣∣∣∣∣
p

dν
]1
p!
∫

E

∣∣∣∣∣∣∣∣
∫

F
|f |p dν

∣∣∣∣∣∣∣∣

1

p

dµ.

In the special case E={1, 2} with µ= δ1+ δ2, if we set fi(·) := f(i, ·), then for p" 1
we recover the usual Minkowski inequality ∥f1+ f2∥Lp! ∥f1∥Lp+ ∥f2∥Lp.
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